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Abstract

Data scarcity is a common obstacle in medical research due to the high costs
associated with data collection and the complexity of gaining access to and utilizing
data. Synthesizing health data may provide an efficient and cost-effective solution
to this shortage, enabling researchers to explore distributions and populations that
are not represented in existing observations or difficult to access due to privacy
considerations. To that end, we have developed a multi-task self-attention model
that produces realistic wearable activity data. We examine the characteristics of the
generated data and quantify its similarity to genuine samples.

1 Introduction

High quality health data is a vital yet scarce resource in modern healthcare. Raw data collection
is expensive and time consuming, labelling requires expert knowledge and storage poses privacy
concerns. As a result, most health datasets fail to capture the true distribution of the underlying
population, particularly in the tails which contain rare conditions and underrepresented attributes
[Ganapathi et al., 2022]. Extending these data by generating unseen yet realistic instances can
augment the downstream task to allow for novel analyses and hypothesis generation. For downstream
tasks to be representative, it is crucial that the generated samples remain realistic and reflective of the
data intended for study. However, maintaining realism is a difficult task and must be finely balanced
with the requirement to generate new samples instead of simply recreating those seen in the training
set. In other fields where data generation is used, the same principle applies. In state-of-the-art image
generation [Ramesh et al., 2022, Rombach et al., 2022] this trade-off has been finely balanced.

Methods for time-series generation exist in the literature. [Kang et al., 2020] presented an approach
using mixture autoregressive (MAR) models which can be configured to give the time series certain
characteristics. One drawback of this approach is that the specific characteristics, such as seasonal
strength and stability, need to be quantified and cannot be inferred from the context, such as a medical
condition. For healthcare data, Norgaard et al. [2018] presented a Generative Adversarial Network
(GAN) for accelerometer and exercise data. [Dash et al., 2020] also used GANs for generation of
hospital time-series based on the MIMIC-III dataset. More recently, outside healthcare applications,
Srinivasan and Knottenbelt [2022] and Li et al. [2022] have proposed a general architecture based on
transformers but train it using the GAN framework.

In this work, we focus on personal health data, specifically multi-modal resting heart rate, sleep and
step data, generated by consumer wearable devices (wearables). Applications on the health domain of
such data are still emerging, detection of flu and COVID-19 being one example [Shapiro et al., 2021,
Merrill and Althoff, 2023]. Our approach features a multi-task self-attention model for wearable
activity data synthesis. In summary, our contributions are (1) A synthetic data generator based on
self-attention for wearables data, (2) Demonstration that the model can predict future activity through
self-supervised learning of over 2 million activity days, and (3) Evaluation of the generative model
with quantitative comparisons to genuine real-world data.

∗Work done while at Evidation Health Inc, San Mateo, California.
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2 Data for training

Dataset. All models were trained and evaluated on the same set of activity data acquired using
wearable FitBit trackers. , collected as part of the DiSCover (Digital Signals in Chronic Pain) Project,
a 1-year longitudinal study (ClinicalTrials.gov identifier: NCT03421223) [Lee et al., 2021]. The
dataset contained day-level data from 10 000 individuals who gave permission for use of their data
for the purpose of health research. Data were collected over one year, resulting in a total of 2 737 500
person-days of activity data. The data contain three signals: resting heart rate (beats per minute), total
sleep (minutes), total steps (step count). The mean age of the participants was 37.3 (SD=10.5, range:
18 to 85) with 72.15% of participants female and primarily Non-Hispanic White (80.5%).

Pre-processing. Day level aggregates were calculated from the minute-level raw data by summing
all minutes spent sleeping per day, summing all steps per day and taking the mean resting heart
rate per day. Only days with > 80% coverage were included in the analaysis. Missing data were
imputed with the mean feature values per individual. Each feature was then scaled to [0, 1]. We then
divide the year-long sequences into shorter sequences with a length of 21 days for use as inputs.
Although this is much shorter than sequences used with most transformers, we keep this short for the
following reason: every source sequence is of length 365, corresponding to each day in the year for
an individual. If we use a larger window of, e.g., 100 we could only create three non-overlapping
sequences per individual. The shorter sequence length gives us a more diverse set of samples while
still capturing a representative time period on the scale of human activity (three weeks).

Although the labels are continuous values, we convert them to a one-hot encoding of 100 evenly-
spaced bins. We do this to model the outputs as a softmax distribution. As described by van den Oord
et al. [2016], this removes any assumptions about the shape of the distribution and is therefore highly
compatible with neural networks and has also been used for audio-generation in Wavenet [Oord et al.,
2016].

3 Model and learning

Embeddings. The three input channels (resting-heart-rate, sleep minutes and step count) are
embedded in a 64 dimensional space through a learned embedding weights. As the sequences are
temporally ordered, it is important to preserve their positional relationships. To do that, they are
positionally encoded with learned positional weights that are added to the embedded inputs.

Transformer. The embeddings are passed into a transformer [Vaswani et al., 2017] that consists only
of decoder layers. Self-attention is calculated as attention(Q,K, V ) = softmax(QKT /

√
dk)V .

Where Q, K and V are the query, key and value matrices, respectively and dk is the dimensionality
of the keys. Decoder-only transformers have been shown to perform well in autoregressive tasks,
like next-word predictions [Brown et al., 2020, Rae et al., 2021] and joint learning of multiple tasks
[Reed et al., 2022]. Each transformer block begins with layer-normalization to stabilize gradient
updates and training. As this is an auto-regressive task, we ensure future information is not used by
causal masking, i.e. confining each position to previous positions or the current position. This is
implemented by masking the upper-right triangle of the attention weight-matrix.

Finally, each block is completed by a feed-forward network of two dense layers of dimensionality
256 with GeLU activation and dropout probability of 0.1 during training. We stack three of these
blocks to form the core of the model, and four attention heads. It is followed with a feed-forward
network to an output of three 100-unit vectors, corresponding to the three tasks and 100 bins. A
softmax activation is applied to each one to obtain the logits used for loss calculation. This results in
a causally-masked multihead multi-task self-attention model that can be trained to model and forecast
activity time series.

Loss. As described in detail earlier, we use a softmax distribution of outputs. Then we can minimize
the cross-entropy loss between the predicted and true values. We learn the three outputs (resting heart
rate, daily steps and sleep minutes) jointly with separate feed-forward network heads. The individual
losses are added through shake-shake regularization Gastaldi [2017], a stochastic affine combination.
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The combined loss which we minimize is then defined as

Lcombined =

N∑
i=1

αiLi

where α is a random vector of unit length and Li are individual losses. In our case, N = 3.

Training. We minimize the loss using Adam [Kingma and Ba, 2015] and an initial learning rate of
10−3, reducing it by a factor of 10 every 5 epochs, with a total of 15 training epochs. The model and
training were implemented in PyTorch [Paszke et al., 2019], along with NumPy [Harris et al., 2020]
and SciPy [Virtanen et al., 2020], and visualizations in Matplotlib [Hunter, 2007].

We train four different models to compare the effect of increased number of training points on the
quality of generated samples. The largest model contains 2 029 230 days, which represent 100%
of the available training data. We then train three smaller models with 10%, 1% and 0.5% of the
available training data, respectively.

Generating new samples. With the autoregressive model already trained to predict next-day values,
synthesizing new sequences is straightforward. We start with a prompt sequence fragment, taken
from a held-out set, and input into the trained model. Then, we recursively remove the first day of the
sequence and append the next-day predictions to the end. Scaling the temperature of the logits gave
more consistent results for resting steps and sleep, we used temperatures of 2, while resting heart
rate was kept with a temperature of 1. The three softmax distributions of the output were sampled
independently to obtain the next-day value.

4 Results and evaluation

We evaluate the model on two criteria. 1) The prediction accuracy of the model 2) Quantitative
evaluation of distance measures and similarity scores between real and generated sequences.

4.1 Activity modelling

We begin by comparing the accuracy of the next-day predictions with the ground truth real-world
data. These results are highlighted in Table 1, where we investigate the effect of training dataset size
on test set performance. Increasing the number of training samples has a strong effect, particularly
on resting heart rate prediction where the mean absolute error (MAE) is reduced to 1.21 BPM in
the case of 2 million training samples. Given only 0.5% of the data, the accuracy is far lower and
increasing the number of data always results in a marked increase in accuracy. The effect of increased
data has a different effect for both steps and sleep minutes. It appears that going from ∼ 20k days
to ∼ 200k days has a far greater effect than the next order of magnitude, which appears to have no
marked difference.

Table 1: Comparison of mean absolute errors (MAE) of next-day resting heart rate (HR), sleep and
steps with respect to the size of the training set. MAE reported on the test set. There is a marked
difference in terms of accuracy as the number of training samples increases.

Training size MAE Resting HR MAE Sleep MAE Steps
(Days) (BPM) (Minutes) (Count)

10 146 (0.5%) 31.9 135.9 4922
20 292 (1%) 18.6 137.2 4444

202 923 (10%) 3.31 58.6 2627
2 029 230 (100%) 1.21 56.2 2830

4.2 Distance and similarity measures

No standard collection of methods exists for scoring differences between time series. However, we
make use of two common distance measures: cosine similarity and dynamic time warping (DTW).
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(a) Mean pairwise cosine similarity measure of models
trained with different training set sizes, compared with
real data. Models trained with more data have more
similarity with genuine data. The model trained with
over 2 million days achieves a score of over 0.810
with the intra-similarity of real data being 0.873.
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(b) Mean pairwise dynamic time warping distance of
models trained with different training set sizes, com-
pared with real data. The mean distance from the
model trained with over 2 million days to the real data
is 29 028 with the intra-distance of real data being
27 897.

Figure 1: The effect of increasing training data on two common distance measures: cosine similarity
and dynamic time warping (DTW).

For cosine similarity, we follow the approach of Norgaard et al. [2018] and compare the mean
pairwise cosine similarity statistics between real sequences and generated ones. Where the cosine
similarity statistic between two sequences X and Y is defined as their normalized dot product
K(X,Y ) = (X·Y )

∥X∥∥Y ∥ . The mean pairwise cosine similarity score between real sequences in the
dataset is 0.873, providing an “target realism" value for this score on the dataset. This captures the
intra-dataset variation of the real data distribution.

In further analysis, we calculate the mean pairwise DTW distance [Bundy and Wallen, 1984] using
the DtAIdistance library [Wannesm et al., 2022]. The mean pairwise DTW distance in the real dataset
is 27 897 which provides the “target realism" measure for comparing the distances to the generated
data. Figure 1a illustrates the results of this comparison. Increasing the amount of training data has a
significant impact on the similarity between generated and real sequences. When only 0.05% of the
total available data is used for training (10 146 days), the mean pairwise cosine similarity is 0.666.
When 1% of the data is used, the score increases to 0.726, and when 10% is used, it reaches 0.773.
The full dataset of over 2 million days yielded the best trained model with a score of 0.810, which is
close to the intra-similarity of real data, which is 0.873.

In Figure 1b we see that increasing the size of the training data results in a model that produces
sequences much closer to the real data. The increase appears nearly asymptotic to the intra-distance
of real data, which is 27 897 compared to 29 028 for data generated from the model trained on the
full dataset. The agreement between the cosine similarity and the DTW distance measures provides
further evidence that the model is able to capture the inherent properties of the data and generate
similar sequences.

5 Conclusion

This work furthers the exploration of methods for generating synthetic personal health data. It
provides researchers with the ability to craft datasets according to their needs while reducing privacy
concerns, making study design more efficient and enabling the development of analysis at a faster
rate. Moreover, it helps to identify issues before they affect real-world deployment. Our work adds
to the existing literature on synthetic data across multiple fields and underscores the potential of
generating realistic person-generated health data to enhance and improve health research.
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