Under review as a conference paper at ICLR 2026

PARALLEL TOKEN GENERATION
FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoregressive transformers are the backbone of modern large language models.
Despite their success, inference remains slow due to strictly sequential prediction.
Prior attempts to predict multiple tokens per step typically impose independence
assumptions across tokens, which limits their ability to match the full expressive-
ness of standard autoregressive models. In this work, we break this paradigm by
proposing an efficient and universal framework to jointly predict multiple tokens
in a single transformer call, without limiting the representational power. Inspired
by ideas from inverse autoregressive normalizing flows, we convert a series of ran-
dom variables deterministically into a token sequence, incorporating the sampling
procedure into a trained model. This allows us to train parallelized models both
from scratch and by distilling an existing autoregressive model. Empirically, our
distilled model matches its teacher’s output for an average of close to 50 tokens
on toy data and 5 tokens on a coding dataset, all within a single forward pass.

1 INTRODUCTION

Autoregressive transformers (Vaswani et al., 2017)) are the foundation of today’s large language
models (LLMs) (Brown et al.,[2020). Their sequential generation process, however, remains a ma-
jor bottleneck: each token depends on the full history, requiring one forward pass per token. For
long outputs, this increases the inference latency significantly when compared to what a single trans-
former call would achieve.

Many recent efforts aim to bypass this bottleneck by predicting multiple tokens at once. Broadly,
they can be categorized into two lines of work: The first, speculative decoding, takes a systems
approach, making predictions in a lightweight model that is verified by a large model (Leviathan
et al.,[2023; |Chen et al., [2023; [Sun et al., |2023} [Zhong et al., 2025). The second line of work makes
use of predicting several tokens independent of each other. This significantly reduces the search

Q

AR Step 1&2 AR Step 3&4 AR Step 5&6 AR Step 7&8
l def - factor def - factorial(def-factorial (num): t.i?f'factorial(num) :\n
Q PTP Step 1 PTP Step 2 PTP Step 3 PTP Step 4
def-factorial (n def-factorial(num):\n def:factorial(num):\n def-factorial(num):\n
se+cifenum-==-0:\n s++ifenum-==:0:\n +e++ifenum-==-0:\n

________ return-\n s++ssesereturn-1\n ++++return-1\n

«---else:\n else:\n

........ return-num-*-factorialnum— ++++++-ereturn-num-* - factorial (num-1)\n
T \n

Error
Correction

Figure 1: Our parallelized model generates the same text as its teacher in a fraction of the steps.
By the time our model (bottom) has generated an entire function, an autoregressive model (top) only
generates the method’s signature. Prompt: Write a Python function that computes
the factorial of a number. Green tokens are accepted tokens in that step, red tokens are
incorrect. Semitransparent tokens are rejected after the first mistake.

Under review as a conference paper at ICLR 2026

space for sequences and improves overall model quality (Qi et al.l [2020; (Gloeckle et al., |2024;
DeepSeek-Al et al., 2025). Similarly, discrete diffusion iteratively refines generated sequences,
again not modeling conditional dependencies between tokens in each denoising step (Hoogeboom
et al., 2021} Austin et al.; 2021). However, all of these methods still contain an irreducible sequential
component to generate sequences.

Our work takes a step towards filling this gap. We propose a framework that, in theory, can generate
arbitrary length sequences in parallel. This is enabled by a small but fundamental architectural
change: Instead of sampling from the distributions predicted by an autoregressive model in a post-
processing step, we feed the involved random variables as an input to the model: the model learns
to sample. This enables it to anticipate which tokens will be sampled and predict them jointly.
Similar frameworks have been formulated in the normalizing flow literature: Inverse Autoregressive
Flows (Kingma et al.,[2016) generate samples of many continuous dimensions in parallel, which we
transfer to sampling discrete sequences.

Our contributions are threefold:

* We propose Parallel Token Prediction (PTP), a modeling approach for discrete data that
generates multiple tokens in parallel (section[2.T). We theoretically confirm its universality
to model arbitrary distributions (Theorems[T]and 2).

* PTP can be trained to predict several tokens either by distilling an existing teacher, effec-
tively parallelizing it, or via cross-entropy on training data (section 2.2).

* Experimentally, we distill models on toy sequence data and real-world coding datasets,
achieving an average number of close to 50 respectively 5 tokens identical to their teach-
ers (section 3).

Together, our framework opens a design space to build models that accurately predict several tokens
in parallel, ultimately reducing latency in language model output.

2 PARALLEL TOKEN PREDICTION

2.1 PARALLEL SAMPLING

To construct our Parallel Token Prediction framework, let us recap how a classical transformer
decoder generates text. It iteratively predicts the categorical distribution of the next token ¢; €
{1,...,V} based on all previous tokens t<; = (t1,...,ti—1),

For simplicity, we assume this distribution is the final distribution that is used to generate tokens, in
that it already reflects temperature scaling (Guo et al.,|2017), top-k and top-p sampling (Holtzman
et al.| 2020), or other approaches trading sample diversity with quality. To sample a token from this
distribution, one draws an auxiliary random variable u; ~ [0, 1] and looks up the corresponding
token from the cumulative distribution function as follows:

J
t; = Pick(u;, P;) = i i Fyp > wu;t, where Fy; = Py. 2
= Pick(ui,)= min{j: Fj > uwi) ’ ; .)

Here, j iterates possible token choices, P; is the probability to sample ¢; = [, and Fj; is the
cumulative distribution to sample a token ¢; € {1,...7}.

Figure a) illustrates how, in traditional autoregressive models, we first sample ¢; from P; before
moving on to predicting the next token ¢, 1, as the distribution P;; depends on the selected token
t;. Every new token involves another model call, increasing latency. To break this iterative nature,
note that while eq. (1)) defines a distribution over possible next tokens, eq. (2) is a deterministic rule
once the auxiliary variable w; is drawn. Thus, write this rule as an explicit deterministic function:

ti = fp(t<i; ul) = Pick(ui, P(‘t<i)). (3)

Figure illustrates how this function jumps from token to token as a function of wu;.

2

Under review as a conference paper at ICLR 2026

a) Autoregressive c) Distributional PLM (ours)

- Causal
Decoder
fiot

b) One-Hot PLM (ours)

Figure 2: Parallel Token Prediction Models predict several tokens in one model call. (a) An
autoregressive model predicts the distribution for token ?;, then uniformly samples an auxiliary
variable u; to select a token. This results in one model call per token. (b) One-Hot Parallel Token
Prediction Models feed auxiliary variables into the model, making all tokens a deterministic choice.
This allows the model to be executed only once. (c) Categorical Parallel Token Prediction Models
model the distribution of each token, but predict them in parallel using the auxiliary variables.

1; = Pick(u; P)

This is all we need to perform parallel generation of
text: All information about which token ¢; we are go-
ing to select is available to the model if it has access
to u,; as one of its inputs. By repeating the above ar- for
gument and feeding all the auxiliary variables into def
the model, any subsequent token ¢-; can be pre-
dicted deterministically (proof in appendix [B.1):

from—
from

. import |
import

- for —

def

0 u; 1
Histogram P;

Theorem 1. Given any probabilistic model P for

next token prediction. Then, the future token tj, can
be selected as a deterministic function fp of previ-
ous tokens t.; and auxiliary variables u;, . . ., uy ~
ulo, 1]:

Figure 3: Sampling from a discrete distri-
bution. Given a histogram P; (left), compute
the inverse cumulative distribution function
(right) and look up the token at a random lo-

cation u; € U[0, 1]. Our framework relies on

forallk > . considering both parts jointly.

te = fr(t<i;ui, ... ug), “)
Theorem (1| shows a clear path to build a model that
can sample many tokens in parallel: Instead of learning the distribution P(t|t<)), we propose to

directly fit the function fp(t<;;u;,...,ux), which jointly predicts future tokens t.

Figure 2[b) visualizes how this can be implemented with a standard transformer (Vaswani et al.|
2017) backbone: Alongside the previous tokens, simply feed the auxiliary random variables
for the next IV tokens into the model. It then predicts a discrete distribution over tokens
P(tg|t<i;u;, - .., up). Since by theorem|l] this distribution is singular at ¢4, we take the argmax to
get each token. We refer to this model as a One-Hot Parallel Token Prediction Model (O-PTP).
O-PTPs can be trained to replicate an existing autoregressive model P, see section [2.2.1] for details.

An existing autoregressive model to train an O-PTP may not be available, however. For this case, and
to allow access to the token distributions P;, we propose Categorical Parallel Token Prediction
(C-PTP). Instead of predicting future tokens ¢; directly, it predicts their distributions in parallel. This
recovers training directly from data, see section[2.2.2] The central difference to O-PTP is that we do
not inform the prediction of a token ¢; about the auxiliary variable u; we will use to sample it. For
the first token, the best prediction recovers the original autoregressive distribution in eq. (I)):

Py = P(tilt<i, us) = P(tilt<;).)

Moving to the next token ¢; 1, we now do pass in the auxiliary variable u; used to sample the first
token t;. Since P; and u; uniquely determine ¢;, u; and ¢; contain the same information. By the law
of total probability, this recovers the same distribution as conditioning on the previous token:

(6)

Repeating this argument, we find that the distribution of every future tokens is available if we con-
dition on all preceding auxiliary variables (proof in appendix |B.2):

Pip1 = P(tilt<i,wi) = P(tiy1|t<i, ti).

Under review as a conference paper at ICLR 2026

Theorem 2. Given any probabilistic model P for next token prediction. Then, the distribution of a
token ty, is fully determined by context tokens t; and the past auxiliary variables u;, . .., Uug_1:

P(tplt<k,tiy .. up—1) = P(tg|t<r), forallk > 1. @)

Figure [2fc) shows how this can be used to predict the distribution of the tokens ¢;, . .. ¢ in parallel.
Just like for the O-PTP, first sample all required auxiliary variables u;, ... uyx_1, and then predict
all P, = P(tg|t<i, us, ..., up—1) in parallel. Sampling from these distributions is done via t;, =
Pick(ug, Px). By using a causal decoder architecture, we can properly mask which token has access
to which auxiliaries.

Both One-Hot and Categorical Parallel Token Prediction Models are constructions that allow predict-
ing several tokens in parallel in a single model call. By Theorems|[T]and 2] there are no fundamental
restrictions apart from model capacity as to which distributions they can learn. In the next section,
we propose two approaches to train these models, either by training from scratch (only C-PTP) or
by distillation an existing model (both O-PTP and C-PTP).

2.2 TRAINING

Before deriving the training paradigms for Parallel Token Prediction Models, let us quickly recall
that autoregressive models are trained by minimizing the cross-entropy between samples from the
training data ¢ ~ P(t) and the model Py

N
L(0) =Eyopuy | — Y _log Poltiltr i) - ®)

i=1
Using a causal model such as a transformer (Vaswani et al., 2017) this loss can be evaluated on
an entire sequence of tokens in a single model call (Radford et al., 2018). We first present how to

distill both One-Hot and Categorical Parallel Token Prediction Models from a trained autoregressive
model. We then show how the latter can be self-distilled from data alone via eq. (8).

2.2.1 DISTILLATION

Both PTP variants can be trained to emulate the token-level predictions of an autoregressive teacher
Q. allowing for efficient, parallel generation of several tokens. We then call the PTP a student
model Py. With enough data and model capacity, our algorithm leads to a student model that pro-
duces the same sequence of tokens in a single model call as the teacher does in high-latency autore-
gressive sampling (Theorems [I] and [2). We defer correcting errors arising from finite resources to
the subsequent section[2.3]

To train the student for a given training sequence 1, . .., t7, we reverse engineer the auxiliary vari-
ables uy, ..., uy under which the teacher would have generated it, split the sequence into context
and prediction sequences, and then evaluate a loss that leads the student towards the correct genera-
tion. This process is summarized in algorithm [2]in appendix [FI]

Auxiliary variables. First, we extract the auxiliary variables that the teacher model would use to
generate the training sequence. We evaluate the teacher distributions of each training token to get
the cumulative discrete distributions F', ..., Fry for each token. Inverting eq. (Z), we find for every
k=1,....T:

ug € [Fity—1, Fry,)- ©)
Since wuy is continuous, while tj is discrete, we can randomly pick any compatible value. See
appendix [C] for details.

Sequence splitting. Second, we split the training sequence into a context part t1,...,t;—1 and a
prediction part ¢;,...,tr. We usually pick ¢ ~ P(i|t) randomly and predict a fixed subsequent
window of tokens.

Loss evaluation. Third, while both parallel models depend on the auxiliary variables just extracted
from the teacher, the training paradigm depends on concrete variant to distill.

For C-PTP, our model predicts a categorical distribution P j for each future token that we can
compare to the distribution of the teacher model. We can distill with any loss d(Q, P) that measures

Under review as a conference paper at ICLR 2026

divergence between categorical distributions. This could be the Kullback—Leibler divergence d =
KL(Q || P) orits reverse variant d = KL(P || Q).

L(0,t) = Eiwp(ifr)

T
Zd(Qap(tk|t<k)7P9(tkt<i;“z‘...k—1))]) (10)

k=i

with uy, as in eq. (9). Note that while different losses have different convergence properties, crucially,
d = 0 implies identical conditional distributions and a perfectly distilled model.

For O-PTP, remember from section@]that our model predicts a distribution over all tokens of which
we take the argmax to get our discrete prediction. To train, we can use the cross-entropy loss

T
5(9, t) = Ein(vﬁlt) [— Z log Pg(tk|t<i7 Uy oo - uk)] s an
k=i

which can go to zero since t;, is a deterministic prediction by Theorem|[T}

Sequence proposal distribution. We can optimize the above losses by sampling sequences ¢ ~
P(t) from any data source. From a theoretical standpoint, any proposal distribution with the same
support as the teacher will train the student to replicate the teacher everywhere. In contrast to training
with eq. (8), the student will learn to approximate Q,,(¢) and not P(t). We have a great degree of
freedom in this choice and test several options empirically in section[3.1.2] If our goal is to deploy
our parallelized student as a drop-in replacement of our teacher model, the lowest-variance option
is to sample training sequences from the teacher. Another possibility is to directly sample training
sequences from a dataset, such as the one that was used to train the teacher model in the first place.
This might increase performance in transfer-learning settings, where we can focus on learning just
the parts of the teacher model that are needed to complete the new task. This also has the further
advantage that we can compute the teacher predictions @, (tx|t<x) in parallel over a full sequence
instead of iteratively having to generate it. Finally, we can sample sequences directly from the
student model by first sampling auxiliary variables u;, . .., ur ~ U[0, 1] and then using our student
model at its current state to sample training sequences in parallel. As the student’s prediction gets
closer to that of the teacher during training, this approaches the same training sequence distribution
as if we had sampled the teacher directly. When sampling training sequences from the student,
we can save a second call to the student model by swapping the roles of the teacher and student
in the training algorithm. In particular, choosing auxiliary variables that are compatible with the
student (instead of the teacher) and comparing how the teacher’s output would have compared to the
student’s ground truth - with the exact same losses as before.

2.2.2 INVERSE AUTOREGRESSIVE TRAINING

Categorical Parallel Token Prediction Models can also be trained directly via eq. (§), avoiding the
need to have a teacher model as target. For a given training sequence t1, ..., tp, we again split it
into the context ¢; and the following prediction ¢>;. By picking 7 at random we allow each token
ti to be in any position of the parallel token prediction.

Exactly as during distillation, we have to find auxiliary variables that are compatible with every
ty,k > 4. We can do this by selecting, randomly, any u; € [ka_l,Fk?tk), equivalently to
eq. (9), where FJ,t; now is the cumulative probability under Py (instead of the teacher model)
to choose t; when predicting that token. As this probability depends on the previous auxiliary vari-
ables u;, ..., ur—1, we select them iteratively. Specifically, we can alternate between computing the
logits of Py(tg|t<i, wi,...,ux_1), and drawing uy using equation@

Finally, we can train our model using the cross-entropy loss

N

L(0) = Epopy,impiie) | — Z log Py(trlt<i,wiy- - up—1)| - (12)
k=i

Algorithm [3|in appendix [F.T|summarizes the procedure. A similar approach of iteratively determin-
ing latent variables (our auxiliaries) was proposed by Inverse Autoregressive Flows (Kingma et al.,
2016), although they considered continuous variables that are traced through an invertible neural
network.

Under review as a conference paper at ICLR 2026

2.3 ERROR CORRECTION

The distillation procedure proposed in section in theory leads to perfectly distilled parallel
model. Practically, finite model capacity and compute limit infinite parallel sequence generation. In
this section, we leverage ideas from speculative decoding (Leviathan et al., 2023)) to obtain models
that generate long sequences in as few model calls as possible while exactly adhering to the teacher.

A Parallel Token Prediction Model generates a sequence of tokens ¢;, . . . , t;y from context ¢; using
auxiliary variables u;, . .., un. To verify that the parallel token prediction is accurate, we can verify
that eq. (4)) is fulfilled by computing the distributions F;, . . . , Py in a single model call, and checking
that indeed uy, € [Fyt,, Fkt,—1). If there is a spurious token ¢z, we replace it by the teacher
prediction and roll out our model again, this time with context t<;~ and the remaining auxiliary
variables ug«41, ..., unN. By repeating this, we obtain the same sequence as the teacher would have
generated sequentially. This is made explicit in algorithm [I]in appendix [FI]

Intuitively, if PTP on average predicts c correct tokens before it first makes a mistake, we can expect
the total number of model calls (including the verification step) to be close to 2/(c 4 1) per token
instead of 1, significantly less if ¢ > 1, greatly reducing latency.

Furthermore, if reducing latency is more important than total compute, we can already start pre-
dicting more tokens by another PTP call, for example by prematurely accepting the first ¢ tokens,
while the teacher is verifying the predicted sequence. Since we can always use the first token of
the teacher, this ensures the wall-clock time to generate text is never slower than the autoregressive
counterpart regardless of the student’s quality.

Latency can be further decreased by running several PTP models in parallel with different offsets,
minimizing the chances that none of the generated sequences will be accepted by the teacher. We
discuss how to leverage additional computing resources that allow us to run many parallel PTPs to
further decrease the total number of model calls in appendix [D]

2.4 LIMITATIONS OF INDEPENDENT PREDICTION

Our Parallel Token Prediction framework removes an important limitation of the models in prior
work such as discrete diffusion models (Hoogeboom et al.| [2021}; |Austin et al 2021)) and multi-
token prediction (Q1 et al., 2020; |Gloeckle et al. |2024): Whenever these models predict several
tokens in parallel, they model these tokens independent of each other. This limits the maximum
speedup they can achieve. Note that this in addition to any deficiencies arising from finite compute
and model capacity.

Autoregressive Teacher 0-PTP (ours) Optimal Independent Sampling

‘‘‘‘‘‘‘‘‘‘‘

First Auxiliary u,
First Auxiliary u;

uuuuuu

0.0 0.2 0.4 0.6 0.8 1.0 To.0 0.2 0.4 0.6 0.8 1.0
Second Auxiliary u, Second Auxiliary u;

Figure 4: Parallel Token Prediction generates meaningful pairs of tokens. (Left) In a coding
problem, autoregressive sampling first selects one of def, import or n, and then continues with
meaningful predictions: function name to declare, package to import, or variable assignment. (Cen-
ter) Our code completion model from section [3.2] also reliably predicts sensible combinations of
tokens, but in a single model call. (Red) Only in rare cases (<1%), it produces incompatible pre-
dictions such as def sys. (Right) A model that independently predicts future tokens is bound to
fail: In 60% of the cases, it combines incompatible tokens because the second token is not informed
about the first.

Under review as a conference paper at ICLR 2026

Figure [4] shows how this limitation becomes evident in the task of writing a Python program to do
some numerical computation. If you had to solve this problem, you might first import an external
library via import numpy, or start defining a function as in def £ () :. For an autoregressive
language model, this is an easy task. Sample the first token, that is import or def, and the second
token can be identified depending on the first instruction.

For a model that predicts both tokens simultaneously, the prediction of both tokens has to be coordi-
nated, or we will end up sampling code like def numpy or import £, which do not make sense
in this context. Unfortunately, this is exactly what a model that predicts next tokens independently
ends up doing in a significant number of cases: The best model can identify which tokens are good
candidates for prediction, but it cannot coordinate which combinations go together:

PPt [tes) = P(tilt<i) P(tivalt<i) # P(tilt<i) P(tisalt<ists) = P(ti tis1lt<;). (13)
In the example in fig.[d] even the closest possible model to an autoregressive teacher predicts invalid
tokens in 60% of the cases. Comparing this with our framework, Theorems |1 and [2| guarantee that
a PTP can in principle exactly replicate any dependencies between tokens. The only remaining
approximation is the finite model capacity. In the above example, 99% of the token pairs predicted
by our trained model for code prediction are useful.

3 EXPERIMENTS

We now verify empirically that our framework for Parallel Token Prediction not only is theoretically
sound but enables meaningful parallel inference in practice. We first extensively test our framework
on a computationally efficient discrete real-world dataset with a small vocabulary in section[3.1} and
then demonstrate that our method scales to a practical language-prediction task where we parallelize
a language-model from the LLama family (Zhang et al.,[2024) in section [3.2] We give all details to
replicate experiments in appendix

3.1 EXPLORING DESIGN CHOICES

We now provide some of the specific choices we made when implementing the general framework
of Parallel Token Prediction. Specifically, we discuss the empirical difference between O-PTP and
C-PTP and which specific loss to choose. We will specify our model architecture and how to embed
both tokens and auxiliary variables in the same embedding space, and lastly compare the proposal
distributions our training sequences can be sampled from.

We test our framework by training a model that predicts pick-up locations for taxis in New York City.
Based on a dataset (NYC TLC, |2017) that contains latitudes and longitudes for pick-up locations for
all taxi rides in 2016, we divide the city into 25 neighborhoods via k-Means clustering to obtain a
discrete-valued time-series that we can split into overlapping chunks of length /N. This is a common
benchmark dataset in the literature of marked temporal point processes (Xue et al., 2024)).

As a teacher model, we pretrain a 29M-parameter autoregressive causal transformer based on the
architecture of GPT-2 (Radford et al., 2019), using the cross-entropy loss in eq. . For our PLM
we choose the same GPT-style transformer architecture as the teacher. This allows us to use the
teacher’s parameters as a warm-start. We evaluate all our parallel models in terms of the average
number of leading tokens predicted by our student model that are identical to the teacher. In the end,
this is the quantity that limits the maximum latency reduction that can be achieved, see section

3.1.1 AUXILIARY VARIABLE EMBEDDINGS

In our experiments we use transformers that embedded tokens into a higher-dimensional embedding
space via a learned embedding before adding a positional embedding. This doesn’t work out-of-the
box for our auxiliary variables since they are one-dimensional continuous variables. Thus we learn
a separate embedding. We combine two components, for each of which we test several variants:
(1) A learned affine linear transform [lin] or a fully connected neural network [NN]. (2) Feed either
the scalar v [fl], a n-dimensional threshold-embedding e; = 1{u < i/n} [th], or an n-dimensional
embedding e; = 1{u2"*1 mod 1 < 0.5} [ar] inspired by arithmetic coding (Witten et al.,|1987).

Empirically, all methods work reasonably well, but a structured embedding leads to faster and more
stable training convergence. This is similar to the transformer’s positional embedding were both

Under review as a conference paper at ICLR 2026

Proposal Distribution P(¢) | kI ~kl-rev | bce ce | MTP

Teacher 40 41 45 44 | 10.1
Student 44 39 45 45 | 10.1
Dataset 29 36 44 43 | 10.1

Table 1: Our framework is compatible with several losses. Average number of correct tokens (1)
on the taxi dataset, evaluated on 16000 samples. O-PTP are distilled with KL or reverse KL loss
(kl, kl-rev), C-PTP with binary or categorical cross entropy loss (bce, ce). Independent prediction
(MTP) (Gloeckle et al., [2024) achieves 10.1. Numbers rounded to reflect level of statistical certainty.

Model | all tokens | 1 to t3 ta ts tig

C-PTP 19.88 20.0 19.8 20.1 20.0 20.0 19.7
Autoregressive Teacher 19.81 19.81 - - - - -

Table 2: The sample quality of a Categorical Parallel Token Prediction Model (C-PTP) matches
that of autoregressive when trained on only the dataset. Model perplexity () for several positions
within the prediction, on the taxi dataset, evaluated on 16000 samples. ¢; is the first token predicted
after the context, to the one after that. Numbers rounded to reflect level of statistical certainty.

learned and fixed embeddings work well but the later is preferred in practice (Vaswani et al.,[2017)).
For further experiments we use the [ar + lin] embedding. Table] in appendix [A|shows the detailed
effect of different embedding strategies.

3.1.2 DISTILLATION LOSSES AND PROPOSAL DISTRIBUTIONS

As our framework is deliberately general, it is compatible with a wide selection of losses. We here
compare the distillation losses (section [2.2.T)), focusing on KL and cross-entropy losses in eqs. (I0)
and (TT). Specifically the KL loss (kl), reverse KL loss (kl-rev), binary cross-entropy loss (bce),
and categorical cross-entropy loss (ce). During training we sample training sequences from a dataset
and continuations ¢>; either from the teacher model @), the student model Py, or directly from a
dataset. Table[I]shows the results for different losses. Empirically we note, that O-PTPs are easier
to train than C-PTPs and achieve a higher number of average correct tokens. This is most likely due
to the fact that O-PTPs do not have to predict the full token distribution accurately, which includes
tail behavior, as long as they learn which token is the most likely given the auxiliary variable. In the
following, we choose to sample training sequences from the teacher model for best results.

3.1.3 INVERSE AUTOREGRESSIVE TRAINING

Here, we confirm the ability of Categorical Parallel Token Prediction Models to be trained using
just a dataset without having to be guided by a teacher model. We train our model as described in
section on the cross entropy loss in eq. (I2). Table 2] shows a comparison of sample quality as
measured by model perplexity. Our PLM is able to closely match the sample quality of a next-token
prediction model while generating multiple tokens in parallel. The zero-shot average number of
tokens that the PLM matches with the teacher model is 24 (c.f. 40 when trained via distillation) fur-
ther indicating that the PLM has learned to predict future tokens well. This reduced performance is
expected since the student never learned to exactly mimic the teacher; they make different mistakes.

3.2 CODE GENERATION WITH TINYLLAMA 1.1B

We now scale our framework by adding parallelization to an existing autoregressive model in a
realistic yet computationally feasible setting. To this end, we use TinyLlama 1.1B-Chat-v1.0 (Zhang
et al |2024) as a teacher and distill a O-PTP as explained in section @ We distill a student
model to replicate the teacher in solving CodeContests coding problems (Li et al.l 2022). During
training and inference of our student model we provide the full problem description as context,
compute a continuation from our teacher and chose the starting position of our student’s prediction
at random within the training sequence. Table [3| compares our distilled model to one trained to

Under review as a conference paper at ICLR 2026

Parallelization technique Avg. correct tokens (1)

None 1.0
Independent prediction 25+£03
O-PTP (ours) 51+03

Table 3: Our One-Hot Parallel Token Prediction Model (O-PTP) predicts significantly more
tokens identical to its teacher than baselines. We distill TinyLlama-1.1B (Zhang et al., [2024)
on coding problems (Li et al., [2022) and compare against the naive autoregressive baseline (Brown
et al.l 2020), as well as independently predicting tokens (Q1 et al.l |2020; (Gloeckle et al., 2024;
DeepSeek-Al et al., [2025)). Errors indicate the standard deviation over three runs.

independently predict the next tokens (Gloeckle et al., 2024). Figure [shows a qualitative sample
of our model’s predictions, and Figure [4| shows how it can outperform a model predicting several
tokens independently.

4 RELATED WORK

Speeding up the generation of autoregressive models and discrete sequence models in particular has
been the focus on a broad body of work, see (Khoshnoodi et al.,2024) for an overview.

Our framework combines two ideas from the Normalizing Flow literature and imports them to mod-
eling discrete data: Inverse Autoregressive Flows (IAF) are trained with fast prediction in mind
(Kingma et al., 2016) by iteratively identifying latent variables (our auxiliary variables) that gener-
ate a particular continuous one-dimensional value, and Free-Form Flows (FFF) train a generating
function when a fast parallel sampler is not available (Draxler et al.| 2024)).

In the LLM literature, speeding up generation has been approached from various angles. Specu-
lative decoding takes a system perspective, using a small draft model to propose multiple tokens
and a large target model to verify them (Leviathan et al., 2023} |Chen et al.| [2023)). Variants verify
entire sequences (Sun et al., [2023) or use a smaller verifier network [Zhong et al.| (2025} to improve
quality and speed. Latent variable methods first sample latent codes from the prompt so that the
distribution of subsequent tokens factorizes given latent codes (Gu et al.l 2018; Ma et al.| [2019).
Diffusion language models leave autoregressive sampling behind by iteratively refining the text
starting from a noisy or masked variant (Hoogeboom et al.,[2021; |Austin et al., 2021)). Multi-head
output models predict several next tokens independent of each other (Q1 et al.|[2020; |Gloeckle et al.,
2024; DeepSeek-Al et al.,[2025), narrowing down on the possible set of next tokens. Both diffusion
and multi-head models assume independence of tokens, which is fundamentally limited in modeling
capacity (section [2.4).

In contrast to the above, our work introduces a new class of fast language models that are universal
in the sense that can approximate arbitrary dependence between several tokens in a single model
call. Our new method is complementary to existing approaches, and we leave exploring these com-
binations open for future research.

5 CONCLUSION

In this paper, we introduce Parallel Token Prediction, a framework that permits consistent generation
of several tokens in a single autoregressive model call. It eliminates the independence assumptions
that limited prior approaches, allowing us to model tokens with arbitrary dependency between them.
Empirically, we show that existing models can be distilled into efficient parallel samplers. With error
correction, these models produce identical output as a teacher while significantly reducing latency.

This speedup makes language models more practical for real-time applications. Future work in-
cludes extending our framework to large scale models, multimodal generation, combining it with
complementary acceleration strategies, and exploring theoretical limits on parallelization.

Overall, our results suggest that the sequential bottleneck in autoregressive transformers is not in-
herent, and that universal, efficient parallel generation is within reach.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work focuses on reducing the inference time of Large Language Models, enabling more com-
putations per unit time and supporting large-scale or real-time applications. While this can improve
responsiveness and resource efficiency, it may also increase the potential for misuse, such as gen-
erating misinformation or automated spam at higher volumes. Faster inference does not mitigate
underlying model biases, so responsible deployment, monitoring, and safeguards are critical to bal-
ance performance gains with societal risks.

REPRODUCIBILITY STATEMENT

We include proofs for all theoretical results introduced in the main text in appendix [B] We include
further experimental and implementation details (including model architectures and other hyperpa-
rameter choices) in section [3.1] and appendix [} Our code will be made available by the time of
publication.

REFERENCES

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981-17993, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
neural information processing systems, volume 33, pp. 1877-1901. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0dobfcb4967418bfb8acl42f6d4a-Paper.pdfl

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li,
Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang,
Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan

10

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

Under review as a conference paper at ICLR 2026

Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong,
Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu,
Z.Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie,
Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng
Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie,
Ziyang Song, Ziyi Gao, and Zizheng Pan. DeepSeek-V3 Technical Report, February 2025. URL
http://arxiv.org/abs/2412.19437.

Felix Draxler, Peter Sorrenson, Lea Zimmermann, Armand Rousselot, and Ullrich Kothe. Free-
form Flows: Make Any Architecture a Normalizing Flow. In Artificial Intelligence and Statistics,
2024.

William Falcon and The PyTorch Lightning team. PyTorch lightning, March 2019.

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Roziere, David Lopez-Paz, and Gabriel Synnaeve.
Better & faster large language models via multi-token prediction. In Proceedings of the 41st
international conference on machine learning, pp. 15706—15734, 2024.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K. Li, and Richard Socher. Non-autoregressive
neural machine translation. In International conference on learning representations, 2018. URL
https://openreview.net/forum?id=B118Bt1Chb.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321-1330. PMLR, 2017.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Ferndndez
del Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array program-
ming with NumPy. Nature, 585(7825):357-362, 2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International conference on learning representations, 2020.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems,
2021. URL https://openreview.net/forum?id=6nbpPqUCIi7.

J. D. Hunter. Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3):
90-95, 2007.

Mahsa Khoshnoodi, Vinija Jain, Mingye Gao, Malavika Srikanth, and Aman Chadha. A Compre-
hensive Survey of Accelerated Generation Techniques in Large Language Models, May 2024.
URL http://arxiv.org/abs/2405.13019. arXiv:2405.13019 [cs].

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max
Welling. Improved variational inference with inverse autoregressive flow. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in neural in-
formation processing systems, volume 29. Curran Associates, Inc., 2016. URL
https://proceedings.neurips.cc/paper_files/paper/2016/file/
ddeebdeefdb/e7e7a697elc3e3d8ef54-Paper.pdfl

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Proceedings of the 40th international conference on machine learning, volume
202 of Proceedings of machine learning research, pp. 19274-19286. PMLR, July 2023. URL
https://proceedings.mlr.press/v202/leviathan23a.html.

11

http://arxiv.org/abs/2412.19437
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=6nbpPqUCIi7
http://arxiv.org/abs/2405.13019
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.mlr.press/v202/leviathan23a.html

Under review as a conference paper at ICLR 2026

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cy-
prien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Rob-
son, Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-
level code generation with AlphaCode. Science, 378(6624):1092-1097, 2022. doi: 10.1126/
science.abql158. URL https://www.science.org/doi/abs/10.1126/science.
abgll58.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. FlowSeq: Non-
autoregressive conditional sequence generation with generative flow. In Proceedings of the 2019
conference on empirical methods in natural language processing, Hong Kong, November 2019.

Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and
Jarrod Millman (eds.), 9th Python in Science Conference, 2010.

New York City Taxi and Limousine Commission. 2016 yellow taxi trip data, 2017. City of New
York, OpenData portal.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, 2019.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, and
Ming Zhou. ProphetNet: Predicting future n-gram for sequence-to-SequencePre-training. In
Trevor Cohn, Yulan He, and Yang Liu (eds.), Findings of the association for computational lin-
guistics: EMNLP 2020, pp. 2401-2410, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.217. URL https://aclanthology.
org/2020.findings—emnlp.217/.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. OpenAl, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAl Technical Report, 2019.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Fe-
lix Yu. SpecTr: Fast speculative decoding via optimal transport. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in neu-
ral information processing systems, volume 36, pp. 30222-30242. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6034a661584af6c28fd97a6f23e56c0a—Paper—Conference.pdf.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Daniel Bikel, Lukas Blecher,
Nikolay Bogoychev, William Brannon, Anthony Brohan, Humberto Caballero, Andy Chadwick,
Jenny Lee, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint
arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Tan H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic Coding for Data Compression,
volume 30. Communications of the ACM, 1987.

Sigiao Xue, Xiaoming Shi, Zhixuan Chu, Yan Wang, Hongyan Hao, Fan Zhou, Caigao Jiang, Chen
Pan, James Y. Zhang, Qingsong Wen, Jun Zhou, and Hongyuan Mei. EasyTPP: Towards open
benchmarking temporal point processes. In International conference on learning representations
(ICLR), 2024. URL https://arxiv.org/abs/2307.08097.

12

https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://aclanthology.org/2020.findings-emnlp.217/
https://aclanthology.org/2020.findings-emnlp.217/
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6034a661584af6c28fd97a6f23e56c0a-Paper-Conference.pdf
https://arxiv.org/abs/2307.08097

Under review as a conference paper at ICLR 2026

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. TinyLlama: An open-source small
language model, 2024. arXiv: 2401.02385 [cs.CL].

Meiyu Zhong, Noel Teku, and Ravi Tandon. Speeding up speculative decoding via sequential ap-
proximate verification. In ES-FoMo II1: 3rd workshop on efficient systems for foundation models,
2025. URL https://openreview.net/forum?id=Y4KcfotBkf.

13

https://openreview.net/forum?id=Y4KcfotBkf

Under review as a conference paper at ICLR 2026

Model | i+ NN th+lin th+NN ar+lin ar+NN | MTP

O-PTP 35.9 40.9 39.1 45.4 46.1 10.1
C-PTP 28.8 36.8 36.6 40.4 35.7 10.1

Table 4: Structured embeddings of auxiliary variables u; are more stable than fully-learned
embeddings. Average number of correct tokens (1) on the taxi dataset, evaluated on 16000 samples.
Trained using the KL loss (C-PTP) and binary cross-entropy loss (O-PTP), respectively. Indepen-
dent prediction (MTP) (Gloeckle et al.l |2024) achieves 10.1. Numbers rounded to reflect level of
statistical certainty.

b | 2 1 05 | MIP

O-PTP | 129 139 138 | 84
P-PTP | 13.6 13.8 13.5| 84

Table 5: Different sampling strategies for u; are available. Average number of correct tokens (1)
for @), ~ Beta(b, b) on the taxi dataset, evaluated on 16000 samples, with N = 16. Trained using
the KL loss (C-PTP) and binary cross-entropy loss (O-PTP), respectively. Independent prediction
(MTP) (Gloeckle et al., 2024) achieves 8.4. Numbers rounded to reflect level of statistical certainty.

A ADDITIONAL ABLATION RESULTS

B PROOFS

B.1 PROOF OF THEOREM/[I]

Proof. By theorem [2] it holds that the distribution of token ¢,k > 4 is fully determined by
t1,...,tx—1 and u;, ..., ur—1, showing that the categorical distribution P of token ¢y, is fully de-
termined.

Thus, the function to compute token t;, is given by eq. (2):
tk = fP(th . 7ti,1; Uiy - - - ’Lbk) = Pick(uk; Pk) (14)

B.2 PROOF OF THEOREM[2]

Proof. We prove by induction over k, k > 1.
For k = 1, there is nothing to show, since there are no auxiliaries involved in the statement.

For k — k + 1, assume the statement holds for k. This gives us access to the distribution P of
the token ¢;. Since token ¢, is uniquely determined from P, and wy, via eq. (3, any distribution
conditioning on P, t; can instead condition on Py, uj via the law of total probability. O

C SAMPLING OF AUXILIARY VARIABLES

Our framework conditions, for a prompt ¢.;, not on token ¢; directly but on the auxiliary variable
ug € [Fit,—1, Fi 1,) that contains the same information. During inference we sample uy, ~ [0, 1]
as to not bias our predictions. During training on the other hand, we have more flexibility and can
sample the permissible interval using uy, = Fy, 1, —1 + Uk [F,t, — Fk,t,,—1], Where @y, ~ Beta(b, b).
For b = 1 this simplifies to a uniform distribution while b # 1 puts more or less weight on predic-
tions that land closer to the border of the permissible interval and thus are more difficult to predict.
Training results for different values of b can be found in Table [5] Empirically, we find that while
the choice of b does not seem to effect the final average number of correct samples, a larger b might
speeds up the earlier stages of training while a smaller b might yield slightly better sample quality
during inference, as measured by model perplexity.

14

Under review as a conference paper at ICLR 2026

M |1 4 16 64 256 1024 106 00
Avg.correcttokens\45.36 49.67 54.76 55.74 56.91 59.79 46.01 90.17

Table 6: Additional compute increases correctness. Average number of correct tokens (1) for M
O-PTPs running in parallel on the taxi dataset, with sequence length N = 100.

N | 1 2 4 8 16 64 100 00
Avg. correcttokens | 1.00 1.99 3.93 7.59 13.90 36.60 45.36 48.76
Best MTP 1.00 191 3,53 586 840 10.08 10.07 10.20

Table 7: Less compute decreases correctness. Average number of correct tokens (1) for limited
number of predicted tokens N per O-PTP call on the taxi dataset, M = 1.

D ABUNDANT COMPUTATIONAL RESOURCES

In section [2.3] we discussed how to leverage several PTPs that run in parallel to further reduce
latency. Another way to leverage several models run at once is to use them to improve the expected
number of correct tokens directly. Specifically, for a fixed context we can let M PTPs compute
M independent predictions using independently drawn auxiliary variables u; v, . .., Wit N,m. BY
choosing the best prediction, i.e. the one that gives us the best chance of a higher number of correct
tokens, we can improve latency further.

Crucially, we have to choose the best prediction in a way that doesn’t bias the marginal distribution
over future tokens. If we, for example, naively choose the sequence that is correct for the most
amount of tokens, we will bias our prediction towards sequences that are easier to predict. On way to
achieve bias-free improvements is to pick the set of auxiliary variables that lands, on average, closest
to the center of a token’s valid interval Iy (tx) = [Fi ., Fit,—1) where Fy,, is the cumulative
probability under (), to choose ¢;, when predicting that token. Specifically, choose

i+N
Uk,m — Frty 1

argmax,, Z ——1. (15)

k=1 Fk,t}c.m,fl - Fk1tk‘m, 2

This does not bias the marginal distribution but does bias the distribution of the selected wuy to be
closer to the center of it’s interval Iy (t;). making the prediction less prone to small differences in
the teacher’s and student’s logits. In the limit M — oo we always select the middle point of Iy (¢x)
yielding an upper bound to the possible improvement. Table [f]shows the performance gains on the
taxi dataset.

We can combine both techniques, avoiding the additional latency of verification while still keeping
the higher expected number of correct tokens. Because the selection in eq. (I3)) relies on the teacher
logits it can only be made after the verification step. To avoid waiting for the verification we assume,
as before, that after a model call one of n = 1....S tokens are correct and pre-compute the future
tokens based on this assumption. Instead of one call as before, we now have to make M -many calls
for each n. After the verification step we discard all but the best call from the correct n*. As we have
to repeat this for all M viable calls, that are yet to being verified, in parallel this approach benefits
from M?2S PTPs running in parallel.

E RESTRICTED COMPUTATIONAL RESOURCES

Limiting the number N of token’s our PTP predicts at once to a smaller number will reduce the total
number of floating point operations, increasing energy efficiency. This, of course, negatively effects
the possible latency gains, especially since IV is an upper bound on the average number of correct
tokens. Table[7]shows the result for different values of N on the taxi dataset.

15

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

F.1 ALGORITHMS

Algorithm 2] shows how to distill a PTP from a teacher, algorithm [3]shows how to train directly from
data.

Algorithm 1 Sampling with error correction

Require: Sequence proposal distribution P(t) (teacher, student, dataset, or combination), teacher
model @ (t), one-hot or categorical PTP P. Input sequence (t1,...,t;—1).
Sample uy, ~ U]0, 1] for all k& > 4.
while 7 < T do
if Py is one-hot PTP then

Py, < Py(tg|t<i,ui,...,ux), jointly for all k > i. > Student one-hot distributions
tr, = argmax; Py, for all & > 3.

else
Py < Py(tg|t<i,ui,...,ur—1),jointly for all k > i. > Student categorical distributions
tr = Pick(ug, Py), forall k > i.

end if

Qr + Qu(tk|t<k), jointly for all k > i. > Teacher categorical distributions.

ty Pick(ug, Qx), for all k > .

i < mings;{k : t # 1} > First error

ti =t;.

end while

Algorithm 2 Training PTP (distillation)

Require: Sequence proposal distribution P(t) (teacher, student, dataset, or combination), cutoff
distribution P(i|t), teacher model @), (¢), one-hot or categorical PTP Py.
while not converged do
Sample t ~ P(t)
P, = Qu(tk|t<) in single model call.
Sample uy, € [Fit,—1, Fity)-
Sample ¢ ~ P(ilt).
Compute VyL(0,t) using eq. or eq. (L1).
Gradient step.
end while

Algorithm 3 Training PTP (inverse autoregressive)

Require: Dataset P(t), cutoff distribution P(i|t), categorical PTP Py.
while not converged do
Sample t ~ P(t)
Sample ¢ ~ P(ilt).
fork=14,...,Ndo

Py, = Py(tg|t<i, wi,...,ux—1), with auxiliary available form previous iterations.
Sample uy, € [Fi), —1, Frt),)-
end for

Compute Vg L(6, t) using eq. (12).
Gradient step.
end while

F.2 'TRAINING DETAILS

The teacher used in section[3.1]is a GPT-2—style transformer language model with 4 transformer lay-
ers, a hidden size of 1536, and approximately 29 million trainable parameters. Each layer follows

16

S}

14

15

16
17
18
19

[CE)

Under review as a conference paper at ICLR 2026

the standard GPT-2 architecture, consisting of multi-head self-attention and position-wise feedfor-
ward sublayers, combined with residual connections and layer normalization. The vocabulary size
is set 25. Unless otherwise noted, all other hyperparameters and initialization schemes follow the
original GPT-2 specification (Radford et al., [2019). During training and inference of our student
model we don’t provide any context and evaluate the correctness of the next N = 100 tokens, by
comparing Q. (t|t<) and Py(tx). For results on a smaller N = 16, see appendix[E| We train every
model for 150k steps with a batch size of 32 with the Adam optimizer (Kingma & Bal [2015) and
learning rate 0.0001.

The teacher model used in section [3.2]is a dialogue-tuned variant of the TinyLlama (Zhang et all
2024) 1.1 billion parameter model, adopting the same architecture and tokenizer as LLaMA 2
(Touvron et al., [2023)). The model uses a transformer architecture comprising 22 transformer lay-
ers, each with standard multi-head self-attention, SWiGLU feedforward blocks, residual connec-
tions, and layer normalization. The embedding and hidden dimension is 2048, and the interme-
diate (feedforward) dimension is 5632, consistent with a LLaMA-style scaling. The vocabulary
size is 32, 000. The parameters are available via https://huggingface.co/TinyLlama/
TinyLlama-1.1B-Chat-v1l. 0l During training and inference, we evaluate the correctness of
the next N = 64 tokens. We train every model for 100k steps with a batch size of 64 with the
AdamW optimizer (Loshchilov & Hutter, 2019) on eq. (I1)) and learning rate 0.0001. We generate
training and validation data by generating code completions of maximum length 320 tokens from
the teacher, with P(|t) randomly sampling a sequence of length N in the completion. The teacher
is prompted with the training respectively validation data from (Li et al.| [2022). We use a teacher
sampling temperature of 0.7, top-k = 50 and top-p = 0.9, as is recommended for this model. The
student is traine don these adapted logits.

For the MTP baseline, we use eq. (@]) with uninformative us in otherwise identical code for a fair
comparison.

We base our code on PyTorch (Paszke et al.| [2019), PyTorch Lightning (Falcon & The PyTorch
Lightning team, 2019), Numpy (Harris et al. 2020), Matplotlib (Hunter, 2007) for plotting and
Pandas (McKinney, |[2010) for data evaluation.

F.3 PROMPT FOR FIGURE[]

You are given a permutation p_1, p_2, ..., p_n.
In one move you can swap two adjacent values.

You want to perform a minimum number of moves, such that in the end there

will exist a subsegment 1,2,..., k, in other words in the end there
should be an integer i, 1 <= i <= n-k+1 such that p_i = 1, p_{i+l} =
2, ..., p_{itk-1}=k.

Let f (k) be the minimum number of moves that you need to make a

subsegment with values 1,2,...,k appear in the permutation.
You need to find £(1), £(2), ..., f£(n).
Input
The first line of input contains one integer n (1 <= n <= 200 000): the

number of elements in the permutation.

The next line of input contains n integers p_1l, p_2, ..., p_n: given
permutation (1 <= p_i <= n).

Output

Print n integers, the minimum number of moves that you need to make a
subsegment with values 1,2,...,k appear in the permutation, for k=1,
25 ooop Mo

Examples

17

https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0
https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Under review as a conference paper at ICLR 2026

Input

54321

Output

01 3610

Input

Output

18

	Introduction
	Parallel Token Prediction
	Parallel Sampling
	Training
	Distillation
	Inverse Autoregressive Training

	Error Correction
	Limitations of Independent Prediction

	Experiments
	Exploring Design Choices
	Auxiliary Variable Embeddings
	Distillation Losses and Proposal Distributions
	Inverse Autoregressive Training

	Code Generation with TinyLlama 1.1B

	Related Work
	Conclusion
	Additional Ablation Results
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2

	Sampling of Auxiliary Variables
	Abundant Computational Resources
	Restricted Computational Resources
	Experimental Details
	Algorithms
	Training details
	Prompt for Figure 4

