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ABSTRACT

Multi-Agent Reinforcement Learning currently focuses on implementations
where all data and training can be centralized to one machine. But what if lo-
cal agents are split across multiple tasks, and need to keep data private between
each? We develop the first application of Personalized Federated Hypernetworks
(PFH) to Reinforcement Learning (RL). We then present a novel application of
PFH to few-shot transfer, and demonstrate significant initial increases in learn-
ing. PFH has never been demonstrated beyond supervised learning benchmarks,
so we apply PFH to an important domain: RL price-setting for energy demand
response. We consider a general case across where agents are split across multiple
microgrids, wherein energy consumption data must be kept private within each
microgrid. Together, our work explores how the fields of personalized federated
learning and RL can come together to make learning efficient across multiple tasks
while keeping data secure.

1 INTRODUCTION

As Reinforcement Learning (RL) is brought to bear on pressing societal issues such as the green
energy transition, the types of environments that RL must perform well in may display characteristics
exotic to classical RL environments. Real applications at scale may require privacy guarantees which
are not provided by modern multi-agent RL algorithms as they may train on privileged or corporate
data (Lowe et al., 2017; Sunehag et al., 2017; Rashid et al., 2018); any app that personalizes an
RL agent to individual users must take care to protect their privacy by not storing all their data in
a central server. Real world applications will also likely feature heterogeneous tasks; every user,
robot, energy system will have different traits that cannot be accounted for by ”one size fits all”
algorithms. As previous work in privacy-preserving RL (Qi et al., 2021; Wang et al., 2020c; Ren
et al., 2019; Anwar & Raychowdhury, 2021) does not extend to personalized models, the competing
goals of privacy and personalization must be accomplished at the other’s expense.

One approach toward privacy preservation by decentralizing data servers within supervised learning
is federated learning (Shokri & Shmatikov, 2015). Federated learning algorithms train a global
model from gradient updates sent by individual clients training on their own data, which is never
sent to the central server. An extension of federated learning technique is personalized federated
learning using hypernetworks (PFH, Shamsian et al. (2021)), which allows for behavior tailored to
individual heterogeneous tasks by splitting the model into a global common component (i.e. the hy-
pernetwork), and a local individual component (a local network generated by the hypernetwork),
which is tailored to each client. This task specialization allows for learning common features to-
gether in the global component while allowing for learning client-specific knowledge in the local
component.

We present a novel application of PFH to RL in a realistic power systems setting that requires
both privacy and heterogeneity in agents to accommodate diverse, sensitive environments. An RL
controller optimizing hourly transactive energy pricing has been shown to optimize energy usage (Li
& Hong, 2014; Spangher, 2021; Vázquez-Canteli et al., 2019; Agwan et al., 2021) by incentivizing
consumers, at the scale of groups of buildings (microgrids) or office workers within buildings, to
shift demand to different times of day. By guiding consumers to defer energy demands to hours
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when solar is especially active, it is possible to drop a building’s carbon impact to 48% of normal
operation through RL price-setting (Jang et al., 2022), which could have massive implications for
grid sustainability. However, RL can be extremely data hungry; prior transactive control attempts
required about 80 years of training data (Agwan et al., 2021).

To increase the amount of data available, we consider multiple RL agents, each managing their own
(slightly different) microgrid through energy prices and collecting data in parallel. This microgrid
environment is a multi-task, multi-agent setup in which the management of each microgrid, through
prices, constitutes a task. We characterize our problem as multi-agent because we have multiple RL
agents optimizing a shared reward (total profit), and multi-task because optimization of profit in each
of the different microgrids presents tasks that are related but also independent due to differences
in size, number of batteries in each building, etc. We hypothesize we can accelerate training by
incorporating data from multiple microgrids with different characteristics. Learning to set prices
using data from multiple microgrids (source tasks) also opens the door to few-shot learning in new
microgrids (target tasks), wherein we learn to generate near-optimal prices for a microgrid very
quickly.

However, energy data is data in which privacy concerns are paramount. It is our hope to contribute to
privacy protection by aggregating learning, not data, to one central source. Not only would keeping
data of buildings’ energy consumption at one central location present a major privacy concern if this
central machine is compromised, but message passing of the raw data could present an additional
source of vulnerability. Although each microgrid might have access to the data of a few buildings
at a time, the scale of damage would be much larger if data was stored in a central server across
multiple microgrids.

We now present a hypothetical setting in which our architecture would be useful. One could imagine
a hacker being able to learn when the hypothetical company CovertAI trains their new 80 quintillion
parameter language model CPT-4 from the energy consumption of CovertAI’s compute warehouses.
The hacker could sabotage power lines at the right moment to erase learning gains. They may
then turn their attention to residential neighborhoods. Here, they could figure out when people
are not home from the energy consumption of domestic buildings, timing a theft; they could also
disaggregate energy signals to learn the appliances the homeowner has or glean sensitive health
information if medical devices produce noticeable patterns in energy consumption.

Applying PFH to the energy application remedies both of these competing issues. PFH takes
privacy-preservation into account by design, and accounts for heterogeneous tasks by generating RL
agents individualized to each microgrid’s size, number of solar panels, batteries, etc. We demon-
strate that PFH learns the underlying factors that define an environment by applying PFH to the
microgrid price-setting problem, where we observe increases on the scale of millions of dollars in
total microgrid profit (reward) over federated and local learning. We also demonstrate how PFH
can be used for few-shot transfer learning for new local agents entering the system by reporting
drastic training speed-ups (>100x) when transferring from source tasks to target tasks. Thus PFH
drastically increases the feasibility of RL for energy price-setting.

Methodologically, our paper is novel in its presentation of an adaptation of a state of the art privacy-
preserving algorithm to RL. To our knowledge1, we are the first to explicitly apply personalized
federated learning to multi-task, multi-agent RL when centralized learning and joint action-values
are unavailable. Application-wise, our paper is also novel in its improvement in energy demand
response across heterogeneous microgrids. We hope our work highlights an important microgrid
environment to the RL community, helps establish the use of PFH within RL, and allows for RL to
address problems where learning speed and privacy are fundamental.

2 DEFINITIONS

Energy Demand Response is a technique used by grid operators to incentivize consumers to shift
demand to times when it is better for grid stability/climate emissions, such as when solar energy
peaks. Demand response has the same function as grid-level batteries would in easing the volatility
of wind and solar energy and is seen as an important tool in the energy transition (Albadi & El-
Saadany, 2007).

1See Appendix A for a discussion of related work.
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A microgrid is defined as a small group of buildings that transacts energy with each other through
some energy aggregator, governed by an hourly energy pricing scheme. One may imagine they are
situated close together with respect to not only geography but also the wiring topology of the grid,
making trading within the microgrid preferable to trading with the grid. We will refer to groups of
microgrids as ”microgrid clusters ”. 2

A prosumer is an entity that both consumes and produces energy, like a building with rooftop solar.

We wish to disambiguate between multi-task and multi-agent for the reader’s convenience. We use
them in the conventional sense: multi-task relates to multiple, related settings (in our case slightly
different MDP’s in each different microgrid) whereas multi-agent refers to multiple different poli-
cies.

A hypernetwork is a neural network that outputs the weights of another neural network.

A privacy-preserving algorithm is one that does not require communication or storage of raw data
samples to a central server.

3 METHODS

3.1 LEARNING ENVIRONMENT

The MicrogridLearn (Agwan et al., 2021) environment is an OpenAI Gym (Brockman et al., 2016)
environment used to study RL-set pricing in prosumer aggregations. Specifically, the environment is
structured such that an RL agent and an energy utility both broadcast a day’s worth of hourly buy and
sell prices; A⃗b, A⃗s, and U⃗b, U⃗s, respectively, to a microgrid’s simulated prosumers, who choose at
the beginning of the day which hours they will transact with the RL agent and which hours they will
transact with the energy utility. Each prosumer is an office building composed of a year’s worth of
historical data and user-defined, non-negative battery and photovoltaic capacities3 At every step, i.e.
one day where all 24 hours are considered, every prosumer solves a convex optimization optimizing
their battery charging/discharging, u⃗+, u⃗−, to maximize their individual profit; i.e.:

argmax
u⃗+,u⃗−

[
⟨max(A⃗s, U⃗s), (e⃗s + u⃗+)⟩ − ⟨min(A⃗b, U⃗s), (e⃗b + u⃗−)⟩

]
(1)

Where e⃗s, e⃗b are inflexible energy generation and consumption, respectively, of the prosumers, ⟨a, b⟩
is a dot product, and the min and max are taken elementwise. The first term, i.e. the element-wise
maximum, is thus the gross profit from energy each prosumer sells, and the second term, i.e. the
element-wise minimum, is the gross expenditures from energy each prosumer buys. Please note that
every vector here may be considered a 24 hour vector, and that opposing actions are exclusive (i.e.
sell and buy, or charge and discharge.) Thus, entries in the sell vector in which the prosumer is buy-
ing are represented by 0’s. By ensuring that each prosumer has the ability to transact with either the
utility or the microgrid, we incentivize the microgrid to output prices that are better than the utility,
guaranteeing a better experience for prosumers under this microgrid structure. One important sim-
plification we have made is that we model human behavior as fixed in e⃗b relative to the price signal;
we do not expect humans to change behaviors (e.g., eating lunch at a different time to take advan-
tage of cheaper energy prices). We only model how distributed batteries could be automatically
controlled to maximize the prosumer’s profit.

In an environment with this collection of prosumers, the RL agent solves an MDP defined by state
space S := (U⃗s, U⃗b, g⃗, e⃗b,t−1, e⃗s,t−1) ∈ R24+24+24+24+24, where g⃗ is the day’s solar prediction4

and the e⃗b/s,t−1 are prosumer buying and selling energy from the previous day. The RL controller
emits actions A := (A⃗b, A⃗s) ∈ R24+24. The agent seeks to maximize a long term discounted reward
defined by its individual profit, i.e.:

2Please note that while ”microgrid clusters ” does appear in the literature, there is no clear consensus around
the term being the only appropriate term for multiple connected microgrids.

3The photovoltaic output is defined by a fixed year’s worth of solar generation for one unit of panels, which
is then scaled by the number of photovoltaic panels assigned at initialization.

4The day’s solar predictions are simply read from a csv.
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argmax
A⃗b,A⃗s

[
⟨A⃗b, E⃗b⟩ − ⟨A⃗s, E⃗s⟩

]
(2)

We somewhat abuse the E⃗ notation to conveniently define E⃗b/s as the total amount of energy bought
from or sold to the RL agent hour to hour.

Figure 1: Microgrids and PFH: A. We imagine a prosumer that can, at each hour of the day, choose
to sell energy surplus or purchase unmet energy demand from the larger utility or to the microgrid
aggregator. The microgrid aggregator’s energy buy/sell prices are determined by an RL controller.
B. A Hypernetwork for Personalized Federated Learning (PFH) receives gradient updates from RL
controllers and sends back weights. C. The hypernetwork takes as input an environment embedding
vector and outputs weights for an RL controller. The RL agent takes as input buy/sell prices from the
utility and outputs buy/sell prices to the buildings in the microgrid the agent manages. The RL agent
sends back a gradient update to the hypernetwork, which uses the update to compute the gradient
update for the hypernetwork’s own weights.

Because the agent is an aggregator that does not generate its own energy, the profit the agent gener-
ates comes from the difference in price between the energy it buys from prosumers at that timestep
and the energy it sells to prosumers at that timestep. Any excess supply or demand is transacted with
the energy utility. In this way, the environment neatly models a realistic transactive system.

3.2 REINFORCEMENT LEARNING

We use Proximal Policy Optimization (Schulman et al., 2017) (PPO), a popular actor-critic based
algorithm, to train all of our RL agents to solve the MDP introduced in 3.1 because PPO is reliable
and highly performant. Note that both algorithms introduced in 3.3 and 3.4 are agnostic to the
architecture of the local policies, so one could use any gradient-based model.

3.3 FEDERATED LEARNING

In order to learn a shared model between multiple microgrids in a privacy preserving manner, we
turn to federated learning. McMahan et al. (2017) presented what is now the most popular federated
learning scheme: Federated Averaging (FedAvg). FedAvg is simple to implement. Denote the
parameters for the policy for microgrid i at timestep t as θit. All the θi0 are initialized with the
same weights, so θ10 = θ20 = ... = θn0, etc. Then each policy trains on its own microgrid for k
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local steps, producing a new θ′ik for each microgrid, which has adapted to be better at price-setting
in microgrid i than the original θi0. All the θ′ik are transmitted back to a central server, where they
compute the shared model for the next iteration by averaging all the θ′ik.

θ1k = θ2k = ...θnk =
1

n

n∑
i=1

θ′ik (3)

Then the local models train on their own, send trained models back to a central server, and repeat.
Sending model information only preserves privacy because only the parameters θit’ are commu-
nicated with the central server, never any data. Note that in our setup, every client participates in
the weight exchange process, not just a sampled subset of the clients. While FedAvg is a simple
algorithm that performs well in supervised learning, it learns a global policy for all the price-setting
agents. In our case, a global model is not ideal as microgrids may have different energy consump-
tion/supply behaviors.

3.4 HYPERNETWORKS FOR PERSONALIZED FEDERATED LEARNING (PFH)

To learn a shared model that is still able to personalize to individual microgrids, we turn to hy-
pernetworks for personalized federated learning. (Shamsian et al., 2021). Personalized federated
learning algorithm has found great success in supervised learning, beating FedAvg and personal-
ized federated learning approaches based on meta-learning (Fallah et al., 2020), Moreau Envelopes
(T Dinh et al., 2020), and Personalization Layers (Arivazhagan et al., 2019). However, personalized
federated learning has never been used before for RL.

Now we will describe PFH more formally. Please refer to Fig. 1 for a visual of the algorithm,
and Algorithm 1 for pseudocode. Consider again θit ∈ Rm as an m dimensional vector denoting
the parameters of the policy for microgrid i at timestep t. A hypernetwork is a neural network
that outputs the parameters of another neural network. We will have one global Hϕt

∈ Rl → Rm

parameterized by ϕt. Hϕt
takes as input an environment embedding vector vi ∈ Rl, which is learned

for each environment along with the hypernetwork. We initialize θi0 = Hϕ0
(vi) ∀i ∈ [1, ..., n].

Then each5 local agent trains for k steps, producing new parameters θ′ik. Then, ∆θik = θ′ik − θi0, is
sent back to the central server, where it is used to update the hypernetwork:

ϕk = ϕ0 −
1

n

n∑
i=1

α∇ϕ0
θTi0∆θik (4)

Since the hypernetwork outputs neural networks conditioned on the environment, it is able to create
RL agents that are personalized to the needs of each microgrid. We also still preserve privacy by
only communicating parameters with the central server instead of data.

3.5 DIVERSITY AND OPTIMAL USE OF PFH

One factor that could affect the relative performance of PFH is the heterogeneity of the scenario.
A homogeneous scenario (imagine a cookie-cutter residential neighborhood) could be suitable for
federated learning methods due to similarity in behavior. In contrast, an extremely heterogeneous
scenario (imagine mixed-use city blocks with night-life, shopping, and residential real estate) could
have wildly different energy demands, which may be better learned by individual local networks
without any mechanism to share learning. We hypothesize PFH will perform competitively in some
average of these two extremes. If local environments are diverse yet share similar underlying mech-
anisms, PFH will be able to fit to local conditions while sharing information on common trends.

5Note our setup is slightly different from the original PFH (Shamsian et al., 2021); every client participates
in each round, not just a sampled subset of clients. We made this small variation to better understand whether
scaling the algorithm to larger numbers of microgrids would be useful.
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Algorithm 1 Personalized Federated Hypernetworks

Input: Environments E and hypernetwork Hϕ. For each environment e ∈ E, an RL policy A(e)
and hypernetwork-specified parameters Hϕ(e).
Hyperparameters: Number of rounds R, number of local training steps per hypernetwork update
K, learning rate α.
for r = 1, . . . , R do

for environment e ∈ E do
Get parameters θ̃(e) := θ(e) := Hϕ(e).
for k = 1, . . . ,K do

Collect rollouts R from e using policy A(e) with parameters θ̃(e).
Update θ̃(e) using PPO with rollouts R.

Initialize ϕ̄update := 0.
for environment e ∈ E do

∆θ(e) := θ̃(e)− θ(e)

ϕ̄update := ϕ̄update +
∇ϕθ(e)

T∆θ(e)
|E|

Update hypernetwork parameters ϕ = ϕ− α · ϕ̄update.

4 EXPERIMENTAL SETUP

4.1 SIMULATING DIVERSE MICROGRIDS

Because each microgrid is defined by a distribution of photovoltaics and battery sizes, we propose a
simple way to tweak the amount of diversity in a system. We sample photovoltaic and battery sizes
from normal distributions, changing the variance σ2 as the diversity parameter, and round outcomes
to the nearest integer6 We sample from N (µ = 100, σ = 10) for low diversity cases, N (100, 30)
for medium diversity and N (100, 50) for high. We note here that we have chosen the low, medium,
and high cases such that 95% of samples (i.e. 2 standard deviations around the mean) in the high
case hit realistic bounds in the environment; i.e., 0 (an obvious lower bound) and 2007.

4.2 BASELINES

We compare PFH against FedAvg and two other baselines. First, we observe what happens with no
RL control at all; the microgrid aggregator outputs prices that are exactly the same as the utility’s.
We assume buildings choose to meet half their energy demand/surplus with the utility and half with
the aggregator. Our second baseline is the approach used in Agwan et al. (2021): training all the
local RL controllers with only their own data: no central model or inter-microgrid communication.
These two baselines, no RL and local control, are designed to highlight the added value of RL8 to
the task of price-setting for energy demand response in microgrids, and the added value of having
some central model that aggregates learning across multiple microgrids, respectively.

For specification on how we selected hyperparameters, please see Appendix E.

6As we are sampling from a “hyper” distribution to instantiate houses, the means of the distribution are not
as important as the variances in instantiating diversity.

7200 is a realistic upper bound in both solar panels and batteries: 200 solar panels would require an area of
60 x 70 ft, which bounds the square footage of many commercial roofs, and 200 batteries would be a realistic
upper bound of entities not engaging in commercial grid services.

8The most common non-RL methods for microgrid price-setting are iterative pricing methods (IP) (Liu
et al., 2017; Wang & Huang, 2016) in which buildings ”bargain” with microgrids to reach equilibrium prices.
We exclude these baselines because they require each building to develop their own demand forecasts. This
requirement raises the computational barrier for entry by an order of magnitude. For comparison, if we had
10 microgrids with 10 buildings each, local RL requires training 10 models (10 microgrids), PFH and FedAvg
requires 11 (10 microgrids + 1 central model), and IP requires 100 (10 buildings x 10 microgrids). Agwan et al.
(2021) also showed RL results in less volatile pricing curves and better performance compared to IP.
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Table 1: Cumulative profits above base utility pricing after 10,000 days, in hundred thousands.

Scenario PFH FedAvg Local Baseline

Simple, 5 agents 39.23 45.75 43.72

Simple, 10 agents 42.11 41.65 43.18

Simple, 20 agents 40.85 34.52 42.82

Medium, 5 agents 47.50 40.95 40.12

Medium, 10 agents 46.89 43.82 41.73

Medium, 20 agents 48.22 39.38 39.66

Complex, 5 agents 34.77 32.66 35.60

Complex, 10 agents 43.01 42.08 45.24

Complex, 20 agents 44.39 38.70 40.78

4.3 MULTI-TASK TRANSFER

An interesting feature of our hypernetwork-based setup is the potential for multi-task learning and
few-shot transfer learning. The optimization problem of setting prices for each microgrid can be
viewed as an individual task. Since the hypernetwork should learn some common strategies for each
task, we tested whether it can generalize to unseen tasks with little training. To test this hypothesis,
we simply take a hypernetwork that has trained for to manage a microgrid cluster with 20 microgrids
of medium diversity and train the hypernetwork to manage a new microgrid cluster of 20 microgrids
with the same level of diversity. By pretraining our hypernetwork on 20 varied source tasks, we hope
to encode enough knowledge applicable to the new target tasks to make few-shot transfer learning
possible. We will refer to such a pretrained hypernetwork as a Few-Shot PFH.

5 RESULTS AND DISCUSSION

5.1 PFH ACCELERATES LEARNING IN MEDIUM DIVERSITY MICROGRID CLUSTERS

Fig. 2 shows average daily profit gained by each microgrid in a microgrid cluster with 5, 10, and
20 microgrids, with varying amounts of diversity. The middle column of Fig. 2 shows PFH is
more efficient and profitable for a microgrid cluster than a microgrid cluster under a FedAvg or local
control scheme. As shown in Table 1, PFH results in up to $8,500,000 of additional cumulative profit
after 10,000 days over the local control baseline in a microgrid cluster with 20 microgrids. However,
this advantage does not carry over to cases of small or large diversity. For less diverse scenarios,
PFH was comparable or less profitable than FedAvg or local control. For more diverse scenarios,
local control was generally more profitable. The number of microgrids in microgrid clusters also
did not seem to have much effect on learning speed here.

5.2 FEDAVG RECOVERS LOCAL PERFORMANCE AT BEST

Curiously, our results indicated that FedAvg presented did not improve the management of a mi-
crogrid cluster over a collection of local agents. We had expected FedAvg to perform better in the
homogeneous case, and to scale with the number of agents, but neither effect appears in our results.
Although FedAvg may perform well in supervised learning (McMahan et al., 2017), it may not ex-
tend well to RL. We explain FedAvg’s poor performance as follows: unlike supervised learning,
RL requires exploration and already suffers from non-IID data. When aggregating learning across
different heterogeneous environments, this issue of learning from non-IID data may have been ex-
acerbated, slowing down learning. Furthermore, the setting of federated learning may have made
the RL algorithm more sensitive to hyperparameters, as the set of hyperparameters that works for all
tasks is likely smaller than the set that works for any one task. We conducted an extensive hyperpa-
rameter sweep that is documented in Appendix E to account for this issue with combining federated
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Figure 2: RL Agent Performance: The performance of the RL price-setting agent as a function of
the number and diversity of the microgrids in the microgrid cluster . Performance is measured by
looking at the average daily profit gained by each microgrid.

learning with RL. Meanwhile, the hypernetwork is able to learn how to build RL policies that are
less sensitive to these hyperparameters because it outputs agents personalized to each task.

5.3 PFH ENABLES FEW-SHOT LEARNING

Fig.3.A shows the hypernetwork adapted to a new set of microgrid management tasks extremely
quickly. On average, within ≈ 1.5 months (42 days), each new microgrid achieved ≈ $380 in daily
profit, which is about the daily profit of the local agents baseline after 13 years (5000 days) of train-
ing. The original, randomly initialized PFH required 3000 days to achieve similar performance.
Thus, Few-Shot PFH achieved a 119x speedup over local agents and 71.4x over a randomly initial-
ized PFH over the first 1.5 months. Within 7 months (210 days), Few-Shot PFH achieved a daily
profit of $565: 44% higher profit than the local agents ever achieve. A randomly initialized PFH
required ≈ 22 years (8000 days) to achieve similar performance: a 38x speedup in the first 7 months
of training. Cumulatively, having a pretrained PFH on 20 microgrids saves ≈ $1,500,000 over the
course of training on the new microgrid management tasks compared to a randomly initialized PFH.

5.4 FEW-SHOT LEARNING CAPABILITY SCALES WITH MICROGRID CLUSTER SIZE

When we tried the same experiment with hypernetworks that were trained for 10,000 days on 5
microgrid management tasks and 10 tasks in Fig. 3.B and tested on 5 and 10, respectively, we saw
significantly smaller boosts in the mean reward over groups of new tasks with fewer training tasks.
The smaller scale of benefit was expected given a multi-task learning strategy with fewer source tasks
and data. Indeed, when trained on 5 tasks, there was hardly any initial training speedup. Starting
from 10 tasks, we observed a large initial boost (although not as large as with 20.) Rather strikingly,
Few-Shot PFH pretrained on 5 and 10 tasks converged to lower reward curves than even the baseline
PFH (i.e., a randomly initialized hypernetwork.) With 20 tasks, we saw both a large initial boost in
training speed and no adverse impact on long term training. We hypothesize the fewer microgrid
source tasks provided, the more information is stored in the environment embedding, which makes
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Figure 3: PFH Enables Few Shot Learning: A. Mean microgrid profit of PFH pretrained on
20 microgrids learning to manage 20 new microgrids (“Pretrained PFH”), compared to randomly
initialized PFH (“Baseline PFH”) and the local agents baseline (“Local Baseline”), over training
days on the new microgrids. B. Mean microgrid profit of PFH pretrained on 5, 10, and 20 microgrids
on a new set of microgrids, over a longer time than A. C. A plausible scenario in which PFH may
need to quickly adapt to new microgrids.

the hypernetwork brittle to new environments. Thus in the 5 and 10 case, the net has not learned
enough shared dynamics in the other parameters to generalize to new settings. In the case of 20 and
above, we expect that enough shared dynamics are learned that the net can generalize. The range of
training speed benefits we observed suggested the potential in some configurations for a Few-Shot
PFH to quickly adapt to new tasks depends on how many tasks it was initially trained on.

6 LIMITATIONS AND FUTURE WORK

Technically, our work is limited in several ways. We presented a “goldilocks” zone in which PFH
outperforms other methods, but as we tested only in simulation, it is unclear where this goldilocks
zone would appear in the real world. Second, we protect privacy by only communicating parameters,
but it is possible to reconstruct data from parameters for some models (Carlini et al., 2020).

We would like to address these two issues in future work. First, we would like to explore other
environments to determine whether the “goldilocks” phenomenon is unique to the MicrogridLearn
environment. Second, we would like to combine our PFH training procedure with differential pri-
vacy measures like those in Abadi et al. (2016) to further impede reconstruction of training data.

For two more extended examples of future work we are excited to test, as well as further discussion
on potential societal impact of the application of our algorithm, please see Appendix C and D.

7 CONCLUSION

We seek a privacy preserving mechanism for improved training speeds on profit-driven energy ag-
gregation in a microgrid cluster . To this end, we are the first to demonstrate a PFH for RL to output
local model gradient updates and show improved training times. We hypothesize that PFH shines
when the setting is diverse enough to differ meaningfully between systems, but not so diverse that
system behavior diverges. We prove our hypothesis and demonstrate the efficacy of PFH for few
shot learning approaches.
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A RELATED WORK

We position our literature within an ecosystem of work related to transactive pricing in microgrids.
A price-setting RL agent was first shown to help an energy aggregator improve demand response
and generate a profit (Agwan et al., 2021). Since then a number of works have explored the issue
(Shojaeighadikolaei et al., 2021; Wen et al., 2020; Han et al., 2021; Rolnick et al., 2022), with some
work exploring different configurations of RL.

We wish to provide an example of federated learning. “Distributed Selective Stochastic Gradient De-
scent”, i.e. DSSGD (Shokri & Shmatikov, 2015), is an interesting example which deserves further
exploration from the interested reader. DSSGD has each local model exchange select parameters and
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gradient updates with the central server. In contrast, FedAvg (McMahan et al., 2017) just averages
all local model gradient updates and syncs all local model parameters. In personalized federated
learning, there have been techniques other than PFH to facilitate the federated learning of person-
alized models such as Moreau envelopes T Dinh et al. (2020), multi-task learning Li et al. (2021),
personalization layers Arivazhagan et al. (2019), and local representations Liang et al. (2020). How-
ever, Shamsian et al. (2021) compared PFH against several of these algorithms and performed better
in supervised learning.

Existing multi-agent environments are often solved through multi-agent RL algorithms like MAD-
DPG (Lowe et al., 2017), VDN (Sunehag et al., 2017), and Q-Mix (Rashid et al., 2018), but these
aggregate data from all the agents onto one central machine during training, and take advantage of
joint action-values from all agents. Other works use federated hypernetworks for multi-task setups,
but specifically not those in RL.

The combination of the two fields, federated multi-agent reinforcement learning, has focused mainly
on learning global models, not personalized models for heterogeneous tasks Qi et al. (2021); Wang
et al. (2020c); Ren et al. (2019); Anwar & Raychowdhury (2021); Kwon et al. (2020); Zhang et al.
(2021b); Xu et al. (2021); Wang et al. (2020a); Nadiger et al. (2019). Decentralized multi-agent
reinforcement learning does learn personalized models Zhang et al. (2021a; 2018), but it may be
difficult to scale up a decentralized system such that each agent can benefit from the experiences
of all the others without large communication costs. This is not as much of an issue for federated
learning as communication only needs to occur between clients and a server rather than clients and
all their peers. Although decentralized systems have their benefits, we focus mainly on federated
systems in this work.

We note that “privacy-preservation” might be to an extent an overstatement, as works have shown
that the transmission of gradients can allow one to recreate private data (Xie et al., 2019; Hitaj et al.,
2017; Melis et al., 2018). Thus, while we note that our work guarantees privacy to the extent of
other works within the field of federated learning (Wang et al., 2020b; Li et al., 2019; Acar et al.,
2021; Zhang et al., 2020), one should apply the term privacy-preservation with the same caveats to
our work as to the rest of the field.

B REPRODUCIBILITY STATEMENT

B.1 OVERVIEW

We wish to provide all details sufficient for the reader to reproduce our experiments. We will
overview how to setup the code, which we provide in a zip file for analysis, and discuss hyper-
parameter selection.

B.2 CODE SETUP

• First, download and extract the anonymized code provide in the submission.
• Install dvc (with google drive support). On linux this is pip install
’dvc[gdrive]’

• Install Docker, if you have not already.
• Run python3 -m dvc remote add -d gdrive gdrive://
1qaTn6IYd3cpiyJegDwwEhZ3LwrujK3_x

• Run python3 -m dvc pull

• Run pip install -r requirements.txt

• Run docker build .

B.3 HYPERPARAMETER SELECTION

We select hyperparameters for each algorithm by conducting hyperparameter sweeps, with parame-
ters proposed by Bayesian hyperparameter optimization (Seeger, 2004) trying to maximize the mean
reward across all agents. For the local agent baseline we run 3 sweeps, one for each level of diver-
sity, as each level has a different distribution of microgrids. For FedAvg and PFH, we conducted 9
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sweeps, varying diversity (simple, medium, complex), and the number of agents (5, 10, 20). The
number of agents is relevant to FedAvg and PFH because they learn from data across multiple agents.
Each local agents and FedAvg sweep had 50 runs, and each PFH sweep had 100 runs, because PFH
had ≈ double the number of parameters to optimize.

To minimize the effect of outliers, we use the hyperparameters from the third highest performing
run from each sweep. Detailed parameter bounds for hyperparameter sweeps can be found in the
appendix in Table 2, and simple analyses of the hyperparameters can be found in Appendix E.2.

C MORE FUTURE WORKS

C.0.1 “COST OF PRIVACY”

We wish to further investigate the “cost” of privacy in terms of the negative impact it may have
on training time and thus on cumulative aggregator profit. In order to create a true apples-to-apples
comparison, we would need a mechanism that aggregates information across microgrids in a suitable
way. Some ideas on this front include multi-agent RL that shares the critic but personalizes policies,
and hierarchical RL with a global aggregator.

C.0.2 VERTICAL INTEGRATION OF THE HIERARCHY

In the future, PFH may enable further exploitation of the hierarchical nature of price setting for
energy demand response. The energy grid can be imagined as a hierarchical tree, with buildings
responding to energy prices set by microgrids, which respond to energy prices set by city utilities,
which respond to energy prices set by state utilities, etc. In the future, we may have IoT devices
adjusting demand to energy prices set at the building level. At any level of the energy grid, the task
is the same: set prices for agents beneath you to elicit a demand response. In this work we have
only looked at one level of this energy hierarchy, but the methods we have used could be applied to
other layers of the hierarchy as well, and even multiple levels of the hierarchy. One could imagine a
hypernetwork that learns from price-setting agents at every level of the hierarchy, and can be used to
rapidly initialize agents to manage any new entrants to the energy grid, all while preserving privacy
at different levels of the tree.

D DISCUSSION OF SOCIETAL IMPACT

What are potential negative societal effects of our work? Overall, negative effects to prosumers are
limited, as the focus of our work is in protecting consumer information. Furthermore, prior work
demonstrated that the presence of an aggregator consistently reduced energy costs for consumers.

However, a persistent danger of AI is that it is often deployed through centralized profit-seekers.
Our work is no different in this regard. Although our specific innovation protects prosumers, it may
improve the economic viability of a profit-seeking entity whose scale may eventually enable it to
further its own profit at the expense of prosumers.

Also, the act of setting prices in systems may raise fairness concerns. If initial training microgrids
are biased towards wealthier residents, the PFH may initialize new policies with pricing that benefits
consumption habits of wealthier clients but not poorer clients. A vivid illustration may be seen in
the types of prosumers who are best poised to benefit from economic aggregation: prosumers with
large solar panels and batteries are able to shield themselves from or profit off of high prices by
consuming their own energy, and may fully charge their batteries when prices are low. Prosumers
with smaller or no storage capabilities do not have this luxury, and thus are more vulnerable to the
negative effects of price fluctuation.

E APPENDIX FOR HYPERPARAMETER EXPLORATION

E.1 HYPERPARAMETER SWEEP SPECIFICATIONS

See Table 2 for the bounds of the hyperparameter sweeps that we performed.
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Table 2: Hyperparameter Sweep Bounds All sweeps swept over the first 6 hyperpa-
rameters. AFL sweeps additionally swept over the ”AFL # of Local Steps” parameter.
PFH sweeps additionally swept over the last 7 parameters. Due to the high dimensional-
ity of the sweep, we used Bayesian hyperparameter optimization. We refer to four types
of distributions: Uniform, Int Uniform, Log Uniform, and Int Log Uniform. The ”Int”
type distributions simply quantize the underlying distribution (e.g. if x is sampled from
a uniform distribution, ⌊x⌋ is returned by an int uniform distribution). The Log Uniform
distribution samples uniformly over the log of the value, so the probability of sampling e1

is the same as e2, etc.

Parameter Lower Bound Upper Bound Distribution

Batch Size 16 ⌊e8⌋ Int Uniform
Learning Rate e−8 1 Log Uniform

# of Hidden Layers 1 7 Int Uniform
# of Neurons per Hidden Layer 1 ⌊e7⌋ Int Log Uniform

PPO Clipping Param 0.01 1.0 Uniform
PPO # of SGD Iterations 1 30 Int Uniform

AFL # of Local Steps 2 ⌊e6⌋ Int Log Uniform

PFH Dropout e−10 1 Log Uniform
PFH Embedding Dim 1 512 Int Uniform

PFH L2 Regularization e−10 1 Log Uniform
PFH Learning Rate e−4 1 Log Uniform

PFH # of Hidden Layers 1 6 Int Uniform
PFH # of Neurons per Hidden Layer 1 1024 Int Uniform

PFH # of Local Steps 1 100 Int Uniform

E.2 REGRESSION EXPLORATIONS OF HYPERPARAMETER SWEEPS

We present, for the reader’s interest, a regression fit on the hyperparameters that were swept over. In
this regression, each observation is a single run of the sweep, the dependent variable in both is the
reward mean of the learning trajectory, and the independent variables are those listed in the rows.
We believe that this regression contains some interesting information; specifically on the direction of
coefficients (i.e. whether they are negative or positive) and on which parameters were significant in
producing a positive reward. We note that the basic assumption of linear regression, that observations
are sampled IID from a distribution, is not the case here; observations are loosely dependent on each
other as the parameter configurations in each batch are determined by the performance of parameters
in the previous batch. Thus, we relegate these results as a curiosity for supplementary material only.
We are more confident in the negative results of this regression, i.e. which variables are insignificant
after controlling for the others, than the positive results, as this indicates parameters that the sweep
chose not to focus on. We believe that further work in regressions of hyperparameter values may be
an interesting research endeavor for understanding ML models as well as for ML applications like
AutoML.

E.2.1 FULL REGRESSION MODEL (TABLE 3)

Of specific interest in the full regression are which hyperparameters did and did not effect the aver-
age reward. Many variables in the hypernetwork itself do not seem to matter: the hypernetwork’s
learning rate, number of layers, and L2 regularization did not matter. However, whether or not the
hypernetwork selected for dropout did matter, and it hurt the performance, implying that hypernet-
work fitting was more important than robustness. Some parameters of the PPO agents, such as the
clip parameter or number of gradient updates, did not matter much either.
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E.2.2 REDUCED REGRESSION MODEL WITH ONLY SIGNIFICANT COEFFICIENTS INCLUDED
(TABLE 4)

We believe that this test is more interesting for examining the direction of significant variables after
controlling for the other variables. Here, it is interesting to note greater sizes of policy networks,
(“sizes”), has a negative effect, while number of layers of policy networks have a positive effect,
offering a mixed view on whether policy complexity is important. The learning rate is negatively
important, implying that more stability in network is preferred. The number of local model update
steps allowed is positively correlated to mean reward, implying that the more the local models are
allowed to fit, the better. The combination of a negative effect of batch size and positive effect of
learning rate implies that the local RL agents found it easier to take few steps (lower batch sizes)
but update policies at a more conservative rate (lower learning rates), which makes sense in the RL
context.

16



Under review as a conference paper at ICLR 2023

Table 3: Full regression model

Dep. Variable: Avg Reward R-squared: 0.362
Model: OLS Adj. R-squared: 0.348
Method: Least Squares F-statistic: 24.62
Date: Thu, 19 May 2022 Prob (F-statistic): 1.08e-43
Time: 08:16:34 Log-Likelihood: -3188.0
No. Observations: 533 AIC: 6402.
Df Residuals: 520 BIC: 6458.
Df Model: 12

coef std err t P> |t| [0.025 0.975]
Intercept 344.6188 29.679 11.612 0.000 286.314 402.924
sizes -1.9453 0.777 -2.504 0.013 -3.472 -0.419
n layers 5.2696 2.806 1.878 0.061 -0.243 10.782
learning rate -1835.5718 128.380 -14.298 0.000 -2087.779 -1583.364
ppo clip param 49.4402 38.009 1.301 0.194 -25.230 124.110
hnet lr 77.4179 63.747 1.214 0.225 -47.815 202.651
hnet num local steps 1.0579 0.150 7.043 0.000 0.763 1.353
ppo num sgd iter -0.3889 0.741 -0.525 0.600 -1.845 1.068
hnet num layers -2.3439 2.571 -0.912 0.362 -7.395 2.708
batch size -0.6685 0.171 -3.910 0.000 -1.004 -0.333
hnet embedding dim 0.0077 0.028 0.271 0.786 -0.048 0.063
hnet l2 reg -10.4826 19.912 -0.526 0.599 -49.601 28.636
hnet dropout -68.5849 21.070 -3.255 0.001 -109.978 -27.192

Omnibus: 16.401 Durbin-Watson: 1.670
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.555
Skew: 0.336 Prob(JB): 5.67e-05
Kurtosis: 3.655 Cond. No. 9.08e+03

Table 4: Reduced regression model

Dep. Variable: Avg Reward R-squared: 0.357
Model: OLS Adj. R-squared: 0.349
Method: Least Squares F-statistic: 48.63
Prob (F-statistic): 1.79e-47 Log-Likelihood: -3190.3
No. Observations: 533 AIC: 6395.
Df Residuals: 526 BIC: 6425.
Df Model: 6

coef std err t P> |t| [0.025 0.975]
Intercept 364.7212 15.515 23.507 0.000 334.242 395.201
sizes -2.1970 0.627 -3.502 0.001 -3.429 -0.965
n layers 5.1216 2.759 1.856 0.064 -0.299 10.542
learning rate -1829.2013 127.609 -14.334 0.000 -2079.887 -1578.516
hnet num local steps 1.0482 0.149 7.055 0.000 0.756 1.340
batch size -0.6409 0.167 -3.841 0.000 -0.969 -0.313
hnet dropout -65.1701 20.923 -3.115 0.002 -106.273 -24.067
Omnibus: 17.230 Durbin-Watson: 1.669
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.988
Skew: 0.360 Prob(JB): 4.57e-05
Kurtosis: 3.618 Cond. No. 2.57e+03
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