
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Constraint-Data-Value-Maximization: Utiliz-
ing Data Attribution for Effective Data
Pruning in Low-Data Environments

Anonymous authors
Paper under double-blind review

Abstract

Attributing model behavior to training data is an evolving research field.
A common benchmark is data removal, which involves eliminating data
instances with either low or high values, then assessing a model’s performance
trained on the modified dataset. It is generally expected that removing low-
value instances results in a gradual decline in accuracy, while the removal of
high-value instances leads to a sharp decrease in performance. Many existing
studies leverage Shapley-based data values for this task. In this paper, we
demonstrate that these data values are not optimally suited for pruning
low-value data when only a limited amount of data remains. To address this
limitation, we introduce the Contsraint-Data-Value-Maximization approach,
which effectively utilizes data attributions for pruning in low-data scenarios.
By casting pruning as a constrained optimization that both maximizes total
influence and penalizes excessive per-test contributions, CDVM delivers
robust performance even when only a small fraction of the data is retained.
On the OpenDataVal benchmark, CDVM consistently outperforms existing
alternatives, achieving state-of-the-art accuracy and competitive runtime.

1 Introduction

Machine learning models, especially large language models, have an insatiable demand for
data, while the availability of data is stagnating. By attributing the influence of training data
on model performance, the required amount of data can be reduced, thereby saving energy
and improving model quality. Early works in this direction, such as influence functions
(Kwon and Zou, 2021), aim to gain insights into model behavior by attributing the influence
of individual training instances on test instances, thereby serving as a method for explainable
AI. Conversely, methods like data Shapley (Ghorbani and Zou, 2019) have been used to assess
the influence of single training instances on model performance, referring to this as data
value, and applying this understanding for data removal. Typically, these approaches rely on
Shapley-based methods (or approximations) to compute the value of each data instance.

Sorscher et al. (2022) benchmark methods for pruning data on ImageNet, showing that
novel algorithms for data pruning can improve scaling laws, thus reducing the resource costs
associated with modern deep learning.

The motivation for our work is that current data-pruning methods, especially those based
on semi-values, suffer from inherent limitations that prevent them from fully exploiting the
pruning potential. Semi-values are a broad class of cooperative-game-theoretic attributions,
among them the Shapley value, that assign importance to each instance by averaging its
marginal contributions across all subsets. We first analyze their shortcomings and then
leverage our insights to design a new pruning algorithm. Our method formulates pruning
as an optimization over a data attribution matrix and is evaluated on the OpenDataVal
benchmark (Jiang et al., 2023), where it outperforms existing baselines, including the state-
of-the-art techniques identified by Sorscher et al. (2022). Our findings show that there is
still substantial room to improve data pruning, which in turn can lower training costs and
reduce energy consumption. Our main contributions are:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

• Using a synthetic example, we demonstrate that semi-value-based attributions
allocate smaller marginal contributions to instances in larger clusters. This imbalance
causes large clusters to be pruned too early, producing unbalanced removal patterns
and suboptimal pruning performance.

• We demonstrate that optimal retention sets are non-nested: the subset containing
the top 50% of data does not necessarily have to contain the subset of the top 30%
data.

• Based on these insights, we introduce Constraint-Data-Value-Maximization (CDVM),
a novel algorithm that treats data pruning as optimization problem over a data
attribution matrix.

• We benchmark CDVM on six datasets from OpenDataVal, showing superior runtime
and accuracy.

2 Background, Motivation & Related Work

We begin with a concise overview of data valuation, then examine pruning and other
evaluation benchmarks, outline their limitations, and finally introduce two concepts that
motivate our method.

2.1 Data Valuation and Pruning

Data Valuation assesses the overall impact of individual training instances on the model
performance, effectively answering the question, "How much did a training instance contribute
to the model’s performance?" The value assigned to each training instance i is represented as
a scalar. Consequently, the valuation scores for a dataset are expressed as a vector v ∈ Rn,
where n is the number of training instances.

2.1.1 Estimating Data Values

We now introduce the basic notation and the main estimation methods for data values used
in this paper. For a comprehensive survey, see Hammoudeh and Lowd (2022) and Hwee et al.
(2022).

• D = {(xi, yi)}ni=1 is a labeled dataset with inputs xi and labels yi.
• fD is the model trained on the dataset D.
• θD are the corresponding model parameters.
• fD∪dj

denotes a model trained on the union of D and the data instance dj = (xj , yj).
• U represents a utility function, such as accuracy in a classification setting.

Leave-One-Out The simplest approach to estimating the influence of a training instance
is the leave-one-out (loo) method, which involves excluding a particular data instance during
training and comparing the model performance or test predictions with and without this
instance. This method can be approximated by influence functions (Kwon and Zou, 2021)
without the need for re-training. The main limitation is that the effect of omitting a single
data instance can often be obscured by the remaining data and the inherent noise in the
training process (K and Søgaard, 2021). As a result, many data instance may appear to have
a negligible value. Empirical evidence also suggests that loo is not effective for benchmarks
in data valuation (Jiang et al., 2023). Formally, the loo-value of data instance di can be
expressed as V (di) = U(fD)− U(fD∪di

).

Semi-value-based Estimates Semi-value-based techniques quantify the importance of
a training instance di by its marginal contribution over all subsets S ⊆ D \ {di}. For data
valuation, three variations were proposed; original Shapley value (Ghorbani and Zou, 2019),
Banzhaf (Wang and Jia, 2022), and Beta Shapley (Kwon and Zou, 2021). Technically, all
these methods differ only by the weighting of each subset w(S) and can be expressed as
V (di) =

∑
S⊆D\{di} w(S) [U(fS)− U(fS∪di)] .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

These methods generally outperform the loo estimate in practice. However, their main
drawback is their exponential computational complexity. To mitigate this, Monte Carlo
or other sampling-based techniques are often used to approximate data values. Notably,
data Banzhaf (Wang and Jia, 2022) has proved to be computationally efficient due to the
Maximum Sample Reuse (MSR) principle. The data value is approximated by sampling
subsets S ⊂ D of the training data with probability p and training a model on each subset.
This process is repeated multiple times, and the data value of data instance di is computed
as the performance difference between subsets where di is included versus where it is not.

Out-of-Bag and Memorization Estimates The concept of memorization has been
introduced in recent studies, wherein a training instance i is considered "rare" if its exclusion
from the training set significantly reduces the probability that i is correctly classified by the
same model (Feldman, 2020; Paul and Dziugaite). A related method used in data valuation
is the out-of-bag estimate, known as DataOob, where the significance of training instances
is assessed using out-of-bag samples (Kwon and Zou, 2023). In each iteration, the training
set is split into in-bag and out-of-bag groups, a model is trained on the in-bag samples,
and predictions are made on the out-of-bag samples. The value of a data instance is then
determined based on its memorization score during these out-of-bag assessments. Although
these techniques are not suited for data attribution (as no test set is involved), they have
proven effective in data pruning tasks, even on ImageNet (Sorscher et al., 2022).

2.1.2 Data Pruning and Benchmarks for Data Valuation

Data-valuation methods are commonly evaluated on three tasks:

1. Noise Detection: Identify and remove corrupted or mislabeled examples, which
tend to carry large negative value due to their disruptive effect on training (Jiang
et al., 2023).

2. Domain Transfer: Select a subset of source–domain data that maximizes accuracy
on a target–domain test set (e.g., choosing MNIST digits to improve performance
on street-number datasets) (Ghorbani and Zou, 2019).

3. Data Removal: Measure how model accuracy changes when portions of the
training set are removed in order of increasing or decreasing value. Removing high-
value instances first should cause a steep accuracy drop, whereas pruning low-value
instances should have minimal impact.

In this work, we focus on the third task, data removal, specifically pruning low-value data,
since it directly addresses the practical goal of reducing dataset size without sacrificing
performance. From here on, we use data pruning to mean the removal of low-value points.
In the literature, authors differ in whether they report results for removing low-value data
(pruning) or for removing high-value data first. For instance, the original Data Shapley
study (Ghorbani and Zou, 2019) presents low-value pruning curves, while the OpenDataVal
framework (Jiang et al., 2023) emphasizes high-value removal. We are not aware of any formal
discussion explaining this discrepancy. Empirically, memorization-based or out-of-bag-based
methods tend to excel at low-value pruning, whereas Shapley-based techniques often show
stronger effects when high-value data is removed first.

2.1.3 Limitations of Data Values for Data Pruning

After briefly reviewing the main approaches to data valuation, we now highlight their
shortcomings in the context of data pruning. To support the illustration, consider the dataset
in Figure 1 (a). It consists of two Gaussian clusters per class with centers µ1 = (−2, 0.5), µ2 =
(2.5, 0) (red) and µ3 = (−2.5,−0.5), µ4 = (2, 0) (blue). In total there are eight instances:
three in µ1, two in µ2, two in µ4, and one in µ3. The test set comprises only the four cluster
centers. The black line shows the decision boundary learned by an multi-layer perceptron.
Importantly, removing any entire cluster shifts this boundary dramatically (Figure 1 (b)).
Appendix C displays the same setup in more detail.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

(a) Baseline dataset (b) Removing Cluster (c) Shapley Data Value

.5

1.0

Optimal pruning
Shapley pruning

(d) Data Pruning

𝜇𝜇4

𝜇𝜇3

𝜇𝜇1

𝜇𝜇2

0.08

0.125

0.1250.25
𝑐𝑐3

𝑐𝑐1

𝑐𝑐2

𝑐𝑐1 𝑐𝑐1 𝑐𝑐2

𝑐𝑐2
𝑐𝑐2

𝑐𝑐1 𝑐𝑐1

𝑐𝑐3 𝑐𝑐4

𝑐𝑐4𝑐𝑐3

𝑐𝑐3

𝑐𝑐1Ac
cu

ra
cy

Data Removed

Figure 1: (a) Baseline synthetic dataset comprising 8 points from 4 clusters. (b) Illustrates
the changed decision boundary after removing an entire cluster. In each scenario, the decision
boundary undergoes significant alterations. (c) Displays the Shapley data value. (d) Test
accuracy as we iteratively remove instances (x-axis: removal step 1–8; y-axis: accuracy). In
the optimal (green) removal order, clusters are pruned as c1, c1, c2, c3, c2, c1, c3, c4, whereas
the Shapley-based (black) order is c1, c1, c1, c2, c2, c1,3 , c4 and ci belongs to the i-th cluster.

1. LOO has Redundancy Bias and Attributes Non-zero Value Only to Unique
Data We begin with the observation that loo attributions reward only non-redundant
samples. In Figure 1 (a), only the singleton instance in µ4 receives a nonzero value of 0.25
(Figure 1 (c)), since its removal introduces a change in the decision boundary (Figure 1 (b)),
causing a test error at the respective cluster center. All other instances receive a value of
zero due to their redundancy and can therefore be pruned in any order.

2. Semi-Value-Based Techniques Scale with Cluster Size and Cause Imbalanced
Pruning Semi-values (e.g., Shapley, Banzhaf) allocate each instance’s importance inversely
to its redundancy: the more neighbors an instance has, the smaller its marginal contribution
(see Figure 1(c)). Consequently, large clusters are completely pruned first, which initially
removes redundant examples but then triggers a steep accuracy drop as soon as any cluster
is depleted (Figure 1(d)).

This effect can be also observed if we move to real data. In the left plot of Figure 2, we
compare DataBanzhaf against random pruning on CIFAR-10, using either 1 000 or 10 000
models to estimate data values. Both data Banzhaf variants outperform random removal up
to about 50 % pruning. Beyond that instance, the 10 000-model variant plunges significantly
below the random baseline, whereas the 1 000-model variant continues to slightly outperform
random pruning, even though the larger ensemble should, in principle, yield more accurate
attributions.

3. Pruning Subsets Are Not Nested Finally, we observe that optimal retention sets
at different pruning levels are not nested: the subset that maximizes accuracy for one
budget s may exclude instances that are essential for another budget s′ ≠ s. In Figure 2
(center), we use our own method to identify the best subsets for retaining 5%, 10% and
15% of the data. We then perform sequential pruning of the remaining instances, always
keeping the preselected subset intact and plot test accuracy versus fraction removed. Each
accuracy curve peaks exactly at its target retention level (dots), and even a slight deviation
from that budget causes a dramatic collapse in performance. A similar pattern appears for
Memorization/DataOob (Figure 2, right): removing the highest-value instances first (red
curve) initially improves performance before it plummets, whereas retaining those same
instances until the very end yields almost state-of-the-art final accuracy. This mirrors the
finding of Sorscher et al. (2022), namely that the examples most dispensable in data-rich
regimes are precisely those that must be kept when data become scarce. For further intuition
on these phenomena, see the synthetic example in Appendix C.5.

These observations highlight the need for a pruning strategy that (i) tracks influence at the
level of individual test samples and (ii) can flexibly re-optimize for each pruning budget.
To that end, we now review two key building blocks of our approach: data attribution and
influence-function–guided pruning.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

0.0 0.2 0.4 0.6 0.8

Fraction Data Removed (s)

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Dataset: cifar10-embeddings

Random
DataBanzhaf(1000)
DataBanzhaf(10000)

0.0 0.2 0.4 0.6 0.8

Fraction Data Removed (s)

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Dataset: cifar10-embeddings

Optimized for s=0.85
Optimized for s=0.9
Optimized for s=0.95

0.0 0.2 0.4 0.6 0.8

Fraction Data Removed (s)

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Dataset: pol - DataOOB

Remove low-value first
Remove high-value first
Random

Figure 2: All plots show test accuracy as a function of the fraction of training data removed.
Left: CIFAR-10 results for DataBanzhaf pruning. We estimate Banzhaf values with
1.000 models (solid blue) and 10.000 models (dashed blue), and compare against random
removal (solid red). Both Banzhaf variants outperform random up to 50% pruning, but
counterintuitively the 10.000-model variant degrades faster than the 1.000-model version.
Center: An extreme example of non-nested pruning subsets. Each curve is optimized
for exactly 85%, 90%, or 95% removal (i.e., 15%, 10%, 5% retention). Accuracy peaks
precisely at the target rate (dots), and removing more or less data causes a steep collapse.
Right: Memorization/DataOob pruning. The dashed blue curve removes lowest-value
instances first; the solid blue curve removes highest-value instances first; and the red curve
is random removal. Surprisingly, the very instances whose early removal boosts accuracy
(and outperforms random) when data is abundant, must be retained until the end under
high removal budgets to again outperform the random baseline.

2.2 Preliminaries: Data Attribution & Influence-Function Pruning

We continue by introducing two fundamental concepts, data attribution and influence-function
pruning, before presenting our method.

2.2.1 Data Attribution

Data attribution is conceptually related to data valuation, but traces the influence of
individual train instances down to specific test samples. The influence of training data on
test predictions is quantified using the attribution matrix T ∈ Rn×m, where n is the number
of train instances and m the number of test instances. A high value of Ti,j indicates that
the train instance i significantly impacts the prediction for test instance j. The connection
between both is that data values can be estimated by averaging over the rows (test instances)
of T, formulated as vi =

1
m

∑m
k=0 Ti,k. This per–test–sample breakdown provides a fine-

grained view of dataset contributions, which we leverage directly in our method. Several
methodologies have been developed to estimate this influence, with influence functions being
one of the pioneering approaches (Koh and Liang, 2017). More recently, TRAK has emerged
as a scalable method for data attribution across large datasets (Park et al., 2023).

2.2.2 Influence-Function–Guided Pruning

Yang et al. (2022) cast data pruning as a discrete optimization problem over binary selection
variables, with the goal to minimize overall parameter change. Let w ∈ {0, 1}n be the indicator
vector specifying which of the n training samples are retained. The parameter change from
removing a single instance di is given by the influence function I(di) = θD\di

− θD ≈
1
n H−1

θ ∇θL(di; θD) , where Hθ is the Hessian of the total training loss at θD. For a subset
of instances, these influences simply add up. Define the matrix Z =

[
I(d1), . . . , I(dn)

]
, so

that the total parameter change of the selected subset is Sw. They then solve

min
w∈{0,1}n

∥∥Zw
∥∥
2

s.t.
n∑

i=1

wi = S ,

where S is the desired subset size. Although this method achieves strong empirical perfor-
mance and inspired our approach, it has two major drawbacks. First, it requires (approximate)
Hessian inversion for every training instance, which is computationally expensive. Second,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

because it relies on influence functions, essentially approximating leave-one-out, it inherits
loos’s limitations (see Sec. 2.1.3): removing a single, redundant instance is expected to
produce a negligible influence score (K and Søgaard, 2021).

3 Size-Constrained Data-Value-Maximization: Optimizing Data
Values for Pruning

Building on the inspiration from Yang et al. (2022) and the limitations identified in Sec-
tion 2.1.3, we introduce a novel method to derive data values optimized for pruning. In
Section 2.1.3, we observed that semi-value-based data values fail at pruning because they
tend to remove entire clusters first. To overcome this, we leverage the attribution matrix

T ∈ Rn×m,

which describes the influence of each of the n training samples on each of the m test samples.
A naive way to derive pruning scores from T is to average over its columns, but this approach
suffers (among other issues) from the cluster-removal limitation noted above. Instead, T
provides fine-grained, per-test influence values that do not suffer from redundancy bias. We
leverage this to ensure balanced coverage: at each pruning step, no test sample (and thus no
implicit cluster) should have zero total influence. To formalize this, let

w ∈ {0, 1}n

be the binary indicator vector selecting exactly S out of the n training instances. The
induced utility vector for the m test samples is

v = T⊤w ∈ Rm , vj =

n∑
i=1

Tij wi .

A naive pruning objective would be

max
w

m∑
j=1

vj s.t.
n∑

i=1

wi = S, wi ∈ {0, 1}.

This objective maximizes total influence but can still concentrate all value on a few test
instances. To ensure balanced coverage, we introduce nonnegative slack variables tj that caps
any excess above a threshold κ. In other words, any amount max{vj − κ, 0} is transferred
into tj and subtracted from the objective. We call the resulting formulation Constrained
Data-Value Maximization (CDVM):

max
w,t

α

m∑
j=1

vj − (1− α)

m∑
j=1

tj ,

s.t. v = T⊤w ,
n∑

i=1

wi = S ,

tj ≥ 0 , j = 1, . . . ,m ,

tj ≥ vj − κ , j = 1, . . . ,m ,

wi ∈ [0, 1] , i = 1, . . . , n .

This formulation directly remedies the shortcomings identified in Section 2.1.3 by (1) maximiz-
ing each test sample’s total influence via T, thereby avoiding redundancy bias; (2) penalizing
any excess above κ, thus ensuring every test cluster retains influence; and (3) enforcing a
fixed subset size S to identify the optimal subset for the given budget. Furthermore, because
all constraints are linear and some decision variables are integer-valued, the problem can be
formulated as a mixed-integer linear program.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.1 Implementation Details

In our final setup, we relax the binary constraint wi ∈ {0, 1} to a continuous one wi ∈ [0, 1].
This converts the mixed-integer program into a pure linear program, greatly improving
tractability and without any observable loss in our experiments. The algorithm takes as
input the attribution matrix T and introduces two hyperparameters:

• α: non-negative trade-off between total utility and penalty for exceeding κ,

• κ: soft upper bound on the influence per test sample.

Computing T is the main computational bottleneck, since it requires retraining models on
sampled subsets, an expense shared by all semi-value-based methods. Consequently, any
parameter used to estimate T effectively becomes a hyperparameter. Here, we follow the
Maximum Sample Reuse (MSR) principle of Ye et al. (2023):

1. Sample T subsets St ⊆ D by including each training instance with probability p.

2. Train a model on each St and record the performance (or indicator of correct
classification) on each test instance.

3. Estimate Tij as the average difference in that performance for test instance j when
di is in versus out of St.

In our experiments, we set p = 0.03 and T = 10,000, ensuring each training instance appears
often enough for stable estimates. The entries Tij ∈ [−1, 1] are easily interpretable: −1
means “always causes a mistake” and +1 means “always ensures correct prediction.” Moreover,
T is sparse, most training instances have zero or negligible influence on most test instances,
which significantly accelerates subsequent optimization.

Once T is computed, we solve the relaxed CDVM problem using the Disciplined Parametrized
Programming framework. This formulation enables caching, so we can quickly resolve the
program after it has been solved once. This efficiency allows a lightweight grid search over
the two hyperparameters α and κ.We then run the optimization independently for each
retained fraction (e.g., 30%, 25%).

4 Experimental Results

We evaluate CDVM on the six datasets from the OpenDataVal benchmark (Jiang et al.,
2023). By default, each dataset is subsampled to 1,000 training, 500 validation, and 500
test examples to reduce computational cost. We compute the attribution matrix T on the
training–validation split and use it to select (prune) training instances. Final performance is
then assessed on the held-out test set. A scaling experiment on a full dataset is presented in
Appendix B.3. Each experiment is run with 25 random seeds, and we report the average
test accuracy when retaining 5%, 10%, 15%, 20%, 25%, and 30% of the training data. We
compare against the following baselines:

• Random removal of training samples.

• DataOob/memorization identified as state-of-the-art method (Kwon and Zou
(2023); Sorscher et al. (2022)).

• DataBanzhaf (Wang and Jia, 2022), a semi-value–based method grounded in the
MSR principle, which we also employ.

• Influence Optimization (Yang et al. (2022)). We encountered some stability
issues with the original code: e.g. optimizing for a 10% final subset occasionally
performed better when using the budget for 5%. To be fair, at each pruning level we
compare against the best accuracy achieved by this method over any budget. We also
relaxed the constraint wi ∈ {0, 1} to a continuous one wi ∈ [0, 1], since the original
mixed-integer-programming formulation often failed to converge. Consequently,
these results should be viewed as an upper bound on the method’s performance.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Dataset: pol

CDVM(5000)
InfluenceOpt
DataOOB
Banzhaf
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

Dataset: adult

CDVM(5000)
InfluenceOpt
DataOOB
Banzhaf
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Dataset: cifar10-embeddings

CDVM(5000)
InfluenceOpt
CDVM(10000)
DataOOB
Banzhaf
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

Ac
cu

ra
cy

Dataset: bbc-embeddings

CDVM(5000)
InfluenceOpt
DataOOB
Banzhaf
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

Dataset: imdb-embeddings

CDVM(5000)
InfluenceOpt
CDVM(10000)
DataOOB
Banzhaf
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

Dataset: nomao

CDVM(5000)
InfluenceOpt
CDVM(10000, 0.1, 0.2)
DataOOB
Banzhaf
Random

Figure 3: Accuracy on 30%, 25%, 20%, 15%, 10%, and 5% of remaining training data for
six datasets in the OpenDataVal benchmark Jiang et al. (2023). We utilized a sampling
probability of p = 0.03 for computing the attribution matrix and automatically optimized
parameters for the CDVM method. Out of 36 configurations, CDVM achieved state-of-the-art
performance in 28 setups.

We restrict our benchmark to these methods because they have proven effective in prior work.
DataBanzhaf serves as a baseline to ensure any performance gains stem from our optimization
rather than the attribution algorithm. For CDVM, we fix the sampling probability at p = 0.03
and train T = 5000 models (the primary computational bottleneck). In some cases, tuning p
or increasing T yields gains; we also report those as dashed line when they are significant.

Figure 3 summarizes results over the 36 evaluation instances (6 datasets × 6 pruning rates),
our default CDVM configuration (solid blue) outperforms all baselines in 24 cases. Per-dataset
tuning (dashed blue) yields some gains and increases the total number of state-of-the-art
results to 28. Appendix A provides the full tabular breakdown including standard deviation.

Among all baselines, only the method of Yang et al. (2022) (green dashed line) outperforms
CDVM, and this occurs mainly on the nomao dataset, where it edges out CDVM at 5 of the 6
pruning levels. It also performs competitively on cifar10 but falls short on pol and adult,
despite being evaluated as an upper bound. On the other two text datasets (bbc and imdb),
its gains are occasional and much smaller. In contrast, CDVM is the only method that
consistently beats the random baseline across all six benchmarks. DataOob/memorization
remains competitive on imdb and bbc datasets, but never achieves state-of-the-art accuracy.

The nomao dataset exhibits unusual dynamics for CDVM and Yang et al. (2022)’s methods.
With default hyperparameters, CDVM initially underperforms random pruning up to an
85% removal rate. We found that manually tuning to p = 0.1, κ = 0.2, α = 0.1 restores its
advantage. Likewise, Yang et al. (2022)’s approach attains its best scores on nomao only
when its ranked instances are removed first and the remainder are kept at random, i.e., by
applying its ranking in reverse.

4.1 Ablation Study

Runtime Comparison Figure 4(a) plots each method’s average runtime per experiment
against its normalized performance (scaled to [0,1] across all 36 evaluation settings). A
score of 1 denotes the top accuracy in every setting, while 0 denotes the worst. Details
on the metric and detailed training and optimization times are provided in Appendix B.
CDVM achieves the best speed–accuracy trade-off, outperforming the baselines by a wide
margin. Interestingly, in this aggregate view DataOob/memorization outperforms Influence
Optimization in overall efficiency, despite our earlier finding that Influence Optimization

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

102 103 104

Runtime [s]
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 [a

cc
ur

ac
y]

CDVM(5k)
CDVM(10k)

DataOob

DataBanzhaf

InfluenceOpt

(a) Runtime vs. Performance

102 103

Samples seen
0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 [a

cc
ur

ac
y]

.02

.03

.05

.1
.15

.2

3k

5k
10k

(b) CDVM Samples seen vs. Perf.

0.0
5 0.1 0.1

5 0.2 0.2
5 0.3

size

0.25

0.50

0.75

1.00

1.25

1.50

ka
pp

a

(c) Distribution of kappa

0.0
5 0.1 0.1

5 0.2 0.2
5

size

0.05

0.1

0.15

0.2

0.25

siz
e

0.55 0.50 0.43 0.38 0.35

0.50 0.46 0.40 0.37 0.34

0.43 0.40 0.36 0.34 0.31

0.38 0.37 0.34 0.33 0.31

0.35 0.34 0.31 0.31 0.30

(d) Rank Correlation

Figure 4: (a) Runtime vs. normalized performance for all benchmarked methods, aggregated
over six datasets and six pruning levels. (b) CDVM performance as a function of how often
each sample is seen during training for sampling probability p (cyan) and number of models
trained T (blue). (c) Distribution of the selected slack threshold κ across datasets and
retention fractions. (d) Spearman rank correlation between instance-importance rankings at
different pruning budgets, showing decreasing correlation for more distant subset sizes.

beats DataOob on individual datasets, this is because DataOob delivers consistently strong
(though not state-of-the-art) accuracy with much lower computational cost.

Hyperparameter Sensitivity While tuning κ and α is essentially cost-free once T is
available, computing T dominates total runtime. Consequently, selecting the sampling
probability p and the number of models T requires careful trade-offs. Figure 4(b) shows
normalized performance for different values of p and T . As expected, increasing T consistently
improves accuracy, but performance as a function of p peaks around p = 0.15. Although
p = 0.15 yields the highest average score, our default p = 0.03 achieves state-of-the-art
results more consistently across all benchmarks (see Appendix A). However, for tasks with a
large remaining fraction p = 0.15 should be preferred.

Figure 4(c) plots the κ selected by grid search for each dataset and retention rate. Figure 6
of the Appendix also shows the effect of removing the slack variables entirely. No single κ
works best everywhere: omitting the slack constraint causes a sharp drop in accuracy, and
fixing κ to a constant still incurs a moderate performance loss, underscoring the importance
of treating it as a tunable hyperparameter.

Rank Correlation To quantify non-nestedness, we compute the average Spearman rank
correlation between the instance-importance rankings at different retention levels, across all
seeds and datasets (Figure 4(d)). Correlation declines as the gap between budgets widens,
confirming that optimal subsets diverge for different removal rates. Interestingly, the diagonal
entries (same budget, different seeds) show higher correlation for smaller subsets, suggesting
that tight budgets admit fewer combinations, whereas larger subsets offer more redundancy
and hence greater ranking variability.

5 Summary, Limitations & Outlook

In this work, we introduced Constraint-Data-Value-Maximization (CDVM), an optimization-
based framework that leverages the data-attribution matrix T to prune low-value examples
in low-data regimes. We demonstrated competitive accuracy and runtime across six Open-
DataVal tasks. However, since the entries of T are not additive, CDVM may miss higher-order
interactions. Integrating Shapley interaction indices (Muschalik et al., 2024) could capture
these effects, albeit with additional computational overhead. Finally, CDVM relies on a
selected soft upper bound κ and incurs quadratic cost in computing and storing T (e.g.,
roughly 250GB for a naive implementation without sparsity on the full ImageNet-1k train
and val splits), which might limit scalability. Future work could mitigate these bottlenecks
by employing attribution estimators such as TRAK Park et al. (2023), exploiting sparsity or
low-rank structure in T, or solving the optimization on partitioned submatrices, offering
opportunities for future extensions with only modest computational overhead increases.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Reproducibility statement

To ensure full reproducibility, we will release all source code on GitHub upon publication.
During the review period, we provide a standalone Jupyter notebook that computes the
data-attribution matrix T, formulates and solves the CDVM optimization, and prints results
against a random baseline. The notebook is self-contained and can be applied to any dataset.

References
Vitaly Feldman. Does learning require memorization? a short tale about a long tail.

Proceedings of the Annual ACM Symposium on Theory of Computing, 2020. ISSN 07378017.
doi: 10.1145/3357713.3384290. URL https://arxiv.org/abs/1906.05271.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine
learning. 36th International Conference on Machine Learning, ICML 2019, 2019-June:
4053–4065, 2019.

Zayd Hammoudeh and Daniel Lowd. Training data influence analysis and estimation: A
survey. 12 2022. URL http://arxiv.org/abs/2212.04612.

Rachael Hwee, Ling Sim, Xinyi Xu, Bryan Kian, and Hsiang Low. Data valuation in machine
learning: "ingredients", strategies, and open challenges, 2022.

Kevin Fu Jiang, Weixin Liang, James Zou, and Yongchan Kwon. Opendataval: a unified
benchmark for data valuation. 6 2023. URL http://arxiv.org/abs/2306.10577.

Karthikeyan K and Anders Søgaard. Revisiting methods for finding influential examples. 11
2021. URL http://arxiv.org/abs/2111.04683.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions.
34th International Conference on Machine Learning, ICML 2017, 4:2976–2987, 2017.

Yongchan Kwon and James Zou. Beta shapley: a unified and noise-reduced data valuation
framework for machine learning. 10 2021. URL http://arxiv.org/abs/2110.14049.

Yongchan Kwon and James Zou. Data-oob: Out-of-bag estimate as a simple and efficient data
value. International Joint Conferences on Artificial Intelligence, 2023. ISBN 9781956792003.
doi: 10.24963/ijcai.2022/778.

Maximilian Muschalik, Hubert Baniecki, Fabian Fumagalli, Patrick Kolpaczki, Barbara
Hammer, and Eyke Hüllermeier. shapiq: Shapley interactions for machine learning, 2024.
URL https://arxiv.org/abs/2410.01649.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry.
Trak: Attributing model behavior at scale. 3 2023. URL http://arxiv.org/abs/2303.
14186.

Mansheej Paul and Gintare Karolina Dziugaite. Deep learning on a data diet : Finding
important examples early in training. pages 1–18.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos.
Beyond neural scaling laws: beating power law scaling via data pruning. 6 2022. URL
http://arxiv.org/abs/2206.14486.

Jiachen T. Wang and Ruoxi Jia. Data banzhaf: A robust data valuation framework for
machine learning. 5 2022. URL http://arxiv.org/abs/2205.15466.

Shuo Yang, Zeke Xie, Hanyu Peng, Min Xu, Mingming Sun, and Ping Li. Dataset pruning:
Reducing training data by examining generalization influence. 5 2022. URL http:
//arxiv.org/abs/2205.09329.

Jiayuan Ye, Anastasia Borovykh, Soufiane Hayou, and Reza Shokri. Leave-one-out distin-
guishability in machine learning. 9 2023. URL http://arxiv.org/abs/2309.17310.

10

https://arxiv.org/abs/1906.05271
http://arxiv.org/abs/2212.04612
http://arxiv.org/abs/2306.10577
http://arxiv.org/abs/2111.04683
http://arxiv.org/abs/2110.14049
https://arxiv.org/abs/2410.01649
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2303.14186
http://arxiv.org/abs/2206.14486
http://arxiv.org/abs/2205.15466
http://arxiv.org/abs/2205.09329
http://arxiv.org/abs/2205.09329
http://arxiv.org/abs/2309.17310

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Use of Large Language Models (LLMs)

LLMs were primarily used to enhance the paper’s language and support code completion
during implementation, as well as to define, refine, and improve the optimization problem.
Although the initial concept originated with the authors, LLMs contributed significant
refinements and performance optimizations.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

A Result Details

We provide supplementary details for the main paper. Table 1 tabulates the numerical
results underlying the benchmark curves, while Figures 5 and 6 plot CDVM’s performance
and runtime across different values of p and T .

30% Data 25% Data 20% Data 15% Data 10% Data 5% Data
nomao

CDVM5k 0.855 ± 0.02 0.836 ± 0.02 0.839 ± 0.02 0.837 ± 0.02 0.830 ± 0.02 0.833 ± 0.03
CDVM10k 0.848 ± 0.01 0.840 ± 0.02 0.833 ± 0.02 0.839 ± 0.02 0.830 ± 0.02 0.821 ± 0.02
CDVM-n 0.872 ± 0.02 0.855 ± 0.02 0.848 ± 0.02 0.849 ± 0.02 0.842 ± 0.02 0.842 ± 0.02
InfOpt 0.874 ± 0.00 0.866 ± 0.00 0.862 ± 0.00 0.860 ± 0.00 0.858 ± 0.00 0.808 ± 0.00
DataOOB 0.839 ± 0.01 0.804 ± 0.01 0.801 ± 0.01 0.794 ± 0.01 0.791 ± 0.01 0.786 ± 0.02
Banzhaf 0.791 ± 0.02 0.764 ± 0.02 0.754 ± 0.02 0.734 ± 0.03 0.710 ± 0.03 0.664 ± 0.07
Random 0.865 ± 0.02 0.844 ± 0.02 0.839 ± 0.02 0.830 ± 0.03 0.812 ± 0.03 0.789 ± 0.04

cifar10
CDVM5k 0.598 ± 0.02 0.578 ± 0.02 0.565 ± 0.03 0.551 ± 0.02 0.525 ± 0.03 0.431 ± 0.03
CDVM10k 0.605 ± 0.02 0.583 ± 0.03 0.573 ± 0.03 0.567 ± 0.02 0.543 ± 0.02 0.463 ± 0.03
InfOpt 0.579 ± 0.02 0.580 ± 0.00 0.560 ± 0.00 0.548 ± 0.00 0.530 ± 0.00 0.456 ± 0.00
DataOOB 0.570 ± 0.01 0.495 ± 0.01 0.490 ± 0.02 0.458 ± 0.03 0.413 ± 0.10 0.322 ± 0.13
Banzhaf 0.592 ± 0.02 0.570 ± 0.03 0.522 ± 0.08 0.494 ± 0.08 0.438 ± 0.08 0.332 ± 0.06
Random 0.573 ± 0.02 0.544 ± 0.03 0.520 ± 0.03 0.479 ± 0.06 0.420 ± 0.07 0.315 ± 0.07

pol
CDVM5k 0.786 ± 0.02 0.755 ± 0.03 0.751 ± 0.03 0.752 ± 0.03 0.757 ± 0.03 0.752 ± 0.04
CDVM10k 0.796 ± 0.02 0.760 ± 0.03 0.751 ± 0.03 0.752 ± 0.03 0.749 ± 0.03 0.753 ± 0.03
InfOpt 0.699 ± 0.01 0.608 ± 0.00 0.604 ± 0.00 0.572 ± 0.00 0.472 ± 0.00 0.350 ± 0.00
DataOOB 0.738 ± 0.03 0.729 ± 0.04 0.732 ± 0.03 0.727 ± 0.03 0.725 ± 0.04 0.720 ± 0.04
Banzhaf 0.716 ± 0.04 0.689 ± 0.04 0.663 ± 0.05 0.636 ± 0.05 0.607 ± 0.04 0.557 ± 0.06
Random 0.759 ± 0.03 0.731 ± 0.03 0.727 ± 0.03 0.721 ± 0.04 0.710 ± 0.04 0.668 ± 0.05

imdb
CDVM5k 0.804 ± 0.01 0.795 ± 0.02 0.789 ± 0.02 0.787 ± 0.02 0.787 ± 0.02 0.782 ± 0.02
CDVM10k 0.813 ± 0.01 0.800 ± 0.02 0.794 ± 0.03 0.794 ± 0.01 0.793 ± 0.01 0.783 ± 0.02
InfOpt 0.794 ± 0.01 0.808 ± 0.00 0.774 ± 0.00 0.774 ± 0.00 0.748 ± 0.00 0.680 ± 0.00
DataOOB 0.794 ± 0.01 0.788 ± 0.02 0.782 ± 0.02 0.782 ± 0.02 0.789 ± 0.01 0.780 ± 0.01
Banzhaf 0.772 ± 0.03 0.758 ± 0.03 0.748 ± 0.03 0.739 ± 0.02 0.721 ± 0.04 0.678 ± 0.04
Random 0.782 ± 0.02 0.772 ± 0.02 0.765 ± 0.02 0.751 ± 0.03 0.729 ± 0.03 0.675 ± 0.05

adult
CDVM5k 0.735 ± 0.01 0.714 ± 0.01 0.714 ± 0.02 0.708 ± 0.01 0.703 ± 0.02 0.702 ± 0.01
CDVM10k 0.726 ± 0.02 0.709 ± 0.01 0.707 ± 0.01 0.706 ± 0.01 0.705 ± 0.02 0.694 ± 0.01
InfOpt 0.717 ± 0.01 0.664 ± 0.00 0.652 ± 0.00 0.638 ± 0.00 0.648 ± 0.00 0.678 ± 0.00
DataOOB 0.715 ± 0.01 0.704 ± 0.01 0.704 ± 0.01 0.698 ± 0.01 0.689 ± 0.01 0.687 ± 0.01
Banzhaf 0.706 ± 0.02 0.678 ± 0.02 0.659 ± 0.02 0.647 ± 0.03 0.628 ± 0.03 0.591 ± 0.04
Random 0.734 ± 0.02 0.698 ± 0.02 0.693 ± 0.02 0.685 ± 0.02 0.673 ± 0.02 0.655 ± 0.03

bbc
CDVM5k 0.950 ± 0.01 0.946 ± 0.01 0.949 ± 0.00 0.946 ± 0.01 0.941 ± 0.01 0.933 ± 0.01
CDVM10k 0.946 ± 0.01 0.947 ± 0.01 0.947 ± 0.01 0.947 ± 0.01 0.943 ± 0.01 0.934 ± 0.01
InfOpt 0.953 ± 0.01 0.950 ± 0.00 0.944 ± 0.00 0.934 ± 0.00 0.938 ± 0.00 0.836 ± 0.00
DataOOB 0.944 ± 0.00 0.945 ± 0.00 0.940 ± 0.00 0.938 ± 0.00 0.921 ± 0.01 0.912 ± 0.01
Banzhaf 0.948 ± 0.01 0.945 ± 0.01 0.944 ± 0.01 0.936 ± 0.01 0.905 ± 0.05 0.801 ± 0.16
Random 0.943 ± 0.01 0.940 ± 0.01 0.934 ± 0.01 0.926 ± 0.02 0.901 ± 0.05 0.849 ± 0.06

Table 1: Accuracy on 30%, 25%, 20%, 15%, 10%, and 5% of training data for six datasets in
the OpenDataVal benchmark Jiang et al. (2023). Out of 36 configurations, CDVM achieved
state-of-the-art performance in 28 setups. The Error margins represent standard deviations
based on 25 experiments.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

Ac
cu

ra
cy

Dataset: nomao

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

Dataset: pol

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.66

0.68

0.70

0.72

0.74

Ac
cu

ra
cy

Dataset: adult

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

Dataset: imdb-embeddings

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

Dataset: bbc-embeddings

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed
0.30

0.35

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Dataset: cifar10-embeddings

CDVM(10000, 0.02)
CDVM(10000, 0.03)
CDVM(10000, 0.05)
CDVM(10000, 0.1)
Random

Figure 5: CDVM performance for different sampling probabilities p ∈ {0.02, 0.03, 0.05, 0.10}
on five datasets. A higher sampling rate (p = 0.10) yields the best pruning accuracy on
Nomao, POL, and Adult, and outperforms lower p values up to 85% removal on CIFAR-10,
but degrades performance on BBC.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.78

0.80

0.82

0.84

0.86

Ac
cu

ra
cy

Dataset: nomao

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

Ac
cu

ra
cy

Dataset: pol

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.66

0.67

0.68

0.69

0.70

0.71

0.72

0.73

Ac
cu

ra
cy

Dataset: adult

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

Dataset: imdb-embeddings

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Dataset: bbc-embeddings

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

0.70 0.75 0.80 0.85 0.90 0.95

Fraction Data Removed

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Dataset: cifar10-embeddings

CDVM(3000)
CDVM(5000)
CDVM(10000)
CDVM(unconstrained)
Random

Figure 6: Effect of model-count and slack constraint on CDVM’s runtime and accuracy. For
each dataset, we compare CDVM using 3 000, 5 000, and 10 000 models to estimate the
attribution matrix τ , as well as a variant without the κ constraint. In general, increasing the
number of models improves pruning quality at the cost of longer runtime, while removing
the slack constraint causes a severe drop in performance.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

B Ablation Study Details

In addition, we detail our ablation study, particularly the performance normalization pro-
cedure, provide deeper insight into algorithm runtimes by distinguishing preparation and
optimization times, and demonstrate CDVM’s scalability on a full dataset.

B.1 Performance Normalization

In Figure 4, we condense each method’s performance across all evaluation settings into a
single normalized score. To do so, we normalize each method’s total score by the sum of the
best- and worst-case performances. Formally, let S be the set of all 36 evaluation settings (6
datasets × 6 pruning levels), and let pm,s denote the test accuracy of method m on setting
s. Define

Pm =
∑
s∈S

pm,s, Pmax =
∑
s∈S

max
m′

pm′,s, Pmin =
∑
s∈S

min
m′

pm′,s.

Then the normalized performance of method m is

P̃m =
Pm − Pmin

Pmax − Pmin
,

which maps the aggregate score of each method into the interval [0, 1].

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B.2 Optimization and Runtime

Method Preparation Time Optimization Time Total Time

DataOob 135 s (1000 models) n.a. 135 s

CDVM 97 s (5000 models) 10 s 107 s

184 s (10000 models) 194 s

InfOpt 6 h (1000 data instances) 366 s (cifar-10) ≈ 6h

3 s (imdb) ≈ 6h

Table 2: Runtime comparison (preparation + optimization). Wall-clock times for (i)
DataOob/memorization, (ii) CDVM, and (iii) Influence-Function Optimization (InfOpt) on
the OpenDataVal benchmark. DataOob uses bootstrap samples of size n (with replacement)
and retrains TOOB = 1,000 models. CDVM samples each training point with probability
p = 0.03 and retrains TCDVM = 5,000 (or 10,000) models to achieve stable estimates. Because
each CDVM model sees only 3% of the data, individual training runs are much faster. InfOpt
avoids retraining but must invert a Hessian per training instance and solve a quadratic
program, resulting in multi-hour runtimes. Our method has constant optimization time
because all datasets are scaled to the same size (1000 training and 500 validation + test
instances). For InfOpt, optimization time scales with the dataset’s input dimension, whereas
preparation time remains largely constant.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

B.3 Scaling

0.02 0.04 0.06 0.08 0.10

Fraction of entries retained

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72
Ac

cu
ra

cy
(a) Accuracy vs. Entries Retained

Random
Held-Out
Optimized

0.02 0.04 0.06 0.08 0.10

Fraction of entries retained

500

750

1000

1250

1500

1750

2000

2250

Ti
m

e
[s

]

(b) Optimization time vs. Entries retained

2004006008001000

Remaining Data

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

(c) CDVM Pruning on Fashion MNIST

Random
Held-Out
Optimized

Figure 7: (a) Test accuracy for different sparsity cut-offs in the attribution matrix, expressed
as the percentage of entries retained by not setting them to zero. (b) Runtime (in seconds)
for solving the CDVM optimization on each corresponding sparse matrix. (c) CDVM test
performance compared against a random-pruning baseline.

So far, we have evaluated CDVM on the OpenDataVal benchmark by subsampling each split
to 1 000/500/500 (train/validation/test), enabling rapid comparisons across methods. To
assess scalability on a larger attribution matrix, we apply CDVM to Fashion-MNIST (60 000
training and 10 000 test images). Fashion-MNIST was chosen because it offers a sizable
dataset while still permitting fast model training. As before, the resulting attribution matrix
τ is highly sparse: many training instances have zero or negligible influence on most test
samples. However, due to numerical noise, most entries remain small nonzero values and
must be filtered out.

To study the effect of this residual noise, we threshold τ by retaining only the top 0.5 %–10 %
of its entries and setting all others to zero. The corresponding test accuracies are shown in
Figure 7. We split the test set into an evaluation partition, for selecting training examples
and tuning hyperparameters, and a held-out test partition for final performance assessment,
and report results on both.

As shown, retaining just 5% of the examples suffices to achieve high accuracy; including
more examples yields no further benefit. Estimating τ requires retraining between 5 000 and
8 000 models, which takes approximately 1–10 hours on a standard workstation, depending
on the subsampling rate p.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C Synthetic Dataset

In this section, we provide further details and empirical examples on the synthetic dataset
and Shapley-value data valuation, illustrating how interactions among data points can induce
non-monotonic pruning behavior, for example, we construct a dataset in which removing
more examples paradoxically improves accuracy, so that keeping less data can outperform
keeping more.

Full dataset

Figure 8: Synthetic dataset with eight points from four clusters. All clusters except the blue
one centered at (−2.5,−0.5) contain more than one point.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

C.1 Removing Entire Clusters

Figure 9: Effect of removing an entire cluster. The removed cluster is grey.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

C.2 Leave One Out

LOO left red cluster

LOO right red cluster

LOO right blue cluster

LOO left blue cluster

Figure 10: Leave-one-out (LOO) on the dataset from Figure 8. All clusters except the last
contain more than one point; therefore, the decision boundary remains unchanged when a
point is removed from these clusters. Each plot shows the effect of removing exactly one
point from the respective cluster. Consequently, only the point from the left blue cluster will
exhibit a non-zero leave-one-out data value.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

C.3 Shapley Data Value

Figure 11: Shapley data valuation scores for the synthetic dataset. The black line represents
the decision boundary of an MLP trained on this dataset. Given the 256 possible combinations
for subsets, not all are plotted. Instead, the plot displays the computed data Shapley values,
where the size of a point indicates its value. As observed, the values are proportional to the
cluster size, with the blue singleton point exhibiting the highest value.

C.4 Shapley-based Pruning vs. Optimal Pruning

Ac
cu

ra
cy

Number of data points removed

1.0

.5

Optimal pruning
Shapley pruning

Figure 12: Difference between data pruning based on Shapley values (red) and the optimal
pruning (red) on the synthetic dataset. Each dot in the plot represents one data point
being removed. Shapley-based pruning will initially remove the three red points with lowest
value. Once the last one of them is removed, the accuracy drops. In contrast, in the optimal
pruning we can remove two points from the cluster with three points and one from the two
clusters with two points without loosing any performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

C.5 Data Interactions

Accuracy: 1.0 Accuracy: 1.0Accuracy: 0.0

Figure 13: Synthetic example of interaction effects when removing data. In this case, the
black line represent the decision boundary of a support vector machine. We assume that the
data value is simply the distance to the decision boundary and the red circle the only point
in the test. It is labeled "red". The left-most plot shows the original dataset. The red circle
is on the right side of the decision boundary and, hence, classified correctly by the support
vector machine. In the center plot, two red points were removed. As a consequence, the
decision boundary shifts and the red circle is miss-classified. In the right-most plot, two blue
points were additionally removed. The decision boundary is back at its original position and
the circle is correctly classified again. This shows how data values (and pruning) depend on
data interactions and that model performance during pruning is not necessarily monotonic.

22

	Introduction
	Background, Motivation & Related Work
	Data Valuation and Pruning
	Estimating Data Values
	Data Pruning and Benchmarks for Data Valuation
	Limitations of Data Values for Data Pruning

	Preliminaries: Data Attribution & Influence‐Function Pruning
	Data Attribution
	Influence‐Function–Guided Pruning

	Size-Constrained Data-Value‐Maximization: Optimizing Data Values for Pruning
	Implementation Details

	Experimental Results
	Ablation Study

	Summary, Limitations & Outlook
	Result Details
	Ablation Study Details
	Performance Normalization
	Optimization and Runtime
	Scaling

	Synthetic Dataset
	Removing Entire Clusters
	Leave One Out
	Shapley Data Value
	Shapley-based Pruning vs. Optimal Pruning
	Data Interactions

