

---

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONSTRAINT-DATA-VALUE-MAXIMIZATION: UTILIZ- ING DATA ATTRIBUTION FOR EFFECTIVE DATA PRUNING IN LOW-DATA ENVIRONMENTS

Anonymous authors

Paper under double-blind review

## ABSTRACT

Attributing model behavior to training data is an evolving research field. A common benchmark is data removal, which involves eliminating data instances with either low or high values, then assessing a model’s performance trained on the modified dataset. It is generally expected that removing low-value instances results in a gradual decline in accuracy, while the removal of high-value instances leads to a sharp decrease in performance. Many existing studies leverage Shapley-based data values for this task. In this paper, we demonstrate that these data values are not optimally suited for pruning low-value data when only a limited amount of data remains. To address this limitation, we introduce the Constraint-Data-Value-Maximization approach, which effectively utilizes data attributions for pruning in low-data scenarios. By casting pruning as a constrained optimization that both maximizes total influence and penalizes excessive per-test contributions, CDVM delivers robust performance even when only a small fraction of the data is retained. On the OpenDataVal benchmark, CDVM consistently outperforms existing alternatives, achieving state-of-the-art accuracy and competitive runtime.

## 1 INTRODUCTION

Machine learning models, especially large language models, have an insatiable demand for data, while the availability of data is stagnating. By attributing the influence of training data on model performance, the required amount of data can be reduced, thereby saving energy and improving model quality. Early works in this direction, such as influence functions (Kwon and Zou, 2021), aim to gain insights into model behavior by attributing the influence of individual training instances on test instances, thereby serving as a method for explainable AI. Conversely, methods like data Shapley (Ghorbani and Zou, 2019) have been used to assess the influence of single training instances on model performance, referring to this as data value, and applying this understanding for data removal. Typically, these approaches rely on Shapley-based methods (or approximations) to compute the value of each data instance.

Sorscher et al. (2022) benchmark methods for pruning data on ImageNet, showing that novel algorithms for data pruning can improve scaling laws, thus reducing the resource costs associated with modern deep learning.

The motivation for our work is that current data-pruning methods, especially those based on semi-values, suffer from inherent limitations that prevent them from fully exploiting the pruning potential. Semi-values are a broad class of cooperative-game-theoretic attributions, among them the Shapley value, that assign importance to each instance by averaging its marginal contributions across all subsets. We first analyze their shortcomings and then leverage our insights to design a new pruning algorithm. Our method formulates pruning as an optimization over a data attribution matrix and is evaluated on the OpenDataVal benchmark (Jiang et al., 2023), where it outperforms existing baselines, including the state-of-the-art techniques identified by Sorscher et al. (2022). Our findings show that there is still substantial room to improve data pruning, which in turn can lower training costs and reduce energy consumption. Our main contributions are:

---

054     • Using a synthetic example, we demonstrate that semi-value-based attributions  
 055     allocate smaller marginal contributions to instances in larger clusters. This imbalance  
 056     causes large clusters to be pruned too early, producing unbalanced removal patterns  
 057     and suboptimal pruning performance.  
 058     • We demonstrate that optimal retention sets are non-nested: the subset containing  
 059     the top 50% of data does not necessarily have to contain the subset of the top 30%  
 060     data.  
 061     • Based on these insights, we introduce Constraint-Data-Value-Maximization (CDVM),  
 062     a novel algorithm that treats data pruning as optimization problem over a data  
 063     attribution matrix.  
 064     • We benchmark CDVM on six datasets from OpenDataVal, showing superior runtime  
 065     and accuracy.  
 066

067     2 BACKGROUND, MOTIVATION & RELATED WORK

070     We begin with a concise overview of data valuation, then examine pruning and other  
 071     evaluation benchmarks, outline their limitations, and finally introduce two concepts that  
 072     motivate our method.

073     2.1 DATA VALUATION AND PRUNING

075     Data Valuation assesses the overall impact of individual training instances on the model  
 076     performance, effectively answering the question, "How much did a training instance contribute  
 077     to the model's performance?" The value assigned to each training instance  $i$  is represented as  
 078     a scalar. Consequently, the valuation scores for a dataset are expressed as a vector  $v \in \mathbb{R}^n$ ,  
 079     where  $n$  is the number of training instances.

080     2.1.1 ESTIMATING DATA VALUES

082     We now introduce the basic notation and the main estimation methods for data values used  
 083     in this paper. For a comprehensive survey, see Hammoudeh and Lowd (2022) and Hwee et al.  
 084     (2022).

086     •  $D = \{(x_i, y_i)\}_{i=1}^n$  is a labeled dataset with inputs  $x_i$  and labels  $y_i$ .  
 087     •  $f_D$  is the model trained on the dataset  $D$ .  
 088     •  $\theta_D$  are the corresponding model parameters.  
 089     •  $f_{D \cup d_j}$  denotes a model trained on the union of  $D$  and the data instance  $d_j = (x_j, y_j)$ .  
 090     •  $\mathcal{U}$  represents a utility function, such as accuracy in a classification setting.

093     **Leave-One-Out** The simplest approach to estimating the influence of a training instance  
 094     is the leave-one-out (loo) method, which involves excluding a particular data instance during  
 095     training and comparing the model performance or test predictions with and without this  
 096     instance. This method can be approximated by influence functions (Kwon and Zou, 2021)  
 097     without the need for re-training. The main limitation is that the effect of omitting a single  
 098     data instance can often be obscured by the remaining data and the inherent noise in the  
 099     training process (K and Søgaard, 2021). As a result, many data instance may appear to have  
 100     a negligible value. Empirical evidence also suggests that loo is not effective for benchmarks  
 101     in data valuation (Jiang et al., 2023). Formally, the loo-value of data instance  $d_i$  can be  
 102     expressed as  $V(d_i) = \mathcal{U}(f_D) - \mathcal{U}(f_{D \cup d_i})$ .

103     **Semi-value-based Estimates** Semi-value-based techniques quantify the importance of  
 104     a training instance  $d_i$  by its marginal contribution over all subsets  $S \subseteq D \setminus \{d_i\}$ . For data  
 105     valuation, three variations were proposed; original Shapley value (Ghorbani and Zou, 2019),  
 106     Banzhaf (Wang and Jia, 2022), and Beta Shapley (Kwon and Zou, 2021). Technically, all  
 107     these methods differ only by the weighting of each subset  $w(S)$  and can be expressed as  

$$V(d_i) = \sum_{S \subseteq D \setminus \{d_i\}} w(S) [\mathcal{U}(f_S) - \mathcal{U}(f_{S \cup d_i})].$$

---

108 These methods generally outperform the loo estimate in practice. However, their main  
109 drawback is their exponential computational complexity. To mitigate this, Monte Carlo  
110 or other sampling-based techniques are often used to approximate data values. Notably,  
111 data Banzhaf (Wang and Jia, 2022) has proved to be computationally efficient due to the  
112 *Maximum Sample Reuse (MSR)* principle. The data value is approximated by sampling  
113 subsets  $S \subset D$  of the training data with probability  $p$  and training a model on each subset.  
114 This process is repeated multiple times, and the data value of data instance  $d_i$  is computed  
115 as the performance difference between subsets where  $d_i$  is included versus where it is not.  
116

117 **Out-of-Bag and Memorization Estimates** The concept of memorization has been  
118 introduced in recent studies, wherein a training instance  $i$  is considered "rare" if its exclusion  
119 from the training set significantly reduces the probability that  $i$  is correctly classified by the  
120 same model (Feldman, 2020b; Paul and Dziugaite). A related method used in data valuation  
121 is the out-of-bag estimate, known as *DataOob*, where the significance of training instances  
122 is assessed using out-of-bag samples (Kwon and Zou, 2023). In each iteration, the training  
123 set is split into in-bag and out-of-bag groups, a model is trained on the in-bag samples,  
124 and predictions are made on the out-of-bag samples. The value of a data instance is then  
125 determined based on its memorization score during these out-of-bag assessments. Although  
126 these techniques are not suited for data attribution (as no test set is involved), they have  
127 proven effective in data pruning tasks, even on ImageNet (Sorscher et al., 2022).  
128

### 129 2.1.2 DATA PRUNING AND BENCHMARKS FOR DATA VALUATION

130 Data-valuation methods are commonly evaluated on three tasks:  
131

- 132 1. **Noise Detection:** Identify and remove corrupted or mislabeled examples, which  
133 tend to carry large negative value due to their disruptive effect on training (Jiang  
134 et al., 2023).
- 135 2. **Domain Transfer:** Select a subset of source-domain data that maximizes accuracy  
136 on a target-domain test set (e.g., choosing MNIST digits to improve performance  
137 on street-number datasets) (Ghorbani and Zou, 2019).
- 138 3. **Data Removal:** Measure how model accuracy changes when portions of the  
139 training set are removed in order of increasing or decreasing value. Removing high-  
140 value instances first should cause a steep accuracy drop, whereas pruning low-value  
141 instances should have minimal impact.

142 In this work, we focus on the third task, data removal, specifically pruning low-value data,  
143 since it directly addresses the practical goal of reducing dataset size without sacrificing  
144 performance. From here on, we use *data pruning* to mean the removal of low-value points.  
145 In the literature, authors differ in whether they report results for removing low-value data  
146 (pruning) or for removing high-value data first. For instance, the original Data Shapley  
147 study (Ghorbani and Zou, 2019) presents low-value pruning curves, while the OpenDataVal  
148 framework (Jiang et al., 2023) emphasizes high-value removal. We are not aware of any formal  
149 discussion explaining this discrepancy. Empirically, memorization-based or out-of-bag-based  
150 methods tend to excel at low-value pruning, whereas Shapley-based techniques often show  
151 stronger effects when high-value data is removed first.  
152

### 153 2.1.3 LIMITATIONS OF DATA VALUES FOR DATA PRUNING

154 After briefly reviewing the main approaches to data valuation, we now highlight their  
155 shortcomings in the context of data pruning. To support the illustration, consider the dataset  
156 in Figure 1 (a). It consists of two Gaussian clusters per class with centers  $\mu_1 = (-2, 0.5)$ ,  $\mu_2 =$   
157  $(2.5, 0)$  (red) and  $\mu_3 = (-2.5, -0.5)$ ,  $\mu_4 = (2, 0)$  (blue). In total there are eight instances:  
158 three in  $\mu_1$ , two in  $\mu_2$ , two in  $\mu_4$ , and one in  $\mu_3$ . The test set comprises only the four cluster  
159 centers. The black line shows the decision boundary learned by an multi-layer perceptron.  
160 Importantly, removing any entire cluster shifts this boundary dramatically (Figure 1 (b)).  
161 Appendix C displays the same setup in more detail.

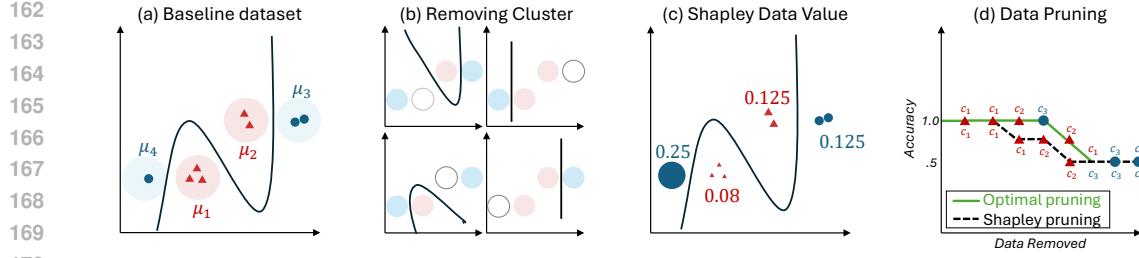


Figure 1: (a) Baseline synthetic dataset comprising 8 points from 4 clusters. (b) Illustrates the changed decision boundary after removing an entire cluster. In each scenario, the decision boundary undergoes significant alterations. (c) Displays the Shapley data value. (d) Test accuracy as we iteratively remove instances (x-axis: removal step 1–8; y-axis: accuracy). In the optimal (green) removal order, clusters are pruned as  $c_1, c_1, c_2, c_3, c_2, c_1, c_3, c_4$ , whereas the Shapley-based (black) order is  $c_1, c_1, c_1, c_2, c_2, c_1, c_3, c_4$  and  $c_i$  belongs to the  $i$ -th cluster.

**1. LOO has Redundancy Bias and Attributes Non-zero Value Only to Unique Data** We begin with the observation that loo attributions reward only non-redundant samples. In Figure 1 (a), only the singleton instance in  $\mu_4$  receives a nonzero value of 0.25 (Figure 1 (c)), since its removal introduces a change in the decision boundary (Figure 1 (b)), causing a test error at the respective cluster center. All other instances receive a value of zero due to their redundancy and can therefore be pruned in any order.

**2. Semi-Value-Based Techniques Scale with Cluster Size and Cause Imbalanced Pruning** Semi-values (e.g., Shapley, Banzhaf) allocate each instance’s importance inversely to its redundancy: the more neighbors an instance has, the smaller its marginal contribution (see Figure 1(c)). Consequently, large clusters are completely pruned first, which initially removes redundant examples but then triggers a steep accuracy drop as soon as any cluster is depleted (Figure 1(d)).

This effect can be also observed if we move to real data. In the left plot of Figure 2, we compare DataBanzhaf against random pruning on CIFAR-10, using either 1 000 or 10 000 models to estimate data values. Both data Banzhaf variants outperform random removal up to about 50 % pruning. Beyond that instance, the 10 000-model variant plunges significantly below the random baseline, whereas the 1 000-model variant continues to slightly outperform random pruning, even though the larger ensemble should, in principle, yield more accurate attributions.

**3. Pruning Subsets Are Not Nested** Finally, we observe that optimal retention sets at different pruning levels are not nested: the subset that maximizes accuracy for one budget  $s$  may exclude instances that are essential for another budget  $s' \neq s$ . In Figure 2 (center), we use our own method to identify the best subsets for retaining 5%, 10% and 15% of the data. We then perform sequential pruning of the remaining instances, always keeping the preselected subset intact and plot test accuracy versus fraction removed. Each accuracy curve peaks exactly at its target retention level (dots), and even a slight deviation from that budget causes a dramatic collapse in performance. A similar pattern appears for Memorization/DataOob (Figure 2, right): removing the highest-value instances first (red curve) initially improves performance before it plummets, whereas retaining those same instances until the very end yields almost state-of-the-art final accuracy. This mirrors the finding of Sorscher et al. (2022), namely that the examples most dispensable in data-rich regimes are precisely those that must be kept when data become scarce. For further intuition on these phenomena, see the synthetic example in Appendix C.5.

These observations highlight the need for a pruning strategy that (i) tracks influence at the level of individual test samples and (ii) can flexibly re-optimize for each pruning budget. To that end, we now review two key building blocks of our approach: data attribution and influence-function-guided pruning.

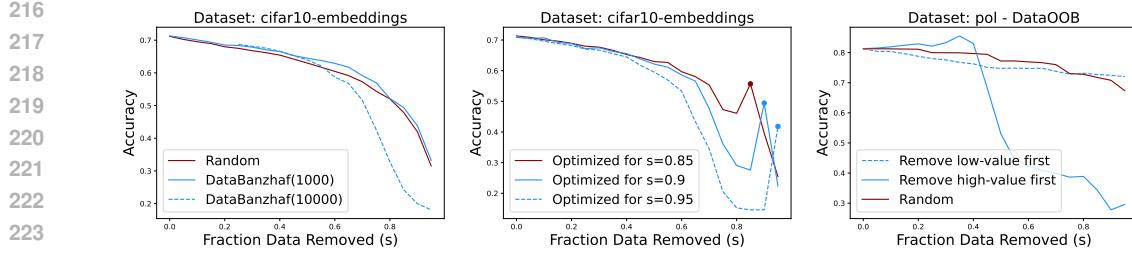


Figure 2: All plots show test accuracy as a function of the fraction of training data removed. **Left:** CIFAR-10 results for DataBanzhaf pruning. We estimate Banzhaf values with 1.000 models (solid blue) and 10.000 models (dashed blue), and compare against random removal (solid red). Both Banzhaf variants outperform random up to 50% pruning, but counterintuitively the 10.000-model variant degrades faster than the 1.000-model version. **Center:** An extreme example of non-nested pruning subsets. Each curve is optimized for exactly 85%, 90%, or 95% removal (i.e., 15%, 10%, 5% retention). Accuracy peaks precisely at the target rate (dots), and removing more or less data causes a steep collapse. **Right:** Memorization/DataOob pruning. The dashed blue curve removes lowest-value instances first; the solid blue curve removes highest-value instances first; and the red curve is random removal. Surprisingly, the very instances whose early removal boosts accuracy (and outperforms random) when data is abundant, must be retained until the end under high removal budgets to again outperform the random baseline.

## 2.2 RELATIONSHIP OF CORE-SETS, ACTIVE LEARNING AND VALUATION/PRUNING

Core-set selection methods (Feldman, 2020a) aim to choose a small subset that preserves the geometry or distribution of the full dataset, typically by minimizing a covering or clustering objective.

Active learning (Settles, 2010) sequentially selects unlabeled examples to label by maximizing model uncertainty or expected error reduction. In prior work, active learning has also been benchmarked as a pruning baseline (Sorscher et al., 2022).

In contrast, data valuation and pruning methods assign importance scores to training instances via game-theoretic attributions. Hence, although core-set and active learning methods also select representative subsets, their methodology differs from attribution-based pruning, which targets test influence.

## 2.3 PRELIMINARIES: DATA ATTRIBUTION & INFLUENCE-FUNCTION PRUNING

We continue by introducing two fundamental concepts, data attribution and influence-function pruning, before presenting our method.

### 2.3.1 DATA ATTRIBUTION

Data attribution is conceptually related to data valuation, but traces the influence of individual train instances down to specific test samples. The influence of training data on test predictions is quantified using the attribution matrix  $\mathbf{T} \in \mathbb{R}^{n \times m}$ , where  $n$  is the number of train instances and  $m$  the number of test instances. A high value of  $\mathbf{T}_{i,j}$  indicates that the train instance  $i$  significantly impacts the prediction for test instance  $j$ . The connection between both is that data values can be estimated by averaging over the rows (test instances) of  $\mathbf{T}$ , formulated as  $v_i = \frac{1}{m} \sum_{k=0}^m \mathbf{T}_{i,k}$ . This per-test-sample breakdown provides a fine-grained view of dataset contributions, which we leverage directly in our method. Several methodologies have been developed to estimate this influence, with influence functions being one of the pioneering approaches (Koh and Liang, 2017). More recently, TRAK has emerged as a scalable method for data attribution across large datasets (Park et al., 2023).

---

270    2.3.2 INFLUENCE-FUNCTION-GUIDED PRUNING  
 271

272    Yang et al. (2022) cast data pruning as a discrete optimization problem over binary selection  
 273    variables, with the goal to minimize overall parameter change. Let  $w \in \{0, 1\}^n$  be the indicator  
 274    vector specifying which of the  $n$  training samples are retained. The parameter change from  
 275    removing a single instance  $d_i$  is given by the influence function  $\mathcal{I}(d_i) = \theta_{D \setminus d_i} - \theta_D \approx$   
 276     $\frac{1}{n} H_\theta^{-1} \nabla_\theta \mathcal{L}(d_i; \theta_D)$ , where  $H_\theta$  is the Hessian of the total training loss at  $\theta_D$ . For a subset  
 277    of instances, these influences simply add up. Define the matrix  $\mathbf{Z} = [\mathcal{I}(d_1), \dots, \mathcal{I}(d_n)]$ , so  
 278    that the total parameter change of the selected subset is  $\mathbf{Z}w$ . They then solve

279

$$280 \quad \min_{w \in \{0, 1\}^n} \|\mathbf{Z}w\|_2 \quad \text{s.t.} \quad \sum_{i=1}^n w_i = S,$$

281

283    where  $S$  is the desired subset size. Although this method achieves strong empirical performance  
 284    and inspired our approach, it has two major drawbacks. First, it requires (approximate)  
 285    Hessian inversion for every training instance, which is computationally expensive. Second,  
 286    because it relies on influence functions, essentially approximating leave-one-out, it inherits  
 287    loo's limitations (see Sec. 2.1.3): removing a single, redundant instance is expected to  
 288    produce a negligible influence score (K and Søgaard, 2021).

289

290    3 SIZE-CONSTRAINED DATA-VALUE-MAXIMIZATION: OPTIMIZING DATA  
 291    VALUES FOR PRUNING

292

294    Building on the inspiration from Yang et al. (2022) and the limitations identified in Section  
 295    2.1.3, we introduce a novel method to derive data values optimized for pruning. In  
 296    Section 2.1.3, we observed that semi-value-based data values fail at pruning because they  
 297    tend to remove entire clusters first. To overcome this, we leverage the attribution matrix

298     $\mathbf{T} \in \mathbb{R}^{n \times m}$ ,

299

300    which describes the influence of each of the  $n$  training samples on each of the  $m$  test samples.  
 301    A naive way to derive pruning scores from  $\mathbf{T}$  is to average over its columns, but this approach  
 302    suffers (among other issues) from the cluster-removal limitation noted above. Instead,  $\mathbf{T}$   
 303    provides fine-grained, per-test influence values that do not suffer from redundancy bias. We  
 304    leverage this to ensure balanced coverage: at each pruning step, no test sample (and thus no  
 305    implicit cluster) should have zero total influence. To formalize this, let

306     $w \in \{0, 1\}^n$

307

308    be the binary indicator vector selecting exactly  $S$  out of the  $n$  training instances. The  
 309    induced utility vector for the  $m$  test samples is

310

311     $v = \mathbf{T}^\top w \in \mathbb{R}^m, \quad v_j = \sum_{i=1}^n \mathbf{T}_{ij} w_i.$

312

313    A naive pruning objective would be

314

315     $\max_w \sum_{j=1}^m v_j \quad \text{s.t.} \quad \sum_{i=1}^n w_i = S, \quad w_i \in \{0, 1\}.$

316

320    This objective maximizes total influence but can still concentrate all value on a few test  
 321    instances. To ensure balanced coverage, we introduce nonnegative slack variables  $t_j$  that caps  
 322    any excess above a threshold  $\kappa$ . In other words, any amount  $\max\{v_j - \kappa, 0\}$  is transferred  
 323    into  $t_j$  and subtracted from the objective. We call the resulting formulation Constrained  
 324    Data-Value Maximization (CDVM):

---

324  
 325  
 326  
 327  
 328  
 329  
 330  
 331  
 332  
 333  
 334  
 335

$$\begin{aligned} \max_{w,t} \quad & \alpha \sum_{j=1}^m v_j - (1-\alpha) \sum_{j=1}^m t_j , \\ \text{s.t.} \quad & v = \mathbf{T}^\top w , \\ & \sum_{i=1}^n w_i = S , \\ & t_j \geq 0 , \quad j = 1, \dots, m , \\ & t_j \geq v_j - \kappa , \quad j = 1, \dots, m , \\ & w_i \in [0, 1] , \quad i = 1, \dots, n . \end{aligned}$$

336 This formulation directly remedies the shortcomings identified in Section 2.1.3 by (1) maximizing  
 337 each test sample’s total influence via  $\mathbf{T}$ , thereby avoiding redundancy bias; (2) penalizing  
 338 any excess above  $\kappa$ , thus ensuring every test cluster retains influence; and (3) enforcing a  
 339 fixed subset size  $S$  to identify the optimal subset for the given budget. Furthermore, because  
 340 all constraints are linear and some decision variables are integer-valued, the problem can be  
 341 formulated as a mixed-integer linear program.

342  
 343 

### 3.1 IMPLEMENTATION DETAILS

344 In our final setup, we relax the binary constraint  $w_i \in \{0, 1\}$  to a continuous one  $w_i \in [0, 1]$ .  
 345 This converts the mixed-integer program into a pure linear program, greatly improving  
 346 tractability and without any observable loss in our experiments. The algorithm takes as  
 347 input the attribution matrix  $\mathbf{T}$  and introduces two hyperparameters:  
 348

- 349 •  $\alpha$ : non-negative trade-off between total utility and penalty for exceeding  $\kappa$ ,
- 350 •  $\kappa$ : soft upper bound on the influence per test sample.

352 Computing  $\mathbf{T}$  is the main computational bottleneck, since it requires retraining models on  
 353 sampled subsets, an expense shared by all semi-value-based methods. Consequently, any  
 354 parameter used to estimate  $\mathbf{T}$  effectively becomes a hyperparameter. Here, we follow the  
 355 Maximum Sample Reuse (MSR) principle of Ye et al. (2023):

356

- 357 1. Sample  $T$  subsets  $S_t \subseteq D$  by including each training instance with probability  $p$ .
- 358 2. Train a model on each  $S_t$  and record the performance (or indicator of correct  
 359 classification) on each test instance.
- 360 3. Estimate  $\mathbf{T}_{ij}$  as the average difference in that performance for test instance  $j$  when  
 361  $d_i$  is in versus out of  $S_t$ .

362 In our experiments, we set  $p = 0.03$  and  $T = 10,000$ , ensuring each training instance appears  
 363 often enough for stable estimates. The entries  $\mathbf{T}_{ij} \in [-1, 1]$  are easily interpretable:  $-1$   
 364 means “always causes a mistake” and  $+1$  means “always ensures correct prediction.” Moreover,  
 365  $\mathbf{T}$  is sparse, most training instances have zero or negligible influence on most test instances,  
 366 which significantly accelerates subsequent optimization.

367 Once  $\mathbf{T}$  is computed, we solve the relaxed CDVM problem using the Disciplined Parametrized  
 368 Programming framework. This formulation enables caching, so we can quickly resolve the  
 369 program after it has been solved once. This efficiency allows a lightweight grid search over  
 370 the two hyperparameters  $\alpha$  and  $\kappa$ . We then run the optimization independently for each  
 371 retained fraction (e.g., 30%, 25%).

372  
 373 

## 4 EXPERIMENTAL RESULTS

374 We evaluate CDVM on the six datasets from the OpenDataVal benchmark (Jiang et al.,  
 375 2023). By default, each dataset is subsampled to 1,000 training, 500 validation, and 500  
 377 test examples to match prior work (e.g. Wang and Jia, 2022; Jiang et al., 2023) and reduce

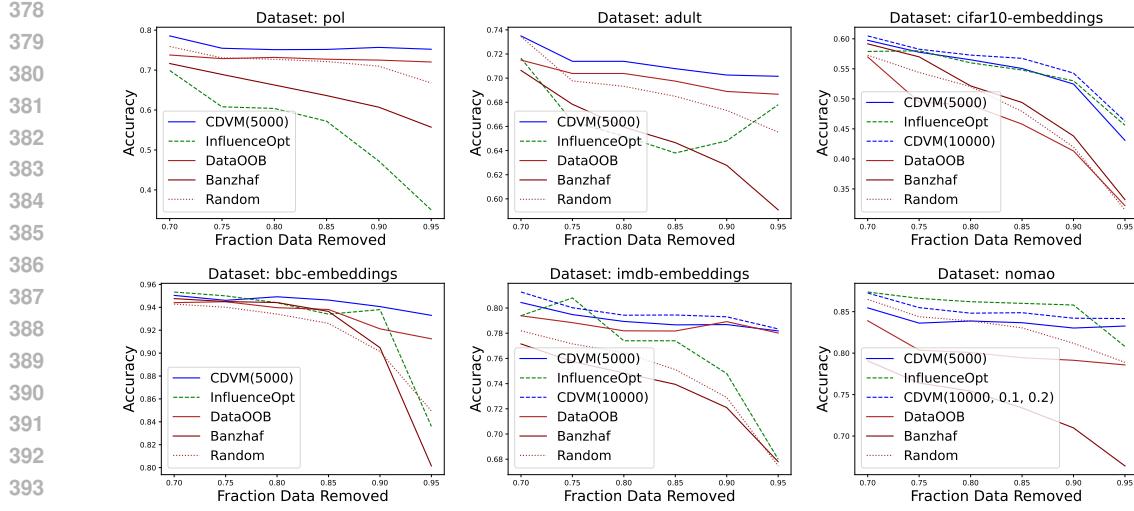


Figure 3: Accuracy on 30%, 25%, 20%, 15%, 10%, and 5% of remaining training data for six datasets in the OpenDataVal benchmark Jiang et al. (2023). We utilized a sampling probability of  $p = 0.03$  for computing the attribution matrix and automatically optimized parameters for the CDVM method. Out of 36 configurations, CDVM achieved state-of-the-art performance in 28 setups.

computational cost. To demonstrate that CDVM extends beyond this regime, we include in Appendix B.3 a scaling experiment on the Fashion-MNIST dataset (60,000 train, 10,000 test). Thanks to the sparsity of the attribution matrix  $\mathbf{T}$ , the CDVM optimization solves in 10–30 minutes, including hyperparameter grid-search, while the retraining cost to estimate  $\mathbf{T}$  (shared by all semi-value methods) takes several hours, showing that CDVM also scales to larger data sizes. We compute the attribution matrix  $\mathbf{T}$  on the training-validation split and use it to select (prune) training instances. Final performance is then assessed on the held-out test set. Each experiment is run with 25 random seeds, and we report the average test accuracy when retaining 5%, 10%, 15%, 20%, 25%, and 30% of the training data. We compare against the following baselines:

- **Random** removal of training samples.
- **DataOob/memorization** identified as state-of-the-art method (Kwon and Zou (2023); Sorscher et al. (2022)).
- **DataBanzhaf** (Wang and Jia, 2022), a semi-value-based method grounded in the MSR principle, which we also employ.
- **Influence Optimization** (Yang et al. (2022)). We encountered some stability issues with the original code: e.g. optimizing for a 10% final subset occasionally performed better when using the budget for 5%. To be fair, at each pruning level we compare against the best accuracy achieved by this method over any budget. We also relaxed the constraint  $w_i \in \{0, 1\}$  to a continuous one  $w_i \in [0, 1]$ , since the original mixed-integer-programming formulation often failed to converge. Consequently, these results should be viewed as an upper bound on the method’s performance.

We restrict our benchmark to these methods because they have proven effective in prior work. DataBanzhaf serves as a baseline to ensure any performance gains stem from our optimization rather than the attribution algorithm. For CDVM, we fix the sampling probability at  $p = 0.03$  and train  $T = 5000$  models (the primary computational bottleneck). In some cases, tuning  $p$  or increasing  $T$  yields gains; we also report those as dashed line when they are significant.

Figure 3 summarizes results over the 36 evaluation instances (6 datasets  $\times$  6 pruning rates), our default CDVM configuration (solid blue) outperforms all baselines in 24 cases. Per-dataset tuning (dashed blue) yields some gains and increases the total number of state-of-the-art results to 28. Appendix A provides the full tabular breakdown including standard deviation.

---

432 Among all baselines, only the method of Yang et al. (2022) (green dashed line) outperforms  
433 CDVM, and this occurs mainly on the `nomao` dataset, where it edges out CDVM at 5 of the 6  
434 pruning levels. It also performs competitively on `cifar10` but falls short on `pol` and `adult`,  
435 despite being evaluated as an upper bound. On the other two text datasets (`bbc` and `imdb`),  
436 its gains are occasional and much smaller. In contrast, CDVM is the only method that  
437 consistently beats the random baseline across all six benchmarks. DataOob/memorization  
438 remains competitive on `imdb` and `bbc` datasets, but never achieves state-of-the-art accuracy.

439 The `nomao` dataset exhibits unusual dynamics for CDVM and Yang et al. (2022)’s methods.  
440 With default hyperparameters, CDVM initially underperforms random pruning up to an  
441 85% removal rate. We found that manually tuning to  $p = 0.1$ ,  $\kappa = 0.2$ ,  $\alpha = 0.1$  restores its  
442 advantage. Likewise, Yang et al. (2022)’s approach attains its best scores on `nomao` only  
443 when its ranked instances are removed first and the remainder are kept at random, i.e., by  
444 applying its ranking in reverse. We attribute CDVM’s initial failure mode on this dataset to  
445 the high proportion of near-zero entries in the attribution matrix  $\mathbf{T}$ . Increasing the sampling  
446 probability  $p$  seems to improve this, and using a smaller threshold  $\kappa$  prevents CDVM from  
447 assigning too much influence to individual test instances when overall attributions are small.

448

449

#### 450 4.1 ABLATION STUDY

451

452 **Runtime Comparison** Figure 4(a) plots each method’s average runtime per experiment  
453 against its normalized performance (scaled to [0,1] across all 36 evaluation settings). A  
454 score of 1 denotes the top accuracy in every setting, while 0 denotes the worst. Details  
455 on the metric and detailed training and optimization times are provided in Appendix B.  
456 CDVM achieves the best speed–accuracy trade-off, outperforming the baselines by a wide  
457 margin. Interestingly, in this aggregate view DataOob/memorization outperforms Influence  
458 Optimization in overall efficiency, despite our earlier finding that Influence Optimization  
459 beats DataOob on individual datasets, this is because DataOob delivers consistently strong  
460 (though not state-of-the-art) accuracy with much lower computational cost.

461

462

463

464 **Hyperparameter Sensitivity** Although CDVM introduces two hyperparameters ( $\alpha$  and  
465  $\kappa$ ), we find them robust across tasks and can be set without a grid search. In practice we  
466 recommend

$$467 \alpha = 0.5, \quad \kappa = \max_{i,j} \mathbf{T}_{ij} + |S| \text{mean}_{i,j}(\mathbf{T}_{ij}),$$

468

469

470

471 which adapts  $\kappa$  automatically to the dataset and retention budget  $S$ . In Figure 4(a) we  
472 compare the original CDVM(5k) with grid-searched hyperparameters against CDVM(5k,  
473 default) using the settings above. The performance difference is marginal ( $\leq 0.05$  in  
474 normalized performance) while the default configuration incurs zero search overhead, making  
475 it a practical choice for most applications.

476

477

478 **Rank Correlation** To quantify non-nestedness, we compute the average Spearman rank  
479 correlation between the instance-importance rankings at different retention levels, across all  
480 seeds and datasets (Figure 4(d)). Correlation declines as the gap between budgets widens,  
481 confirming that optimal subsets diverge for different removal rates. Interestingly, the diagonal  
482 entries (same budget, different seeds) show higher correlation for smaller subsets, suggesting  
483 that tight budgets admit fewer combinations, whereas larger subsets offer more redundancy  
484 and hence greater ranking variability.

485

486

#### 487 5 SCALABILITY AND COMPUTATIONAL COST

488

489

490

491

492

493

494

495

496 In Appendix B.3 we present a scaling experiment on the full Fashion–MNIST dataset (60 000  
497 train, 10 000 test). Despite this larger size, CDVM remains efficient: thanks to the sparsity  
498 of the attribution matrix  $\mathbf{T}$ , retaining only 5–10% of its entries yields a solve time of  
499 10–30 minutes, whereas retraining models to estimate  $\mathbf{T}$  (shared by all semi-value approaches)  
500 requires several hours.

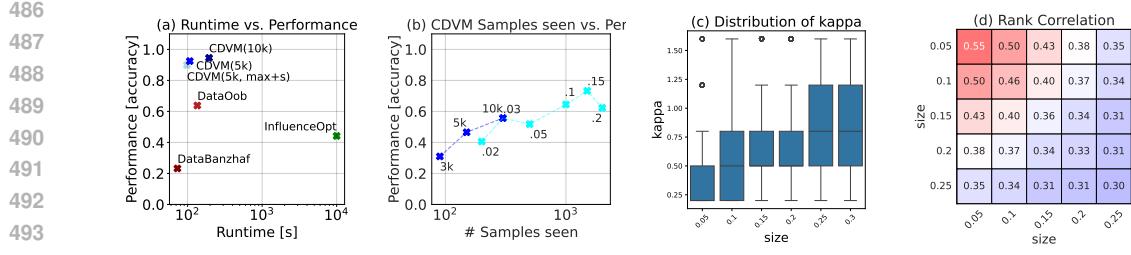


Figure 4: (a) Runtime vs. normalized performance for all benchmarked methods, aggregated over six datasets and six pruning levels. (b) CDVM performance as a function of how often each sample is seen during training for sampling probability  $p$  (cyan) and number of models trained  $T$  (blue). (c) Distribution of the selected slack threshold  $\kappa$  across datasets and retention fractions. (d) Spearman rank correlation between instance-importance rankings at different pruning budgets, showing decreasing correlation for more distant subset sizes.

Extending CDVM to even larger datasets such as ImageNet introduces two main bottlenecks: (i) estimating  $\mathbf{T}$  in terms of compute and memory, and (ii) solving the linear program at that scale. For context, prior studies have precomputed influence or memorization estimates on ImageNet by training thousands of ResNet-50 models<sup>1</sup>, but never shared the full attribution matrix ( $\approx 250$  GB for train  $\times$  test). By thresholding  $\mathbf{T}$  to keep only its top 10% nonzeros, this can be reduced to  $\approx 25$  GB; further memory savings are possible via half-precision floats.

On the computational side, retraining to estimate  $\mathbf{T}$  can be alleviated by recent estimators such as TRAK (Park et al., 2023), which avoid retraining thousands of models at the cost of a different approximation. If the resulting  $\mathbf{T}$  is still too large for a single linear program solve, one can partition it into smaller blocks and solve the optimization iteratively on these chunks. We leave these extensions to future work.

## 6 SUMMARY, LIMITATIONS & OUTLOOK

In this work, we introduced Constraint-Data-Value-Maximization (CDVM), an optimization-based framework that leverages the data-attribution matrix  $\mathbf{T}$  to prune low-value examples in low-data regimes. We demonstrated competitive accuracy and runtime across six Open-DataVal tasks. However, since the entries of  $\mathbf{T}$  are not additive, CDVM may miss higher-order interactions. Integrating Shapley interaction indices (Muschalik et al., 2024) could capture these effects, albeit with additional computational overhead. Finally, CDVM relies on a selected soft upper bound  $\kappa$  and incurs quadratic cost in computing and storing  $\mathbf{T}$  (e.g., roughly 250 GB for a naive implementation without sparsity on the full ImageNet-1k train and val splits), which might limit scalability. Future work could mitigate these bottlenecks by employing attribution estimators such as TRAK Park et al. (2023), exploiting sparsity or low-rank structure in  $\mathbf{T}$ , or solving the optimization on partitioned submatrices, offering opportunities for future extensions with only modest computational overhead increases.

## REPRODUCIBILITY STATEMENT

To ensure full reproducibility, we will release all source code on GitHub upon publication. During the review period, we provide a standalone Jupyter notebook that computes the data-attribution matrix  $\mathbf{T}$ , formulates and solves the CDVM optimization, and prints results against a random baseline. The notebook is self-contained and can be applied to any dataset.

## REFERENCES

Dan Feldman. Core-sets: An updated survey. *Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, 10, 2020a. ISSN 19424795. doi: 10.1002/widm.1335.

<sup>1</sup><https://pluskid.github.io/influence-memorization/>

---

540 Vitaly Feldman. Does learning require memorization? a short tale about a long tail.  
541 *Proceedings of the Annual ACM Symposium on Theory of Computing*, 2020b. ISSN  
542 07378017. doi: 10.1145/3357713.3384290. URL <https://arxiv.org/abs/1906.05271>.  
543

544 Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine  
545 learning. *36th International Conference on Machine Learning, ICML 2019*, 2019-June:  
546 4053–4065, 2019.

547 Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A  
548 survey. 12 2022. URL <http://arxiv.org/abs/2212.04612>.

549 Rachael Hwee, Ling Sim, Xinyi Xu, Bryan Kian, and Hsiang Low. Data valuation in machine  
550 learning: "ingredients", strategies, and open challenges, 2022.

552 Kevin Fu Jiang, Weixin Liang, James Zou, and Yongchan Kwon. Opendataval: a unified  
553 benchmark for data valuation. 6 2023. URL <http://arxiv.org/abs/2306.10577>.

555 Karthikeyan K and Anders Søgaard. Revisiting methods for finding influential examples. 11  
556 2021. URL <http://arxiv.org/abs/2111.04683>.

557 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.  
558 *34th International Conference on Machine Learning, ICML 2017*, 4:2976–2987, 2017.

559 Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation  
560 framework for machine learning. 10 2021. URL <http://arxiv.org/abs/2110.14049>.

562 Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data  
563 value. International Joint Conferences on Artificial Intelligence, 2023. ISBN 9781956792003.  
564 doi: 10.24963/ijcai.2022/778.

565 Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara  
566 Hammer, and Eyke Hüllermeier. shapiq: Shapley interactions for machine learning, 2024.  
567 URL <https://arxiv.org/abs/2410.01649>.

569 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.  
570 Trak: Attributing model behavior at scale. 3 2023. URL <http://arxiv.org/abs/2303.14186>.

572 Mansheej Paul and Gintare Karolina Dziugaite. Deep learning on a data diet : Finding  
573 important examples early in training. pages 1–18.

575 Burr Settles. Active learning literature survey. *Machine Learning*, 15:201–221, 2010. ISSN  
576 00483931. doi: 10.1.1.167.4245.

577 Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos.  
578 Beyond neural scaling laws: beating power law scaling via data pruning. 6 2022. URL  
579 <http://arxiv.org/abs/2206.14486>.

581 Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for  
582 machine learning. 5 2022. URL <http://arxiv.org/abs/2205.15466>.

583 Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:  
584 Reducing training data by examining generalization influence. 5 2022. URL <http://arxiv.org/abs/2205.09329>.

586 Jiayuan Ye, Anastasia Borovykh, Soufiane Hayou, and Reza Shokri. Leave-one-out distin-  
587 guishability in machine learning. 9 2023. URL <http://arxiv.org/abs/2309.17310>.

589  
590  
591  
592  
593

---

594 USE OF LARGE LANGUAGE MODELS (LLMs)  
595

596 LLMs were primarily used to enhance the paper's language and support code completion  
597 during implementation, as well as to define, refine, and improve the optimization problem.  
598 Although the initial concept originated with the authors, LLMs contributed significant  
599 refinements and performance optimizations.

600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647

---

648 A RESULT DETAILS
649

650 We provide supplementary details for the main paper. Table 1 tabulates the numerical
651 results underlying the benchmark curves, while Figures 5 and 6 plot CDVM’s performance
652 and runtime across different values of  $p$  and  $T$ .
653

|                | 30% Data                | 25% Data                | 20% Data                | 15% Data                | 10% Data                | 5% Data                 |
|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| <i>nomao</i>   |                         |                         |                         |                         |                         |                         |
| CDVM5k         | 0.855 $\pm$ 0.02        | 0.836 $\pm$ 0.02        | 0.839 $\pm$ 0.02        | 0.837 $\pm$ 0.02        | 0.830 $\pm$ 0.02        | 0.833 $\pm$ 0.03        |
| CDVM10k        | 0.848 $\pm$ 0.01        | 0.840 $\pm$ 0.02        | 0.833 $\pm$ 0.02        | 0.839 $\pm$ 0.02        | 0.830 $\pm$ 0.02        | 0.821 $\pm$ 0.02        |
| CDVM-n         | 0.872 $\pm$ 0.02        | 0.855 $\pm$ 0.02        | 0.848 $\pm$ 0.02        | 0.849 $\pm$ 0.02        | 0.842 $\pm$ 0.02        | <b>0.842</b> $\pm$ 0.02 |
| InfOpt         | <b>0.874</b> $\pm$ 0.00 | <b>0.866</b> $\pm$ 0.00 | <b>0.862</b> $\pm$ 0.00 | <b>0.860</b> $\pm$ 0.00 | <b>0.858</b> $\pm$ 0.00 | 0.808 $\pm$ 0.00        |
| DataOOB        | 0.839 $\pm$ 0.01        | 0.804 $\pm$ 0.01        | 0.801 $\pm$ 0.01        | 0.794 $\pm$ 0.01        | 0.791 $\pm$ 0.01        | 0.786 $\pm$ 0.02        |
| Banzhaf        | 0.791 $\pm$ 0.02        | 0.764 $\pm$ 0.02        | 0.754 $\pm$ 0.02        | 0.734 $\pm$ 0.03        | 0.710 $\pm$ 0.03        | 0.664 $\pm$ 0.07        |
| Random         | 0.865 $\pm$ 0.02        | 0.844 $\pm$ 0.02        | 0.839 $\pm$ 0.02        | 0.830 $\pm$ 0.03        | 0.812 $\pm$ 0.03        | 0.789 $\pm$ 0.04        |
| <i>cifar10</i> |                         |                         |                         |                         |                         |                         |
| CDVM5k         | 0.598 $\pm$ 0.02        | 0.578 $\pm$ 0.02        | 0.565 $\pm$ 0.03        | 0.551 $\pm$ 0.02        | 0.525 $\pm$ 0.03        | 0.431 $\pm$ 0.03        |
| CDVM10k        | <b>0.605</b> $\pm$ 0.02 | <b>0.583</b> $\pm$ 0.03 | <b>0.573</b> $\pm$ 0.03 | <b>0.567</b> $\pm$ 0.02 | <b>0.543</b> $\pm$ 0.02 | <b>0.463</b> $\pm$ 0.03 |
| InfOpt         | 0.579 $\pm$ 0.02        | 0.580 $\pm$ 0.00        | 0.560 $\pm$ 0.00        | 0.548 $\pm$ 0.00        | 0.530 $\pm$ 0.00        | 0.456 $\pm$ 0.00        |
| DataOOB        | 0.570 $\pm$ 0.01        | 0.495 $\pm$ 0.01        | 0.490 $\pm$ 0.02        | 0.458 $\pm$ 0.03        | 0.413 $\pm$ 0.10        | 0.322 $\pm$ 0.13        |
| Banzhaf        | 0.592 $\pm$ 0.02        | 0.570 $\pm$ 0.03        | 0.522 $\pm$ 0.08        | 0.494 $\pm$ 0.08        | 0.438 $\pm$ 0.08        | 0.332 $\pm$ 0.06        |
| Random         | 0.573 $\pm$ 0.02        | 0.544 $\pm$ 0.03        | 0.520 $\pm$ 0.03        | 0.479 $\pm$ 0.06        | 0.420 $\pm$ 0.07        | 0.315 $\pm$ 0.07        |
| <i>pol</i>     |                         |                         |                         |                         |                         |                         |
| CDVM5k         | 0.786 $\pm$ 0.02        | 0.755 $\pm$ 0.03        | <b>0.751</b> $\pm$ 0.03 | 0.752 $\pm$ 0.03        | <b>0.757</b> $\pm$ 0.03 | 0.752 $\pm$ 0.04        |
| CDVM10k        | <b>0.796</b> $\pm$ 0.02 | <b>0.760</b> $\pm$ 0.03 | 0.751 $\pm$ 0.03        | <b>0.752</b> $\pm$ 0.03 | 0.749 $\pm$ 0.03        | <b>0.753</b> $\pm$ 0.03 |
| InfOpt         | 0.699 $\pm$ 0.01        | 0.608 $\pm$ 0.00        | 0.604 $\pm$ 0.00        | 0.572 $\pm$ 0.00        | 0.472 $\pm$ 0.00        | 0.350 $\pm$ 0.00        |
| DataOOB        | 0.738 $\pm$ 0.03        | 0.729 $\pm$ 0.04        | 0.732 $\pm$ 0.03        | 0.727 $\pm$ 0.03        | 0.725 $\pm$ 0.04        | 0.720 $\pm$ 0.04        |
| Banzhaf        | 0.716 $\pm$ 0.04        | 0.689 $\pm$ 0.04        | 0.663 $\pm$ 0.05        | 0.636 $\pm$ 0.05        | 0.607 $\pm$ 0.04        | 0.557 $\pm$ 0.06        |
| Random         | 0.759 $\pm$ 0.03        | 0.731 $\pm$ 0.03        | 0.727 $\pm$ 0.03        | 0.721 $\pm$ 0.04        | 0.710 $\pm$ 0.04        | 0.668 $\pm$ 0.05        |
| <i>imdb</i>    |                         |                         |                         |                         |                         |                         |
| CDVM5k         | 0.804 $\pm$ 0.01        | 0.795 $\pm$ 0.02        | 0.789 $\pm$ 0.02        | 0.787 $\pm$ 0.02        | 0.787 $\pm$ 0.02        | 0.782 $\pm$ 0.02        |
| CDVM10k        | <b>0.813</b> $\pm$ 0.01 | 0.800 $\pm$ 0.02        | <b>0.794</b> $\pm$ 0.03 | <b>0.794</b> $\pm$ 0.01 | <b>0.793</b> $\pm$ 0.01 | <b>0.783</b> $\pm$ 0.02 |
| InfOpt         | 0.794 $\pm$ 0.01        | <b>0.808</b> $\pm$ 0.00 | 0.774 $\pm$ 0.00        | 0.774 $\pm$ 0.00        | 0.748 $\pm$ 0.00        | 0.680 $\pm$ 0.00        |
| DataOOB        | 0.794 $\pm$ 0.01        | 0.788 $\pm$ 0.02        | 0.782 $\pm$ 0.02        | 0.782 $\pm$ 0.02        | 0.789 $\pm$ 0.01        | 0.780 $\pm$ 0.01        |
| Banzhaf        | 0.772 $\pm$ 0.03        | 0.758 $\pm$ 0.03        | 0.748 $\pm$ 0.03        | 0.739 $\pm$ 0.02        | 0.721 $\pm$ 0.04        | 0.678 $\pm$ 0.04        |
| Random         | 0.782 $\pm$ 0.02        | 0.772 $\pm$ 0.02        | 0.765 $\pm$ 0.02        | 0.751 $\pm$ 0.03        | 0.729 $\pm$ 0.03        | 0.675 $\pm$ 0.05        |
| <i>adult</i>   |                         |                         |                         |                         |                         |                         |
| CDVM5k         | <b>0.735</b> $\pm$ 0.01 | <b>0.714</b> $\pm$ 0.01 | <b>0.714</b> $\pm$ 0.02 | <b>0.708</b> $\pm$ 0.01 | 0.703 $\pm$ 0.02        | <b>0.702</b> $\pm$ 0.01 |
| CDVM10k        | 0.726 $\pm$ 0.02        | 0.709 $\pm$ 0.01        | 0.707 $\pm$ 0.01        | 0.706 $\pm$ 0.01        | <b>0.705</b> $\pm$ 0.02 | 0.694 $\pm$ 0.01        |
| InfOpt         | 0.717 $\pm$ 0.01        | 0.664 $\pm$ 0.00        | 0.652 $\pm$ 0.00        | 0.638 $\pm$ 0.00        | 0.648 $\pm$ 0.00        | 0.678 $\pm$ 0.00        |
| DataOOB        | 0.715 $\pm$ 0.01        | 0.704 $\pm$ 0.01        | 0.704 $\pm$ 0.01        | 0.698 $\pm$ 0.01        | 0.689 $\pm$ 0.01        | 0.687 $\pm$ 0.01        |
| Banzhaf        | 0.706 $\pm$ 0.02        | 0.678 $\pm$ 0.02        | 0.659 $\pm$ 0.02        | 0.647 $\pm$ 0.03        | 0.628 $\pm$ 0.03        | 0.591 $\pm$ 0.04        |
| Random         | 0.734 $\pm$ 0.02        | 0.698 $\pm$ 0.02        | 0.693 $\pm$ 0.02        | 0.685 $\pm$ 0.02        | 0.673 $\pm$ 0.02        | 0.655 $\pm$ 0.03        |
| <i>bbc</i>     |                         |                         |                         |                         |                         |                         |
| CDVM5k         | 0.950 $\pm$ 0.01        | 0.946 $\pm$ 0.01        | <b>0.949</b> $\pm$ 0.00 | 0.946 $\pm$ 0.01        | 0.941 $\pm$ 0.01        | 0.933 $\pm$ 0.01        |
| CDVM10k        | 0.946 $\pm$ 0.01        | 0.947 $\pm$ 0.01        | 0.947 $\pm$ 0.01        | <b>0.947</b> $\pm$ 0.01 | <b>0.943</b> $\pm$ 0.01 | <b>0.934</b> $\pm$ 0.01 |
| InfOpt         | <b>0.953</b> $\pm$ 0.01 | <b>0.950</b> $\pm$ 0.00 | 0.944 $\pm$ 0.00        | 0.934 $\pm$ 0.00        | 0.938 $\pm$ 0.00        | 0.836 $\pm$ 0.00        |
| DataOOB        | 0.944 $\pm$ 0.00        | 0.945 $\pm$ 0.00        | 0.940 $\pm$ 0.00        | 0.938 $\pm$ 0.00        | 0.921 $\pm$ 0.01        | 0.912 $\pm$ 0.01        |
| Banzhaf        | 0.948 $\pm$ 0.01        | 0.945 $\pm$ 0.01        | 0.944 $\pm$ 0.01        | 0.936 $\pm$ 0.01        | 0.905 $\pm$ 0.05        | 0.801 $\pm$ 0.16        |
| Random         | 0.943 $\pm$ 0.01        | 0.940 $\pm$ 0.01        | 0.934 $\pm$ 0.01        | 0.926 $\pm$ 0.02        | 0.901 $\pm$ 0.05        | 0.849 $\pm$ 0.06        |

696 Table 1: Accuracy on 30%, 25%, 20%, 15%, 10%, and 5% of training data for six datasets in
697 the OpenDataVal benchmark Jiang et al. (2023). Out of 36 configurations, CDVM achieved
698 state-of-the-art performance in 28 setups. The Error margins represent standard deviations
699 based on 25 experiments.
700
701

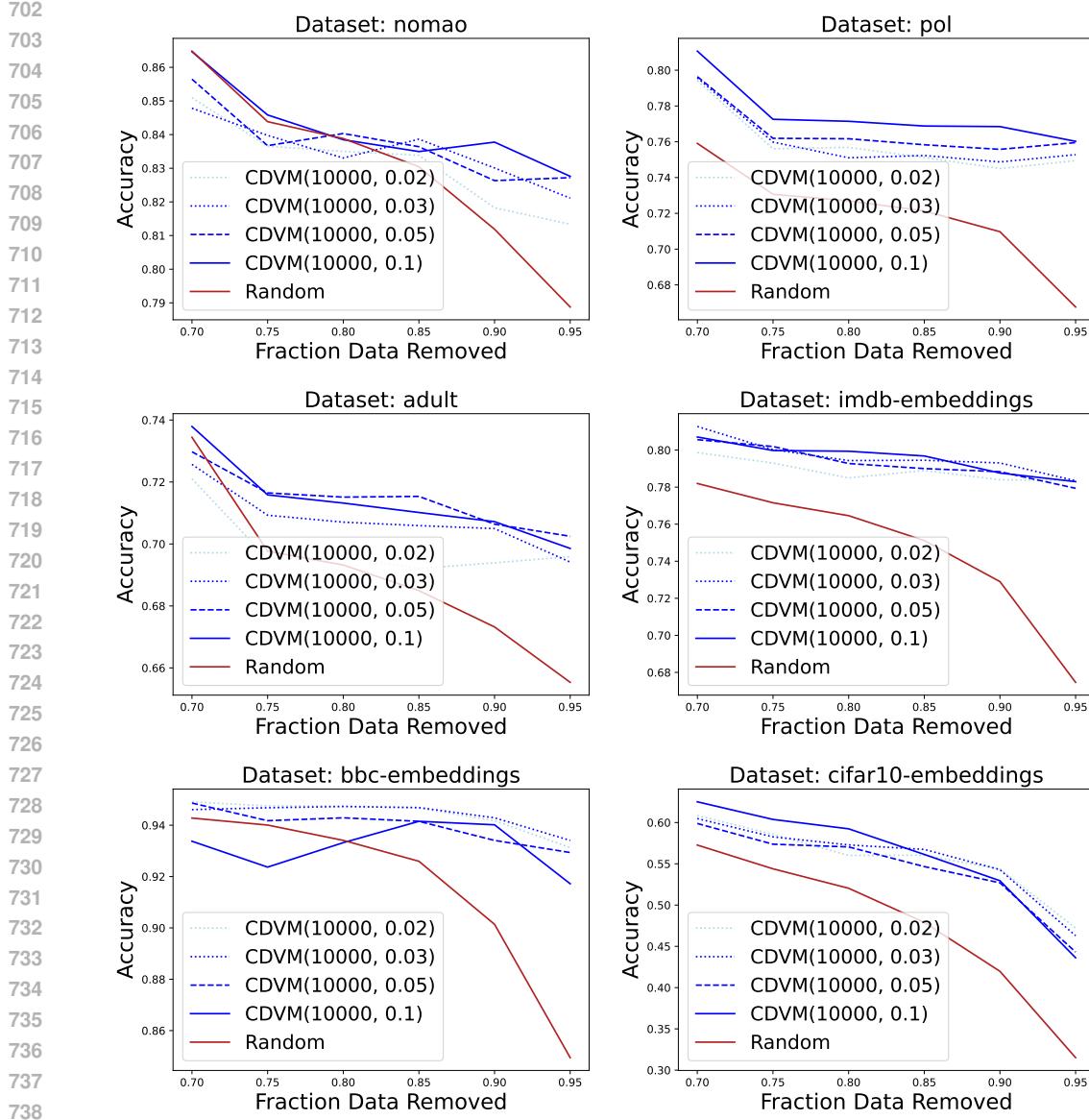


Figure 5: CDVM performance for different sampling probabilities  $p \in \{0.02, 0.03, 0.05, 0.10\}$  on five datasets. A higher sampling rate ( $p = 0.10$ ) yields the best pruning accuracy on Nomao, POL, and Adult, and outperforms lower  $p$  values up to 85% removal on CIFAR-10, but degrades performance on BBC.

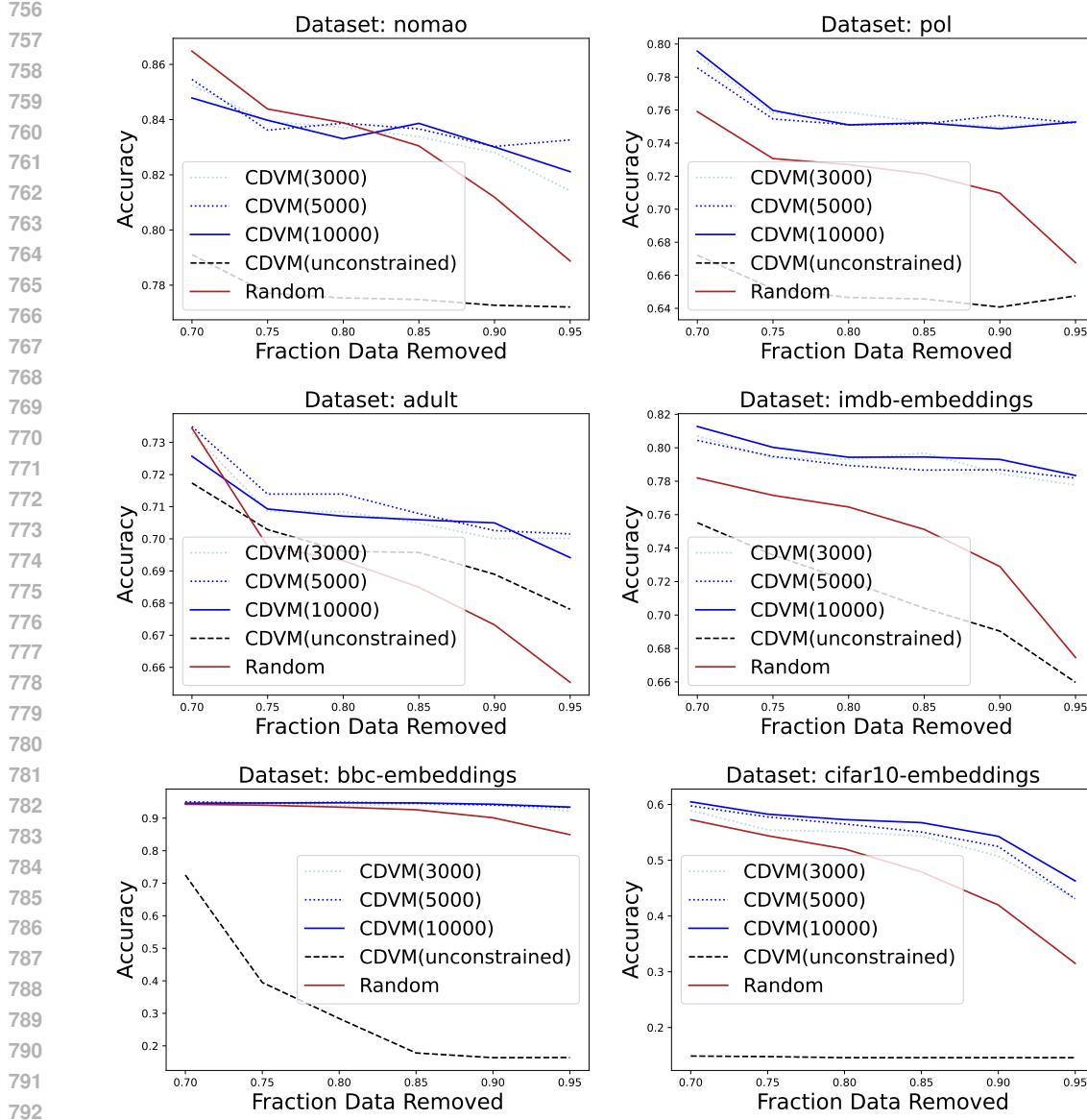


Figure 6: Effect of model-count and slack constraint on CDVM’s runtime and accuracy. For each dataset, we compare CDVM using 3 000, 5 000, and 10 000 models to estimate the attribution matrix  $\tau$ , as well as a variant without the  $\kappa$  constraint. In general, increasing the number of models improves pruning quality at the cost of longer runtime, while removing the slack constraint causes a severe drop in performance.

---

810      **B ABLATION STUDY DETAILS**  
811

812      In addition, we detail our ablation study, particularly the performance normalization pro-  
813      cedure, provide deeper insight into algorithm runtimes by distinguishing preparation and  
814      optimization times, and demonstrate CDVM’s scalability on a full dataset.  
815

816      **B.1 PERFORMANCE NORMALIZATION**  
817

818      In Figure 4, we condense each method’s performance across all evaluation settings into a  
819      single normalized score. To do so, we normalize each method’s total score by the sum of the  
820      best- and worst-case performances. Formally, let  $S$  be the set of all 36 evaluation settings (6  
821      datasets  $\times$  6 pruning levels), and let  $p_{m,s}$  denote the test accuracy of method  $m$  on setting  
822       $s$ . Define

823      
$$P_m = \sum_{s \in S} p_{m,s}, \quad P_{\max} = \sum_{s \in S} \max_{m'} p_{m',s}, \quad P_{\min} = \sum_{s \in S} \min_{m'} p_{m',s}.$$
  
824

825      Then the normalized performance of method  $m$  is  
826

827      
$$\tilde{P}_m = \frac{P_m - P_{\min}}{P_{\max} - P_{\min}},$$
  
828

829      which maps the aggregate score of each method into the interval  $[0, 1]$ .  
830

831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863

---

864      **B.2 OPTIMIZATION AND RUNTIME**  
865

| Method  | Preparation Time          | Optimization Time              | Total Time                   |
|---------|---------------------------|--------------------------------|------------------------------|
| DataOob | 135 s (1000 models)       | n.a.                           | 135 s                        |
| CDVM    | 97 s (5000 models)        | 10 s                           | 107 s                        |
|         | 184 s (10000 models)      |                                | 194 s                        |
| InfOpt  | 6 h (1000 data instances) | 366 s (cifar-10)<br>3 s (imdb) | $\approx 6h$<br>$\approx 6h$ |

866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
Table 2: Runtime comparison (preparation + optimization). Wall-clock times for (i) DataOob/memorization, (ii) CDVM, and (iii) Influence-Function Optimization (InfOpt) on the OpenDataVal benchmark. DataOob uses bootstrap samples of size  $n$  (with replacement) and retrains  $T_{OOB} = 1,000$  models. CDVM samples each training point with probability  $p = 0.03$  and retrains  $T_{CDVM} = 5,000$  (or 10,000) models to achieve stable estimates. Because each CDVM model sees only 3% of the data, individual training runs are much faster. InfOpt avoids retraining but must invert a Hessian per training instance and solve a quadratic program, resulting in multi-hour runtimes. Our method has constant optimization time because all datasets are scaled to the same size (1000 training and 500 validation + test instances). For InfOpt, optimization time scales with the dataset's input dimension, whereas preparation time remains largely constant.

---

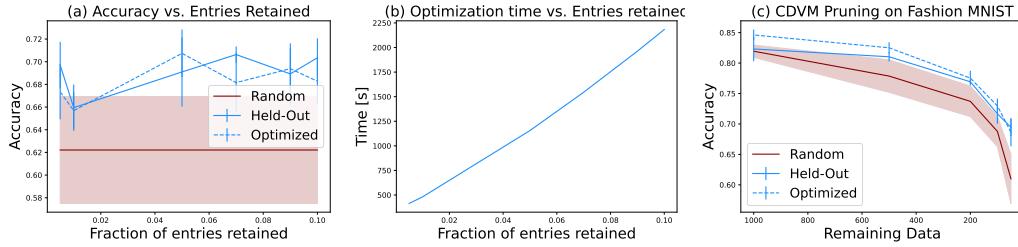
918 B.3 SCALING
919

928

Figure 7: (a) Test accuracy for different sparsity cut-offs in the attribution matrix, expressed  
929 as the percentage of entries retained by not setting them to zero. (b) Runtime (in seconds)  
930 for solving the CDVM optimization on each corresponding sparse matrix. (c) CDVM test  
931 performance compared against a random-pruning baseline.

932

933

So far, we have evaluated CDVM on the OpenDataVal benchmark by subsampling each split  
934 to 1000/500/500 (train/validation/test), enabling rapid comparisons across methods. To  
935 assess scalability on a larger attribution matrix, we apply CDVM to Fashion-MNIST (60 000  
936 training and 10 000 test images). Fashion-MNIST was chosen because it offers a sizable  
937 dataset while still permitting fast model training. As before, the resulting attribution matrix  
938  $\tau$  is highly sparse: many training instances have zero or negligible influence on most test  
939 samples. However, due to numerical noise, most entries remain small nonzero values and  
940 must be filtered out.

941

942

To study the effect of this residual noise, we threshold  $\tau$  by retaining only the top 0.5%–10%  
943 of its entries and setting all others to zero. The corresponding test accuracies are shown in  
944 Figure 7. We split the test set into an evaluation partition, for selecting training examples  
945 and tuning hyperparameters, and a held-out test partition for final performance assessment,  
946 and report results on both.

947

948

As shown, retaining just 5% of the examples suffices to achieve high accuracy; including  
949 more examples yields no further benefit. Estimating  $\tau$  requires retraining between 5 000 and  
950 8 000 models, which takes approximately 1–10 hours on a standard workstation, depending  
951 on the subsampling rate  $p$ .

952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

---

972 C SYNTHETIC DATASET  
973

974 In this section, we provide further details and empirical examples on the synthetic dataset  
975 and Shapley-value data valuation, illustrating how interactions among data points can induce  
976 non-monotonic pruning behavior, for example, we construct a dataset in which removing  
977 more examples paradoxically improves accuracy, so that keeping less data can outperform  
978 keeping more.

979  
980 **Full dataset**  
981

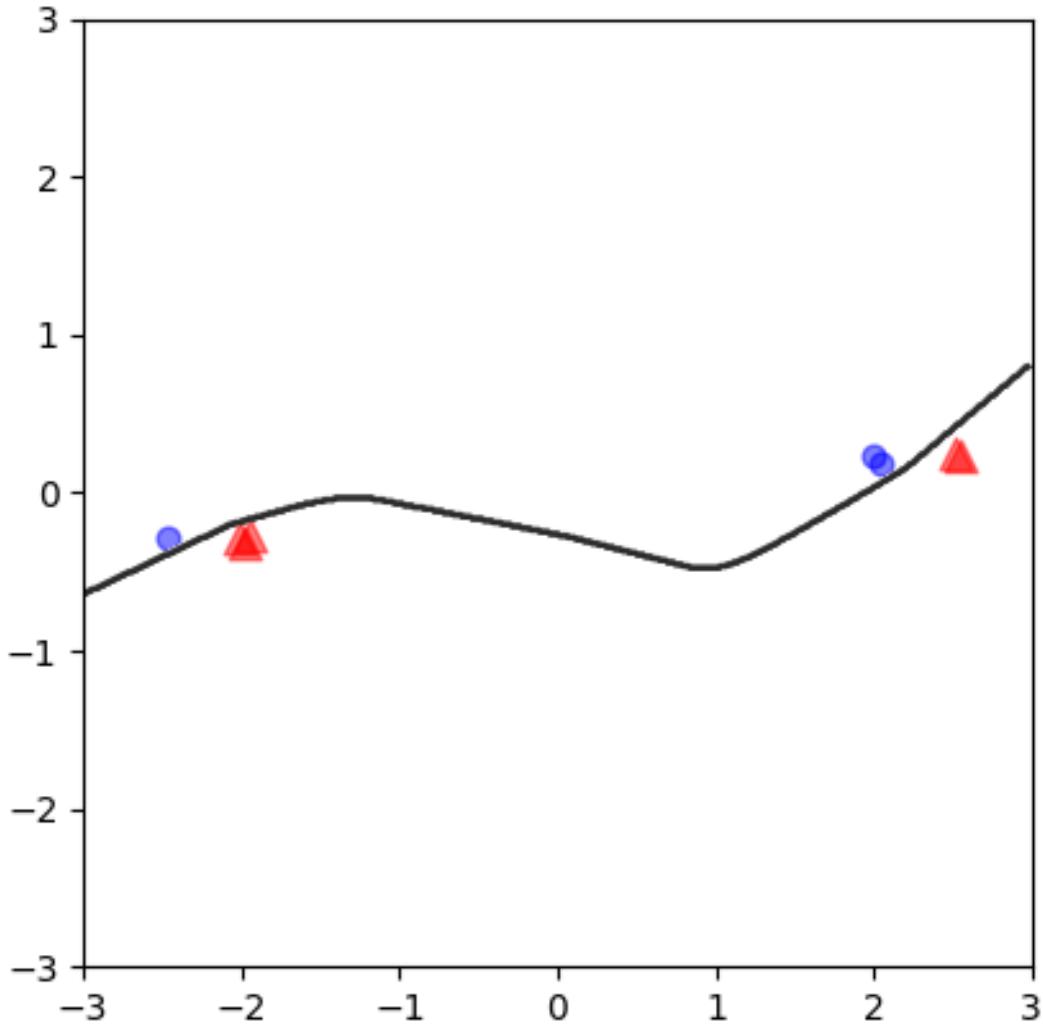


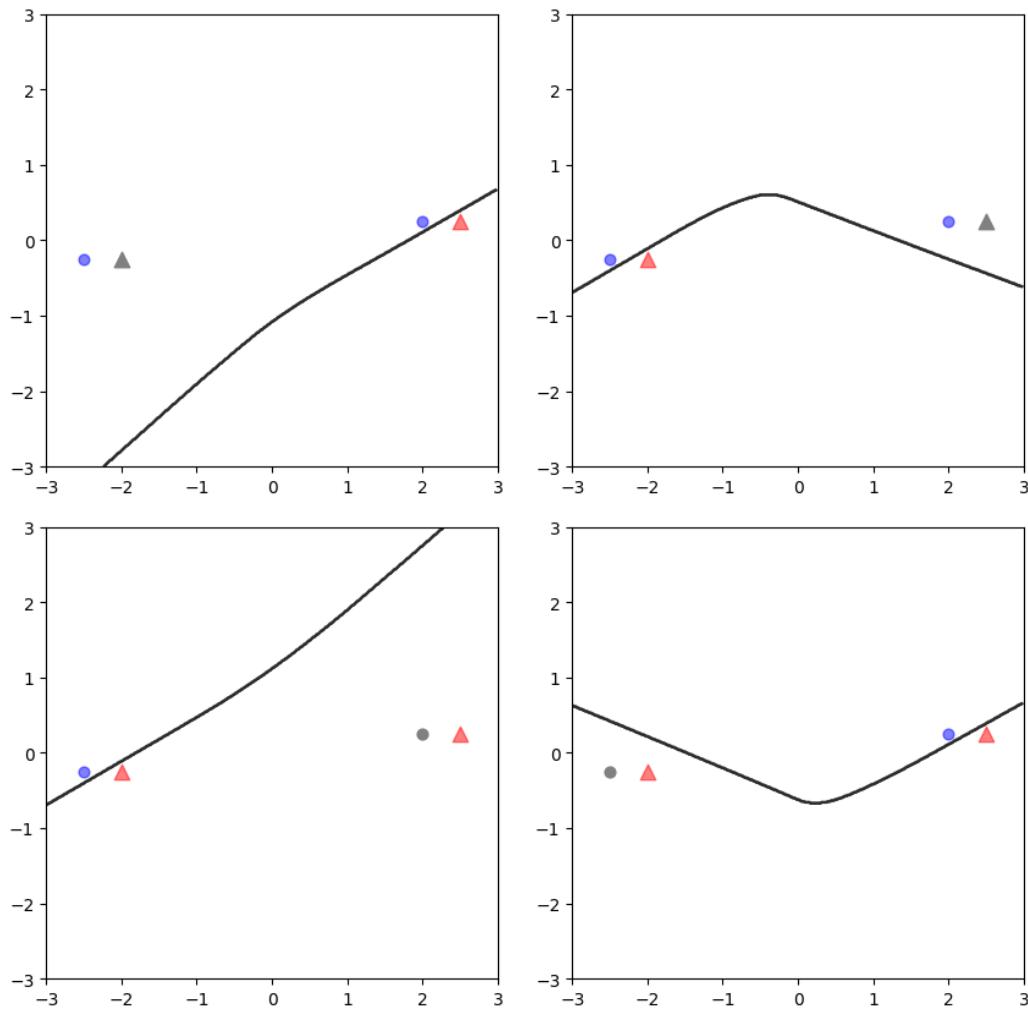
Figure 8: Synthetic dataset with eight points from four clusters. All clusters except the blue one centered at  $(-2.5, -0.5)$  contain more than one point.

---

1026  
1027

C.1 REMOVING ENTIRE CLUSTERS

1028  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060

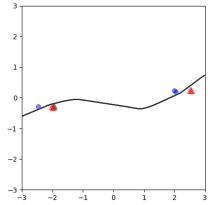
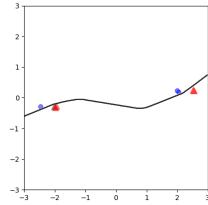
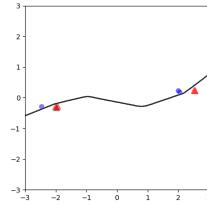


1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

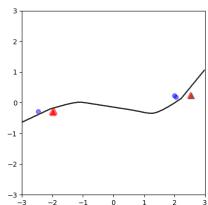
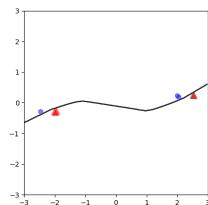
---

```
1080 C.2 LEAVE ONE OUT
1081
```

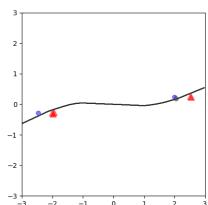
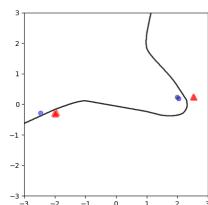
```
1082 LOO left red cluster
1083
```



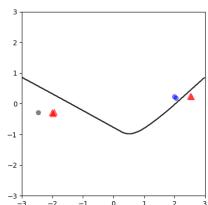
```
1090 LOO right red cluster
1091
```



```
1092 LOO right blue cluster
1093
1094
```



```
1095 LOO left blue cluster
1096
1097
```



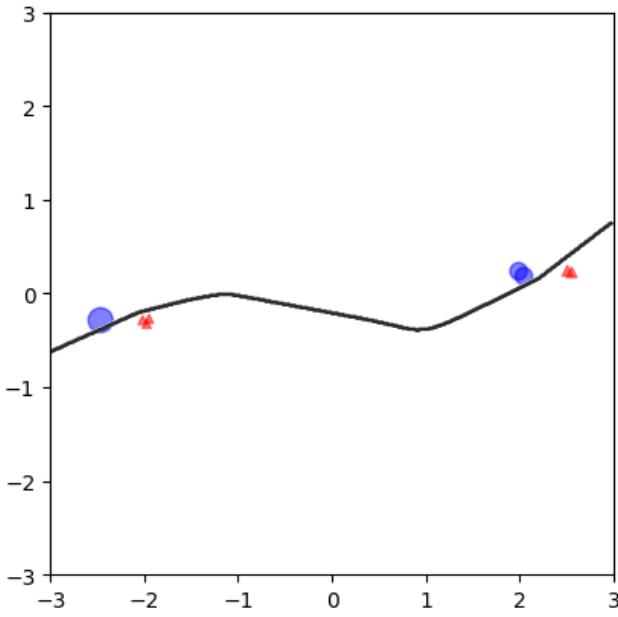
```
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
```

Figure 10: Leave-one-out (LOO) on the dataset from Figure 8. All clusters except the last contain more than one point; therefore, the decision boundary remains unchanged when a point is removed from these clusters. Each plot shows the effect of removing exactly one point from the respective cluster. Consequently, only the point from the left blue cluster will exhibit a non-zero leave-one-out data value.

---

1134 C.3 SHAPLEY DATA VALUE

1135  
1136  
1137  
1138  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156

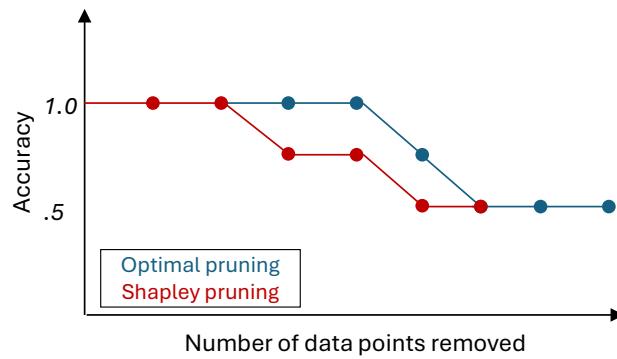


1157 Figure 11: Shapley data valuation scores for the synthetic dataset. The black line represents  
1158 the decision boundary of an MLP trained on this dataset. Given the 256 possible combinations  
1159 for subsets, not all are plotted. Instead, the plot displays the computed data Shapley values,  
1160 where the size of a point indicates its value. As observed, the values are proportional to the  
1161 cluster size, with the blue singleton point exhibiting the highest value.

1162  
1163  
1164

C.4 SHAPLEY-BASED PRUNING VS. OPTIMAL PRUNING

1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176



1177 Figure 12: Difference between data pruning based on Shapley values (red) and the optimal  
1178 pruning (blue) on the synthetic dataset. Each dot in the plot represents one data point  
1179 being removed. Shapley-based pruning will initially remove the three red points with lowest  
1180 value. Once the last one of them is removed, the accuracy drops. In contrast, in the optimal  
1181 pruning we can remove two points from the cluster with three points and one from the two  
1182 clusters with two points without loosing any performance.

1183  
1184  
1185  
1186  
1187

