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ABSTRACT

Materials science faces two persistent challenges: the multiscale nature of func-
tional devices, where performance emerges from the complex interplay of compo-
nents across different length scales, and the prevalence of incomplete characteriza-
tion data that precludes conventional featurization approaches. These challenges
are exemplified in perovskite solar cells, where device optimization requires con-
sideration of multiple interacting layers while much of the materials data exists
only as text descriptions. While machine learning has accelerated the discovery
of isolated material properties, translating promising materials into functional de-
vices remains a significant bottleneck. Here, we introduce semantic device graphs:
a physics-inspired representation that captures the multi-scale architecture of per-
ovskite solar cells while leveraging large language models to generate meaning-
ful embeddings for incomplete material descriptions. Our approach achieves a
10% improvement in performance prediction compared to state-of-the-art meth-
ods (CrabNet), enabling holistic device optimization rather than isolated material
screening. The framework generates physically meaningful device fingerprints
that reveal patterns in high-performing architectures, providing insights for future
device optimization. This work demonstrates how combining physics-informed
architectural choices with language models can address fundamental materials
science challenges of multiscale modeling and incomplete information, serving
as a stepping stone toward more holistic materials discovery approaches.

1 INTRODUCTION

The accelerated discovery of new materials through machine learning has primarily focused on
predicting isolated properties, such as bandgaps or formation energies (Dunn et al., 2020; Alampara
et al., 2024; Choudhary et al., 2024; Lee et al., 2023; Jablonka et al., 2020). However, real-world
device optimization requires consideration of multiple interacting components and their collective
performance (Moosavi et al., 2020). This multiscale challenge is particularly evident in perovskite
solar cells, where device efficiency emerges from the complex interplay of multiple material layers
and their interfaces (Stolterfoht et al., 2019).

Despite possessing exceptional optoelectronic properties,(Guo et al., 2023) the commercialization
of perovskite technologies continues to span decades (Unold, 2022; Dale & Scarpulla, 2023). A
fundamental barrier to acceleration lies in the nearly infinite combinations of materials and device
architectures required to construct a complete solar cell. While historical design decisions have been
guided by physics-based intuition and lessons from previous technologies, the rapidly expanding
materials landscape and need for acceleration have rendered this traditional approach a significant
bottleneck.
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The conventional sequential approach—screening individual materials before considering their
integration—can be misleading, potentially overlooking promising combinations that only reveal
their potential when considered holistically. This challenge mirrors other complex material systems
where performance depends on the interaction of multiple components across different scales where
information is available at different qualities and resolutions for different scales (Charalambous
et al., 2024).

In this work, we introduce semantic device graphs: a physics-inspired graph-based representation
of perovskite solar cells that bridges multiple scales of device architecture (see Figure 1). Our
approach uniquely leverages large language models (LLMs) to generate embeddings for incomplete
material descriptions, enabling meaningful representation even when detailed characterization data
is unavailable. This allows us to capture relevant context and prior knowledge for materials where
conventional materials informatics tools cannot be applied due to incomplete information.

This work demonstrates how combining physics-informed architectural choices with language mod-
els can address fundamental materials science challenges of multiscale modeling and incomplete
information. Our framework serves as a stepping stone toward more holistic materials discovery
approaches that can better translate promising materials into practical devices.

Concretely, our main contributions are:

• Semantic device graphs: We introduce semantic device graphs, a novel physics-inspired
graph representation that captures the multi-scale architecture of perovskite solar cells
while preserving the hierarchical relationships between different device components.

• LLM embeddings for incomplete data: We demonstrate how large language model em-
beddings can be effectively used to represent materials in device stacks where conventional
featurization approaches fail due to incomplete characterization data, achieving a 10% im-
provement in performance prediction compared to state-of-the-art methods (Wang et al.,
2021).

• GNN for device property prediction: We develop a heterogeneous graph neural network
architecture that combines material-level and layer-level information through specialized
node types and edge connections, enabling holistic device optimization rather than isolated
material screening.

• Cartography of perovskite solar cells: We provide insights into perovskite solar cell
design through learned device fingerprints, revealing patterns in high-performing architec-
tures that can guide future device optimization.

2 RELATED WORK

Prediction of perovskite material and solar cell properties Various ML algorithms, including
Gradient Boosting Regression (GBR), Kernel Ridge Regression (KRR), and Support Vector Ma-
chines (SVM), have been employed to predict bandgaps of metal halide perovskites (Parikh et al.,
2022; Im et al., 2019; Li et al., 2019).

Some works also considered the prediction of device properties such as the photoconversion effi-
ciency (PCE) based on device properties but leveraged expensive and time-consuming featurization
such as computing the physics-inspired (Godovsky, 2011) difference in highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied orbital (LUMO) energies between transport layers and
absorbers (Li et al., 2019).

Importantly, this information is not only expensive to compute but also impossible to compute for
the largest dataset of perovskite device properties: The perovskite database (Jacobsson et al., 2021),
which was created by manually extracting device and performance properties from more than 15,000
papers. Many parts of the device stack of a perovskite solar cell are only encoded as a text string
(often an abbreviation).

Multiscale graph representations Graph representations have emerged as a powerful tool for
modeling materials across different scales, particularly at the mesoscale and microstructural lev-
els. For example, grains in polycrystalline materials can be represented as nodes in a graph, with
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Figure 1: Overview of the modeling approach. We convert the device stack of perovskite solar
cells in which materials are often only described with a string, such as abbreviations, into semantic
device graphs. We use LLM-derived embeddings as the node feature vectors and use GNNs to
update the representations. Following mean pooling, the representations are used to predict device
performance metrics.

edges representing the physical interfaces between neighboring grains. The nodes typically contain
features such as Euler angles, grain volume, and number of neighbors (Dai et al., 2021).

Recent work has shown the effectiveness of heterogeneous graph representations for complex nano-
materials. Sivonxay et al. (2024) demonstrated this for upconverting nanoparticles by representing
both dopant species and their energy transfer interactions as distinct node types. This approach
allows capturing both spatial relationships and physical interactions while maintaining differentia-
bility for inverse design.

3 METHODS

Data preprocessing The experimental data was obtained from the NOMAD (Scheidgen et al.,
2023)repository, which hosts an updated version of the perovskite database.(Márquez & Scheidgen,
2024; Jacobsson et al., 2021) During preprocessing, duplicate entries were eliminated based on de-
vice performance metrics and stack configurations to ensure that only unique device configurations
are in the dataset.

Crossvalidation To measure performance on unseen data points, we performed a random
train/valid/test split, keeping 80% for training and 10% for testing and validation, respectively.

Embeddings For the material name strings, we obtained embeddings using OpenAI’s
Text-embedding-3-small model.

Graph representation We represent a perovskite solar cell as a heterogeneous graph G = (V,E),
where:

• V = Vm ∪ Vl represents the set of vertices consisting of:
– Material nodes Vm representing individual layer materials
– Meta-nodes Vl representing layer types
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The edge set E contains three types of connections:

1. Material-to-meta edges (vm, vl) connecting materials to their layer type

2. Material-to-material edges (vm1, vm2) connecting materials within the same layer

3. Meta-to-meta edges (vl1, vl2) connecting adjacent layer types

Each edge eij ∈ E is represented by a one-hot encoded vector tij ∈ {0, 1}3 indicating the edge
type.

Node features are initialized as:

• For material nodes vm: LLM embeddings of material names hm ∈ Rd

• For meta-nodes vl: average of the material node embeddings vm linked to this meta-node

Multiple instances of the same layer type (e.g., in multi-junction cells) are represented by distinct
meta-nodes while maintaining the same connectivity pattern.

Graph convolutional neural network We employ a graph-convolutional neural network (Gilmer
et al., 2017) to learn device properties. After K graph convolutional layers, the device properties are
predicted based on a mean-pooling of the node embedding:

hG =
1

|V |
∑
i∈V

h
(K)
i (1)

Those are passed to a fully-connected neural network (FCNN):

ŷ = FCNN(hG) (2)

The model is optimized using mean squared error loss between predicted and reported device prop-
erties.

Architectural details and hyperparameters are provided in Appendix A.1.

4 RESULTS

4.1 PREDICTIVE PERFORMANCE

In Figure 2, we show the performance of our semantic device graph-based model in predicting
photoconversion efficiencies. We evaluate model performance using R2 and mean average error. In
Figure 2A. we provide a comparison between our model and those similar to current approaches for
modeling solar cells. A baseline model using a one-hot encoding of the absorber material achieves
a R2 of 0.22, while CrabNet (Wang et al., 2021; 2022), a state-of-the-art model, improves to 0.35.

In addition, we also trained a random forest model on the layer-averaged LLM embeddings that
we used in our GNN. We find that the additional semantic context the LLM embeddings provide
leads to markedly improved predictive performance. We also find that the LLM embeddings outper-
form those from MatBERT (MAE of 3.38%), a BERT-based language model specifically trained on
materials science literature (Walker et al., 2021).

We observe the best performance (MAE of almost 2.75% for PCE) using our GNN architecture,
which companies the semantic context provided by the LLM embeddings with physically meaning-
ful inductive biases, such as the connectivity of the graphs, which reflects the different hierarchies
in a device and what materials are in physical contact with each other.

In Figure 2B. we plot reported photoconversion efficiencies against the ones predicted by our GNN
operating on the semantic device graphs. We can observe that many of the erroneous predictions
can be traced to devices with low performance, which might be addressed with improved data pre-
processing.
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Figure 2: Analysis of predictive performance of our semantic device-graph-based GNNs and
baselines. A. As the simplest baseline, we consider one-hot-encoded (OHE) materials as input
for random forest models. This model is outperformed by CrabNet, a transformer-based model
that is optimized for compositions. We can further improve performance by using LLM-derived
embeddings instead of OHE to describe materials as input to our random forest. We observe the
best performance with our semantic-device graph-based GNN using LLM embeddings compared to
MatBERT. B. The parity plot for the predictions of our semantic device graph-based GNN on the
test set shows that some errors can still be observed for devices with low performance. This might
be addressed with further data preprocessing.

4.2 CARTOGRAPHY OF PEROVSKITE SOLAR CELL DEVICES

Our approach cannot only predict device performances but also device data-driven device finger-
prints. That is, we can now convert device stacks into vectors and compare device stacks by their
proximity in this vector space. Figure 3 shows how the devices organize in the latent space accord-
ing to their PCE. For this figure, we embed device stacks using our trained GNNs and reduce the
dimensionality using t-SNE (Van der Maaten & Hinton, 2008). We find a color gradient in the im-
age, indicating that the space is meaningfully organized and can be used to distinguish high- from
low-performing materials. A similar clustering relationship is observed using PCA dimensionality
reduction as shown in Appendix A.3.

Importantly, our architecture allows us to not only compute embeddings for the entire device stack
for any layer type and material — enabling continuous similarity measures across the most relevant
length scales in the device.

5 LIMITATIONS AND FUTURE WORK

Several important limitations should be considered when interpreting our results. First, our model
currently does not account for processing conditions, which significantly impact device perfor-
mance. These conditions, including deposition methods, annealing temperatures, and environmen-
tal factors during fabrication, can dramatically affect device efficiency even for identical material
stacks. Detailed error analysis is provided in Appendix A.2. Second, the underlying dataset contains
inherent noise from variations in reporting standards and characterization methods across different
laboratories. Third, while effective, our graph architecture remains relatively simple compared to
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Figure 3: Two-dimensional representation of device stacks colored by photoconversion effi-
ciencies. For this figure, we embed the device stacks using our trained GNNs. We then reduce the
dimensionality using t-SNE. We can observe that device stacks tend to cluster but also organize in
the latent space according to PCE (shown in color).

recent advances in graph neural networks. More sophisticated architectures could potentially extract
additional insights from the device structure. Finally, our current representation treats the absorber
layer as a single node, whereas a more granular approach treating individual ions as separate nodes
could capture additional chemical insights.

6 CONCLUSIONS

The prediction and optimization of solar cell architectures represents one of the most impactful
applications of machine learning in materials science. However, progress has been bottlenecked
by three fundamental challenges: the multiscale nature of device optimization, incomplete materials
characterization data, and the vast combinatorial space of possible device configurations. Traditional
approaches relying on sequential screening of individual materials have proven inadequate, poten-
tially overlooking promising combinations that only reveal their potential when considered holisti-
cally. Previous attempts to address these challenges have been limited by their reliance on expensive
computational screening or complete materials characterization data. Here, we have demonstrated
that semantic device graphs, combined with language model embeddings, can effectively bridge
these gaps by capturing both the physical structure of devices and the semantic relationships between
materials. Our approach not only improves predictive performance but also provides interpretable
device fingerprints that can guide future optimization efforts. This work highlights the potential
of combining physics-inspired architectures with modern machine-learning techniques to address
complex materials engineering challenges. The framework we present could accelerate the devel-
opment of next-generation solar cells while providing a template for similar multiscale optimization
problems across materials science.
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A APPENDIX

A.1 ARCHITECTURAL DETAILS

Table 1: Hyperparameters used in the model.
parameter value

GNN

convolution dimension 64
number of convolutional layers 6
edge MLP dimension 32
dimension message passing layer 64
dropout ratio 0.138
pooling mean

MLP

layer sizes 1538, 768, 1

Optimization

learning rate 1.162× 10−3

batch size 256

Hyperparameter optimization was performed using a sweep with Hydra (Yadan, 2019). This ap-
proach systematically explored different combinations of hyperparameters, specifically varying the
number of graph layers, the number of neurons in message passing, and the number of neurons in
the MLP upsampling one-hot encoded edge features. The final hyperparameters are listed in Table 1.
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A.2 IMPACT FROM UNACCOUNTED DIFFERENCE IN DEVICE PARAMETERS

Table 2: Duplicate device error analysis.
dataset R2 MAE

all devices 0.44 3.05
unique devices 0.51 2.85
duplicate devices 0.43 2.91

The experimental dataset used to train the semantic device graph-based model consists solely of
unique device configurations. To evaluate the impact of duplicate configurations, we performed
a comparative error analysis between the predicted performance of duplicate and unique devices
as shown in Table 2. The model achieves an overall R2 of 0.44. However, when evaluating only
duplicate devices, the performance drops slightly to 0.43. In contrast, model performance increases
on unique devices, achieving an R2 of 0.51 and the lowest MAE of 2.91. This analysis suggests that
the presence of duplicate configurations negatively affects model performance. The current model
architecture does not account for differences in device construction, like material processing and
layer thickness, which would distinguish these duplicate devices.

A.3 VARIANCE-PRESERVED DIMENSIONALITY REDUCTION OF DEVICE STACKS VIA PCA
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Figure 4: PCA-based two-dimensional representation of device stacks colored by photoconver-
sion efficiencies. In this figure, dimensionality reduction reveals clustering patterns that correlate
with device performance and confirm the efficiency-based grouping observed in the t-SNE analysis.

The consistency we observe between PCA and t-SNE representations provides clear validation of
the clustering patterns because these methods fundamentally differ in their mathematical approach
to dimensionality reduction. t-SNE optimizes for local structure preservation, while PCA is a linear
reduction technique that maximizes global variance. The replication of efficiency-based clustering
across both methods indicates that the observed groupings reflect underlying patterns in device stack
embeddings rather than an artifact of t-SNE’s nonlinear reduction process.
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