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Notation
We denote scalars by lower case italic letters (a, b, ...), vectors by bold lower case letters
a,b etc., matrices by bold uppercase letters (A,B, ...), and higher-order tensors by
bold uppercase calligraphic letters (A,B, ...). Index upper bounds are denoted by italic
uppercase letters (i.e., 1 ≤ a ≤ A or 1 ≤ i ≤ I). The zero matrix is denoted by 0, and
the identity matrix is denoted by I.

a, b, ... scalars - lower case italic

1 ≤ a ≤ A, 1 ≤ i ≤ I, . . . scalar upper bounds - upper case italic

a,b, ... vectors - lower case bold

A,B, ... matrices - upper case bold

0, I zero matrix and identity matrix

A,B, ... higher-order tensors - calligraphic

A. PCA computation with a Hebb autoencoder

A Hebb autoencoder-decoder [8] with a linear transfer function, Fig. 1, minimizes the
least squares function,

L =

I∑
i=1

∥di −Bci∥+ λ∥BTB− I∥. (1)

where {di ∈ CIx |1 ≤ i ≤ I} is a set of I different vectorized and mean centered
observations with Ix measurements, B ∈ CIx×R is the PCA basis matrix, and ci is
the representation of di relative to B [5, p. 58]. The columns br in B are sequentially
computed, and their contributions are subtracted from a vectorized centered training
data set. The remainder is modeled by the next basis vector br+1, i.e., the next Hebb
neuron. The weights of the rth Hebb neuron are the elements in br which are updated
using natural gradient descent [5, p. 58]. The update rule is also known as the Sanger
Rule [19,18,17,1,15] in machine learning,
⋆ "Causal Deep Learning" to appear ICPR 2024. LNCS, vol 15309, pg.420-438. Springer, Cham.

https://doi.org/10.1007/978-3-031-78189-6_27. First presented at ICPR’22,Aug’22, Montreal

https://orcid.org/0000-0001-6581-6930
https://doi.org/10.1007/978-3-031-78189-6_27
https://iapr.org/archives/icpr2022/wp-content/uploads/2022/08/ICPR22_for-web_0823.pdf


2 M. Alex O. Vasilescu

Fig. 1: Autoencoder-decoder architecture and Principal Component Analysis. The basis
vector br is a columns in B and its contribution cr is an element in c. (All images have
been vectorized, but they are displayed as a grid of numbers. )
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br(t+ 1) =
(br(t) +∆br(t+ 1))

∥br(t) +∆br(t+ 1)∥
, (4)

where 0 ≤ η ≤ 2/∥B∥2 = σmax,B is the learning rate, cr is the contribution of br, and
t is the time iteration. Back-propagation[12,13] performs PCA gradient descent. An
autoencoder may be trained and the weights updated using a set of data batches, {Di},
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T (5)
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)
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= η (DiDi
T −Br(t)B

T
r (t)DiDi

T)br(t), (7)

where Br contains the first r columns. Computational speed-ups and better solutions are
achieved with stochastic gradient descent [3][16].
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B. Relevant Tensor Algebra

Briefly, tensors are the natural generalization of matrices–linear operators defined over
a vector space that map a data point from one vector space to another with preferred
properties. Tensors define multilinear operators over a set of vector spaces.

Definition 1 (Tensor). Tensors are multilinear mappings over a set of domain vector
spaces, CIm , 1 ≤ m ≤ M , to a range vector space CI0 :

A :
{
CI1 × CI2 × · · · × CIM

}
7→ CI0 . (8)

The order of tensor A ∈ CI0×I1×···×IM is M + 1. An element of A is denoted as
Ai0i1...im...iM or ai0i1...im...iM , where 1 ≤ im ≤ Im.

In a causal tensor framework, the M domain spaces span the causal factor representa-
tions and the range vector space spans the observation space. An M -way data array is
informally referred to as a “data tensor”.

The mode-m vectors of an M -order tensor A ∈ CI0×I1×···×IM are the Im-dimensional
vectors obtained from A by varying index im while keeping the other indices fixed. In
tensor terminology, column vectors are the mode-0 vectors and row vectors as mode-1
vectors. The mode-m vectors of a tensor are also known as fibers. The mode-m vectors
are the column vectors of matrix A[m] that results from matrixizing (a.k.a. flattening) the
tensor A.

Fig. 2: Matrixizing a 3rd order tensor, A.

Definition 2 (Mode-m Matrixizing). The mode-m matrixizing of tensor A ∈ CI0×I1×...IM

is defined as the matrix A[m] ∈ CIm×(I0...Im−1Im+1...IM). As the parenthetical ordering
indicates, the mode-m column vectors are arranged by sweeping all the other mode
indices through their ranges, with smaller mode indexes varying more rapidly than
larger ones; thus,

[A[m]]jk= ai1...im...iM , where (9)

j = im and k = 1 +

M∑
n=0
n̸=m

(in − 1)

n−1∏
l=0
l ̸=m

Il.
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Algorithm 1 M -mode SVD algorithm.[21]
Input the data tensor D ∈ CI0×···×IM .

1. For m := 0, . . . ,M ,
Let Um be the left orthonormal matrix of [UmSmV

T
m] := svd(D[m])

a

2. Set Z := D ×0 U0
T ×1 U1

T · · · ×m Um
T...×M UM

T.

Output mode matrices U0,U1, ...,UM, and the core tensor Z .
a The computation of Um in the SVD D[m] = UmΣVm

T can be performed efficiently, depending
on which dimension of D[m] is smaller, by decomposing either D[m]D[m]

T = UmΣ
2Um

T (note
that Vm

T = Σ+Um
TD[m]) or by decomposing D[m]

TD[m] = VmΣ
2Vm

T and then computing
Um = D[m]VmΣ

+.

A generalization of the product of two matrices is the product of a tensor and a matrix
[6,4].

Definition 3 (Mode-m Product, ×m). The mode-m product of a tensor A ∈ CI1···×Im···×IM

and a matrix B ∈ CJm×Im , denoted by A×mB, and it results in a tensor of dimensionality
CI1×···×Im−1×Jm×Im+1×···×IM whose entries are computed by

[A×mB]i1...im−1jmim+1...iM =
∑
im

ai1...im−1imim+1...iMbjmim ,

C = A×m B.
matrixize

tensorize
C[m] = BA[m].

The M -mode SVD, Algorithm 1 proposed by Vasilescu and Terzopoulos [26] is a
“generalization” of the conventional matrix (i.e., 2-mode) SVD which may be written in
tensor notation as

D = U0SU1
T ⇔ D = S×0 U0 ×1 U1

The M -mode SVD orthogonalizes the M spaces and decomposes a tensor as the mode-m
product, denoted ×m , of M -orthonormal mode matrices, and a core tensor Z

D = Z ×0 U0 · · · ×m Um · · · ×M UM. (10)
D[m] = UmZ[m] (UM · · · ⊗Um+1 ⊗m-1 U · · · ⊗U0)

T, (11)
vec(D) = (UM · · · ⊗Um+1 ⊗Um-1 · · · ⊗U0) vec(Z). (12)

The latter two equations express the decomposition in matrix form and in terms of vec
operators.
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(b)

(c)

Fig. 3: Compositional Hierarchical Block TensorFaces [24] learns a hierarchy of features,
and repesents each person as a part-based compositional representation. Figure depicts
the training data factorization, D = T H ×L UL ×V UV ×P UP, where an observation
is represented as d(p,v, l) = T H ×L l

T ×V vT ×P p
T and TH spans the hierarchical

causal factor variance. (b) ROC curves for the University of Freiburg 3D Morphable
Faces dataset. (c) ROC curves for the LFW dataset. The average accuracies are listed
next to each method, along with the area under the curve (AUC). Parts refers to using
compositional hierarchical Block TensorFaces models to separately analyze facial parts.
Gaussian, Laplacian refers to using compositional hierarchical Block TensorFaces on a
Gaussian/Laplacian data pyramid.

C. Compositional Hierarchical Block TensorFaces

Training Data: In our experiments, we employed gray-level facial training images ren-
dered from 3D scans of 100 subjects. The scans were recorded using a CyberwareTM
3030PS laser scanner and are part of the 3D morphable faces database created at the
University of Freiburg [2]. Each subject was combinatoriall y imaged in Maya from 15
different viewpoints (θ = −60◦ to +60◦ in 10◦ steps on the horizontal plane, ϕ = 0◦)
with 15 different illuminations ( θ = −35◦ to +35◦ in 5◦ increments on a plane inclined
at ϕ = 45◦).

Data Preprocessing: Facial images were warped to an average face template by a piece-
wise affine transformation given a set of facial landmarks obtained by employing Dlib
software [11,10,20,14,7]. Illumination was normalized with an adaptive contrast his-
togram equalization algorithm, but rather than performing contrast correction on the
entire image, subtiles of the image were contrast normalized, and tiling artifacts were
eliminated through interpolation. Histogram clipping was employed to avoid over-
saturated regions.

Experiments:We ran five experiments with five facial part-based hierarchies from which
a person representation was computed, Fig. 3. Each image, d ∈ RI0×1, was convolved
with a Gaussian and a Laplacian filter bank {Hs∥s = 1...S} that contained five filters,
S = 5. The filtered images, d×0 Hs, resulted in five facial part hierarchies composed
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Training
Dataset

Test
Dataset

PCA TensorFaces Compositional Hierarchical Block TensorFaces

Pixels Gaussian
Pyramid

Weighted
Gaussian
Pyramid

Laplacian
Pyramid

Weighted
Laplacian
Pyramid

Freiburg Freiburg 65.23% 71.64% 90.50% 88.17% 94.17% 90.96% 93.98%

Freiburg LFW
grey level

images

69.23%
±1.51

66.25%
±1.60

72.72%
±2.14

76.72%
±1.65

77.85%
±1.83

77.58%
±1.45

78.93%
±1.77

Table 1: Empirical results reported for Freiburg and Labeled Faces in the Wild (LFW)
using PCA, TensorFaces and Compositional Hierarchical Block TensorFaces represen-
tations. Pixels denotes independent facial part analysis Gaussian/Laplacian use a multi
resolution pyramid to analyze facial features at different scales. Weighted denotes a
weighted composite signature.
Freiburg Experiment:
Train on Freiburg: 6 views (±60◦,±30◦,±5◦); 6 illums (±60◦,±30◦,±5◦), 45 people
Test on Freiburg: 9 views (±50◦, ±40◦, ±20◦, ±10◦, 0◦), 9 illums (±50◦, ±40◦, ±20◦,
±10◦, 0◦), 45 different people
Labeled Faces in the Wild (LFW) Experiment:
Models were trained on approximately half of one percent (0.5% < 1%) of the 4.4M
images used to train DeepFace.
Train on Freiburg:
15 views (±60◦,±50◦, ±40◦,±30◦, ±20◦, ±10◦,±5◦, 0◦), 15 illums (±60◦,±50◦,
±40◦,±30◦, ±20◦, ±10◦,±5◦, 0◦), 100 people
Test on LFW: We report the mean accuracy and standard deviation across standard liter-
ature partitions [9], following the Unrestricted, labeled outside data supervised protocol.

of (i) independent pixel parts (ii) parts segmented from different layers of a Gaussian
pyramid that were equally or (iii) unequally weighed, (iv) parts were segmented from a
Laplacian pyramid that were equally or (v) unequally weighed.

The composite person signature was computed for every test image by employing the
multilinear projection algorithm [23,27], and signatures were compared with a nearest
neighbor classifier.

To validate the effectiveness of our system on real-world images, we report results on
“LFW” dataset (LFW) [9]. This dataset contains 13,233 facial images of 5,749 people.
The photos are unconstrained (i.e., “in the wild”), and include variation due to pose,
illumination, expression, and occlusion. The dataset consists of 10 train/test splits of the
data. We report the mean accuracy and standard deviation across all splits in Table 1.
Fig. 3(b-c) depicts the experimental ROC curves. We follow the supervised “Unrestricted,
labeled outside data” framework.
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Results: While we cannot celebrate closing the gap on human performance, our results
are promising. DeepFace, a CNN model, improved the prior art verification rates on
LFW from 70% to 97.35%, by training on 4.4M images of 200×200 pixels from 4, 030
people, the same order of magnitude as the number of people in the LFW database.

We trained on less than one percent (1%) of the 4.4M total images used to train DeepFace.
Images were rendered from 3D scans of 100 subjects with an the intraocular distance of
approximately 20 pixels and with a facial region captured by 10, 414 pixels (image size
≈ 100× 100 pixels). We have currently achieved verification rates just shy of 80% on
LFW.

Summary: Compositional Hierarchical Block TensorFaces models cause-and-effect as
a hierarchical block tensor interaction between intrinsic and extrinsic causal factors of
data formation [25][22].

A data tensor expressed as a part-based a hierarchy is a unified tensor model of wholes
and parts. The resulting causal factor representations are interpretable, hierarchical, and
statistically invariant to all other causal factors. While we have not closed the gap on
human performance, we report encouraging face verification results on two test data
sets–the Freiburg, and the Labeled Faces in the Wild datasets by training on a very small
set of synthetic images. We have currently achieved verification rates just shy of eighty
percent on LFW by employing synthetic images from 100 people, 15 viewpoints and 15
illuminations, for a total that constitutes less than one percent (1%) of the total images
employed by DeepFace. CNN verification rates improved the 70% prior art to 97.35%
only when they employed 4.4M images from 4, 030 people, the same order of magnitude
as the number of people in the LFW database.
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