
GRAMMAR: Grounded and Modular Methodology for Assessment of
Closed-Domain Retrieval-Augmented Language Models

Anonymous ACL submission

Abstract

Retrieval-Augmented Generation (RAG) sys-001
tems are widely used across various indus-002
tries for querying closed-domain and in-house003
knowledge bases. However, evaluating these004
systems presents significant challenges due to005
the private nature of closed-domain data and a006
scarcity of queries with verifiable ground truths.007
Moreover, there is a lack of analytical methods008
to diagnose problematic modules and identify009
types of failure, such as those caused by knowl-010
edge deficits or issues with robustness. To ad-011
dress these challenges, we introduce GRAM-012
MAR (GRounded And Modular Methodology013
for Assessment of RAG), an evaluation frame-014
work comprising a grounded data generation015
process and an evaluation protocol that effec-016
tively pinpoints defective modules. Our val-017
idation experiments reveal that GRAMMAR018
provides a reliable approach for identifying019
vulnerable modules and supports hypothesis020
testing for textual form vulnerabilities. An021
open-source tool accompanying this framework022
will be released to easily reproduce our results023
and enable reliable and modular evaluation in024
closed-domain settings.025

1 Introduction026

The emergent capabilities of Large Language Mod-027

els (LLMs) have driven significant research and the028

widespread deployment of Retrieval-Augmented029

Generation (RAG) systems for closed-domain set-030

tings. This growing trend highlights the critical031

need for reliable evaluation methods tailored to032

RAG systems.033

A key challenge in evaluating RAG systems034

is the collection of domain-specific data that in-035

cludes accurate ground truths. Researchers of-036

ten rely on data originally designed for human037

assessment, as seen in studies such as Santurkar038

et al. (2023); Wang et al. (2022); Zhong et al.039

(2022, 2023); Hendrycks et al. (2021); Choi et al.040

(2023). However, these data sources typically re- 041

flect open-domain commonsense and world knowl- 042

edge, whereas industrial in-house RAG systems 043

require data that captures closed-domain knowl- 044

edge, such as details about company projects and 045

employees. Although user queries can be gath- 046

ered during system deployment, obtaining accurate 047

ground truths remains a significant challenge. To 048

address this, recent studies have explored reference- 049

free LLM evaluators for cases where ground truths 050

are unavailable (Chern et al., 2023; Min et al., 2023; 051

Es et al., 2023). However, the reliability of these 052

reference-free evaluation methods is still question- 053

able. 054

Another critical challenge is assessing robust- 055

ness in RAG systems, where a system may possess 056

adequate knowledge for the semantics of a query 057

but respond inconsistently to different query forms, 058

as highlighted in Shen et al. (2023). Developers 059

and researchers often hypothesize about factors 060

that could impact robustness, such as vulnerable 061

modules (e.g., retrieval mechanisms or language 062

models) or specific input attributes. However, exist- 063

ing research, e.g., studies on adversarial robustness 064

(Alzantot et al., 2018; Li et al., 2020, 2019), lacks 065

effective tools for identifying non-robust modules 066

and analytically testing these hypotheses. 067

Recognizing these challenges, the paper makes 068

the following contributions: 069

Proposing a grounded, controllable data gen- 070

eration process (GRAMMAR-Gen). To address 071

the issue of ground truth scarcity, we propose 072

GRAMMAR-Gen, a grounded data-generation pro- 073

cess designed to ensure reliable evaluation. This 074

process leverages relational databases and LLMs 075

to extract ground truths via SQL queries. Addition- 076

ally, the template-based query generation enables 077

scalable data creation. By leveraging the capabil- 078

ities of LLMs, it allows the controlled generation 079

of data with diverse linguistic attributes. Notably, 080

a similar data-generation process for evaluating do- 081

1

Figure 1: An Example of Applying the GRAMMAR Framework for Modular Evaluation and Hypothesis Testing.
The upper section demonstrates the data generation process for creating sets of hypothetically robust (Drobust) and
non-robust (Dnon-robust) data. The lower section depicts the evaluation protocol that utilizes the generated data to
identify defective modules and facilitate hypothesis testing.

main knowledge was proposed concurrently by Tu082

et al. (2024)1.083

Proposing a protocol for modular evalua-084

tion and hypothesis testing (GRAMMAR-Eval).085

GRAMMAR-Eval combines a grouping and tag-086

ging mechanism based on GRAMMAR-Gen with087

effective strategies to both identify knowledge gaps088

in the retrieval database and determine whether ro-089

bustness issues stem from the retrieval mechanism090

or the language models (LMs). Our empirical re-091

sults demonstrate the effectiveness of GRAMMAR-092

Eval in identifying deliberately bugged retrieval093

systems and accurately testing hypotheses about094

which input attributes contribute to robustness is-095

sues. An example of this process is illustrated in096

Figure 1.097

1It was published after the initial preprint/submission of
this work.

2 Background 098

Evaluating the performance of Retrieval- 099

Augmented Generation (RAG) systems, especially 100

in closed-domain settings, poses unique challenges, 101

leading to an absence of reliable reference-based 102

evaluation protocols. This section outlines existing 103

approaches and highlights the gaps addressed by 104

our proposed framework, GRAMMAR. 105

Retrieval-augmented Generation (RAG) RAG 106

systems augment LLMs with retrieval for domain- 107

specific use where extensive databases can poten- 108

tially provide necessary information. A retrieval 109

can be used for retrieving relevant passages or doc- 110

uments. A dense retrieval (Mialon et al., 2023; 111

Lewis et al., 2020; Borgeaud et al., 2022) consists 112

of an embedding model to produce a vector vq for 113

any given query q. This vector vq is then used to 114

2

identify pertinent text segments normally via dot115

product calculations with the vectors of text chunks.116

The most relevant chunks are aggregated to form117

an additional context c, which serves as the factual118

basis for the response generation, until adding an-119

other chunk would surpass the maximum allowable120

context length. Subsequently, an LLM will process121

this aggregated context alongside the original query122

q to generate a predicted answer â for it.123

In contrast, sparse retrieval computes similar-124

ity without parametric embedding models. For125

instance, keyword-matching approaches (Manning,126

2009) select documents that share the highest num-127

ber of common words for context retrieval. Addi-128

tionally, methods like TF-IDF (Chen et al., 2017)129

factor in the inverse document frequency, emphasiz-130

ing the significance of less common words which131

are likely to be more indicative of pertinent content.132

Reference-Free Evaluation Reference-free eval-133

uation methods (Es et al., 2023) assess model134

performance without requiring predefined ground135

truths. These methods can be categorized accord-136

ing to their applicable systems: 1) Protocols for137

LLMs: FactScore (Min et al., 2023) and FacTool138

(Chern et al., 2023) use retrieval combined with139

LLMs as validators, but these are not directly ap-140

plicable to RAG systems as retrieval is reserved141

for evaluation. 2) Protocols for RAG: ARES and142

RAGAS focus on evaluating the faithfulness of143

generated answers against retrieved contexts, with144

LLMs scoring the relevance and correctness of the145

context (Saad-Falcon et al., 2023; Es et al., 2023).146

3) Protocols for Both: SelfCheck (Manakul et al.,147

2023) utilizes the stochastic nature of LLMs for148

self-validation. While these methods offer some149

insights, their reliability is often questioned, espe-150

cially for closed-domain applications where spe-151

cific, accurate answers are crucial.152

Reference-Based Evaluation While reference-153

free evaluation can be applied for evaluating154

both open-domain and closed-domain queries,155

reference-based evaluation typically assesses open-156

domain knowledge. The reason is that open-157

domain queries are widely available with ground-158

truth answers from public resources, exams, and159

surveys (Santurkar et al., 2023; Wang et al., 2022;160

Zhong et al., 2022, 2023; Hendrycks et al., 2021;161

Choi et al., 2023). These evaluations compare gen-162

erated answers to known correct answers, calculat-163

ing metrics that reflect the model’s accuracy. How-164

ever, closed-domain scenarios lack reference-based165

evaluation due to the unavailability of ground-truth 166

answers. GRAMMAR-Gen is proposed to solve 167

this issue. 168

3 Is Reference-free Evaluation Reliable? 169

This section analyzes the reliability of reference- 170

free evaluation methods using 198 examples from 171

an engineering company. The RAG system for 172

evaluation is implemented with dense retrieval and 173

GPT-3.5 2. 174

This preliminary study briefly highlights the po- 175

tential benefits of reference-based evaluation, as 176

our primary contribution focuses on proposing a 177

reference-based evaluation framework. A detailed 178

analysis of reference-free evaluation on state-of- 179

the-art models is left for future work. 180

Two Evaluation Perspectives: Optimism and 181

Cynicism To structure this analysis, reference- 182

free evaluation is treated as a binary classification 183

task. The ground truth reflects the actual correct- 184

ness of RAG responses, while the evaluation mod- 185

els’ judgments serve as the task’s predictions. Thus, 186

low precision indicates an optimistic bias (where 187

incorrect RAG responses are often judged as cor- 188

rect), and low recall indicates a cynical bias (where 189

correct RAG responses are often judged as incor- 190

rect). 191

Two Evaluation Protocols We assess two 192

reference-free protocols. 193

• RAGAS-Fact (Es et al., 2023): This protocol 194

utilizes the context-query-response triplets to 195

assess the veracity of responses. It evaluates 196

the faithfulness of a response by calculating 197

the ratio of claims grounded on the context to 198

the total claims made. This process involves 199

identifying statements that hold atomic facts, 200

following the methodology outlined by Chern 201

et al. (2023). 202

• SelfCheck (Manakul et al., 2023): This pro- 203

tocol relies on the stochastic generation of 204

responses, based on the premise that incor- 205

rect answers are unlikely to be consistently 206

produced. This principle, initially applied 207

to LLMs, is adapted in our analysis of RAG 208

systems. In a departure from its original ap- 209

plication, we enhance the evaluation prompt 210

to include not only stochastic responses but 211

2An OpenAI embedding model for document embedding
and gpt-3.5-turbo-16k

3

also the query itself. Refer to Appendix A212

for details. To generate four stochastic sam-213

ples, we adjust the temperature setting to 1.0,214

contrasting with a temperature of 0.0 used to215

generate the primary response. A response is216

deemed correct if it aligns consistently across217

all stochastic samples.218

Results: Both are Extremely Optimistic on219

Wrong Predictions While SelfCheck Becomes220

Too Cynical on Correct Predictions As shown221

in Table 1, both RAGAS and SelfCheck achieve222

low precision (19% and 15%, respectively), high-223

lighting a deficiency in correctly identifying erro-224

neous predictions. For RAGAS, this may be be-225

cause the RAG system produces responses that,226

while contextually relevant, fail to directly address227

the intended query. However, RAGAS demon-228

strates high recall, indicating accurate assessment229

of correct RAG responses. Overall, the prelimi-230

nary insight suggests that reference-free evaluation231

methods are not reliable for evaluation, underscor-232

ing the critical need for a robust, reference-based233

evaluation framework to ensure reliable model as-234

sessment.235

Precision Recall

RAGAS-Fact 19% (11-27%) 92% (86-97%)

SelfCheck 15% (0.08-0.22%) 50% (0.4-0.59%)

Table 1: Reliability of reference-free evaluation proto-
cols. Taking the size of the sample into account, the
Z-test with 95% confidence intervals is utilized.

4 GRAMMAR236

This section introduces GRAMMAR-Gen and237

GRAMMAR-Eval for grounded and modular eval-238

uation: 1) GRAMMAR-Gen begins by generating239

templates based on a database schema, enabling240

scalable data creation 3. By leveraging LLMs,241

GRAMMAR-Gen offers controllability in generat-242

ing text variations, which not only supports scalable243

data generation but also facilitates modular robust-244

ness evaluation and hypothesis testing. The process245

of SQL and text template generation is detailed in246

§ 4.1. SQL queries, serving as intermediate repre-247

sentations, are used to create ground-truth answers248

by querying relational databases, as explained in249

§ 4.2. The overall process is illustrated in Algo-250

rithm 1 and Figure 2. 2) GRAMMAR-Eval, an251

3Further details can be found in Appendices D.2 and E

Algorithm 1 GRAMMAR-Gen
Input: SQL Template Generator gsql, Text Template Gener-
ator gt, Semantic criteria for SQL template generation Csql,
Linguistic criteria for text template generation Ct, Database
D, Database Schema S = {S1, S2, . . . , Sn}, where each Si

is a schema for a table.
Output: Final evaluation data Q
1: Q← ∅
2: Starget ∈ S
3: {tplsql} ← gsql(Starget, Csql)
4: for tplsql ∈ {tplsql} do
5: {tplt} ← gt(tplsql, Ct)
6: P ← extract placeholders from tplsql
7: for each p ∈ P do
8: C ← extract column from p
9: Vp ← query D for distinct values of C

10: end for
11: Comb← Cartesian product of {Vp : p ∈ P}
12: for each comb ∈ Comb do
13: qsql ← substitute comb into tplsql
14: a← query D(qsql)
15: {qt} ← substitute comb into tplt ∈ {tplt}
16: Q← Q ∪ {({qt}, a)}
17: end for
18: end for
19: return Q

evaluation protocol that effectively pinpoints de- 252

fective modules by assessing the knowledge deficit 253

of the retrieval database and detecting robustness 254

issues originating from either the retrieval mecha- 255

nisms or the language models. Further details can 256

be found in § 4.3. 257

4.1 Generating Query Templates 258

The GRAMMAR-Gen process first utilizes 259

database schemas and LLMs to generate SQL 260

query templates and their corresponding textual 261

forms. 262

Database Schema Database schema serves as 263

the blueprint that defines how classes of enti- 264

ties are organized and the relations among them. 265

Appendix B demonstrates the reasons why we 266

use database schema for knowledge representa- 267

tion. Let a database schema with a collection 268

of N tables S = {S1, S2, . . . , SN}, where each 269

Si is a schema for a database table. A table 270

schema Si consists of the table name Ti, a set 271

of attributes {A1, A2, . . . , AM} and a set of con- 272

straints, i.e., Si = (Ti, {A1, A2, . . . , Am} , C), 273

where the constraint C demonstrates the primary 274

key PK and foreign keys FK. Specifically, 275

FK (Ti.Ak → Tj .Ah) indicates a foreign key Ak 276

in table Ti referencing the primary key Ah in table 277

Tj . The schema defines the knowledge structure of 278

an entity, which can be enough to generate query 279

semantics that is not tied to any specific linguistic 280

4

expressions and sensitive data.281

Generating SQL Templates A SQL template282

tplsql essentially represents the semantics of a283

query. Various query semantics are formulated284

through the application of relational algebra opera-285

tors. In our study, we focus on three fundamental286

operators: Select (σ), Project (π), and Join (▷◁).287

An automated SQL template generator gsql is pow-288

ered by a generative LLM. When given a target289

schema Starget and specified SQL criteria Csql,290

gsql generates a set of SQL query templates.291

Generating Text Templates tplsql can be instan-
tiated into various text templates, each denoted
as tplt. This process, driven by the text template
generator gt, leverages linguistic criteria Ct to trans-
form tplsql into natural language forms that align
with specified linguistic characteristics, e.g., com-
plexity, length and stylistic nuances 4. The text
template generator gt is also operationalized using
a sophisticated language model, such as GPT-4,
which is adept at producing diverse linguistic vari-
ations of the same semantic content.

{tplt} = gt(tplsql, Ct),

where {tplt} signifies the resulting list of text tem-292

plates.293

4.2 From Templates To Evaluation Data294

Utilizing a database D that aligns with the prede-295

fined schema, the framework samples a diverse296

range of queries along with their corresponding297

ground-truth answers. This dataset, derived from298

SQL and text templates filled with database content,299

provides a rich source for evaluation.300

Generating Queries Via Placeholder Fill-in301

The placeholder fill-in step populates the tem-302

plates with actual data from the rows of tables303

in D. Specifically, the approach employs a SE-304

LECT query format: “SELECT DISTINCT {col-305

umn_name} FROM {table_name};” to ensure vari-306

ety in the data points. It handles SQL query tem-307

plates with multiple placeholders by employing308

combinations of placeholders and using Cartesian309

products to generate multiple query permutations.310

This approach leads to a comprehensive set of SQL311

queries (qsql) and their natural language equiva-312

lents, the text queries (qt).313

4Examples of Csql and Ct are specified in Appendix C.

Generating Answers Answer generation is in- 314

tegral to completing our dataset. Each SQL query 315

(qsql) is executed against D to match with a factual 316

answer a. Each answer is then paired with the rel- 317

evant text queries {qt}, forming the basis of our 318

evaluation data. 319

4.3 Modular Evaluation 320

Evaluating the overall performance of an RAG 321

model can obscure the specific weaknesses or ro- 322

bustness of its constituent modules. This section 323

introduces a modular evaluation protocol to address 324

this. 325

Query Grouping and Tagging The process in- 326

volves grouping and tagging queries based on their 327

semantics. Specifically, with GRAMMAR-Gen, 328

textual queries Q generated from a particular SQL 329

query qsql are organized into a semantic group. De- 330

pending on the model M ’s performance, qsql (and 331

consequently, the group Q) are tagged into three 332

principal categories, as shown in Figure 1. 333

• Gap Groups emerge when the model M con-
sistently provides incorrect answers for every
text query within a subset S ⊆ Q produced
through the data generation process. This re-
flects a deficiency in M ’s knowledge or ca-
pability. Formally, this scenario is described
as:

∀qt ∈ S,¬Me(M (qt)),

where Me is the evaluation model, which re- 334

turns “TRUE” if the model’s response M (qt) 335

is correct. 336

• Robust Groups are established when model
M accurately responds to all text queries
within the subset S, evidencing a robust com-
prehension of the SQL logic. Formally, this is
articulated as:

∀qt ∈ S,Me(M(qt)).

• Non-robust Groups are characterized by
model M ’s ability to potentially answer the
query semantics correctl, but with at least one
query qt within S that M fails to predict cor-
rectly. This is formally denoted as:

∃qt ∈ S,Me(M(qt))∧∃qt ∈ S,¬Me(M(qt)).

5

Figure 2: Scaled Generation of Query-answer Pairs. Step 3 and step 4 are independent of each other and depend
only on the SQL templates.

Assessing Retrieval Database via Gap Groups337

Gap examples, which are incorrectly predicted in-338

stances within gap groups, highlight errors in the339

retrieval database that arise due to its limited cov-340

erage. The adequacy of the knowledge within the341

database can be quantified as follows:342

Accretrieval_db = 1− Number of Gap Groups
Total Number of Semantic Groups

(1)343

A low Accretrieval_db suggests the need for ex-344

panding the database.345

Isolating Retrieval Database Errors To ensure346

accurate evaluation of the retrieval and language347

models without interference from retrieval database348

errors (i.e., distinguishing knowledge gaps from349

robustness performance), two strategies have been350

developed:351

1. Removing Gap Examples: To assess the other352

two modules, we calculate refined accuracy,353

denoted as R, by excluding gap examples:354

R =
with Correct Predictions

Total # − Total # in Gap Groups
, (2)355

where “#” represents “the number of in-356

stances”.357

2. Balancing Gap Groups: To understand the ad-358

vantage of this refined accuracy over baseline359

accuracy Acc, consider the following relation- 360

ship: 361

Acc = R× Total # − Total # in Gap Groups
Total #

= R× (1− Total # in Gap Groups
Total #

)

(3)

362

This equation shows that a smaller normal- 363

ized term, λ = Total # in Gap Groups
Total # , enhances 364

evaluation accuracy. Intuitively, a smaller 365

λ implies fewer gap examples (errors prop- 366

agated from the initial module), leading to 367

more accurate results. Maintaining a consis- 368

tent λ across evaluation models or datasets 369

ensures accurate assessments, such as for the 370

hypothetically robust dataset Drobust and the 371

non-robust dataset Dnon-robust discussed in §5. 372

With GRAMMAR-Gen, an equal number of 373

text queries can be generated within each se- 374

mantic group by adjusting the text template 375

generator. 376

Identifying Non-Robust Retrieval or Non- 377

Robust LM: A “Context Comparison” Ap- 378

proach To determine whether robustness issues 379

stem from the retrieval module or the language 380

model, we focus on incorrectly predicted queries 381

within the non-robust group, each referred to as 382

6

SQL
Templates

SQL
Queries

Text
Templates

Text Queries Text Queries (Balanced)
Short Long Short Long

Aurp 11 157 30 314 257 471 471

Spider-Open 5 57 10 397 436 570 570

Spider-Closed 5 57 10 426 430 570 570

Table 2: Statistics of Evaluation Datasets

Isolating Errors from Aurp Spider-Closed Spider-Open
Retrieval Database LLM Robust Non-Robust Robust Non-Robust Robust Non-Robust

Baseline: No Action No Action 0.27 0.51 0.26 0.28 0.67 0.87
Context Comparison 0.29 0.51 0.31 0.34 0.37 0.35

Remove Gap Groups No Action 0.95 0.96 0.58 0.44 0.98 0.96
Context Comparison 1 0.98 0.62 0.49 0.51 0.39

Balance Gap Examples No Action 0.27 0.27 0.28 0.21 0.69 0.68
Context Comparison 0.29 0.28 0.32 0.28 0.36 0.29

Table 3: Validating GRAMMAR’s tricks in in detecting non-robust retrieval module under a deliberately constructed
RAG pipeline. Accuracy is calculated on selected examples across various types of semantic groups.

qtarget. Specifically, we pose the following ques-383

tion:384

Does the retrieval module provide sufficient con-385

text for qtarget?386

By leveraging other semantically identical but387

correctly answered queries within the group, we388

can assess whether the context provided is suffi-389

cient. Specifically, we compare the document in-390

dices idxtarget associated with qtarget to the in-391

dices of correctly answered queries, denoted as392

I = idx1, idx2, If idxtarget matches any index393

in I , the context provided by idxtarget is consid-394

ered sufficient.395

5 A Toy Case for Validation: Detecting A396

Vulnerable Retrieval397

This section demonstrates the effectiveness of398

GRAMMAR on question answering tasks.399

5.1 Experiment Setup400

Evaluation Target To validate our framework,401

we deliberately introduce a vulnerability in the402

retrieval component by using a basic keyword-403

matching retrieval approach. We use GPT3.5 for404

language generation. While this method is less405

common in practical applications, it is inherently406

weak in handling lengthy queries, making it an407

ideal candidate for testing our evaluation frame-408

work.409

Evaluation Benchmarks and Datasets Closed-410

domain RAG systems lack established benchmarks,411

especially because questions must be answered us- 412

ing documents containing knowledge that is not 413

publicly available or known to public LLMs. To 414

address this gap, we modify the Spider bench- 415

mark (Yu et al., 2018) and create two synthetic 416

benchmarks with fictitious data. 1) Context- 417

Augmented Spider (Open-Domain): We use the 418

“company_employee” relational database from Spi- 419

der to simulate a general real-world scenario. Doc- 420

uments for retrieval are synthesized using GPT-4 421

based on the database. 2) Context-Augmented 422

Spider (Closed-Domain): This is similar to the 423

first dataset, but with company names modified 424

to fictitious entities that are either unused by spe- 425

cific companies or generic according to the latest 426

GPT-4 models. 3) Aurp: To create a strictly closed- 427

domain evaluation, we synthesize fictitious facts 428

about a fictional company called Aurp. A relational 429

database and corresponding retrieval documents 430

are generated so that questions derived from the 431

database can only be answered by the provided doc- 432

uments. Details on the data synthesis process are 433

provided in Appendix G, and the database schemas 434

are outlined in Appendix F. Using these three set- 435

tings, datasets are generated by GRAMMAR-Gen 436

to validate the design of GRAMMAR-Eval. The 437

statistics of the generated datasets are summarized 438

in Table 2. 439

5.2 Results 440

This section validates the effectiveness of modu- 441

lar evaluation within the proposed framework in 442

7

identifying defective modules.443

GRAMMAR-Eval’s Effectiveness on Modular444

Evaluation The results in Table 3 highlight the445

value of modular evaluation in identifying the de-446

fective retrieval. Regardless of the methods used to447

isolate errors from the retrieval database and LLMs,448

the accuracy consistently identifies the vulnerable449

retrieval module. The next three paragraphs will450

provide a more detailed analysis.451

Preventing Forward Error Propagation Pre-452

venting the propagation of knowledge deficits from453

retrieval databases is crucial. The two proposed454

strategies effectively address this issue. In all455

benchmarks, after either removing gap groups or456

balancing gap examples, accuracy on the robust457

text form consistently outperforms the non-robust458

text form (with the exception of Row 3 in Table 3,459

where the results are very close).460

Impact of Backward Errors from LLMs on Re-461

trieval Assessment In some cases, such as Row462

3 in Table 3, language model inaccuracies reduce463

the accuracy, masking the true performance of re-464

trieval. While these instances are not prevalent in465

our dataset, they still distort the results. This dis-466

tortion may be due to the stochastic nature of the467

LM’s performance, or, in a less favorable scenario,468

because the non-robust text forms used in retrieval469

inadvertently benefit the LM. Based on the results470

from the other two datasets, it is more likely the471

former.472

Applicability of GRAMMAR to Open-Domain473

RAG Table 3 also demonstrates the effectiveness474

of GRAMMAR for performing modular evaluation475

on the open-domain Spider dataset. However, in476

open-domain settings, the GPT model may gener-477

ate accurate answers from its internal knowledge.478

This can lead to inaccuracies in assessing both the479

retrieval system’s knowledge gaps and the robust-480

ness of the retrieval mechanism. Specifically, the481

potential limitations in applying GRAMMAR-Eval482

to open-domain settings include: 1) Misjudgment483

of the Retrieval Database: Some gap examples in484

the retrieval database may go undetected, leading485

to an inflated Accretrieval_db. This issue is em-486

pirically demonstrated in Table 4, which compares487

Accretrieval_db before and after filtering out open-488

domain queries for Spider-Open. Closed-domain489

queries are identified by applying GRAMMAR to490

detect gap groups using answers from the LLM-491

only system. 2) Limitations of Context Com-492

parison: Context comparison may fail when cor- 493

rectly answered examples do not actually receive 494

sufficient context. This issue is evident in Table 495

3, where the accuracy decreased under “Context 496

Comparison” compared to “No Action.” The de- 497

crease in accuracy is likely due to the introduction 498

of incorrect context, which adds noise to the lan- 499

guage model’s generation, thereby hindering its 500

performance. In contrast, accuracy consistently 501

improves for the two closed-domain benchmarks 502

when context comparison is applied.

Accretrieval_db

With Open-Domain Queries 0.53

Without Open-Domain Queries 0

Table 4: Wrong judgement on retrieval database with
open-domain queries

503

6 Conclusions 504

In this work, we have introduced the GRAMMAR 505

framework specifically designed for Retrieval- 506

Augmented Generation (RAG) systems in closed- 507

domain settings. The data generation module 508

(GRAMMAR-Gen) improves the reliability of eval- 509

uation, while the evaluation protocol (GRAMMAR- 510

Eval) enables detailed modular analysis. 511

Reproducibility Our open-source Python pack- 512

age enables easy reproduction of all results, in- 513

cluding the regeneration of experimental data and 514

outcomes from our validation study. Detailed in- 515

structions on using the package are provided in 516

Appendix H. Due to data privacy policies, the 198 517

examples and the RAG system from the sponsoring 518

company are not included. 519

7 Limitations 520

The data generation process has certain limitations, 521

such as its inability to handle scenarios with multi- 522

ple correct answers (refer to Appendix D.1). Addi- 523

tionally, the expressiveness of the generated queries 524

is constrained by the database schema and SQL 525

(refer to Appendix D.3), limiting the ability to gen- 526

erate queries that require multi-step reasoning or 527

free-form responses. However, as demonstrated 528

in the case study, simple queries are sufficient for 529

identifying and addressing intrinsic robustness is- 530

sues within the models. 531

Besides, while the simple context comparison 532

method performs well for closed-domain evalua- 533

8

tion, it may need refinement for more complex534

retrieval tasks. This method was primarily used535

to validate the importance of modular evaluation536

and to establish a foundation, along with a reusable537

code base, for future development.538

References539

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,540
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.541
2018. Generating natural language adversarial ex-542
amples. In Proceedings of the 2018 Conference on543
Empirical Methods in Natural Language Processing,544
pages 2890–2896, Brussels, Belgium. Association545
for Computational Linguistics.546

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-547
mann, Trevor Cai, Eliza Rutherford, Katie Milli-548
can, George Bm Van Den Driessche, Jean-Baptiste549
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.550
Improving language models by retrieving from tril-551
lions of tokens. In International conference on ma-552
chine learning, pages 2206–2240. PMLR.553

Danqi Chen, Adam Fisch, Jason Weston, and Antoine554
Bordes. 2017. Reading Wikipedia to answer open-555
domain questions. In Proceedings of the 55th Annual556
Meeting of the Association for Computational Lin-557
guistics (Volume 1: Long Papers), pages 1870–1879,558
Vancouver, Canada. Association for Computational559
Linguistics.560

I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua561
Feng, Chunting Zhou, Junxian He, Graham Neubig,562
Pengfei Liu, et al. 2023. Factool: Factuality detec-563
tion in generative ai–a tool augmented framework564
for multi-task and multi-domain scenarios. arXiv565
preprint arXiv:2307.13528.566

Jonathan H Choi, Kristin E Hickman, Amy Monahan,567
and Daniel Schwarcz. 2023. Chatgpt goes to law568
school. Available at SSRN.569

Shahul Es, Jithin James, Luis Espinosa-Anke, and570
Steven Schockaert. 2023. Ragas: Automated evalua-571
tion of retrieval augmented generation.572

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,573
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.574
2021. Measuring massive multitask language under-575
standing. In International Conference on Learning576
Representations.577

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio578
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-579
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-580
täschel, Sebastian Riedel, and Douwe Kiela. 2020.581
Retrieval-augmented generation for knowledge-582
intensive nlp tasks. In Advances in Neural Infor-583
mation Processing Systems, volume 33, pages 9459–584
9474. Curran Associates, Inc.585

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting 586
Wang. 2019. Textbugger: Generating adversarial 587
text against real-world applications. In 26th Annual 588
Network and Distributed System Security Symposium, 589
NDSS 2019, San Diego, California, USA, February 590
24-27, 2019. The Internet Society. 591

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, 592
and Xipeng Qiu. 2020. BERT-ATTACK: Adversar- 593
ial attack against BERT using BERT. In Proceed- 594
ings of the 2020 Conference on Empirical Methods 595
in Natural Language Processing (EMNLP), pages 596
6193–6202, Online. Association for Computational 597
Linguistics. 598

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales. 599
2023. Selfcheckgpt: Zero-resource black-box hal- 600
lucination detection for generative large language 601
models. 602

Christopher D Manning. 2009. An introduction to infor- 603
mation retrieval. Cambridge university press. 604

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo- 605
foros Nalmpantis, Ramakanth Pasunuru, Roberta 606
Raileanu, Baptiste Roziere, Timo Schick, Jane 607
Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann 608
LeCun, and Thomas Scialom. 2023. Augmented lan- 609
guage models: a survey. Transactions on Machine 610
Learning Research. Survey Certification. 611

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike 612
Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, 613
Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. 614
Factscore: Fine-grained atomic evaluation of factual 615
precision in long form text generation. arXiv preprint 616
arXiv:2305.14251. 617

Jon Saad-Falcon, Omar Khattab, Christopher Potts, and 618
Matei Zaharia. 2023. Ares: An automated evalua- 619
tion framework for retrieval-augmented generation 620
systems. 621

Shibani Santurkar, Esin Durmus, Faisal Ladhak, Cinoo 622
Lee, Percy Liang, and Tatsunori Hashimoto. 2023. 623
Whose opinions do language models reflect? arXiv 624
preprint arXiv:2303.17548. 625

Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang 626
Zhang. 2023. In chatgpt we trust? measuring 627
and characterizing the reliability of chatgpt. arXiv 628
preprint arXiv:2304.08979. 629

Shangqing Tu, Yuanchun Wang, Jifan Yu, Yuyang Xie, 630
Yaran Shi, Xiaozhi Wang, Jing Zhang, Lei Hou, and 631
Juanzi Li. 2024. R-eval: A unified toolkit for evaluat- 632
ing domain knowledge of retrieval augmented large 633
language models. In Proceedings of the 30th ACM 634
SIGKDD Conference on Knowledge Discovery and 635
Data Mining (KDD24-ADS). 636

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming 637
Zhou, Zhongyu Wei, Zhumin Chen, and Nan Duan. 638
2022. From lsat: The progress and challenges of 639
complex reasoning. IEEE/ACM Trans. Audio, Speech 640
and Lang. Proc., 30:2201–2216. 641

9

https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/D18-1316
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
https://doi.org/10.18653/v1/P17-1171
http://arxiv.org/abs/2309.15217
http://arxiv.org/abs/2309.15217
http://arxiv.org/abs/2309.15217
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://www.ndss-symposium.org/ndss-paper/textbugger-generating-adversarial-text-against-real-world-applications/
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
https://doi.org/10.18653/v1/2020.emnlp-main.500
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
http://arxiv.org/abs/2303.08896
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
https://openreview.net/forum?id=jh7wH2AzKK
http://arxiv.org/abs/2311.09476
http://arxiv.org/abs/2311.09476
http://arxiv.org/abs/2311.09476
http://arxiv.org/abs/2311.09476
http://arxiv.org/abs/2311.09476
https://doi.org/10.1109/TASLP.2022.3164218
https://doi.org/10.1109/TASLP.2022.3164218
https://doi.org/10.1109/TASLP.2022.3164218

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,642
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-643
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir644
Radev. 2018. Spider: A large-scale human-labeled645
dataset for complex and cross-domain semantic pars-646
ing and text-to-SQL task. In Proceedings of the 2018647
Conference on Empirical Methods in Natural Lan-648
guage Processing, pages 3911–3921, Brussels, Bel-649
gium. Association for Computational Linguistics.650

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,651
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,652
and Nan Duan. 2023. Agieval: A human-centric653
benchmark for evaluating foundation models. arXiv654
preprint arXiv:2304.06364.655

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,656
Daya Guo, Yining Chen, Jiahai Wang, Jian Yin, Ming657
Zhou, and Nan Duan. 2022. Analytical reasoning of658
text. In Findings of the Association for Computa-659
tional Linguistics: NAACL 2022, pages 2306–2319,660
Seattle, United States. Association for Computational661
Linguistics.662

A Prompt Templates for LLM-Based663

Evaluation664

For SelfCheck, given that our responses are typ-665

ically concise, we opt for assessing the overall666

response rather than rather than performing a667

sentence-by-sentence validation as in the original668

implementation, as shown in Table 5.669

B Knowledge Structure and670

Representation671

Commonly, the knowledge is formalized by entities672

along with their relations, e.g., a knowledge graph,673

ontology and a database schema. Instead of using674

knowledge graphs containing concrete entities and675

their relations, we use the schema-based definition,676

where the schema is characterized by entity types677

(classes of entities). An entity type is defined by its678

name, its attributes and relations with other entity679

types that will be concretized as components in a680

database, i.e., the table name, columns and foreign681

keys.682

The definition of entity types can provide com-683

binatorial expansion of data generation, protecting684

the leak of private information (normally stored685

as rows of tables) during the data generation pro-686

cess and the ability of retrieving ground-truths via687

Structured Query Language (SQL). The three ad-688

vantages are the reasons why we represent knowl-689

edge in database schema rather than knowledge690

graphs. It disentangles the private data stored in691

the database with universal metadata expressed in692

the database schema. Since schemas and templates693

contain only meta-data for structuring the real data, 694

there is no private issue to use commercial large 695

language models for this process. 696

C Generator Criteria 697

Each criterion for the SQL generator and text gen- 698

erator (Csql and Ct, respectively) consists of brief 699

instructions provided to the LLM, specifying the 700

type of SQL or text that needs to be generated. 701

Table 6 provides examples: 702

D Details of SQL Template Generation 703

D.1 Constraints/Guidelines for Creating SQL 704

Templates 705

The constraints limit the types of templates that 706

can be generated. This section demonstrates two 707

important constraints, which are verbalized as the 708

prompt for LLMs. 709

Selecting Attributes That Are Understandable 710

to Humans The SQL template generator is re- 711

quired to follow the constraint: “The selected and 712

condition columns in the query MUST BE MEAN- 713

INGFUL and DESCRIPTIVE to ensure the queries 714

are easily understood by non-technical users.”. 715

Avoiding Answer Multiplicity In the evalua- 716

tion of question-answering (QA) models, a unique 717

challenge arises from the existence of multiple 718

valid answers to a single query, which necessi- 719

tates a nuanced approach to assessing model per- 720

formance. Consider the question: “Get the name of 721

the client associated with the project named Innova- 722

tion Precinct” For such a question, a set of correct 723

responses could include any combination of names 724

from a predefined list, such as {Apple, Amazon, 725

Meta, Facebook}. This multiplicity of correct an- 726

swers underscores the complexity of evaluating QA 727

models, as it requires the assessment mechanism to 728

recognize and validate the full spectrum of possible 729

correct answers rather than comparing the model’s 730

output against a single ’gold standard’ answer. This 731

scenario demands a more flexible method for an- 732

swer validation that can accommodate the variabil- 733

ity in correct responses. Also, evaluation metrics 734

may be required to effectively measure the per- 735

formance of QA models in handling diverse and 736

equally valid answers. Such metrics must account 737

for the exhaustive set of correct answers and evalu- 738

ate the model’s ability to retrieve any or all valid re- 739

sponses within the context of the query, thereby en- 740

suring a comprehensive assessment of the model’s 741

10

https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177
https://doi.org/10.18653/v1/2022.findings-naacl.177

SelfCheck from (Manakul et al., 2023)
Context: {context}
Sentence: {sentence}
Is the sentence supported by the context above?
Answer Yes or No: SelfCheck-QA
Query: {query}
Answer A: {answer}
Answer B: {stochastic_answer}
Do both answers address the query with equivalent meaning?
Use only “Yes” or “No” for your evaluation:

Ragas from (Es et al., 2023)
Natural language inference. Use only ’Yes’ (1), ’No’ (0) and ’Null’ (-1) as verdict.
context: {context}
statement: {statement}
verdict:

Ours
Evaluate the accuracy of the given response in relation to the true answer for the specified query. After evaluating,
provide a judgement as either “Correct” or “Incorrect” based on whether the ##Given Response## accurately
matches the ##True Answer##.
##Query##: {query}
##True Answer##: {true_answer}
##Given Response##: {given_response}
##Judgement##:

Table 5: Prompt templates for LLM-based Evaluation.

Csql: Generating SQL queries with one placeholder

Each query must contain at least one parameter placeholder in the WHERE clause.

Ct: Generating short queries

Short and Clear: Keep your queries short and straightforward.
Cut down on words and skip parts of speech, such as conjunctions and articles.
It's okay to use fragmented phrases as long as they still convey the full meaning.
Valid examples: "client of '[Project.Name]'" or "client for '[Project.Name]'";
Invalid Examples: "Find the client of a project named '[Project.Name]'.

Ct: Generating long queries

Complex Sentence Structure: Ensure your queries are always in complete sentences.
Opt for longer, more complex sentence structures,
incorporating elements of speech like conjunctions and articles for fuller expression.
Each query should be at least 30 words long.
You can add context and background information to the query.

Table 6: Examples of criteria for the SQL generator and text generator.

understanding and response generation capabili-742

ties. Generally, encompassing all valid responses743

within the database is not feasible. Hence, rather744

than let the non-robust results affect the accuracy745

of evaluation, we look for an approach to avoid it,746

i.e., only generating queries ensuring one ground-747

truth answer. Specifically, the evaluation of certain748

SQL queries, such as “SELECT Name, Depart-749

ment, BusinessAddress FROM Employee WHERE750

JobTitle = ’designer”’, requires a complete and751

thorough listing of multiple answers that can be dy- 752

namically changed. To solve the issue, the solution 753

involves adding a specific criterion to the prompt 754

for generating SQL queries. This criterion, “Ensure 755

the query yields a specific and singular answer”, 756

aims to produce queries that result in a single, clear 757

answer, thereby avoiding the complexities of mul- 758

tiple possible correct answers. For example, with 759

this criterion, the query “SELECT Industry FROM 760

Company WHERE Name = ’[Company.Name]’;” 761

11

You are a SQL query Template Generator: Generate ACCEPTABLE SQL query
templates with placeholders according to the give data schema and
requirements. A simple example of an acceptable SQL query template is:
SELECT Industry FROM Company WHERE Name = '[Company.Name]';

You must follow the basic criteria below except for other requirements:
##CRITERIA##
- The placeholder format should be a combination of a table name and
a column name, enclosed within square brackets, e.g., '[User.Name]'.
- Use only 'SELECT' queries.
- Select specific column(s) instead of using '*'. Avoid projecting
attributes that appear in the predicate.
- The selected and condition columns in the query MUST BE MEANINGFUL and
DESCRIPTIVE to ensure the queries are easily understood by non-technical
users.
- Avoid using technical column names that don't clearly signify the nature
of the entities or objects involved, e.g., column for semantically void
record identifiers.
- Do not create redundant or semantically duplicated queries when translated
into natural language.
- Each query must contain at least one parameter placeholder in the WHERE
clause.
- Ensure the query yields a specific and singular answer to avoid multiplicity
issues, thus facilitating accurate chatbot evaluation.
{SPECIFIC_REQUIREMENTS}
- If no acceptable SQL template can be generated with the given table and
column information, do not generate any text.

##RESPONSE FORMAT##
- Output each SQL template as a single line, without any prefix or suffix.
- Do not include any other text in your response, even something like
##RESPONSE_END##.

##DATA SCHEMA##
{GIVEN_SCHEMA}

##RESPONSE_START##

Table 7: A prompt template designed to guide the LLM in functioning as a controllable SQL template generator

is preferred as it’s likely to yield a singular answer762

about a company’s industry based on a specific763

company name. In contrast, without this crite-764

rion, queries like “SELECT Name FROM Com-765

pany WHERE Industry = ’[Company.Industry]’;”766

are acceptable but may result in multiple names,767

leading to evaluation difficulties due to data com-768

pleteness and query multiplicity issues.769

D.2 Possibilities Of SQL Templates770

One Table/Entity Given a schema with only one771

table, the possibilities for SQL templates can be772

analyzed by considering the basic SQL operators773

like SELECT, WHERE. Here’s a breakdown:774

• Variation in Selected Attributes (SELECT):775

The number of SQL templates varies based on776

the combination of columns selected. If the777

“Company” table has n columns, then theoret-778

ically, there are 2n − 1 possible combinations779

of columns for selection (excluding the case 780

where no column is selected). 781

• Conditions in Queries (WHERE): Each SQL 782

query can include zero or more conditions in 783

the WHERE clause. The number of possible 784

conditions is determined by the number of 785

columns, the type of each column (text, nu- 786

meric, date, etc.), and the range of operators 787

applicable to these types (like =, <, >, LIKE, 788

IN for text columns; =, !=, <, >, BETWEEN 789

for numeric columns). The complexity in- 790

creases combinatorially with multiple condi- 791

tions combined using AND/OR. 792

Two Entities The relations between tables fur- 793

ther amplifies the number of possible templates. 794

For example, with two entities, “Company” 795

and “Project,” and their associative table “Com- 796

pany_Project”, the possibilities for SQL templates 797

12

expand significantly due to the introduction of joins798

and more complex WHERE clauses. Let’s break799

down the possibilities.800

• Selection Variations (SELECT): The num-801

ber of SQL templates grows with the com-802

bination of columns selected across the803

three tables: “Company”, “Project” and804

“Company_Project”. If “Company” has n805

columns, “Project” has m columns, and “Com-806

pany_Project” has p columns, the possible807

combinations for selection are (2n − 1) ×808

(2m − 1)× (2p − 1).809

• Join Conditions (JOIN): The introduction810

of the associative table “Company_Project”811

allows for meaningful JOIN operations be-812

tween “Company” and “Project.” Templates813

can include joins like Company JOIN Com-814

pany_Project ON condition and Project JOIN815

Company_Project ON condition, or a multi-816

table join linking all three. The variety of817

JOIN conditions adds another layer of com-818

plexity to the possible templates.819

• WHERE Clause Complexity: With more ta-820

bles, the WHERE clause can include a wider821

range of conditions, potentially involving at-822

tributes from any of the three tables. The com-823

plexity increases with the number of columns824

and their types across all tables, and combina-825

tions of these conditions.826

D.3 Limitations827

Scope of Using Automated SQL Generators828

The effectiveness of queries generated by LLMs829

hinges on the meaningfulness of table and column830

names to accurately reflect the essence of the en-831

tities or concepts they represent. If these names832

lack contextual clarity, the resulting queries may833

be impractical. To mitigate this, practitioners can834

conduct an informal assessment or consult estab-835

lished benchmarks that evaluate LLMs’ proficiency836

in domain knowledge and commonsense reasoning,837

for instance, (Zhong et al., 2023; Hendrycks et al.,838

2021).839

Queries Beyond SQL Expressiveness While840

SQL and relational algebra offer a wide range of841

operations enabling the formulation of numerous842

user queries, certain semantic nuances exceed the843

expressive capabilities of SQL. The following ex-844

amples illustrate such limitations:845

• Real-world queries often contain ambiguity 846

and subjective interpretations that SQL strug- 847

gles to accommodate. For instance, the term 848

“major” in the query “What are some major 849

rail projects we’ve been involved with?” does 850

not directly translate into SQL criteria without 851

additional interpretative steps. 852

• SQL queries are typically structured to elicit 853

specific, predefined responses, contrasting 854

with the open-ended nature of many real- 855

world inquiries that seek exploratory or com- 856

prehensive answers. 857

E Breakdown of Scalable Data 858

Generation 859

The scalability of the proposed data generation pro- 860

cess is achieved through two key factors: 1) the 861

creation of templates using various SQL formu- 862

lations from a modest, manually crafted database 863

with a limited number of attributes and rows, and 864

2) the generation of text queries with LLMs. The 865

potential number of query permutations can be ex- 866

pressed succinctly by the formula (see Figure 2 for 867

a visual representation): 868

Total Query Variations = M ×N ×Q, (4) 869

where “M” denotes the array of SQL templates that 870

can be extracted from a given schema, “N” refers 871

to the vast number of text templates that can be pro- 872

duced from a single SQL template, showcasing the 873

flexibility of natural language, and “Q” accounts 874

for the broad spectrum of text queries that can be 875

generated from a single text template, with this 876

diversity arising from different combinations of 877

unique values filling the placeholders. 878

Let’s break down each step of the proposed data 879

generation process: 880

• 1 schema ⇒ M SQL Templates: The num- 881

ber of possible SQL templates (M) that can 882

be generated from a defined schema is influ- 883

enced by the SQL operators used, the number 884

of tables, and the columns in the database 885

schema. Each combination of tables and 886

columns, along with different SQL operators 887

(like SELECT, WHERE, JOIN), can lead to 888

a unique SQL query template, e.g., the ex- 889

ponential complexity of the SELECT opera- 890

tor, and the combinatorial increase of possi- 891

ble predicates (See Appendix D.2 for details). 892

Note that while the theoretical maximum is 893

13

high, practical and meaningful queries will be894

a smaller subset, as specified in the case study895

and Appendix D.896

• 1 SQL Template ⇒ N Text Templates: For897

each SQL template, there can be an arbitrary898

number (N) of textual expressions. This varia-899

tion arises from the different ways to linguis-900

tically express the same SQL query due to the901

flexibility and richness of natural language,902

e.g., the variation of synonyms and sentence903

structures.904

• 1 Text Template ⇒ Q Text Queries: Each text905

template can lead to a number of text queries906

(Q), depending on the unique values avail-907

able for each placeholder. With more than908

one placeholder, the potential for growth in909

the number of text queries is combinatorial,910

barring semantic conflicts (context conflict),911

where certain combinations of column values912

may not be semantically valid. Overall, this913

framework demonstrates a combinatorial ex-914

pansion at each transition stage, especially915

notable in steps involving natural language916

due to its inherent variability. However, this917

growth is tempered by practical constraints918

such as the meaningfulness of queries (seman-919

tic validity) and the actual data distribution920

in the database. The exponential increase is921

most pronounced in the transition from text922

templates to text queries, where the permuta-923

tions of placeholders can lead to a vast array924

of unique query possibilities.925

F Database Schema Overview926

Figures 3a and 3b illustrate the database schemas927

used for an actual industrial context and a fabri-928

cated scenario, respectively, within our research.929

G Synthetic Processes for Data930

Generation931

G.1 Aurp Setup932

The generation starts from a company profile,933

i.e., a fictitious company named Aurp, and then934

goes to structural knowledge to create a relational935

database, including organizational structures, em-936

ployees, clients and projects. Finally, all the infor-937

mation above is used to generate synthetic project938

documents. Below is a detailed process.939

1. Generating Company Profile: Initially, a 940

company profile for Aurp is created, detail- 941

ing its foundation year, headquarters location, 942

CEO, number of employees, and the services 943

it offers, such as bespoke architectural solu- 944

tions, sustainable urban planning, and struc- 945

tural health monitoring. 946

2. Generating Organizational Structure: Next, 947

a project-oriented organizational structure is 948

established, naming key positions and employ- 949

ees within the company, similar to real-world 950

firms. This includes a wide range of roles 951

from executive positions to specialized engi- 952

neers and support staff. 953

3. Generating Employee Information: For 954

each employee listed in the organizational 955

structure, detailed job titles, departments, and 956

direct supervisors or managers are fabricated, 957

creating a network of relationships and report- 958

ing lines within the company. 959

4. Generating Client Information: The pro- 960

cess creates a list of ten clients across vari- 961

ous industries—ranging from technology and 962

real estate to hospitality and healthcare—each 963

with specified locations, thereby illustrating 964

the company’s diverse portfolio. 965

5. Generating Projects: Specific projects are 966

then devised, including names, locations, start 967

and end dates, clients, project directors, and 968

project managers. This step integrates pre- 969

viously generated data (client and employee 970

information) to create realistic project scenar- 971

ios. 972

6. Generating Project Reports: This step in- 973

volves synthesizing data from the previous 974

steps to produce detailed analyses, updates, 975

and outcomes of the various projects, which 976

may or may not contain detailed information 977

for clients and employees. 978

G.2 Context-Augmented Spider 979

Since relational databases have been constructed 980

in Spider, simple company and employee profiles 981

with factual knowledge are manually crafted using 982

the stringified templates in Table 8. The simple 983

profiles are then used to prompt GPT-4 to generate 984

Wikipedia-style pages containing 200-400 words. 985

Knowledge required for queries is sparse in all 986

documents. 987

14

(a) Spider. (b) Aurp.

Figure 3: Entity-Relationship Diagrams for Data Generation

Company Profile
Name: {company_name}
Headquarters: {headquarter}
Industry: {industry}
Sales in Billion: {sales}
Profits in Billion: {profits}
Assets in Billion: {assets}
Market Value in Billion: {market_value}

Employee Profile
Name: {name}
Age: {age}
Nationality: {nationality}
Graduation College: {graduation_college}

Table 8: Templates for company and employee profiles.
Placeholders in curly brackets will be replaced by fac-
tual information in Spider databases.

Evaluation of Factuality in Generated Docu-988

ments To evaluate the factuality of generated989

documents, a Machine Reading Comprehension990

(MRC) task is setup, where the generated docu-991

ment is given as context to answer the questions992

encoding the facts it generate on. Note that the993

correct answer can only source from the generated994

document.995

H Reproducing Data and Results996

H.1 Reproducing Data997

The following steps illustrate how to use our open-998

source tool to reproduce the data. The datasets are999

also available along with the tool.1000

from grammar.db_tool import DBTool1001
from grammar.llm import AnyOpenAILLM1002
from grammar.sql_template_generator1003

import SQLTemplateGenerator1004
from grammar.text_template_generator1005

import TextTemplateGenerator1006
from grammar.qa_generator import1007

QADataGenerator1008

1009
1010

llm = AnyOpenAILLM(model_name = "gpt4 - 1011
short") 1012

1013
setup_env = "aurp" 1014
if setup_env == "spider" or setup_env == 1015

"spider_closed": 1016
database_name = 'spider ' 1017
connection_string = f'sqlite :///{ 1018
database_name }/ rel_database/ 1019
company_employee.sqlite ' 1020
schemas = [('company ',), ('people ',) 1021
, ('company ', 'people ')] 1022

elif setup_env == "aurp": 1023
database_name = 'Aurp' 1024
connection_string = "mysql+pymysql 1025
:// root:password@localhost :3306/ Aurp 1026
" 1027
schemas = [('client ',), ('employee ' 1028
,), ('project ',)] 1029

db_tool = DBTool(connection_string) 1030

Step 1: Generate SQL Query Templates 1031
file_path = f"{setup_env }/ 1032

SQLTemplateGenerator/sql_templates. 1033
json" 1034

sql_template_generator = 1035
SQLTemplateGenerator.from_file(1036
file_path , sql_connection= 1037
connection_string , llm=llm) 1038

entities_to_sql_templates = 1039
sql_template_generator. 1040
generate_batch(schemas , override= 1041
False , verbose=True) 1042

sql_templates = [tpl for entity , tpls in 1043
entities_to_sql_templates.items() 1044

for tpl in tpls] 1045

Below are examples of generated SQL templates 1046

in JSON format, where the templates are keyed by 1047

table names. 1048
1049

{ 1050

"('client ',)": [1051

"SELECT Location FROM 1052

Client WHERE Name = '[Client. 1053

Name] ';", 1054

15

"SELECT Industry FROM1055

Client WHERE Name = '[Client.1056

Name] ';"1057

],1058

"('employee ',)": [1059

"SELECT JobTitle FROM1060

Employee WHERE Name = '[1061

Employee.Name] ';",1062

"SELECT Department FROM1063

Employee WHERE Name = '[1064

Employee.Name] ';",1065

"SELECT1066

SupervisorOrManager FROM1067

Employee WHERE Name = '[1068

Employee.Name] ';"1069

],1070

...1071

}10721073

Step 2: Generate Text Query Templates1074
linguistic_attr = "long"1075
file_path = f'{setup_env }/1076

TextTemplateGenerator /{1077
linguistic_attr }.json'1078

text_template_generator =1079
TextTemplateGenerator.from_file(1080
file_path=file_path , verbalize_attrs1081
=linguistic_attr , llm=llm) # Load1082
existing generations to avoid re-1083
generation1084

sql_to_text_templates =1085
text_template_generator.1086
generate_batch(sql_templates ,1087
verbose=True , num_generations =3,1088
override=False)1089

text_template_generator.save(file_path=1090
file_path , override=True)1091

Below are examples of generated text templates1092

saved in JSON format.1093
1094

{1095

"SELECT StartDate FROM1096

Project WHERE Name = '[Project1097

.Name] ';": [1098

"Start date for project '1099

[Project.Name] '",1100

"Look up start date of '[1101

Project.Name]'",1102

"Get '[Project.Name]'1103

start date"1104

],1105

...1106

}11071108

Step 3: Generate Evaluation Data (Text1109
Queries and Answers)1110

save_file = f"{linguistic_attr }.json"1111

qa_generator = QADataGenerator(db_tool) 1112
all_answers_to_text_queries = 1113

qa_generator.generate(1114
sql_to_text_templates) 1115

qa_generator.save(1116
all_answers_to_text_queries , 1117
database_name , save_file , overwrite= 1118
True) 1119

Below are examples of generated query-answer 1120

pairs saved in JSON format. 1121
1122

[1123

[1124

"[('Maldives ',)]", 1125

[1126

"Get 'Blue Horizon 1127

Hotels ' location details", 1128

"Find which location 1129

'Blue Horizon Hotels ' is 1130

located in", 1131

"Determine the 1132

location of 'Blue Horizon 1133

Hotels '" 1134

] 1135

], 1136

... 1137

] 11381139

H.2 Reproducing Experiment Results 1140

The tool aslo provides two high-level Python ob- 1141

jects to reproduce results from our experiments: 1142

TaggedGroup to perform tagging on each seman- 1143

tic groups and generate metrics for modular eval- 1144

uation. The code below demonstrates an example 1145

to reproduce the results in Table 3. The input to 1146

get_eval_results and TaggedGroup is a list 1147

of RAGResult objects, which is a data class in- 1148

cluding a query, the ground-truth answer and the 1149

RAG response. 1150

import json 1151
from grammar.eval.result import 1152

RAGResult 1153
from grammar.eval.tag_group import 1154

TaggedGroup 1155
from grammar.eval.match import 1156

SemanticsMatch 1157
1158

def get_eval_results(eval_results , 1159
linguistic_attr , root_dir , file_path 1160
): 1161
tagged_group = TaggedGroup(1162
eval_results) 1163
semnatics_match = SemanticsMatch. 1164
from_file(root_dir=root_dir , 1165
verbalize_attrs=linguistic_attr) 1166

1167
for eval_result in eval_results: 1168

16

sleep for 20 seconds after 91169
examples1170

if results.index(result) % 91171
== 0 and results.index(result) != 0:1172

print(" Sleeping for 201173
seconds ")1174

time.sleep (20)1175
print(" Waking up")1176
eval_result.1177

judge_retrieval_response(1178
tagged_group=tagged_group , method='1179
use_exist ')1180

eval_result.judge_rag_response(1181
semnatics_match)1182

1183
num_retrieval_failure = sum([result.1184
retrieval_judgement ==0 for result in1185
eval_results])1186
print(f"Retrieval failed in {1187
num_retrieval_failure} out of {len(1188
eval_results)} examples")1189
num_rag_failure = sum([result.1190
judgement =="Incorrect" for result in1191
eval_results])1192
print(f"RAG failed in {1193
num_rag_failure} out of {len(1194
eval_results)} examples")1195
semnatics_match.save(root_dir=f'{1196
root_dir}', override=True)1197
semnatics_match.llm.1198
gpt_usage_record.write_usage(1199
model_name='chatgptk ')1200

1201
save results1202
results = [result.asdict () for1203
result in eval_results]1204
ensure json serializable1205
for result in results:1206

result['true_document_ids '] =1207
list(result['true_document_ids '])1208

result['retrieved_document_ids ']1209
= list(result['1210

retrieved_document_ids '])1211
with open(file_path , 'w') as f:1212

json.dump(results , f, indent =4)1213
1214

return eval_results , tagged_group1215
1216

root_dir = 'aurp'1217
closed_domain = True1218
results , metric = get_eval_results('1219

short ', root_dir , file_path=f'{1220
root_dir }/ eval_results/1221
results_short_balanced.json')1222

1223
re-produce metrics in Table 31224
print('Baseline Accuracy: ', metric.1225

get_accuracy ())1226
print('Accuracy (Remove LLM Errors): ',1227

metric.get_accuracy(for_retrieval=1228
True))1229

print('Removing Gap Examples: ', metric.1230
get_robustness ())1231

print('Removing LLM Errors & Gap1232
Examples: ', metric.get_robustness(1233
for_retrieval=True))1234

17

	Introduction
	Background
	Is Reference-free Evaluation Reliable?
	GRAMMAR
	Generating Query Templates
	From Templates To Evaluation Data
	Modular Evaluation

	A Toy Case for Validation: Detecting A Vulnerable Retrieval
	Experiment Setup
	Results

	Conclusions
	Limitations
	Prompt Templates for LLM-Based Evaluation
	Knowledge Structure and Representation
	Generator Criteria
	Details of SQL Template Generation
	Constraints/Guidelines for Creating SQL Templates
	Possibilities Of SQL Templates
	Limitations

	Breakdown of Scalable Data Generation
	Database Schema Overview
	Synthetic Processes for Data Generation
	Aurp Setup
	Context-Augmented Spider

	Reproducing Data and Results
	Reproducing Data
	Reproducing Experiment Results

