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Human impressions of robot performance are oftenmeasured through surveys. As amore scalable and cost-effective alternative,

we investigate the possibility of predicting people’s impressions of robot behavior using non-verbal behavioral cues and

machine learning techniques. To this end, we first contribute the SEAN TOGETHER Dataset consisting of observations

of an interaction between a person and a mobile robot in a Virtual Reality simulation, together with impressions of robot

performance provided by users on a 5-point scale. Second, we contribute analyses of how well humans and supervised

learning techniques can predict perceived robot performance based on different observation types (like facial expression

features, and features that describe the navigation behavior of the robot and pedestrians). Our results suggest that facial

expressions alone provide useful information about human impressions of robot performance; but in the navigation scenarios

that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning

techniques showed promise because they outperformed humans’ predictions of robot performance in most cases. Further,

when predicting robot performance as a binary classification task on unseen users’ data, the 𝐹1-Score of machine learning

models more than doubled in comparison to predicting performance on a 5-point scale. This suggested that the models

can have good generalization capabilities, although they are better at telling the directionality of robot performance than

predicting exact performance ratings. Based on our findings in simulation, we conducted a real-world demonstration in which

a mobile robot uses a machine learning model to predict how a human that follows it perceives it in a university campus.

Finally, we discuss the implications of our results for implementing such supervised learning models in real-world navigation

scenarios.
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centered computing → Social navigation.
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2 • Zhang et al.

Fig. 1. Data collection. Humans controlled an avatar in the simulation with VR (a) while they were guided by a Fetch robot
(b). The screen on the desk shows what the user saw.

1 INTRODUCTION
As a scalable alternative to measuring subjective impressions of robot performance through surveys, recent work

in Human-Robot Interaction (HRI) has explored using implicit human feedback to predict these impressions

[3, 22, 64, 80]. These are communicative signals that are unintentionally exhibited by people [41]. They can

be reflected in human actions that change the world’s physical state [60] or can be nonverbal cues, such as

facial expressions [22, 64] and gaze [3, 54], displayed during social interactions. Implicit feedback serves as a

burden-free information channel that sometimes persists even when people don’t intend to communicate [40].

We expand the existing line of research on predicting impressions of robot performance from nonverbal human

behavior to dynamic scenarios involving robot navigation. Prior work has often considered stationary tasks, like

physical assembly at a desk [65] or robot photography [80], in laboratory environments. We instead explore

the potential of using observations of the body motion, gaze, and facial expressions of a person to predict their

impressions of a robot’s performance while a robot guides them to a destination in a crowded environment. These

impressions – which we also refer to as human perceptions in this paper – correspond to subjective opinions of

how well a robot is performing the navigation task. Predicting them in crowded navigation scenarios is more

challenging than in stationary settings because human nonverbal behavior can be a result of not only robot

behavior, but also other interactants in the environment. Further, because of motion, nonverbal responses to the

robot may change as a function of the environment. For example, imagine that the person that follows the robot

looks downwards. This could reflect paying attention to the robot, or be a result of the person inspecting their

nearby physical space, which varies during navigation.

To study implicit feedback during navigation tasks, we performed a systematic data collection using the Social

Environment for Autonomous Navigation (SEAN) 2.0 [74] with Virtual Reality (VR) [81].
1
Humans took part in

the simulations through an avatar, which was controlled using a VR headset, as in Fig. 1. The headset enabled

immersion and allowed us to capture implicit feedback features like gaze. Also, it facilitated querying the human

about robot performance as navigation tasks took place. We considered robot performance as a multi-dimensional

construct, similar to [80], because humans may care about many aspects of a robot’s navigation behavior, as

discussed in the social robot navigation literature [25, 26, 51].

Then, we studied fundamental questions about the value of implicit feedback signals in predicting subjective

impressions of robot performance using the VR data. First, we investigated to what extent humans can predict

a person’s impression of the robot’s performance (along the dimensions of perceived competence, surprise,

and intention) based on visualizations of observations of the human-robot interaction, as recorded in our VR

1
Dataset available at: https://sean-together.interactive-machines.com/.
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navigation dataset. Second, we investigated how well various supervised learning models do this type of inference

in comparison to humans. Third, we studied the generalization capabilities of supervised learning methods to

users unseen at training time.

Our analyses bring understanding to the complexity of predicting humans’ impressions of robot performance

in navigation tasks and enabled us to finally conduct a real-world demonstration in which a robot uses a machine

learning model to predict how a human perceives it in a university campus. We conclude this paper by discussing

the implications of our results for implementing autonomous systems that infer human perceptions of robot

performance using implicit feedback in real-world navigation scenarios. We hope that our recommendations

facilitate future efforts to make robots more aware of their failures during navigation [70], as well as facilitate

aligning robot behavior to human preferences based on implicit feedback [18, 22, 52].

2 RELATED WORK
This section discusses prior work in relation to our contributions. First, we discuss human impressions of robot

performance, especially in regards to robot motion. Then, we distinguish between explicit and implicit human

feedback, the latter being the focus of our work. Finally, we briefly review data collection methodologies in HRI.

2.1 Impressions of Robot Performance
Understanding human impressions of robot performance is important. They can be used to evaluate robot policies

[46, 56, 68] and to create better robot behavior [8, 21, 54, 69], increasing the likelihood of robot adoption. In this

work, we focus on inferring three robot performance dimensions relevant to navigation [26]: robot competence,

surprising behavior, and clear intent. Robot competence is a popular performance metric [16], especially in robot

navigation [2, 50, 73]. Surprising behavior violates expectations. It is often considered undesired [4, 25] and may

require explanations by the robot [12]. Meanwhile, showing clear intent means that the robot enables an observer

to infer the goal of its motion [24]. Prior work suggests that if humans fail to anticipate the motion of a robot

because it acts surprisingly or its intent is unclear, they will likely have trouble coordinating their own behavior

with it [23, 61].

2.2 Implicit Human Feedback
We distinguish between explicit and implicit human feedback about robot performance. Explicit feedback

corresponds to purposeful or deliberate information conveyed by humans to robots, e.g., through preferences

[10, 67] or survey instruments [5, 50]. Meanwhile, implicit feedback are cues and signals that people exhibit without

intending to communicate some specific information about robot performance, yet they can be used to infer such

perceptions. Inferring performance from implicit feedback can reduce the chances of excessively querying users

for explicit feedback in robot learning scenarios [29, 59], thereby minimizing the risk of feedback fatigue [45].

Learning from implicit feedback is not without challenges, however, as it can be difficult to interpret [22, 64]. For

example, this can happen due to inter-person variability in facial expressions [30], similar signals being produced

for different reasons [14], or signals changing over time as interactions progress [15].

Our work considers a variety of nonverbal implicit signals, including gaze, body motion, and facial expressions,

which have long been studied in social signal processing [77]. While in some cases these signals are treated as

explicit feedback (e.g., to interrupt an agent [79]), we consider them implicit feedback because we do not prime

humans to react in specific ways to a robot. As such, our work is closer to [14, 22, 52, 63, 78], which used these

signals to identify critical states during robot operation, detect robot errors, and adjust robot behavior.
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Fig. 2. a) It is typical to gather explicit human feedback about robot performance using surveys after human-robot interactions
conclude because interruptions by the experimenters can easily bias human-robot social encounters. Unfortunately, the
feedback from surveys tends to be very limited, making it difficult to understand robot performance at a granular level.
Alternatively, participants may complete video annotations of their experiences [81], but this can be time consuming and
taxing, especially in continuous navigation tasks. b) In this work, we first collect a dataset of human impressions of a robot’s
performance by prompting participants during interactions using VR (Training Step in the diagram). Then, we use this explicit
feedback to train models that infer human impressions of robot performance based on observations of the interactions,
especially including observations of human implicit feedback. The value of such a model is that once it is trained, it can be
reused to estimate robot performance during new interactions (Deployment Step), without having to ask humans for explicit
feedback as in the training step.

2.3 Data Collection in HRI: VR and Other Methodologies
Different kinds of HRI research methods have been used in the literature to gather interaction data, such as

in-person user studies (e.g., [27, 50, 72]), observational public data collections (e.g., [39, 49]), crowdsourcing

studies (e.g., [13, 37, 71]), etc. See [6] for an introduction to these methods.

We considered different ways of conducting our data collection, but ultimately opted for gathering data with

simulated human-robot interactions in VR for several reasons. First, in contrast to real-world data collection,

simulation facilitated querying humans about their impressions of robot performance during interactions and

resulted in fewer negative consequences for interrupting the navigation task. This is illustrated in Fig. 2. In

lab studies, for instance, surveys that gather general impressions of a robot are typically administered at the

end of interactions to avoid interrupting the natural flow of events [80], which can cause unintended effects on

collaborative tasks and interactants. In VR simulations, however, we can gather feedback in-situ. We can freeze

time during human-robot interactions, query a participant about their impressions of robot performance through

the VR display, and then resume the simulation as if the interruption had not occurred.

Second, we started our research by utilizing VR because, simulations made interactions safer in contrast to

those in the real-world. The reason is that we wanted to expose participants not only to good robot navigation

behavior, but also bad behavior. This was key for inducing a wide range of impressions about robot performance

during data collection and, thus, capturing varied implicit feedback. Prior work has used simulations in HRI for

safety reasons as well [35, 53].
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Third, in contrast to crowdsourcing data collection procedures, our in-person data collection reduced unrelated

participant distractions [11] and minimized potential issues with participant’s internet speed [36, 73]. Early in our

research, we considered using interactive surveys [73] for our data collection while capturing implicit feedback

signals through the webcams of remote participants (e.g., as in [14]). However, after testing both this setup

and VR, we thought that the increased level of immersion afforded by VR was important to gather naturalistic

feedback.

While we opted for using simulations in our work, they are not without limitations. In particular, simulations

can result in a sim-to-real gap, as discussed before in HRI and other robotics areas (e.g., [1, 9, 19, 20, 34, 44]). This

gap can emerge in HRI because of differences in physics between simulation and the real-world as well as the

human-robot interactions in simulation not reflecting the real-world experience [34]. Indeed, prior work suggests

that virtual robots may be perceived as more discomforting than real robots [44]. Thus, towards the end of this

paper, we explored applying the insights from our work with VR data to a real-world demonstration, paving the

path towards predicting impressions of robot performance in real application scenarios.

3 PROBLEM STATEMENT & RESEARCH QUESTIONS
We study if a person’s impression of a robot’s performance can be predicted using observations of their interaction

in dynamic tasks involving navigation. Specifically, we aim to learn a mapping from a sequence of observations

to an individual’s reported impressions at the end of the sequence (as in Fig. 2b). We consider multiple robot

performance dimensions on a 5-point scale, as detailed later in Sec. 4.

Consider a dataset of observations and performance labels, D = {(o𝑖
1:𝑇

, 𝑦𝑖 )}, where o1:𝑇 is an observation

sequence of length𝑇 , 𝑦 is a performance rating given by a robot user at the end of the sequence, and 𝑖 identifies a

given data sample. We place emphasis on predicting a person’s impression of a robot by considering observations

of their implicit feedback. Thus, the observations o𝑖𝑡 include features that describe the person’s non-verbal

behavior, such as their motion, gaze and facial expressions. Also, the observations include features that describe

the spatial behavior of all the agents in the environment, the navigation task, and the space occupied by static

objects. Given this data, we investigate three fundamental research questions:

(1) How well can human observers predict a user’s impression of robot performance? By answering this

question, we obtain a human baseline for learning a function 𝑓 : O1:𝑇 → Y, where O is the observation space

and Y is performance. Also, through this question, we study the impact of two types of observations in the

prediction task: observations that describe fine-grained facial expressions for a robot user; and other observations

about the user, the robot and their environment. As mentioned earlier, observations of fine-grained expressions

have gained popularity in recent work to infer human perceptions of an agent’s behavior [14, 22, 65, 80]. Other

observations (e.g. body motion and nearby static obstacles) can be more easily computed in real-world navigation

tasks, but their usefulness on a robot’s ability to infer users’ impression of their performance is less understood.

(2) Can machine learning methods predict impressions of robot performance as well as humans? Ulti-
mately, we are interested in bringing us forward to a future where machine learning models facilitate evaluating

robot performance at scale, without having to necessarily ask users all the time for explicit feedback (as in the

Deployment Step of Fig. 2b). Thus, we evaluate various machine learning models to approximate the function 𝑓 ,

as defined for the prior question.

(3) How well can machine learning models generalize to unseen users? In future robot deployments, a robot

may interact with completely new users. Thus, we analyze the performance of various machine learning models

in predicting impressions of robot performance according to users for whom the model had no data at training

time.

, Vol. 1, No. 1, Article . Publication date: November 2024.



6 • Zhang et al.

We study the above questions using data from SEAN-VR [81], as described in the next two sections. Later,

in Sec. 6, we leverage our findings in VR to create a real-world demonstration through which we investigate

predicting human impressions of robot performance in two university environments.

4 DATA COLLECTION WITH SEAN AND VR
For our VR data collection, we leveraged the SEAN 2.0 simulator [74]. SEAN 2.0 integrates with the Robot

Operating System (ROS) [58] and supports Virtual Reality [81]. Participants used a Vive Pro Eye VR device to

control an avatar in a warehouse (as in Fig. 1(a)). The VR headset captured implicit signals from the participants,

like eye and lip movements.

During data collection, the participants had to follow a Fetch robot that guided them to a destination that was

unknown to them a priori but was marked by a red cross on the ground. Fig. 1(b) shows a first-person view of the

simulation during robot-guided navigation. The Fetch robot was controlled with ROS in SEAN. The environment

contained other algorithmically controlled pedestrians and warehouse obstacles provided by SEAN 2.0.

The participants provided ratings of robot performance through the simulation’s VR interface. The frame rate

of the rendering of the virtual environment in the participants’ first-person view in VR was over 30 frames per

second. Our data collection protocol, described below, was approved by our local Institutional Review Board and

refined via pilots.

4.1 Participants
We recruited 60 participants using flyers and by word of mouth. They were at least 18 years old, fluent in English,

and had normal or corrected-to-normal vision. Overall, 19 participants identified as female, 40 as male, and 1

as non-binary or third gender. Most of them were university students, and ages ranged from 18 to 43 years old.

Participants were somewhat familiar with robots, as indicated by a mean rating of M = 4.20 (with standard error

SE = 0.18) on a 7-point Likert responding format (1 being lowest). Yet, they were somewhat unfamiliar with VR

(M = 3.72, SE = 0.20). No participant had prior experience with SEAN or social robot navigation in VR.

4.2 Data Collection Procedure
Protocol: A data collection session took place as follows. First, the participant provided demographics data.

Second, the experimenter introduced the robot, explained the navigation task in which the participant was to

follow the robot, and demonstrated how to use the VR device to control their avatar in SEAN and label robot

performance. Third, the participant experienced four navigation tasks with the robot, each with a particular

starting position and destination. For consistency, the pedestrians were controlled using the same behavior graph

controller provided in SEAN 2.0 [74] and the robot used the same navigation logic across the tasks.

In each task, the robot guided the participant to the destination and repeatedly changed its behavior (as further

detailed below). Importantly, the interaction was paused before and after each behavior change took place, at

which point the participant was asked to evaluate the robot’s most recent navigation performance. A typical data

collection session was completed in 45 min to 1 hour. Participants were compensated US$15 for their time.

Robot Behaviors: During a navigation task, the robot switched between one of these three types of behavior:

1. Nav-Stack. The robot navigated efficiently to the destination based on the path planned by the ROS Navigation

Stack with social costs [47]. The planned paths generally minimized navigation time while avoiding collisions

and invading personal space. This behavior lasted 40 seconds.

2. Spinning. The robot rotated at its current position, which we expected to be perceived as if the robot was

confused. This behavior lasted 20 seconds. It was implemented by sending angular velocity commands to the

robot’s motion controller.

, Vol. 1, No. 1, Article . Publication date: November 2024.
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3. Wrong-Way. The robot moved in the wrong direction, away from the task’s destination, effectively making a

mistake during navigation. This behavior lasted 20 seconds and was implemented using the Navigation Stack

with social costs as well, but with an incorrect navigation goal.

Unbeknownst to the participants, the robot switched to Nav-Stack behavior after Spinning or Wrong-Way
during navigation. It randomly switched to Spinning orWrong-Way after finishing Nav-Stack. The design was

intended to maintain a consistent rate of sub-optimal behavior and avoid user boredom or significant confusion,

which can be caused by more stochastic behavior patterns that are hard for participants to reason about. We

expected the behaviors to elicit both positive and negative views of the robot, leading to a large variety of

non-verbal reactions and impressions of robot performance.

Impressions of Robot Performance: During a navigation task, we paused the interaction at 4 seconds before,
and at 8 seconds after the robot switched between behaviors. The elapsed time for the latter pause was longer in

order to give people enough time to experience the latest robot behavior.

As shown in the supplementary video, impressions of robot performance were provided through an interface

embedded in the simulation. The interface asked the participants to indicate their impression about the robot’s

most recent performance in regard to: 1) “how competent was the robot at navigating,” 2) “how surprising was
the robot’s navigation behavior,” and 3) “how clear were the robot’s intentions during navigation.” Participants

provided ratings for these three dimensions of robot performance on a 5-point Likert responding format, e.g.,

with 1 being “incompetent”, 2 being “somewhat incompetent”, 3 being “neither competent nor incompetent”, 4

being “somewhat competent”, and 5 being “competent”.

4.3 Observations
We organized observations of human-robot interactions, as recorded in SEAN-VR [81], into the features described

below. More details about these features are provided in the Appendix.

Participants’ Facial Expression Features: We captured the participants’ eye and lip movements, as well as

their gaze through the VR headset using the VIVE Eye and Facial Tracking (SRanipal) SDK. The eye and lip

movements corresponded to 73 features that described the geometry of the face through blend shapes. The gaze

was a 3D vector providing the direction of gaze of the person relative to their face.

Spatial Behavior Features: During navigation, we captured the poses of the robot, the participant, and the

other automatically-controlled avatars on the ground plane of the scene. Then, we computed the poses of the

avatars relative to the robot, considering only those within a 7.2m radius, as this region is typically considered a

robot’s public space [31, 38, 62]. Each of the features were (𝑥,𝑦, 𝜃 ) tuples with 𝑥 , 𝑦 being the position and 𝜃 the

body orientation (yaw angle) relative to a coordinate frame attached to the robot.

Goal Features: A navigation task had an associated destination or goal that the robot had to reach. We converted

the goal pose in a global frame in the warehouse to a pose in a coordinate frame attached to the robot. This pose

described the robot’s proximity and relative orientation to its destination.

Occupancy Features: During navigation, the robot localized [28] against a 2-Dimensional (2D) map of the

warehouse. We used a cropped section of the map around the robot (of 7.2m × 7.2m) to describe the occupancy

of nearby space by static objects.

4.4 Perceived Robot Performance
Impressions of robot performance were as expected: ratings for competence and clear intention were generally

higher for Nav-Stack than for Spinning andWrong-Way, while the latter two tended to be more surprising than

the former. Pairs of performance dimensions were significantly correlated with absolute Pearson r-values greater
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than 0.6. An exploratory factor analysis suggested that the dimensions could be combined into one performance

factor (which explained 77% of the variance).

Using the features described before and the impressions of robot performance provided by the participants, we

created a dataset of paired observation sequences and target performance values. We further refer to this data as

the SEAN virTual rObot GuidE with impliciT Human fEedback and peRformance Dataset (SEAN TOGETHER

Dataset). As described below, we used this dataset to investigate the research questions in Sec. 3.

5 FINDINGS

5.1 How Well Can Human Observers Predict a User’s Impression of Robot Performance?
To better understand the complexity of inferring impressions of robot performance, we evaluated how well

human annotators could solve the prediction problem. To this end, we administered an online survey through

www.prolific.co, a platform for human data collection and online research studies. In our survey, human

annotators observed visualizations of observations in our SEAN TOGETHER Dataset. Then, they tried to predict

performance ratings provided by the people who followed the robot.

Method: For the survey, we randomly selected 2 data samples from each of the 60 participants in our data

collection, with one gathered before and the other gathered after the robot’s behavior changed. The observations

in each sample corresponded to an 8-second 5-hz window of features right before the corresponding performance

label was provided.

As shown in Fig. 3, data samples were visualized in two ways:

1. Facial Rendering. We created a human face rendering in Unity by replaying the facial expression features on

an SRanipal compatible avatar, as shown in Fig. 3 (right). This visualization was motivated by the use of facial

expressions in prior work on implicit feedback (e.g., [22]).

2. Navigation Rendering. We created a plot of features that described the navigation behavior of the robot and the

avatars in the simulation. The plot showed features that, using existing perception techniques, may be easier

to estimate than facial features in real-world deployments. These features are the spatial behavior features, the

robot’s goal location, the occupied space near the robot, and the gaze direction of the participant – the last

of which could be approximated using an estimate of the person’s head orientation [55]. Because prior work

suggests that it is easier to make sense of implicit human feedback in context [14], the plot was always centered

on the robot, making its surroundings always visible as in Fig. 3 (left).

We used the visualizations to create three annotation conditions that helped understand the value of different

features: 1) Nav.-Only: annotators only saw the navigation rendering (e.g., as in the left image of Fig. 4); 2)

Facial-Only: for a given data sample, annotators only saw the facial rendering (e.g., as in the right image of

Fig. 4); and 3) Nav.+Facial: annotators saw the navigation rendering first, then the facial rendering and, finally,

saw a video with both visualizations next to each other (as in Fig. 3).

Each of the data samples was annotated by 10 unique people in each condition. The annotators were instructed

to predict how the participant who controlled the avatar that followed the robot perceived the robot’s performance.

The samples they annotated were presented in random order. Each annotator was paid US$7.5 for approximately

30 min of annotation time. To encourage high-quality annotations, we also gave them a bonus of US$0.125 for

each correct prediction that they made.

Annotators: We recruited a total of 100 annotators. Thirty-five of them identified as female, 60 as male, and 5 as

non-binary or third gender. Ages ranged from 18 to 75 years old. Annotators indicated similar familiarity with

robots (M = 4.12, SE = 0.14) as the data collection participants, though the annotators were slightly more familiar

with VR (M = 4.50, SE = 0.16). See the Appendix for details on annotator reliability.
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Fig. 3. A data sample from the Nav.+Facial condition. The left plot shows gaze, spatial behavior, goal, and occupancy features:
is the robot’s pose; is the pose of the participant following the robot during the VR interaction; indicates the

gaze of the participant; are the poses of algorithmically controlled avatars; is the destination position that the robot
navigated towards; and occupancy in the environment is indicated by black pixels (occupied) and white pixels (unoccupied).
The right visualization shows a rendering of the facial expression features of the participant.

Fig. 4. Layout of the interfaces used for video annotation for the human baseline. Left: Layout used for the Nav.-Only
annotation condition, showing the navigation rendering on the left, and questions on the right. Right: Layout for the
Facial.-Only condition.

Results: We used linear mixed models estimated with REstricted Maximum Likelihood (REML) [32, 66] to

analyze errors in the predictions for each performance dimension. Our independent variables were Before/After

Robot Behavior Change (Before, After) and Annotation Condition (Facial-Only, Nav.-Only, Nav.+Facial). Also, we
considered Annotator ID as a random effect because annotators provided predictions for multiple data samples.

Our dependent variables were the absolute error between an annotator’s prediction and the performance rating

in our SEAN TOGETHER Dataset.

We found that the Annotation Condition had a significant effect on the absolute error for Competence, Surprise,

and Intention (p < 0.0001 in all cases). As in Fig. 5 (left), Tukey HSD post-hoc tests showed that for Competence

and Surprise, the errors for Nav.+Facial and Nav.-Only were significantly lower than Facial-Only, yet the difference
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Table 1. Machine learning methods and human annotation (HA) performance on 120 examples. Methods: Random (R)
sampling from the distribution of labels in the training set, Random Forest (RF), Multi-Layer Perceptron (MLP), Graph Neural
Network (GNN), and Transformer (T). Arrows indicate that higher (↑) and lower (↓) results are better. Cells with (-) do not
have results because a GNN trained on facial features only was effectively an MLP. The Best and Second results are
highlighted.

𝐹1-Score (𝜇 ± 𝜎) ↑ Accuracy (𝜇 ± 𝜎) ↑ Mean Absolute Error (𝜇 ± 𝜎) ↓
Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial Facial Nav. Nav.+Facial

C
o
m
p
e
t
e
n
c
e HA 0.16 ± 0.0 0.28 ± 0.1 0.29 ± 0.2 0.19 ± 0.1 0.40 ± 0.1 0.42 ± 0.1 1.74 ± 0.2 1.03 ± 0.3 0.99 ± 0.4

R 0.18 ± 0.0 0.19 ± 0.0 0.17 ± 0.0 0.21 ± 0.0 0.21 ± 0.0 0.20 ± 0.0 1.73 ± 0.1 1.75 ± 0.1 1.81 ± 0.1

RF 0.19 ± 0.0 0.37 ± 0.0 0.38 ± 0.0 0.33 ± 0.0 0.52 ± 0.0 0.52 ± 0.0 1.43 ± 0.0 0.88 ± 0.0 0.82 ± 0.0

MLP 0.23 ± 0.0 0.29 ± 0.1 0.25 ± 0.1 0.28 ± 0.0 0.48 ± 0.0 0.44 ± 0.1 1.66 ± 0.1 1.07 ± 0.3 1.19 ± 0.4

GNN - 0.31 ± 0.1 0.33 ± 0.0 - 0.43 ± 0.1 0.39 ± 0.1 - 1.22 ± 0.3 1.04 ± 0.0

T 0.21 ± 0.0 0.33 ± 0.0 0.33 ± 0.0 0.30 ± 0.0 0.43 ± 0.0 0.41 ± 0.1 1.58 ± 0.1 0.97 ± 0.0 0.95 ± 0.0

S
u
r
p
r
i
s
e

HA 0.18 ± 0.0 0.24 ± 0.1 0.25 ± 0.1 0.20 ± 0.1 0.30 ± 0.1 0.32 ± 0.1 1.53 ± 0.3 1.19 ± 0.2 1.12 ± 0.2

R 0.19 ± 0.0 0.21 ± 0.0 0.17 ± 0.0 0.20 ± 0.0 0.21 ± 0.0 0.18 ± 0.0 1.64 ± 0.1 1.60 ± 0.1 1.68 ± 0.1

RF 0.29 ± 0.0 0.38 ± 0.0 0.34 ± 0.0 0.30 ± 0.0 0.40 ± 0.0 0.34 ± 0.0 1.30 ± 0.0 0.93 ± 0.0 0.98 ± 0.0

MLP 0.24 ± 0.0 0.26 ± 0.1 0.24 ± 0.1 0.25 ± 0.0 0.30 ± 0.0 0.29 ± 0.1 1.23 ± 0.1 1.12 ± 0.2 1.08 ± 0.1

GNN - 0.29 ± 0.0 0.27 ± 0.0 - 0.30 ± 0.0 0.28 ± 0.0 - 1.13 ± 0.1 1.07 ± 0.1

T 0.27 ± 0.0 0.29 ± 0.0 0.32 ± 0.1 0.28 ± 0.0 0.31 ± 0.0 0.33 ± 0.1 1.37 ± 0.1 1.07 ± 0.1 1.04 ± 0.1

I
n
t
e
n
t
i
o
n

HA 0.18 ± 0.0 0.25 ± 0.1 0.28 ± 0.1 0.21 ± 0.1 0.37 ± 0.2 0.41 ± 0.1 1.64 ± 0.2 1.19 ± 0.4 1.07 ± 0.2

R 0.21 ± 0.1 0.19 ± 0.0 0.17 ± 0.0 0.23 ± 0.1 0.22 ± 0.0 0.19 ± 0.0 1.70 ± 0.1 1.73 ± 0.1 1.80 ± 0.1

RF 0.28 ± 0.0 0.28 ± 0.0 0.24 ± 0.0 0.37 ± 0.0 0.43 ± 0.0 0.41 ± 0.0 1.45 ± 0.0 1.13 ± 0.0 1.14 ± 0.0

MLP 0.27 ± 0.0 0.26 ± 0.1 0.22 ± 0.0 0.31 ± 0.0 0.41 ± 0.1 0.39 ± 0.1 1.86 ± 0.1 1.31 ± 0.3 1.51 ± 0.5

GNN - 0.28 ± 0.0 0.29 ± 0.0 - 0.37 ± 0.0 0.35 ± 0.0 - 1.32 ± 0.1 1.25 ± 0.1

T 0.24 ± 0.0 0.29 ± 0.1 0.32 ± 0.0 0.33 ± 0.0 0.41 ± 0.0 0.40 ± 0.0 1.63 ± 0.1 1.21 ± 0.1 1.20 ± 0.1

between the former two conditions was not significant. For Intention, all conditions led to significantly different

errors. Nav.+Facial resulted in the lowest error, followed by Nav.-Only and then Facial-Only. These results suggest
that facial expressions provide information about impressions of robot performance though, more generally, the

features used to create the Navigation Renderings seemed to be the most critical for these predictions.

Before/After Robot Behavior Change had a significant effect on the prediction errors for Competence and

Intention (p < 0.0001 in both cases). As in Fig. 5 (right), the error was significantly lower for samples Before a
behavior change than for samples After a change for these performance dimensions. We suspect this was because

the robot sometimes demonstrated two behaviors in the samples collected After a behavior change, but in the
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Fig. 6. Mean Absolute Errors (MAE) of human annotation and Random Forest (RF) results over 10-minute intervals of the
data collection sessions. MAE was computed for all data samples in each interval, and then the average and standard errors
of MAE were calculated considering the performance of the 10 unique annotators (for human annotation results in (a)–(c)) or
the 10 Random Forest models trained with different seeds in Table 1 (RF results in (d)–(f)).

case of Before behavior change, the robot only showed one behavior making these data samples more consistent

and easier to reason about.

Table 1 shows the 𝐹1-Scores for the annotator predictions (see HA rows). The low 𝐹1 scores suggest that

correctly predicting impressions of robot performance on a 5-point responding format was difficult for humans.

Despite this, we suspected that humans could do a more reasonable job at distinguishing impressions of poor

robot performance from other impressions. If this was the case, then this could open up doors in the future to

using this binary signal (instead of the more fine-grained feedback) as a reward signal to adapt robot behavior

in navigation tasks, e.g., in line with [42, 48]. Thus, we transformed the ground truth ratings from our data

collection to binary values, one corresponding to low performance (e.g., 1-2 ratings for competence) and another

to medium-to-high performance (3-5 ratings for competence). Also, we transformed the annotators’ predictions

similarly. This led to 𝐹1 scores of 0.69 for Competence, 0.64 for Surprise, and 0.69 for Intention. As expected,

human annotators were better at telling the directionality of robot performance ratings than at predicting their

exact magnitude.

Finally, we investigated the performance of human annotations over the span of data collection because prior

work suggests that the expressiveness of people engaged in human-robot interactions can change over time [15],

e.g., potentially due to changes in their expectations about the robot or due to fatigue. Figures 6(a)–(c) show the

evolution of mean absolute errors for the human annotators’ predictions over 10-minute intervals of interaction,

considering each performance dimension. In general, human performance was very stable, suggesting no major

bias over time in participant’s spatial behavior or facial expressions. Interestingly, the results also suggested

that improvements in performance with an individual feature did not necessarily translate in improvements on

, Vol. 1, No. 1, Article . Publication date: November 2024.



12 • Zhang et al.

the Nav.+Facial condition. Humans may have combined the information from the different implicit feedback

modalities in subtle ways when making their predictions about how participants in VR perceived the robot.

5.2 Can Machine Learning Methods Predict Impressions of Robot Performance as Well as Humans?
We compared human prediction performance with a variety of classifiers, including a random forest and neural

networks.

Method:Machine learning (ML) models were evaluated on the same samples shown to the human annotators

(𝑛 = 120). The rest of the data was used for training (𝑛 = 2280) and validation (𝑛 = 569). We trained one model for

each combination of feature sets shown to the human annotators (Facial-Only, Nav.-Only, and Nav.+Facial). The
Nav. feature set included occupied space near the robot, which we encoded using a ResNet-18 representation

[33]. We repeated training for each model 10 times with varying random seeds. The Random Forest (RF) used

100 trees and the depth was grown until leaves had less than 2 samples. The neural networks had a number

of parameters on the same order of magnitude: 5.4 × 10
6
for a Multi-Layer Perceptron (MLP), 2.1 × 10

6
for a

message-passing Graph Neural Network (GNN) [7], and 6.5 × 10
6
for a Transformer (T) [75]. Networks were

trained using minibatch gradient descent with the Adam optimizer and cross-entropy loss. Learning rate, batch

size, and dropout were chosen using grid search with validation-based early stopping [57]. We also compared all

these models with a random sampling baseline.

Results: As is shown in Table 1, ML models outperformed both human-level performance and random baseline

in all cases when measured via 𝐹1-Score. When measured using Accuracy and Mean Absolute Error, ML models

performed the best, except for Intentionwhen usingNav.+Facial features. These outcomes indicate that our implicit

feedback data contained useful information that can be leveraged by ML models to predict users’ impressions of

robot performance. Further, ML models trained with Nav.-Only and Nav.+Facial features outperformed those

trained with Facial-Only features. This finding aligns with our observation in Sec. 5.1 on the criticality of the Nav.
features in comparison to the Facial features on performance prediction.

Figures 6(d)–(f) show the evolution of mean absolute errors for the Random Forest model, which generally

performed the best, over 10-minute intervals of interaction during the data collection. Similar to the results from

human annotators (Figures 6(a)–(c), Sec. 5.1), the error for the RF model did not fluctuate drastically, although

the performance for Intention prediction with Nav. and Nav.+Facial features decreased in the last two time

intervals of data collection (having higher mean absolute error). The decrease in performance could be the result

of a distribution shift, especially in the last interval which had the fewest number of samples because not all

interactions took the full 40 minutes. Also, a good proportion of the samples in the last time interval showed the

end of navigation tasks, at which point the participants could have been more sensitive to robot navigation in

the wrong direction. Indeed, there was a higher proportion of lower ratings for Intention in the last interval than

in the other intervals, as shown in the Appendix.

To better understand differences in the prediction performance between ML and human annotators, we first

identified the examples annotated by humans for which there was a difference greater than 1 in Mean Absolute

Error between human annotators and the RF model that tended to perform best. Then, we inspected the 8-second

navigation renderings of these data examples, as in Fig. 4 (left). Among examples where the RF model performed

better than humans, 64% exhibited a major behavior pattern for the robot that persisted despite minor deviations.

For example, the robot navigated effectively to the goal most of the time, but was occasionally blocked and had

to move around the obstacles. We hypothesize that ML did better in these cases because machine learning can

leverage regularities in the data when making predictions without potentially getting distracted with the minor

deviations. Among the examples where human annotators performed better, 68% showed the robot exhibiting

more than one behavior (Nav-Stack, Spinning, orWrong-Way) or the interaction involved unconventional reactions
from humans, such as people interfering in the navigation task. We suspect that humans were better in these cases
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because they can leverage their prior knowledge about the world to better reason about uncommon variations in

the data. For the RF, uncommon observations can be out-of-distribution samples that result in more prediction

errors, especially considering the limited size of our dataset.

Taken together, these results motivated us to focus the analysis in the next section on the aggregate, overall

results rather than the interval-based results.

5.3 Can Machine Learning Generalize to Unseen Users?
We investigated how well learning models could predict performance by a user whose data was held out from

training.

Method: We used the models and training scheme from Sec. 5.2 with all features (Nav.+Facial), but split the data
using leave-one-out cross-validation. For each fold, the data for one participant was used as the test set and the

remaining examples were split between training (80%) and validation (20%). We searched for new hyperparameters

and computed results both on 5-classes and on binary classification. Binary targets and prediction labels were

computed as in Sec. 5.1.

Results: Fig. 7 reports 𝐹1-Scores over all folds. The models generalized to unseen people with only a slight

reduction in performance in comparison to Table 1. Also, the average 𝐹1-Score across all performance dimensions

improves from 0.25 in the multiclass case to 0.62 in the binary case. This makes the ML predictions more usable

in practice. For example, in the future, we envision deploying the trained ML on new users (as in Fig. 2b) in order

to detect low robot performance. This could be an indication that the robot made a mistake, triggering interaction

recovery behaviors like apologies or explanations [70], which could increase trust on the system [17].

Multiclass Binary Binary BinaryMulticlass Multiclass

0.6

0.4

0.2

0.0

MLP T GNN RF

Competence Surprise Intention

F1
-S
co
re

Fig. 7. ML models trained on Nav.+Facial features using leave-one-out cross-validation and evaluated on the held-out
participant’s data. 𝐹1-Scores are computed over 5 classes (Multiclass) and 2 classes (Binary). Error bars represent the standard
errors calculated from the 𝐹1-Scores per leave-one-out fold. See the text for details.

6 REAL-WORLD DEMONSTRATION
To investigate whether we could predict human impressions of robot performance in other, more realistic scenarios

than those observed in our VR data collection, we conducted a real-world demonstration with a modified Pioneer

3-DX mobile base. More specifically, we conducted a data collection with the mobile robot in two semi-public

indoor environments of Yale’s University, and analyzed how well a random forest model could predict human

impressions of robot performance in the real-world setup. This real-world data collection, as further described

below, was approved by our local Institutional Review Board.

The system that we built for real-world data collection was designed in consideration of: 1) we wanted to

induce naturalistic interactions between the robot and pedestrians; and 2) we wanted to support the same data

collection protocol used with SEAN, as in Section 4.2. Therefore, we did not recruit participants prior to the data
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Fig. 8. Real-world data collection in two indoor spaces of Yale University. The orange box highlights the follower, i.e., the
person that followed the robot during navigation tasks. Other people could pass by the follower and the robot as in the right
image during data collection. The robot had lights to indicate when it was navigating (green, right image) or had paused
navigation (red, left image).

collection. Instead, we operated the robot and, as pedestrians walked nearby, we asked them if they would be

willing to follow the robot for a short period and answer brief surveys. In total, 45 pedestrians agreed to follow

the robot for this demonstration.

Mobile Robot: The Pioneer 3-DX robot is a differential-drive mobile base and, thus, it moves in a similar way to

the Fetch robot used in our VR data collection. We added to the Pioneer robot lights that illuminated green to

indicate that it was navigating towards a location, and red to indicate that it had paused navigation. Over the

Pioneer base, we built a frame that held a robotic screen face (similar to [43, 76]) on the very top of the robot,

which allowed to easily distinguish the front of the platform. The frame also held two Kinect Azure RGB-D

cameras right below the robot head. Each camera had a 120-degree field of view. One was pointed forward and

the other was pointed backwards, which allowed the robot to track people in front and behind it using the Kinect

SDK. Additionally, the bottom section of the frame held a 2D LMS-100 Sick LiDAR and a gaming laptop with

an Intel Core i7-8750H CPU, 32 GiB of RAM, and an Nvidia GeForce GTX 1070 GPU. The laptop ran the Robot

Operating System to control the robot using the ROS navigation stack [58] with social cost layers [47], which

enabled the robot to avoid collisions with nearby people. Fig. 8 and our supplementary video show the robot in

this demonstration effort.

Demonstration Protocol: We waited for pedestrians to walk by the robot in two locations on a university

campus. One location was a subterranean pedestrian tunnel or concourse; the other one was an L-shaped entrance

corridor to a building. When pedestrians passed by, we asked them if they would be interested in following the

robot as it navigated to a nearby goal marked by a red cross on the ground. For those that agreed, we instructed

them that the robot would navigate when it showed a green light. After short intervals of time, it would pause

navigation, showing a red light, and they would be asked a few quick questions about their impressions of the

action that the robot just performed using a mobile device. The device showed the same questions about robot

competence, surprising behavior and clear intent (on a 5-point Likert responding format) as in our VR data

collection. Also, the robot navigation behaviors and the timing of questions about robot performance matched

those in Sec. 4.2.

Data: We focused on capturing Nav.-Only features (that described the navigation behavior of the robot and

humans, as in Sec. 5.1) for two reasons. First, our prior results with VR data suggested facial expression features
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Table 2. 𝐹1-Score (𝜇 ± 𝜎) for Random Forest models trained using Nav.-Only features from either the Real-world data, or VR
data considering the nearest 5 people to the robot (as explained in Sec. 6) Results include multi-class classification based on
the 5-point Likert responses (Multi-cls) and binary classification (Binary). Column 1 corresponds to training on VR data and
evaluating on VR data (VR→VR), Column 2 corresponds to training on VR data and evaluating on real data (VR→Real), and
Column 3 is training and evaluating on real data (Real→Real).

(1) VR→VR (2) VR→Real (3) Real→Real

M
u
l
t
i
-
c
l
s

Competence 0.30 ± 0.09 0.21 ± 0.18 0.27 ± 0.35

Surprise 0.27 ± 0.08 0.26 ± 0.21 0.26 ± 0.27

Intention 0.26 ± 0.08 0.20 ± 0.28 0.24 ± 0.34

B
i
n
a
r
y Competence 0.69 ± 0.10 0.56 ± 0.41 0.61 ± 0.34

Surprise 0.59 ± 0.18 0.58 ± 0.36 0.58 ± 0.33

Intention 0.65 ± 0.08 0.55 ± 0.40 0.60 ± 0.40

were not as critical to make predictions over human impressions of robot performance than the other features.

Second, facial expressions were often occluded, providing no information to the robot. In total, we collected

235 examples from this real world demonstration, each consisting of Nav.-Only features and associated survey

responses.
2

ML Models: Our primary aim was to understand the applicability of our approach to infer impressions of robot

performance in the real world. However, there were important differences in our VR and real-world data collection

setups as a result of real-world constraints. For example, the real robot had a more limited field of view compared

to the simulation where the ground truth motion for all people in the environment was available. Moreover, the

real-world environments were less densely populated than simulation.

Therefore, to fairly compare our results across simulation and the real world, we trained two types of Random

Forest classifiers, given that the RF model generally performed best in Table 1. One type of model was trained

using VR data but we limited the field of view of the robot to 120-degrees forward and backward as well as the

maximum number of nearby people input to the model to five individuals. The other type of Random Forest model

(with the same parameters) was trained using real-world data. Both types of models were trained considering

5-classes, with binary targets and prediction tables being computed as in Sec. 5.1.

Results: Table 2 shows the 𝐹1-Score of models evaluated on the same type of data they were trained on (Sim or

Real). For these results, we used leave-one-person-out cross-validation to train and evaluate generalization to new

robot followers. That is, data from one person was held out for each fold. Also, Table 2 shows the performance of

the model trained in simulation on real-world data. In this case, a RF model was trained using all the VR data

from the VR→VR case, and then evaluated on the test set for the leave-one-person-out folds for the real-world

data. As one would naturally expect based on our prior results with VR data, binary classification resulted in

higher performance than multi-class classification in all these cases.

In general, performance was higher for models trained and evaluated in simulation (Column 1), which could

be the result of having more VR data than real-world data. The results for models trained and evaluated on

real data (Column 3) were close to those that considered simulation data only (Column 1). This suggested that

our methodology to collect real-world data and the RF model are promising for inferring impressions of robot

performance in the real world. Finally, reasonable performance was obtained for the model that was trained with

VR data and tested on real-world data (Column 2). This highlights the potential of sim-to-real transfer of machine

2
The real-world data that we collected from this demonstration is available at: https://sean-together.interactive-machines.com/.
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learning models trained on spatial features as well as the potential of using our VR data to build computational

models that predict human perceptions of robot performance in real-world interactions.

7 IMPLICATIONS FOR REAL-WORLD APPLICATIONS
We hope that future work leverages our findings to build effective models for mapping implicit human feedback

to users’ impressions of robot performance in real-world social navigation tasks. To this end, we first recommend

prioritizing robust people tracking and pose estimation over computing fine-grained facial expressions, especially

when computational resources may be limited. Reasoning about spatial behavior features in the context of the task

can facilitate achieving reasonable prediction performance with lower sensor requirements. Also, occlusions are

likely more common for facial expressions than body tracking, as we observed in our real-world demonstration.

Second, it is important to consider the granularity of the predictions over impressions of robot performance.

We began our work gathering impressions of robot performance on a 5-point Likert responding format, which we

believed could reveal subtle aspects of human perceptions during navigation. However, we found that predicting

impressions of robot performance over 5 classes was challenging for both humans and ML models. While human

prediction performance could have been affected by specific details of the visualizations that we used to gather

our human baseline results, it is worth considering less granular feedback to favor prediction performance during

robot deployments. In particular, for more practical usage of human feedback, we recommend building models

that start by identifying poor robot performance (performing binary classification) and then, on top of that, try

to predict more granular impressions of robot performance.

Finally, if a robot is executing multiple behaviors, we recommend considering whether the robot switched

behaviors recently when reasoning about performance predictions. As in our results, predicting performance

recently after a behavior change can be more difficult than before, when the behavior was more consistent.

8 LIMITATIONS AND FUTURE WORK
Our work has several limitations that point to interesting future directions. In particular, we obtained human

baselines for prediction performance, but used only a limited set of feature combinations that described interactions

in a single VR environment and two real-world environments. In the future, it would be interesting to consider

a broader set of feature categories in a more diverse range of environments. For instance, future work could

investigate the value of more detailed human pose features (e.g., [82]) across a wider range of scenarios (public

plazas or hospitals) where humans may behave differently due to their activity, stress or other factors.

Facial expressions and the nuance of human motion are challenging to capture. In our data collection with

virtual reality, we were limited by the features captured by the Vive Pro Eye VR headset, which describe the

geometry of the face through blend shapes. We visualized this data by rendering the features on a virtual avatar

head, and this could have affected the perception of subtle human facial expressions. In the future, it would

be interesting to utilize more advanced devices such as the recently released Apple Vision Pro to create other

datasets of implicit human feedback. The new Apple device can sense faces in a way that allows rendering higher

quality avatars for users, and the data it captures could potentially improve the accuracy and robustness of ML

models that predict robot performance.

In the future, inferred performance predictions could be used to adapt robot behavior. For example, a robot

could use binary robot performance predictions as instantaneous rewards that guide changes in robot behavior

to better align what the robot does with human preferences [22, 42, 48]. When the predictions indicate low

robot performance or suggest drastic changes in impressions of the robot’s behavior, the robot could also opt for

querying users explicitly about its performance to verify the predictions. Perhaps the responses can also be used

to improve the prediction model.
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9 CONCLUSION
This work contributes the SEAN TOGETHER Dataset, consisting of observations of human-robot interactions in

VR, including implicit human feedback, and corresponding performance ratings in guided robot navigation tasks.

Our analyses with VR data revealed that facial expressions can help predict impressions of the robot, but spatial

behavior features in the context of the navigation task were more critical for these inferences. Our experiments

also demonstrated the ability of humans and ML models to infer perceived robot performance from interaction

observations. A general trend that we observed throughout this work was that predicting the directionality of

impressions of robot performance (as a binary classification task) was easier and, thus, seemed more practical

than predicting exact performance ratings (on a 5-point scale).

As part of this work, we also conducted a real-world demonstration that showed the applicability of machine

learning in predicting human perceptions of a mobile robot in indoor environments. We did not capture facial

expression features for this demonstration, but rather focused on capturing features that described the navigation

behavior of the robot and humans based on our prior findings. Both the models trained with VR data and

real-world data showed promising generalization capabilities when evaluated on real-world data, confirming the

potential of machine learning for predicting impressions of robot performance from implicit feedback signals in

social robot navigation. Our datasets, accompanying analyses, and demonstration facilitate future research on

more scalable supervision of robot navigation behavior. Potentially, robots could use implicit human feedback as

supervision to interactively improve their behavior in the future.
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APPENDIX
This appendix first shows the distributions of ground truth labels provided by participants over 10-minute

intervals of the data collection sessions. Second, we provide additional details about the annotation tool that we

used to collect human annotators’ predictions of users’ impressions of robot performance, analyze inter-rater

reliability for the human annotations, and discuss further findings from the human annotation samples. Then,

we provide the full list of features used for predicting human impression of robot performance, with a brief

description of each feature. Lastly, we describe the specific model architectures that we used and our training

procedure. These details are included in this document to facilitate better understanding of our methodology and

reproducibility of our work.

A DISTRIBUTION OF GROUND-TRUTH LABELS GIVEN BY PARTICIPANTS OVER 10-MINUTE
INTERVALS

Fig. A1(a) shows the distributions of ground-truth labels provided by the participants of our VR data collection

(Sec. 4 in the paper) over 10-minute intervals of the data collection sessions. Fig. A1(b) shows the distribution of

labels from the 120 samples that we randomly drew for human annotation (Sec. 5.1 and 5.2 in the paper). Overall,

the distributions of labels over different intervals are similar, except for 30-40 min, which is close to the end of

navigation tasks.
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B HUMAN ANNOTATION

B.1 Annotation Interface
To reduce misalignment between human annotators, we conducted a couple of pilots for our data collection with

the team and lab members, through which we improved our annotation interface and instructions. Fig. A2 and

A3 show the instruction pages in our annotation tool.

B.2 Annotation Reliability
For each visualization of a data sample, we asked 10 different human annotators to provide their predictions on

it, which allowed us to compare their prediction performance statistically as reported in the paper. In addition to

those results, we also evaluated the reliability of the human annotations. More specifically, we used Krippendorff’s

alpha to measure the inter-rater reliability for our ordinal labels, which led to an 𝛼 of 0.67 for competence, 0.54 for

surprise, and 0.68 for intention, respectively. These values indicate a moderate to substantial level of agreement

among the annotators.

Fig. A4 shows the distribution of labels given by human annotators on the 120 data samples considered for our

human baseline.

C FURTHER FINDINGS FROM HUMAN ANNOTATION SAMPLES
Upon reviewing the data that we had collected, we realized that the renderings of participants’ faces were shown

to annotators with the face mirrored. We were concerned this could have led to confusion among the annotators

(a) (b)

Fig. A1. (a) Distributions of ground truth labels provided by the participants that experienced the human-robot interactions
in VR over 10-minute intervals of the data collection sessions; (b) Distributions of ground truth labels used for the human
annotation. They are a subset of those in (a). Each plot shows data over 10-minute intervals of the data collection.
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Fig. A2. Instruction page 1 that provides the background of social navigation data collected in VR.

Fig. A3. Instruction page 2 that details the annotation procedures and participant’s compensation. The left image is the top
of the page while the right image is the continuation of the left image.
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Fig. A4. Distribution of labels predicted by human annotators.

Table A1. The 𝐹1 Score, the Accuracy, and the Mean Absolute Error of using mirrored and not-mirrored facial rendering
when annotating with Nav.+Facial features.

𝐹1-Score (𝜇 ± 𝜎) ↑ Accuracy (𝜇 ± 𝜎) ↑ Mean Absolute Error (𝜇 ± 𝜎) ↓
Mirrored Not-Mirrored Mirrored Not-Mirrored Mirrored Not-Mirrored

Competence 0.30 ± 0.1 0.29 ± 0.2 0.43 ± 0.1 0.42 ± 0.1 0.96 ± 0.3 0.99 ± 0.4

Surprise 0.25 ± 0.1 0.25 ± 0.1 0.33 ± 0.1 0.32 ± 0.1 1.09 ± 0.2 1.12 ± 0.2

Intention 0.30 ± 0.1 0.28 ± 0.1 0.42 ± 0.1 0.41 ± 0.1 1.04 ± 0.3 1.07 ± 0.2

when they evaluated the gaze direction of the face rendering in comparison to the navigation rendering (e.g., as

in Fig. 3 of the paper). Therefore, we repeated the data collection for the Nav.+Facial condition, but with the face

image not mirrored.

Results for the mirror and not-mirrored data are shown in Table A1. The results in the not-mirrored case only

had a subtle difference in comparison to the mirrored case. This suggest that the gaze direction was not an issue

and validate the reproducibility of our human annotation experiments.

As discussed in Sec. 5.2 of the paper, for the 120 data samples shown to the human annotators, the performance

of machine learning models for predicting Intention with Nav. and Nav.+Facial features decreased in the last two

time intervals of data collection. As suggested by Fig. A1(b), a change in the distribution of ground truth labels

can be observed in the interval of 30-40 min. This interval also had the fewest number of samples due to how the

data was collected, because not all interactions took the full 40 minutes. Also, a good proportion of the samples

in the last time interval showed the end of navigation tasks, at which point the participants could have been

more sensitive to robot navigation in the wrong direction. Indeed, there was a higher proportion of lower ratings

for Intention in the last interval than in the other intervals. Such a distribution shift can make the prediction task

harder for both the annotators and the machine learning models.

D FEATURE EXTRACTION
The following sections describe in detail the features used for predicting human impressions of robot perfor-

mance:

Participants’ Facial Expression Features:
• gaze_origin_mm_[left, right]_[x, y, z]: The gaze origins of left and right eyes, measured in millimeters.
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• gaze_direction_normalized_[left, right]_[x, y, z]: The normalized gaze directions of left and right eyes.

• pupil_diameter_mm_[left, right]: The pupil diameters of left and right eyes, measured in millimeters.

• eye_openness_[left, right]: The openness of left and right eyes.

• pupil_position_in_sensor_area_[left, right]_[x, y]: The pupil positions of left and right eyes in the sensor

area.

• gaze_origin_mm_combined_[x, y, z]: The combined gaze origin of left and right eyes, measured in millime-

ters.

• gaze_direction_normalized_combined_[x, y, z]: The normalized combined gaze direction of left and right

eyes.

• pupil_diameter_mm_combined: The combined pupil diameter of the left and right eyes, measured in

millimeters.

• eye_openness_combined: The combined eye openness of the left and right eyes.

• pupil_position_in_sensor_area_combined_[x, y]: The combined pupil position of left and right eyes in the

sensor area.

• eye_[wide, squeeze, frown]_[left, right]: The extent of eye wide, squeeze, and frown of left and right eyes.

• jaw_[right, left, forward, open]: The extent of jaw being right, left, forward, and open.

• mouth_ape_shape: The extent of mouth ape shape.

• mouth_[upper, lower]_[right, left]: The extent of upper and lower part of mouth moving to the right and left.

• mouth_[upper, lower]_overturn: The extent of upper and lower part of mouth overturning.

• mouth_pout The extent of mouth pouting.

• mouth_smile_[right, left]: The extent of mouth smiling on the right and left side.

• mouth_sad_[right, left]: The extent of mouth being sad on the right and left side.

• cheek_puff_[right, left]: The extent of cheek puffing on the right and left side.

• cheek_suck: The extent of cheek sucking on the right and left side.

• mouth_upper_[upright, upleft]: The extent of the upper part of mouth moving upright and upleft.

• mouth_lower_[downright, downleft]: The extent of the lower part of mouth moving downright and downleft.

• mouth_[upper, lower]_inside: The extent of the upper and lower part of mouth moving inside.

• mouth_lower_overlay: The extent of the lower part of mouth overlaying.

• tongue_[longstep1, longstep2]: The extent of the person’s tongue stretching long.

• tongue_[down, up, right, left, roll]: The extent of the person’s tongue moving down, up, right, left, and

rolling.

• tongue_[upleft, upright, downleft, downright]_morph: The extent of the person’s tongue morphing upleft,

upright, downleft, and downright.

Spatial Behavior Features:

• participant_pose_[x, y, cos(𝜃 ), sin(𝜃 )]: The 2D position and orientation of the participant, computed relative

to the robot.

• nearby_agents_pose_[x, y, cos(𝜃 ), sin(𝜃 )]: The 2D positions and orientations of the other automatically-

controlled avatars within a 7.2m radius, computed relative to the robot.

Goal Features:

• goal_[x, y]: The 2D position of the navigation destination in a coordinate frame attached to the robot.

Occupancy Features:

• map_resnet18: The cropped section of the 2D map around the robot (of 7.2m × 7.2m) to describe the

occupancy of nearby space by static objects, encoded by ResNet-18 [33].
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E MODEL ARCHITECTURE AND HYPERPARAMETERS
For training our machine learning models, the input for each example corresponded to an 8-second window of

features (navigation, facial, or both types of features). The synchronized multi-modal data was re-sampled at 5Hz,

resulting in an input sequence of 40 timesteps. This helped reduce the length of the series of features input to the

model, facilitating learning in practice. The targets for the examples corresponded to the ground truth labels for

robot performance at the end of the window. These ground truth labels were provided by the participants in our

VR data collection.

For part of our evaluation, we converted the 5-point ratings in the ground truth labels to binary ratings (e.g.,

as reported in Sec. 5.1 of the paper) as well as converted the output of machine learning models and human

ratings from a 5-point scale to a binary output. This conversion was used to evaluate how well human annotators

and machine learning models could predict the directionality of robot performance (rather than focusing on the

exact performance level indicated in the ground truth labels). The binary classification task could be useful in

the future for identifying situations were a robot makes mistakes during navigation and potentially engaging in

recovery behaviors.

To facilitate future reproducibility, the next paragraphs provide more details about the specific architectures

implemented for the deep learning models considered in our work:

MLP architecture. Our MLP model first encoded the input features at each timestep with a dense linear layer

with 256 hidden units. The encoded sequence was then concatenated across timesteps and fed into three nonlinear

dense layers with 512, 256, and 64 hidden units, respectively, and with Leaky ReLU activation. Finally, it was

passed into a linear layer that output the logits corresponding to the 5 categories of labels to be classified.

Transformer architecture. Our Transformer model first passed the input sequence through a BatchNorm layer,

and then encoded at each timestep with a dense layer with 256 hidden units. Positional encoding was applied

to the encoded sequence, which was then fed into 2 transformer encoder layers with 4 heads, a feed-forward

dimension of 512, and ReLU activation. The output was then concatenated across timesteps and fed into three

nonlinear dense layers with 512, 256, and 64 hidden units, respectively, and with Leaky ReLU activation. Finally,

the result was passed into a linear layer that output the logits corresponding to the 5 categories of labels to be

classified.

Graph Neural Network (GNN) architecture.We constructed a bidirectional, fully-connected graph in order

to utilize the relational inductive bias present in the data and process this data using a GNN. Input sequences

of temporal data were first divided into three groups, corresponding to the node features, the edge features,

and the global features. Node features consisted of the positions and orientations of the participant and nearby

agents relative to the robot. Edge features between every pair of nodes in the graph consisted of the Euclidean

distance between the two connected nodes. Global features consisted of all other features for a given experiment.

A feedforward network with 64 hidden units was created for each of the three groups of temporal data. Then,

each time step of each type of temporal data was encoded using the corresponding feedforward network.

The architecture of our model consisted of two message-passing layers [7]. Each edge update function and

each node update function was composed of a feedforward network with a ReLU activated, single hidden layer

of 64 units. All of the node representations for a graph that resulted from the final message-passing layer were

concatenated with the global feature representations that resulted from the temporal encoding of the input global

features. Finally, a classification head of three, Leakly ReLU activated, nonlinear dense layers with 512, 256, and

64 hidden units, respectively, was used to output the logits corresponding to the 5 categories of labels to be

classified.

The deep learning models were trained using the Cross-Entropy (CE) loss against the ground truth labels.

To update model parameters, we used the AdamW optimizer with a weight decay coefficient of 0.01. The best
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Table A2. The best learning rate, batch size, and dropout of Multi-Layer Perceptron (MLP), Graph Neural Network (GNN),
and Transformer (T), chosen using grid search with validation-based early stopping. “Annotation Samples” values correspond
to the hyper-parameters for the deep learning models reported in Table I of the paper (Sec. 5.2). “Leave-One-Out” values
correspond to the hyper-parameters for the results in Fig. 6 of the paper (Sec. 5.3).

Learning Rate Batch Size Dropout

Annotation Samples Leave-One-Out Annotation Samples Leave-One-Out Annotation Samples Leave-One-Out

MLP 0.003 0.001 256 512 0.1 0.1

GNN 0.003 0.001 512 512 0.0 0.5

T 0.003 0.0003 512 512 0.0 0.0

learning rates, batch sizes, and dropout rates found by hyperparameter search are shown in Table A2. All the

results described in the paper were obtained with an Intel Core i7 10700K 8-Core 3.6GHz desktop computer that

had an NVIDIA 24GB GeForce RTX 3090 GPU.
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