
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Grammar Reinforcement Learning: path and
cycle counting in graphs with a Context-
Free Grammar and Transformer approach

Anonymous authors
Paper under double-blind review

Abstract

This paper presents Grammar Reinforcement Learning (GRL), a
reinforcement learning algorithm that uses Monte Carlo Tree Search (MCTS)
and a transformer architecture that models a Pushdown Automaton (PDA)
within a context-free grammar (CFG) framework. Taking as use case the
problem of efficiently counting paths and cycles in graphs, a key challenge
in network analysis, computer science, biology, and social sciences, GRL
discovers new matrix-based formulas for path/cycle counting that improve
computational efficiency by factors of two to six w.r.t state-of-the-art
approaches. Our contributions include: (i) a framework for generating
gramformers that operate within a CFG, (ii) the development of GRL for
optimizing formulas within grammatical structures, and (iii) the discovery
of novel formulas for graph substructure counting, leading to significant
computational improvements.

1 Introduction

Paths and cycles are fundamental structures in graph theory, playing a crucial role in various
fields such as network analysis (Wang et al., 2023), chemistry (Ishida et al., 2021), computer
science (AbuSalim et al., 2020), biology (Bortner and Meshkat, 2022), and social sciences
(Boccaletti et al., 2023). Efficiently counting paths and cycles of varying lengths is essential
for understanding graph connectivity and network redundancies, and is the foundation
of many graph processing algorithms, including graph learning algorithms such as some
recent Graph Neural Networks (GNN) (Bouritsas et al., 2022; Michel et al., 2023). In
particular, Bouritsas et al. (2022) demonstrated that incorporating precomputed counts of
paths or cycles, either at the node level or the graph level, into the feature representation
can significantly enhance the expressive power of GNNs.

This problem of counting paths and cycles has been extensively studied in the literature
(Harary and Manvel, 1971; Alon et al., 1997; Jokić and Van Mieghem, 2022). Among existing
approaches, matrix-based formulae such as those proposed in Voropaev and Perepechko
(2012) (see equation (1) for an example) are known to be the most efficient methods for
paths and cycles of lengths up to six and seven, respectively (Giscard et al., 2019). This
raises a significant open question: Can a deep learning algorithm discover more efficient
formulae for counting paths?

In Fürer (2017) and Arvind et al. (2019), the length limits mentioned above are theoretically
explained by examining the relationship between the subgraph counting problem and the
kth-order Weisfeiler-Leman test (k-WL). These papers conclude that 3-WL cannot count
cycles longer than seven. Concurrently, Geerts (2020) explored the connection between
3-WL and a fragment of the matrix language MATLANG (Brijder et al., 2019), defined by
the operations L3 := {·, T,diag,1,⊙}. This paper demonstrates that this fragment, when
applied to adjacency matrices, distinguishes the same graph pairs as 3-WL. In order to build
a 3-WL GNN, Piquenot et al. (2024) introduced a 3-WL Context-Free Grammar (CFG). We
observed that, with minor modifications, this generative framework is capable of producing
all the formulae previously identified by Voropaev and Perepechko (2012). Taken together,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

these recent works enable to transform the search for a path/cycle counting algorithm into
a CFG-constrained language generation problem where the aim is to build efficient path
counting formulae.

The use of context-free grammars (CFGs) for search has gained considerable attention
in the literature. In robotics, Zhao et al. (2020) demonstrated that CFGs can effectively
describe robotic structures, enabling the design and adaptation of robots for diverse tasks
to be formulated as a search problem within a CFG. Similarly, in the field of AutoML, the
application of CFG-based search has been explored (Klinghoffer et al., 2023; Vázquez et al.,
2023). In particular, Vazquez et al. (2022) proposed a grammar specifically designed for an
AutoML task, where searching within this grammar enables the discovery of the optimal
model for a given task.

Searching for formulae within a CFG corresponds to solving a combinatorial optimization
problem of possibly infinite size. In recent years, Deep Reinforcement Learning (DRL)
approaches have been proposed to address such problems (Vinyals et al., 2015; Khalil et al.,
2017; Silver et al., 2018; Hubert et al., 2021; Darvariu et al., 2024). A recent success of DRL
has been the discovery of more efficient matrix multiplication algorithms through a Monte
Carlo Tree Search (MCTS)-based approach (Fawzi et al., 2022). MCTS-based RL algorithms
typically consist of two phases: an acting phase and a learning phase. During the acting
phase, the agent selects actions based on a heuristic that combines MCTS exploration with
a deep neural network that predicts both policy and value function to guide the tree search.
The network is then updated during the learning phase to reflect search trees from multiple
iterations. As the objective is to discover efficient formulae and considering that MCTS
aligns with CFG sentence generation process due to its tree-based structure, such a Deep
MCTS approach is particularly well-suited to searching formulae within CFGs.

In this paper, we propose Grammar Reinforcement Learning (GRL), a deep MCTS model
capable of discovering new efficient formulae for path/cycle counting within a CFG. This
particular context raises a new research question: How to approximate a policy and a value
function through a deep neural network within a CFG?

To address this question, we propose the Gramformer model, a transformer architecture that
models Pushdown Automata (PDA), which are equivalent to CFGs. Gramformer is used to
learn the policy and value functions within GRL.

When applied to the path/cycle counting problem, GRL not only recovers the formulae from
Voropaev and Perepechko (2012) but also discovers new ones, whose computational efficiency
is improved by a factor of two to six.

The key contributions of this paper are as follows: (i) We propose GRL, a generic DRL
algorithm designed to explore and search within a given grammar. (ii) We introduce
Gramformer a new transformer training pipeline compliant with the CFG/PDA framework.
(iii) We propose novel state of the art explicit formulae for path/cycle counting in graphs,
leading to substantial improvements in computational efficiency.

The structure of this paper is as follows: Section 2 provides the background about path/cycle
counting, CFGs and PDAs, defining essential concepts. Section 3 describes the design of
GRL, taking as root a given CFG. Section 4 presents Gramformer, connecting transformers
and CFGs. Section 5 discusses the results of GRL on path/cycle counting tasks. Finally, we
conclude with a summary of our contributions and suggest avenues for future research.

2 Background

2.1 Path and cycle counting

Path and cycle counting in graphs can be performed at multiple levels: graph, node, and
edge. At the graph level, all possible paths or cycles of a given length within the graph
are counted. At the node level, the focus is on counting paths starting at a specific node,
as well as cycles that include the node. At the edge level, for any non-negative integer l,
let Pl represent the l-path matrix where (Pl)i,j is the number of l-length paths connecting

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

vertex i to vertex j. Additionally, for l > 2, let Cl represent the l-cycle matrix where (Cl)i,j
indicates the number of l-cycles that include vertex i and its adjacent vertex j.

As mentioned in Section 1, path/cycle counting has been extensively tackled in the literature.
In the early 1970s, Harary and Manvel (1971) introduced algorithms for counting cycles up to
length five at the graph level. Two decades later, Alon et al. (1997) refined these algorithms,
extending cycle counting to lengths of up to seven, and conjectured that these methods can
also be adapted to count cycles at the node level. Later Voropaev and Perepechko (2012)
established a relationship between the counting of l-cycles at the edge level and the counting
of (l − 1)-paths at the edge level using a simple formula. By deriving explicit formulae
for the counting of paths of length up to six at the edge level, they were able to compute
the number of cycles of length up to seven. More recently, Jokić and Van Mieghem (2022)
rediscovered the formulae for paths of length up to four from Voropaev and Perepechko
(2012). In contrast, Giscard et al. (2019) proposed an algorithm capable of counting cycles
and paths of arbitrary lengths. However, they acknowledged that their method is slower
than those presented by Alon et al. (1997) and Voropaev and Perepechko (2012). Specifically,
since the latter algorithms are based on matrix multiplication, they exhibit a computational
complexity of O

(
n3

)
, where n is the number of nodes. As noted by Giscard et al. (2019),

these matrix-based approaches remain the most efficient known methods for counting paths
and cycles of lengths up to six and seven, respectively.

2.2 Context-Free Grammar.

Throughout this paper, we employ standard formal language notation: Γ∗ denotes the set of
all finite-length strings over the alphabet Γ, and ε represents the empty string. The relevant
definitions used in this context are as follows:

Definition 2.1 (Context-Free Grammar)
A Context-Free Grammar (CFG) G is defined as a 4-tuple (V,Σ, R, S), where V is a finite
set of variables, Σ is a finite set of terminal symbols, R is a finite set of production rules
of the form V → (V ∪ Σ)

∗
, and S is the start variable. Note that R fully characterizes the

CFG, following the convention that the start variable is placed on the top left and that the
symbol | represents ”or”.

Definition 2.2 (Derivation)
Let G be a CFG. For u, v ∈ (V ∪ Σ)

∗
, we define u =⇒ v if u can be transformed into v by

applying a single production rule, and u
∗

=⇒ v if u can be transformed into v by applying a
sequence of production rules from G.

Definition 2.3 (Context-Free Language)
A set B is called a Context-Free Language (CFL) if there exists a CFG G such that

B = L(G) := {w | w ∈ Σ∗ and S
∗

=⇒ w}.

The generation process in a CFG involves iteratively replacing variables with one of their
corresponding production rules, starting from the start variable, until only terminal symbols
remain.

As mentioned in Section 1, it is well known that CFGs are equivalent to PDAs (Schneider,
1968; Caucal, 1995; Baeten et al., 2023; DuSell and Chiang, 2024). Usually, PDA are language
acceptor, but by relabelling the input as output of the PDA, the same PDA can be used as
language generator. Thus the following subsection is dedicated to defining PDA.

2.3 PushDown Automaton

Definition 2.4 (PushDown Automaton)
A PushDown Automaton (PDA) is defined as a 7-tuple P = (Q,Σ,Γ, δ, q0, Z, F) where Q is
a finite set of states, Σ is a finite set of symbols called the input alphabet, Γ is a finite set of
symbol called the stack alphabet, δ is a finite subset of Q× (Σ ∪ {ε})× Γ→ Q× Γ∗, the
transition fuction, q0 ∈ Q is the start state, Z ∈ Γ is the initial stack symbol, F ⊆ Q is the
set of accepting states.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

In the case of PDA corresponding to CFG, the input alphabet Σ corresponds to the terminal
symbol alphabet. The stack alphabet Γ consits of V ∪ Σ, which is the union of the set of
variables (non-terminal symbols) and the terminal symbols. For such a PDA, there are only
two states: q0, the initial state and, q1 ∈ F , the accepting state. The initial stack symbol is
Z = S, where S is the start variable of the CFG. The transition fuction δ consists of two
types of transitions:

• Transcription transitions: If the top of the stack is a terminal symbol a ∈ Σ,
the transition is of the form δ(q0, a, a) = {(q0, ε)}. This indicates that the system
remains in state q0, outputs the symbol a, and removes a from the stack.

• Transposition transitions: If the top of the stack is a variable ν ∈ V , the
transition is of the form δ(q0, ε, ν) = {(q0, r), r ∈ Vν}, where Vν ⊂ R is the subset of
rules for ν. This means that the system stays in state q0, produces no output, and
replaces ν with the rule r on the stack.

In the same way that production rules fully defines a CFG, the transition fuction δ completely
specifies a PDA. For a PDA constructed from a CFG, the transposition transitions alone are
sufficient to define the automaton.

A PDA generates a string by starting in the initial state q0, with the stack initialized to Z
and the generated string s initialized to ε. The PDA then processes the top symbol t of the
stack according to the transition fuction δ. If t ∈ Σ, a transcription occurs: t is popped from
the stack and appended to the output string s. If t ∈ V = Γ \ Σ, a transposition occurs:
t is popped from the stack, and some v ∈ {v, (q0, v) ∈ δ(q0, ε, t)} is pushed onto the stack.
Since v ∈ Γ∗, it may consist of multiple symbols, which are pushed onto the stack in reverse
order. The process continues until the stack is empty, at which point the PDA transitions
to the accepting state q1, and the generated string s is a member of the language of the
corresponding CFG.

3 Generating path/cycle counting formula through GRL

The following subsection presents a specific CFG (see Section 2) designed to address the
open problem of path counting.

3.1 From path matrix formulae to the CFG G3

Let G = (V, E) denote an undirected graph, where V = [[1 , n]] represents the set of n nodes,

and E ⊆ V × V represents the set of edges. We define the adjacency matrix A ∈ {0, 1}n×n
,

that encodes the connectivity of G, the identity matrix I ∈ {0, 1}n×n
, and the matrix

J ∈ {0, 1}n×n
, that is filled with ones except along the diagonal.

In the work of Voropaev and Perepechko (2012), all of the proposed formulae are linear
combinations of terms composed of matrix multiplications and Hadamard products (denoted
by ⊙) applied exclusively on the arguments A, I, J. For example, the matrix formula in
equation (1) is used to count the number of 3-paths between two nodes in the graph. The
formulae for path of length four to six can be found in Appendix D of the supplementary
material.

P3 = J⊙A3 − (I⊙A2)A−A(I⊙A2) +A (1)

To generate the terms of Voropaev’s formulae, we define the CFG G3 in equation (2).

M → (M ⊙M) | (MM) | A | I | J. (2)

Voropaev’s formulae are linear combinations of sentences of L(G3). This ensures that
the problem of counting paths of length up to 6 can be addressed through finding linear
combinations of sentences of L(G3).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Figure 1: The left diagram illustrates a path in the derivation tree of the PDA D3 which
generates the sentence J ⊙A2 ∈ L(G3). The right diagram details the process of generating
this sentence, emphasizing the transcription and transposition loops. As depicted, the stack
fills during transposition steps and empties during transcription steps, eventually leading to
the derivation of a sentence from the language.

Additionally, we prove in Appendix A that G3 is 3-WL equivalent, resulting in Theorem 3.1.

Theorem 3.1 (3-WL CFG)
G3 is as expressive as 3-WL

While CFGs are theoretical objects, PDAs are the practical tools for processing and applying
the production rules of a CFG to ensure the correct generation of valid sentences according
to the grammatical structure. The following subsection derives a PDA (see Section 2) from
G3.

3.2 From G3 to the PDA D3

We denote as D3 the PDA described by the following transition δ:

δ(q0, ε,M) = {(q0, (M ⊙M)), (q0, (MM)), (q0, A), (q0, I), (q0, J)},

which corresponds directly to the production rules of G3.

Figure 1 illustrates how the sentence (J⊙ (AA)) = J ⊙A2 ∈ L(G3) is generated by the PDA
D3.

3.3 Search in D3 through Grammar Reinforcement Learning

To find efficient formulae for path and cycle counting, we propose a two step strategy as
illustrated by Figure 2. The first step is to generate a set of sentences belonging to G3 by
the D3 generation process. The second step compares a linear combination of this set with a
ground truth matrix in order to evaluate the corresponding formula. In the following of this
subsection, we detail each of these steps.

As stated before, the tree structure of a sentence generation within PDA (see Figure 2)
aligns with MCTS algorithm. Such algorithms have been proposed and refined over the last
decade to guide the search within trees with a general heuristic (Świechowski et al., 2023).
In this work, we propose an MCTS-based DRL algorithm, termed Grammar Reinforcement
Learning (GRL) adapted to the path counting open problem, generating sets of different
sentences.

In GRL, MCTS performs a series of walks through the PDA, which are stored in a search
tree. The nodes of the tree represent states I, which are a concatenation of the written

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 2: From left to right: The agent selects a set of N sentences based on an MCTS
heuristic. These sentences are computed for a given set of graphs. The computation is then
evaluated against a ground truth, yielding a linear combination of the sentences and a value
representing their pertinence. This value is subsequently backpropagated through the MCTS
search tree.

terminal symbols and the stack. The edges correspond to actions defined by the CFG rules
r that can be applied at those states.

Each walk begins at the start state I0 = {Z, · · · , Z}, whose cardinality is the number
of desired sentences, and terminates when a state contains only terminal symbols. Such
terminal states are sets of sentences located in leaf nodes. For each state-action pair (I, r),
the algorithm tracks the visit count N(I, r), the empirical rule value Q(I, r), and two scalars
predicted by a neural network: a policy probability π(I, r) and a value v(I, r). At each
intermediate state, a rule action r is selected according to the following equation:

argmax
r

αQ(I, r) + (1− α)v(I, r) + c(I)π(I, r)

√∑
a N(I, a)

1 +N(I, r)
, (3)

where the exploration factor c(I) regulates the influence of the policy π(I, r) relative to the
Q-values, adjusting this balance based on the frequency of node traversal. The parameter
α ∈ [0 , 1] controls the reliance on neural network predictions. After a walk reaches a leaf
node, the visit counts and the values are updated via a backward pass.

To update the values, it is necessary to evaluate a leaf node. Its associated set of sentences
is computed for a collection of graphs, and a linear combination of these computed sentences
is derived by comparing them against a ground truth for each graph. The resulting value,
which reflects the relevance of the sentences to a specific path counting problem, is used to
empirically update the tree that is constructed during sentence generation. The derivation
of this linear combination is detailed in Appendix B, with a specific focus on Figure 8.
A concrete example of this approach, applied to the problem of counting 3-paths within
G3, is shown in Figure 2. To encourage the generation of efficient sentences, each CFG
rule r is penalized by a value Pr in the reward definition, reflecting its computational cost.
Additionally, to prevent the generation of overly long sentences, the number of characters is
constrained by a maximum limit, Cmax.

After a sufficient number of MCTS, the sequences of nodes and edges from each walk are used
to train the neural network. The ratio N(I, r)/N(I) provides a policy derived from MCTS
exploration, while Q(I, r) represents the empirical expected return for the current state. The
policy is learned using a Kullback–Leibler (KL) divergence loss, and the value function is
trained using a mean squared error (MSE) loss. The pseudo-code for each algorithm of GRL
is provided in Appendix F. Figure 3 depicts both the acting and the learning parts.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 3: In the acting phase, rules are selected based on both the MCTS algorithm and the
neural network outputs. Each time MCTS selects a node, the decision, empirical policy, and
value of the node are stored in a replay buffer. During the learning phase, the neural network
is updated by predicting the policy and value functions based on the decisions stored in the
replay buffer.

The neural network—serving as a memory of the search trees that the agent has previously
explored—must be capable of learning the policy and value distributions of the sentence
generation within the CFG/PDA. As discussed in Section 1, designing an architecture that
can effectively learn within a CFG/PDA remains an open research question. In the next
section, we present the neural network used for estimating the policy and value functions in
the GRL algorithm.

4 Gramformer

Since our problem is related to the generation of sentences within a language, a transformer
architecture fits with this CFG framework. Central to this architecture is the concept of
tokens, which represent individual units of input data.

We propose Gramformer, a transformer architecture that follows the production rules of a
given CFG, through a PDA. It relies on the assignment of the elements of the transition
function δ into three distinct sets of tokens. Recall that δ can be partitioned into two subsets:
the transcription set δw (for writing) and the transposition set δr (for replacing). Specifically,
δr = {δ(q0, ε, ν) = {(q0, v), v ∈ Rν)}, ν ∈ V }, where each ν ∈ V represents a variable in the
CFG.

For each variable ν ∈ V , we define a variable token corresponding to ν. For each element
in δ(q0, ε, ν) ∈ δr, we define a rule token representing the specific production rule. This
rule token is divided in two subsets. If the rule contains a variable, the token is classified as
a non-terminal rule token. If the rule consists only of terminal symbols (i.e., v ∈ Σ), the
token is classified as a terminal rule token. Any symbol in δw is assigned as part of the
terminal token set along with the terminal rule token.

For each variable token, a corresponding mask is provided. This mask indicates the rule
tokens associated with that variable. Figure 4 illustrates this framework applied to the CFG
G3 that contains only one variable. An example of a CFG with more variables is provided in
Figure 9 of Appendix C. Once all tokens have been defined, the Gramformer is tasked with
predicting two ouputs for a given input state. The first output is the probability of selecting
the production rule for a given variable. The second one is a scalar that corresponds to the
value of the given state.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 4: From PDA to grammar tokens: D3 is turned into three sets of tokens. The
corresponding variables of each element of δr are turned into variable tokens. For each
variable token, a set of rule tokens is defined. Eventually, for every corresponding terminal
symbols of δw a terminal token is defined. In the end, for each variable token, a variable
mask is defined.

Figure 5: The input is read until the first variable token (Rd). This token is passed to the
encoder (Enc). The decoder (Dec) receives the encoder output and the input. The first
output of the decoder is combined with the mask corresponding to variable token to generate
a policy. The second output is the value.

Gramformer follows a classical encoder-decoder architecture with self-attention and cross-
attention mechanisms. At any time, the model’s input I consists of the concatenation of the
stack and the set of terminal symbols generated so far, representing a state.

The input I is read until a variable token associated to a variable symbol is encountered.
This token, denoted as ν is passed to the encoder. The decoder receives the encoder output
and the input I. The first output of the decoder is combined with the mask corresponding
to ν, so that tokens not associated with ν are set to −∞. This masking ensures that, when
the softmax function is applied to the first decoder’s output, it yields a valid probability
distribution over the rules of ν.

The pseudo-code for each algorithm in this framework is provided in Appendix F. Figure 5
depicts the Gramformer process for a given input.

Note that Gramformer, in an autoregressive mode of operation, can generate sentences
within a CFG, simulating a PDA. Figure 6 and Figure 10 of the Appendix C illustrate this
generation of the sentence (J⊙ (AA)) ∈ L(G3) using the Gramformer architecture coupled
with a replace block. The path in the derivation tree of D3 resulting in the generation of
this sentence is provided in Figure 1.

We now have the necessary components to use GRL on the path counting problem, which is
described in the following section.

5 Finding more efficient formulae for counting with RL.

To address the problem of path counting at the edge level, we apply GRL using a slightly
modified version of the grammar G3, denoted G̃3. This grammar generates matrices of L(G3)
with a null diagonal, reducing the search space. For more details on this modified grammar,
please refer to Appendix C.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 6: A sequence of tokens is fed into the transformer architecture, beginning with the
start variable token. The transformer ouputs the rule token corresponding to the current
variable token. The predicted rule’s corresponding variables and terminal symbols replace
the current variable token, producing a new sequence of tokens. The process is repeated,
until no variables remains. At this last step, a sentence from the grammar is generated.

Figure 7: Comparison of the time consumption of Pl and P ∗
l in function of the number of

nodes for l ∈ {3, 4, 5, 6}. Each time, the yellow correspond to the time computation of Pl

divided by the theoretical gain of time consumption.

The primary objective of this experiment was to demonstrate that GRL can successfully derive
the path counting formulae Pl proposed in Voropaev and Perepechko (2012). Specifically, for
l = 2, GRL successfully identified the formula P2. For path lengths l ∈ 3, 4, 5, 6, GRL not
only derived the Pl formulae but also discovered more efficient alternatives, denoted as P ∗

l .
These new formulae significantly reduce the time complexity of l-path counting by factors of
2, 2.25, 4, and 6.25, respectively. The formulae for P ∗

2 through P ∗
4 are provided below, while

those for P ∗
5 and P ∗

6 can be found in Appendix D.

P ∗
2 = J⊙A2,

P ∗
3 = J⊙ (A(J⊙A2))−A⊙ (AJ),

P ∗
4 = J⊙ (A(J⊙ (A(J⊙A2))))− J⊙ (A(A⊙ (AJ)))

− J⊙ ((A⊙ (AJ))A)−A⊙ ((A⊙A2)J) + 2A⊙A2.

For each formula, we prove in Appendix D that Pl = P ∗
l , leading to the following theorem.

Theorem 5.1 (Efficient path counting)
For l ∈ {2, 3, 4, 5, 6}, (P ∗

l)i,j computes the number of l-paths starting at node i and ending
at node j.

It is visually obvious that P ∗
3 is more compact than P3. To quantify this, we compare

the number of matrix multiplications required, which allows us to derive the ratio of time
complexity between the formulae. The theoretical time savings between Pl and P ∗

l are
detailed in Appendix D.

We also assessed the empirical time savings across various random graphs. For each graph,
the time required to compute each formula was recorded, and the average computation time
was calculated for graphs of the same size. To compare these results with the theoretical time
savings, we divided the mean computation time of Pl by the corresponding theoretical time

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

reduction factor. The results of these experiments are presented in Figure 7, demonstrating
a strong alignment between empirical and theoretical gains. This confirms the significant
time savings provided by the new formulae discovered by GRL and supports our theoretical
analysis.

In Appendix D, we derive the cycle-counting formulae based on the work of Voropaev and
Perepechko (2012), using the relation Cl+1 = A⊙ Pl. Additionally, we provide a detailed
explanation of how P ∗

l counts l-path establishing a new methodology for deriving formulae.

Since 3-WL cannot count the 7-paths (Fürer, 2017), theorem 3.1 leads to the incapability
for G3 to count it either. To go beyond the 6-paths counting, a more expressive grammar is
needed.

In Appendix ??, we evaluate GRL on directed graphs and compare its performance to
baseline algorithms. GRL stands out as the only approach capable of discovering novel
matrix formulae for counting paths of lengths 4 to 5 in directed graphs.

Resource consumption GRL, like other MCTS based algorithm, suffers from significant
resource consumption. For the 5-path and 6-path counting problems, it took weeks to
converge. Even with substantial CPU resources (124 AMD EPYC 9654) for the acting
and GPU (4 NVIDIA A100) resources for the learning, the process remains extremely
time-consuming.

6 Conclusion

This paper introduces Gramformer, a deep learning architecture that learns a policy and
a value function within a CFG/PDA framework, by assigning tokens to elements of the
transition function of a PDA. Used within the GRL algorithm, it effectively addresses the
question ”Can a deep learning algorithm discover efficient set of sentences for a given task”.

Instantiated over the grammar G3 to solve the path counting problem, GRL provides efficient
formulae that are linear combinations of sets of sentences in L(G3). These formulae of
enhanced computational efficiency by factors ranging from 2 to 6.25 demonstrate the ability
of GRL to not only discover explicit formulae for counting paths, but also to provide new
ways of designing such formulae.

For paths longer than 6, future research should aim to characterize k-WL CFGs to bypass the
theoretical limit on path counting of G3. Such a characterization will enable the application
of GRL to uncover more explicit formulae for substructure counting across graph structures.

Moreover, applying GRL to real-world datasets to derive formulae for various tasks represents
a promising direction for future exploration as the grammar provides a link to substructures
and thus interpretability.

This approach could potentially improve the applicability and effectiveness of GRL in
practical scenarios, thereby broadening its impact.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

References

S. W. AbuSalim, R. Ibrahim, M. Z. Saringat, S. Jamel, and J. A. Wahab. Comparative
analysis between dijkstra and bellman-ford algorithms in shortest path optimization. In
IOP Conference Series: Materials Science and Engineering, volume 917, page 012077. IOP
Publishing, 2020.

N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17(3):209–223, 1997.

V. Arvind, F. Fuhlbrück, J. Köbler, and O. Verbitsky. On weisfeiler-leman invariance:
Subgraph counts and related graph properties. In L. A. Gasieniec, J. Jansson, and
C. Levcopoulos, editors, Fundamentals of Computation Theory - 22nd International
Symposium, FCT 2019, Copenhagen, Denmark, August 12-14, 2019, Proceedings, volume
11651 of Lecture Notes in Computer Science, pages 111–125. Springer, 2019. doi: 10.1007/
978-3-030-25027-0\ 8. URL https://doi.org/10.1007/978-3-030-25027-0_8.

J. C. Baeten, C. Carissimo, and B. Luttik. Pushdown automata and context-free grammars
in bisimulation semantics. Logical Methods in Computer Science, 19, 2023.

S. Boccaletti, P. De Lellis, C. Del Genio, K. Alfaro-Bittner, R. Criado, S. Jalan, and
M. Romance. The structure and dynamics of networks with higher order interactions.
Physics Reports, 1018:1–64, 2023.

C. Bortner and N. Meshkat. Identifiable paths and cycles in linear compartmental models.
Bulletin of mathematical biology, 84(5):53, 2022.

G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 45(1):657–668, 2022.

R. Brijder, F. Geerts, J. V. den Bussche, and T. Weerwag. On the expressive power of query
languages for matrices. ACM Trans. Database Syst., 44(4):15:1–15:31, 2019.

D. Caucal. Bisimulation of context-free grammars and of pushdown automata. Modal Logic
and process algebra, 53:85–106, 1995.

V.-A. Darvariu, S. Hailes, and M. Musolesi. Graph reinforcement learning for combinatorial
optimization: A survey and unifying perspective. arXiv preprint arXiv:2404.06492, 2024.

B. DuSell and D. Chiang. Stack attention: Improving the ability of transformers to model
hierarchical patterns. In International Conference on Learning Representations, 2024.

A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov,
F. J. R Ruiz, J. Schrittwieser, G. Swirszcz, et al. Discovering faster matrix multiplication
algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022.

M. Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In International
Conference on Algorithms and Complexity, pages 260–271. Springer, 2017.

F. Geerts. On the expressive power of linear algebra on graphs. Theory of Computing
Systems, Oct 2020.

P.-L. Giscard, N. Kriege, and R. C. Wilson. A general purpose algorithm for counting simple
cycles and simple paths of any length. Algorithmica, 81:2716–2737, 2019.

F. Harary and B. Manvel. On the number of cycles in a graph. Matematickỳ časopis, 21(1):
55–63, 1971.

T. Hubert, J. Schrittwieser, I. Antonoglou, M. Barekatain, S. Schmitt, and D. Silver. Learning
and planning in complex action spaces. In International Conference on Machine Learning,
pages 4476–4486. PMLR, 2021.

S. Ishida, T. Miyazaki, Y. Sugaya, and S. Omachi. Graph neural networks with multiple
feature extraction paths for chemical property estimation. Molecules, 26(11):3125, 2021.

11

https://doi.org/10.1007/978-3-030-25027-0_8

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

I. Jokić and P. Van Mieghem. Number of paths in a graph. arXiv preprint arXiv:2209.08840,
2022.

E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

T. Klinghoffer, K. Tiwary, N. Behari, B. Agrawalla, and R. Raskar. Diser: Designing imaging
systems with reinforcement learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 23632–23642, 2023.

G. Michel, G. Nikolentzos, J. F. Lutzeyer, and M. Vazirgiannis. Path neural networks:
Expressive and accurate graph neural networks. In International Conference on Machine
Learning, pages 24737–24755. PMLR, 2023.

J. Piquenot, A. Moscatelli, M. Berar, P. Héroux, R. Raveaux, J.-Y. Ramel, and S. Adam.
G2n2 : Weisfeiler and lehman go grammatical. In The Twelfth International Conference
on Learning Representations, 2024.

V. B. Schneider. On the parsing of context-free languages by pushdown automata. In Ann.
meeting of the assoc. for computational linguistics, number TR-68-76, 1968.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk. Monte carlo tree search:
A review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023.

H. C. Vazquez, J. Sánchez, and R. Carrascosa. Gramml: Exploring context-free grammars
with model-free reinforcement learning. In Sixth Workshop on Meta-Learning at the
Conference on Neural Information Processing Systems, 2022.

H. C. Vázquez, J. Sanchez, and R. Carrascosa. Integrating hyperparameter search into
model-free automl with context-free grammars. In International Conference on Learning
and Intelligent Optimization, pages 523–536. Springer, 2023.

O. Vinyals, M. Fortunato, and N. Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

A. Voropaev and S. Perepechko. The number of fixed length cycles in undirected graph
explicit formula in case of small lengths. Discrete and Continuous Models and Applied
Computational Science, (2):6–12, 2012.

J. Wang, W. Liu, L. Chen, X. Li, and Z. Wen. Analysis of china’s non-ferrous metals
industry’s path to peak carbon: A whole life cycle industry chain based on copper. Science
of The Total Environment, 892:164454, 2023.

A. Zhao, J. Xu, M. Konaković-Luković, J. Hughes, A. Spielberg, D. Rus, and W. Matusik.
Robogrammar: graph grammar for terrain-optimized robot design. ACM Transactions on
Graphics (TOG), 39(6):1–16, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

This document provides additional content to the main paper.

A CFGs and PDAs

This section provides the proof of theorem 3.1 of Section 2 and more details about PDA.

Even if G3 is different from the 3-WL CFG proposed in Piquenot et al. (2024), they share
the same expressive power. Indeed, in the context of this paper, we are not limited by the
depth of the CFG while the goal of the grammar reduction in Piquenot et al. (2024) was to
keep the expressiveness of the CFG at a given depth.

It is important to note that in a separative point of view, we separate graphs with scalar,
a CFG G separates two graphs G1 and G2 if there exists a sentence s ∈ L(G) such that
s(AG1

) ̸= s(AG2
). Knowing that, we have the following proposition and theorem relative to

the expressive power of G3.

Proposition A.1
Assume we have a sentence s that is the sum of two sentences s1 and s2. If s separates G1
and G2, then it is necessary that s1 or s2 separate G1 and G2.

Proof. Assume for the sake of contradiction that neither s1 nor s2 can separate G1 and G2.
Then

s(AG1
) = s1(AG1

) + s2(AG1
)

= s1(AG2
) + s2(AG2

) = s(AG2
).

That is absurd.

Theorem A.1 (3-WL CFG)
G3 is as expressive as 3-WL

Proof.

Vc →MVc | 1 (4)

M → (M ⊙M) | (MM) | diag (Vc) | A.

We will start from the CFG (4) that was proven to be 3-WL equivalent. We show that Vc

variable and diag (Vc) can be removed.

First of all, we have that for any matrix N and vector w, Nw = (N ⊙ I)w+ (N ⊙ J)w, since
a sentence in the CFG (4) consists on a sum other the resulting vector, we have with the
help of proposition A.1 that vectors (N ⊙ I)w and (N ⊙ J)w have a better separability than
Nw. To remove Vc variable, we first have I = diag (1). Then for any matrix N and vector
w,we have that (Ndiag (w) J)⊙ I = diag ((N ⊙ J)w) and (Ndiag (w))⊙ I = diag ((N ⊙ I)w).

(Ndiag (w) J)i,i =
∑
l,m

Ni,ldiag (w)l,m Jm,i

=
∑
l

Ni,lwlJli

=
∑
l

Ni,lJilwl

=
∑
l

(N ⊙ J)i,lwl = ((N ⊙ J)w)i,

(Ndiag (w))i,i =
∑
l

Ni,ldiag (w)l,i

= Ni,iwi

=
∑
l

(N ⊙ I)i,lwl = ((N ⊙ I)w)i

The conclusion can be made by induction. We obtain G3 as expressive as 3-WL.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

To give more insight in the construction of PDA from CFG, consider the PDA D3, which
corresponds to the CFG G3:

D3 = ({q0, q1}, {A, I, J, (,),⊙}, {M,A, I, J, (,),⊙}, δ, q0,M, q1).

where the transition relation δ is defined as follows:

δ(q0, ε,M) = {(q0, (M ⊙M)), (q0, (MM)), (q0, A), (q0, I), (q0, J)}
δ(q0, A,A) = δ(q0, I, I) = δ(q0, J, J) = δ(q0, (, () = δ(q0,),)) = δ(q0,⊙,⊙) = {(q0, ε)}
δ(q0, ε, ε) = {(q1, ε)}.

In the same way that production rules fully defines a CFG, the transition relation δ completely
specifies a PDA. For a PDA constructed from a CFG, the transposition transitions alone are
sufficient to define the automaton. For instance, D3 can be fully described by the transition:

δ(q0, ε,M) = {(q0, (M ⊙M)), (q0, (MM)), (q0, A), (q0, I), (q0, J)},

which corresponds directly to the production rules of G3.

B On the evaluation of GRL in the context of path counting

We remind the acting phase of GRL described in section 4. In GRL, an agent generates a
set of sentences, S, using a pushdown automaton corresponding to a given CFG. For a given
set of graphs, the agent computes the results of each sentence in s. A linear combination
of these computed results is then derived and compared to the ground truth path counts,
which yields a reward Rs. This section aims to detailed this evaluation process in the case of
GRL applied to G3.

In the case of G3, the set of computed sentences for a given set of graphs results into a set
of matrices for each sentence. We have then s sets of g matrices, where s is the number
of sentences and g the number of graphs. Along with this, we have a set of g matrices of
ground truth. For the sake of explanation, we assume that each graphs have the same size
n. Then we chose s indices ι1, · · · , ιs and a graph G such that, the matrix E of size s× s,
where Ei,j = sj(AG)ιi , is invertible. If such a matrix does not exist, we penalise the set of
sentences by attributing a negative value. Along with the construction of E, we define the
vector v with the ground truth matrix of G, TG by vi = (TG)ιi .

The linear combination is then obtained by resolving the equation Ex = v. Then, the linear
combination

∑
i xisi(AG) is compared to the ground truth TG for all graphs G resulting in

the value rS . This value encompasses the pertinence of the set of sentence S over a specific
path counting problem. Figure 8 depicts this evaluation procedure.

The existence of Voropaev and Perepechko (2012) formulas, ensure that there exist a linear
combination of sentences that addresses the path counting of length up to 6.

C A CFG to count at edge level

In our investigation of substructure counting at the edge level for the grammar G3, we
focus on the non-diagonal elements of the involved matrices. To streamline this process, we
introduce an alternative context-free grammar, denoted as G̃3, which is equally expressive
as G3 but specifically tailored for edge-related computations. The grammar is defined as
follows:

E → (E ⊙M) | (NE) | (EN) | A | J (5)

N → (N ⊙M) | (N ⊙N) | I
M → (MM) | (EE)

In G̃3, the variable E represents matrices with zero on the diagonal, corresponding to edges in
the graph, while N represents diagonal matrices, corresponding to nodes, and M represents

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Figure 8: The evaluation process of GRL for path counting involves deriving an invertible
matrix E from the computed sentences corresponding to a given graph, alongside a ground
truth vector v. The solution of the equation Ex = v provides a linear combination of the
computed sentence results. This linear combination is then compared to the ground truth
across the entire graph dataset, yielding a value that reflects the effectiveness and relevance
of the set of sentences in solving the path counting problem.

Figure 9: At the top, the tokens of the Graformer derived from G̃3 are separated into three
sets. Below, the variable masks of Gramformer are defined to correspond to the rule tokens
of their corresponding variable token.

general matrices. The start variable is E as we aim to focus on edge-level structures. The
production rules for each variable describe valid operations and combinations within G3 that
yield matrices corresponding to that variable.

In the case of N , matrix multiplication is omitted because, for diagonal matrices, the matrix
product behaves like the Hadamard product. This choice reduces computational complexity
without sacrificing expressiveness.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 10: Generation of the sentence J⊙A2 ∈ L(G̃3), following a PDA procedure guide by
a Gramformer policy.

D Path and cycle counting

This section contains the proof of theorem 5.1 of Section 5 and provides a detailed explanation
of how P ∗

l counts l-path. In the following, all graphs are assumed to be simple, i.e., they
contain no self-loops. This assumption aligns with the search for paths, as self-loops cannot
contribute to any path due to the repetition of a node when traversing through a self-loop.
Consequently, the adjacency matrix A will always have a zero diagonal. Furthermore, this
ensures that J⊙A = A.

As GRL found more efficient formulas to calculate paths and cycles at edge-level in a graph,
we tried to prove that such formulas are correct, and by doing so, we found the following
lemma that helps to reduce the computation cost.

Lemma D.1
Let N ,M and P be square matrices of the same size, such that Ni,i =

∑
k Mi,k for all indices

i. Then we have

P ⊙ (MJ) = (I⊙N)P − P ⊙M

Proof. We have

(P ⊙ (MJ))i,j = Pi,j(
∑
k

Mi,k −Mi,j)

= Pi,jNi,i − Pi,jMi,j , (6)

and

((I⊙N)P − P ⊙M)i,j =
∑
k

(I⊙N)i,kPk,j − Pi,jMi,j

= Ni,iPi,j − Pi,jMi,j . (7)

From equations (6) and (7), we can conclude.

2-paths and 3-cycles The most effective explicit formula discovered to date for calculating
the number of 2-paths connecting two nodes was proposed by Voropaev and Perepechko
(2012), it is

P2 = J⊙A2. (8)

Following the formula for the l-cycle proposed in Voropaev and Perepechko (2012), we obtain
for the 3-cycle the following formula

C3 = A⊙ P2 = A⊙A2. (9)

Without any surprise, our architecture found the same formulas for both 2-path and 3-cycle.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 11: computation of P ∗
3 for an example graph, the dashed lines indicate an entry in

the column corresponding to the white node in the matrix associated with the term specified
above.

3-paths and 4-cycles The most effective explicit formula discovered to date for calculating
the number of 3-paths connecting two nodes was proposed by Voropaev and Perepechko
(2012), it is

P3 = J⊙A3 − (I⊙A2)A−A(I⊙A2) +A. (10)

Following the formula for the l-cycle proposed in Voropaev and Perepechko (2012), we obtain
for the 3-cycle the following formula

C4 = A⊙ P3 = A⊙A3 −A(I⊙A2)− (I⊙A2)A+A. (11)

Obviously our architecture found P3, but surprisingly, it found a more compact formula.

Theorem D.2
The following formula, denoted as P ∗

3 , computes the number of 3-paths linking two nodes

P ∗
3 = J⊙ (A(J⊙A2))−A⊙ (AJ). (12)

Proof. We will show that P3 = P ∗
3 . Firstly, we have

J⊙A3 −A(I⊙A2) = J⊙ ((A(J + I)⊙A2))−A(I⊙A2)

= J⊙ (A(J⊙A2)) + J⊙ (A(I⊙A2))︸ ︷︷ ︸
=A(I⊙A2)

−A(I⊙A2)

= J⊙ (A(J⊙A2)). (13)

Secondly, we have that A2
i,i =

∑
k Ai,k. Thus lemma D.1 implies

(I⊙A2)A−A = A⊙ (AJ). (14)

From equality (13) and (14), we can conclude.

An alternative understanding of how P ∗
3 computes the number of 3-paths connecting two

nodes is illustrated in Figure 11. The process can be described as follows:

The expression A(J⊙A2) calculates, from a given node, a non-closed 2-path followed by a
1-path. This computation inherently includes non-closed 3-paths as well as 3-cycles. The
3-cycles are subsequently removed by the Hadamard multiplication with J, which zeroes out
the diagonal elements. However, this operation also allows the possibility of traversing a
2-path and then returning to the intermediate node. To account for this and eliminate such
paths, we subtract the term A⊙ (AJ).

Thanks to formula (12), we can derive the 4-cycle formula.

Corollary D.2.1
The following formula, denoted as C4f computes the number of 4-cycles linking two nodes

C4f = A⊙ (A(J⊙A2))−A⊙ (AJ). (15)

In terms of time complexity, P ∗
3 is more efficient than P3. The ratio of time complexity

of P ∗
3 over P3 is 1

2 . It is directly derived from the number of matrix multiplications in
both formulas. Figure 7 shows the gain of complexity of P ∗

3 and the ratio between the two
formulas.

Surprisingly, even for l = 3, GRL allows to improve the computation of path and cycle at
edge-level in terms of time complexity.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

4-paths and 5-cycles The most effective explicit formula discovered to date for calculating
the number of 4-paths connecting two nodes was proposed by Voropaev and Perepechko
(2012), it is

P4 = J⊙A4 − J⊙ (A(I⊙A2)A) + 2(J⊙A2) (16)

− (I⊙A2)(J⊙A2)− (J⊙A2)(I⊙A2)

−A(I⊙A3)− (I⊙A3)A+ 3A⊙A2.

Following the formula for the l-cycle proposed in Voropaev and Perepechko (2012), we obtain
for the 5-cycle the following formula

C5 = A⊙ P4 = A⊙A4 −A⊙ (A(I⊙A2)A) (17)

− (I⊙A2)(A⊙A2)− (A⊙A2)(I⊙A2)

−A(I⊙A3)− (I⊙A3)A+ 5A⊙A2.

Again, GRL found an improved formula for l = 4.

Theorem D.3
The following formula, denoted as P ∗

4 , computes the number of 4-paths linking two nodes

P ∗
4 = J⊙ (A(J⊙ (A(J⊙A2))))− J⊙ (A(A⊙ (AJ))) (18)

− J⊙ ((A⊙ (AJ))A)−A⊙ ((A⊙A2)J) + 2A⊙A2.

Proof. We will show that P ∗
4 = P4. Firstly, we have

J⊙A4 = J⊙ ((A((J + I)⊙A3)))

= J⊙ (A(J⊙A3)) + J⊙ (A(I⊙A3))︸ ︷︷ ︸
=A(I⊙A3)

= J⊙ (A(J⊙ (A((J + I)⊙A2)))) +A(I⊙A3)

= J⊙ (A(J⊙ (A(J⊙A2)))) + J⊙ (A(J⊙ (A(I⊙A2))))︸ ︷︷ ︸
=(J⊙A2)(I⊙A2)

+A(I⊙A3)

= J⊙ (A(J⊙ (A(J⊙A2)))) + (J⊙A2)(I⊙A2) +A(I⊙A3). (19)

Secondly, we have from equality (14)

J⊙ ((A⊙ (AJ))A) = J⊙ ((I⊙A2)A−A)A)

= J⊙ ((I⊙A2)A2)︸ ︷︷ ︸
(I⊙A2)(J⊙A2)

−J⊙A2

= (I⊙A2)(J⊙A2)− J⊙A2. (20)

Thirdly, we have from equality (14)

J⊙ (A(A⊙ (AJ))) = J⊙ (A(I⊙A2)A−A))

= J⊙ (A(I⊙A2)A)− J⊙A2. (21)

And eventually, we have A3
i,i =

∑
k(A⊙A2)i,k. Thus lemma D.1 implies

(I⊙A3)A−A⊙A2 = A⊙ ((A⊙A2)J). (22)

From equality (19), (20),(21) and (22), we can conclude.

An alternative understanding of how P ∗
4 computes the number of 4-paths connecting two

nodes is illustrated in Figure 12. The process can be described as follows:

The expression A(J⊙(A(J⊙A2)))−A(A⊙(AJ)) = AP ∗
3 calculates, from a given node, a non-

closed 3-path followed by a 1-path. This computation inherently includes non-closed 4-paths

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Figure 12: computation of P ∗
4 for two graphs, the dashed lines indicate an entry in the

column corresponding to the white node in the matrix associated with the term specified
above.

as well as 4-cycles. The 4-cycles are subsequently removed by the Hadamard multiplication
with J, which zeroes out the diagonal elements. However, this operation also allows the
possibility of traversing a 3-path and then returning to an intermediate node. To account for
this and eliminate respectively paths returning to the third and second nodes of the 3-paths,
we subtract the terms J⊙ ((A⊙ (AJ))A)−A⊙A2 and A⊙ ((A⊙A2)J)−A⊙A2.

Thanks to formula (18), we can derive the 5-cycle formula.

Corollary D.3.1
The following formula, denoted as C5f computes the number of 5-cycles linking two nodes

C5f = A⊙ (A(J⊙ (A(J⊙A2))))−A⊙ (A(A⊙ (AJ))) (23)

−A⊙ ((A⊙ (AJ))A)−A⊙ ((A⊙A2)J) + 2A⊙A2.

In terms of time complexity, P ∗
4 is more efficient than P4. The ratio of time complexity

of P ∗
4 over P4 is 4

9 . It is directly derived from the number of matrix multiplications in
both formulas. Figure 7 shows the gain of complexity of P ∗

4 and the ratio between the two
formulas.

GRL improves the computation of path and cycle at edge-level for l = 5.

5-paths and 6-cycles The most effective explicit formula discovered to date for calculating
the number of 5-paths connecting two nodes was proposed by Voropaev and Perepechko
(2012), it is

P5 = J⊙A5 − (I⊙A4)A−A(I⊙A4)− (I⊙A3)(J⊙A2)− (J⊙A2)(I⊙A3) (24)

− (I⊙A2)(J⊙A3)− (J⊙A3)(I⊙A2)− J⊙ (A(I⊙A3)A) + 3A⊙A3

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+ 3A⊙A2 ⊙A2 + (I⊙A2)A(I⊙A2)

− J⊙ (A(I⊙A2)A2)− J⊙ (A2(I⊙A2)A) + 3J⊙ ((A⊙A2)A) + 3J⊙ (A(A⊙A2))

+ (I⊙ (A(I⊙A2)A))A+A(I⊙ (A(I⊙A2)A))− 6(I⊙A2)A− 6A(I⊙A2)

− 4A⊙A2 + 3J⊙A3 + 4A.

Following the formula for the l-cycle proposed in Voropaev and Perepechko (2012), we obtain
for the 6-cycle the following formula

C6 = A⊙A5 − (I⊙A4)A−A(I⊙A4)− (I⊙A3)(A⊙A2)− (A⊙A2)(I⊙A3) (25)

− (I⊙A2)(A⊙A3)− (A⊙A3)(I⊙A2)−A⊙ (A(I⊙A3)A) + 6A⊙A3

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+ 3A⊙A2 ⊙A2 + (I⊙A2)A(I⊙A2)

−A⊙ (A(I⊙A2)A2)−A⊙ (A2(I⊙A2)A) + 3A⊙ ((A⊙A2)A) + 3A⊙ (A(A⊙A2))

+ (I⊙ (A(I⊙A2)A))A+A(I⊙ (A(I⊙A2)A))− 6(I⊙A2)A− 6A(I⊙A2)

− 4A⊙A2 + 4A.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Again, GRL found an improved formula for l = 5.

Theorem D.4
The following formula, denoted as P ∗

5 , computes the number of 5-paths linking two nodes

P ∗
5 = J⊙ (AP ∗

4)− (J⊙A2)⊙ ((A⊙A2)J)−A⊙ (C4fJ)− (AJ)⊙ P ∗
3 (26)

+ P ∗
3 + C4f + 2A⊙A2 ⊙A2 + 3J⊙ ((A⊙A2)A)− 4A⊙A2.

Proof. We will show that P ∗
5 = P5. First, we have

J⊙A5 = J⊙ ((A((J + I)⊙A4)))

= J⊙ (A(J⊙A4)) + J⊙ (A(I⊙A4))︸ ︷︷ ︸
=A(I⊙A4)

= J⊙ (A(J⊙ (A((J + I)⊙A3)))) +A(I⊙A4)

= J⊙ (A(J⊙ (A(J⊙A3)))) + J⊙ (A(J⊙ (A(I⊙A3))))︸ ︷︷ ︸
=(J⊙A2)(I⊙A3)

+A(I⊙A4)

= J⊙ (A(J⊙ (A(J⊙ (A((J + I)⊙A2)))))) + (J⊙A2)(I⊙A3) +A(I⊙A4)

= J⊙ (A(J⊙ (A(J⊙ (A(J⊙A2)))))) + J⊙ (A(J⊙ (A(J⊙ (A(I⊙A2)))))) (27)

+ (J⊙A2)(I⊙A3) +A(I⊙A4).

And

J⊙ (A(J⊙ (A(J⊙ (A(I⊙A2)))))) = J⊙ (A(J⊙A2)(I⊙A2))

= J⊙ (A3(I⊙A2))︸ ︷︷ ︸
=(J⊙A3)(I⊙A2)

− J⊙ (A(I⊙A2)(I⊙A2))︸ ︷︷ ︸
=A(I⊙A2)(I⊙A2)

= (J⊙A3)(I⊙A2)−A(I⊙A2)(I⊙A2). (28)

Thus equation (27) and (28) give

J⊙A5 = J⊙ (A(J⊙ (A(J⊙ (A(J⊙A2)))))) + (J⊙A3)(I⊙A2) + (J⊙A2)(I⊙A3) (29)

+A(I⊙A4)−A(I⊙A2)(I⊙A2).

Second, we have from equality (20)

J⊙ (A(J⊙ ((A⊙ (AJ))A))) = J⊙ (A((I⊙A2)(J⊙A2)− J⊙A2))

= J⊙ (A(I⊙A2)A2)− J⊙ (A(I⊙A2)(I⊙A2))︸ ︷︷ ︸
=A(I⊙A2)(I⊙A2)

− J ⊙ (A(J⊙A2))︸ ︷︷ ︸
=J⊙A3−A(I⊙A2)

= J⊙ (A(I⊙A2)A2)−A(I⊙A2)(I⊙A2)− J⊙A3 (30)

+A(I⊙A2).

Third, we have from equality (21)

J⊙ (A(J⊙ (A(A⊙ (AJ))))) = J⊙ (A(J⊙ (A(I⊙A2)A)− J⊙A2))

= J⊙ (A2(I⊙A2)A)− J⊙ (A(I⊙ (A(I⊙A2)A)︸ ︷︷ ︸
=A(I⊙(A(I⊙A2)A)

− J ⊙ (A(J⊙A2))︸ ︷︷ ︸
=J⊙A3−A(I⊙A2)

= J⊙ (A2(I⊙A2)A)−A(I⊙ (A(I⊙A2)A)− J⊙A3 (31)

+A(I⊙A2).

Fourth, we have from equality (22)

J⊙ (A(A⊙ ((A⊙A2)J))) = J⊙ (A((I⊙A3)A)−A⊙A2))

= J⊙ (A(I⊙A3)A)− J⊙ (A(A⊙A2)). (32)

Fifth, we have A3
i,i =

∑
k(A⊙A2)i,k. Thus lemma D.1 implies

(I⊙A3)(J⊙A2)−A⊙A2 ⊙A2 = (J⊙A2)⊙ ((A⊙A2)J). (33)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Sixth, we have (AP ∗
3)i,i =

∑
k(C4f)i,k. Thus lemma D.1 implies

(I⊙ (AP ∗
3))A− C4f = A⊙ (C4fJ). (34)

Eventually, we have (A2)i,i =
∑

k Ai,k. Thus lemma D.1 implies

(I⊙A2)P ∗
3 −A⊙ P ∗

3 = P ∗
3 ⊙ (AJ). (35)

By removing equality (29), (30), (31), (32), (33),(34), (35) and 2J ⊙ (A(A⊙A2)) to P5, we
obtain exactly P ∗

3 + C4f + 2A⊙A2 ⊙A2 + 3J⊙ ((A⊙A2)A)− 4A⊙A2. It concludes the
proof.

An alternative understanding of how P ∗
5 computes the number of 5-paths connecting two

nodes is illustrated in Figure 13. The process can be described as follows:

The expression AP ∗
4 calculates, from a given node, a non-closed 4-path followed by a 1-path.

This computation inherently includes non-closed 5-paths as well as 5-cycles. The 5-cycles
are subsequently removed by the Hadamard multiplication with J, which zeroes out the
diagonal elements. However, this operation also allows the possibility of traversing a 4-path
and then returning to an intermediate node. To account for this and eliminate respectively
paths returning to the fourth, third and second nodes of the 4-paths, we subtract the terms
A⊙ ((C4f)J)−C4f , (J⊙A2)⊙ ((A⊙A2)J) + 4A⊙A2 − 2A⊙A2 ⊙A2 − 3J⊙ ((A⊙A2)A)
and (AJ)⊙ P ∗

3 − P ∗
3 .

Thanks to formula (26), we can derive the 6-cycle formula.

Corollary D.4.1
The following formula, denoted as C6f computes the number of 6-cycles linking two nodes

C6f = A⊙ (AP ∗
4)− (A⊙A2)⊙ ((A⊙A2)J)−A⊙ ((C4f)J)− (AJ)⊙ C4f (36)

+ 2C4f + 2A⊙A2 ⊙A2 + 3A⊙ ((A⊙A2)A)− 4A⊙A2.

In terms of time complexity, P ∗
5 is more efficient than P5. The ratio of time complexity of

P ∗
5 over P5 is 1

4 . It is directly derived from the number of matrix multiplications in both
formulas. The significant decrease in time complexity can be attributed to the presence of
both P ∗

4 , C4f and P ∗
3 in the computational formula. The contributions of these terms to the

time complexity are cumulative, meaning that each occurrence of P ∗
4 , C4f and P ∗

3 adds to
the total computational gain. As a result, their individual time complexities are aggregated,
leading to the observed diminution in the overall time complexity of the formula. Figure 7
shows the gain of complexity of P ∗

5 and the ratio between the two formulas.

GRL improves the computation of path and cycle at edge-level for l = 5 by a factor 4.

6-paths and 7-cycles The most effective explicit formula discovered to date for calculating
the number of 6-paths connecting two nodes was proposed by Voropaev and Perepechko

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Figure 13: computation of P ∗
5 for four graphs, the dashed lines indicate an entry in the

column corresponding to the white node in the matrix associated with the term specified
above.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

(2012), it is

P6 = J⊙A6 − (I⊙A5)A−A(I⊙A5)− (I⊙A2)(J⊙A4)− (J⊙A4)(I⊙A2) (37)

− (I⊙A4)(J⊙A2)− (J⊙A2)(I⊙A4)− J⊙ (A(I⊙A4)A) + 3A⊙A4

− (J⊙A3)(I⊙A3)− (I⊙A3)(J⊙A3)− J⊙ (A(I⊙A2)A3)− J⊙ (A3(I⊙A2)A)

− J⊙ (A(I⊙A3)A2)− J⊙ (A2(I⊙A3)A) + 4A(I⊙A2)(I⊙A3) + 4(I⊙A3)(I⊙A2)A

+ 6A⊙A2 ⊙A3 + (I⊙A2)A(I⊙A3) + (I⊙A3)A(I⊙A2) + 3J⊙ ((A⊙A3)A)

+ 3J⊙ (A(A⊙A3)) + (I⊙ (A(I⊙A3)A))A+A(I⊙ (A(I⊙A3)A))− J⊙ (A2(I⊙A2)A2)

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+ J⊙A2 ⊙A2 ⊙A2 + (I⊙A2)(J⊙A2)(I⊙A2)

+ 3J⊙ ((A⊙A2)A2) + 3J⊙ (A2(A⊙A2)) + (I⊙ (A(I⊙A2)A))(J⊙A2) + (J⊙A2)(I⊙ (A(I⊙A2)A))

+ J⊙ ((I⊙A2)A(I⊙A2)A) + J⊙ (A(I⊙A2)A(I⊙A2)) + 2J⊙ (A(I⊙A2)(I⊙A2)A)

+ (I⊙ (A(I⊙A2)A2))A+A(I⊙ (A(I⊙A2)A2)) + (I⊙ (A2(I⊙A2)A))A+A(I⊙ (A2(I⊙A2)A))

+ 3J⊙ ((A⊙A2 ⊙A2)A) + 3J⊙ (A(A⊙A2 ⊙A2))− 12(I⊙A2)(A⊙A2)− 12(A⊙A2)(I⊙A2)

− 4J⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A)− 3A⊙ (A(I⊙A2)A)

+ 3J⊙ (A(A⊙A2)A) + J⊙ (A(I⊙ (A(I⊙A2)A))A)− 4J⊙ (A(A⊙A2))− 4J⊙ ((A⊙A2)A)

+ 4J⊙A4 − 5A(I⊙A3)− 5(I⊙A3)A− 4(I⊙ (A(A⊙A2)))A− 4A(I⊙ (A(A⊙A2)))

− 4(I⊙ ((A⊙A2)A))A− 4A(I⊙ ((A⊙A2)A))− 7(IA2)(J⊙A2)− 7(J⊙A2)(IA2)

− 10J⊙ (A(I⊙A2)A) + 44A⊙A2 + 12J⊙A2.

Following the formula for the l-cycle proposed in Voropaev and Perepechko (2012), we obtain
for the 7-cycle the following formula

C7 = A⊙A6 − (I⊙A5)A−A(I⊙A5)− (I⊙A2)(A⊙A4)− (A⊙A4)(I⊙A2) (38)

− (I⊙A4)(A⊙A2)− (A⊙A2)(I⊙A4)−A⊙ (A(I⊙A4)A) + 3A⊙A4

− (A⊙A3)(I⊙A3)− (I⊙A3)(A⊙A3)−A⊙ (A(I⊙A2)A3)−A⊙ (A3(I⊙A2)A)

−A⊙ (A(I⊙A3)A2)−A⊙ (A2(I⊙A3)A) + 4A(I⊙A2)(I⊙A3) + 4(I⊙A3)(I⊙A2)A

+ 6A⊙A2 ⊙A3 + (I⊙A2)A(I⊙A3) + (I⊙A3)A(I⊙A2) + 3A⊙ ((A⊙A3)A)

+ 3A⊙ (A(A⊙A3)) + (I⊙ (A(I⊙A3)A))A+A(I⊙ (A(I⊙A3)A))−A⊙ (A2(I⊙A2)A2)

+ 2A(I⊙A2)(I⊙A2) + 2(I⊙A2)(I⊙A2)A+A⊙A2 ⊙A2 ⊙A2 + (I⊙A2)(A⊙A2)(I⊙A2)

+ 3A⊙ ((A⊙A2)A2) + 3A⊙ (A2(A⊙A2)) + (I⊙ (A(I⊙A2)A))(A⊙A2) + (A⊙A2)(I⊙ (A(I⊙A2)A))

+A⊙ ((I⊙A2)A(I⊙A2)A) +A⊙ (A(I⊙A2)A(I⊙A2)) + 2A⊙ (A(I⊙A2)(I⊙A2)A)

+ (I⊙ (A(I⊙A2)A2))A+A(I⊙ (A(I⊙A2)A2)) + (I⊙ (A2(I⊙A2)A))A+A(I⊙ (A2(I⊙A2)A))

+ 3A⊙ ((A⊙A2 ⊙A2)A) + 3A⊙ (A(A⊙A2 ⊙A2))− 12(I⊙A2)(A⊙A2)− 12(A⊙A2)(I⊙A2)

− 4A⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A)− 3A⊙ (A(I⊙A2)A)

+ 3A⊙ (A(A⊙A2)A) +A⊙ (A(I⊙ (A(I⊙A2)A))A)− 4A⊙ (A(A⊙A2))− 4A⊙ ((A⊙A2)A)

+ 4A⊙A4 − 5A(I⊙A3)− 5(I⊙A3)A− 4(I⊙ (A(A⊙A2)))A− 4A(I⊙ (A(A⊙A2)))

− 4(I⊙ ((A⊙A2)A))A− 4A(I⊙ ((A⊙A2)A))− 7(IA2)(A⊙A2)− 7(A⊙A2)(IA2)

− 10A⊙ (A(I⊙A2)A) + 56A⊙A2.

Again, GRL found an improved formula for l = 6.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Theorem D.5
The following formula, denoted as P ∗

6 computes the number of 6-paths linking two nodes

P ∗
6 = J⊙ (AP ∗

5)− P ∗
3 ⊙ ((A⊙A2)J)−A⊙ (C5fJ)− P ∗

4 ⊙ (AJ) (39)

+ P ∗
4 + C5f − (J⊙A2)⊙ (C4fJ) + 4A⊙A2 ⊙ P ∗

3 + 3J⊙ ((A⊙A2)(J⊙A2))

+ J⊙A2 ⊙A2 ⊙A2 + 3J⊙ ((A⊙A2 ⊙A2)A)− 4J⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))

− 8A⊙ ((A⊙A2)A)− 4J⊙ ((A⊙A2)A)− 3A⊙ ((A⊙A2)J) + 17A⊙A2 + 3J⊙A2.

Proof. We will show that P ∗
6 = P6. First, we have

J⊙A6 = J⊙ ((A((J + I)⊙A5)))

= J⊙ (A(J⊙A5)) + J⊙ (A(I⊙A5))︸ ︷︷ ︸
=A(I⊙A5)

= J⊙ (A(J⊙ (A((J + I)⊙A4)))) +A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙A4)))) + J⊙ (A(J⊙ (A(I⊙A4))))︸ ︷︷ ︸
=(J⊙A2)(I⊙A4)

+A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙ (A((J + I)⊙A3)))))) + (J⊙A2)(I⊙A4) +A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙ (A(J⊙A3)))))) + J⊙ (A(J⊙ (A(J⊙ (A(I⊙A3))))))︸ ︷︷ ︸
=(J⊙A3)(I⊙A3)−A(I⊙A2)(I⊙A3)

+ (J⊙A2)(I⊙A4) +A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙ (A(J⊙ (A((J + I)⊙A2)))))))) + (J⊙A3)(I⊙A3)

−A(I⊙A2)(I⊙A3) + (J⊙A2)(I⊙A4) +A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙ (A(J⊙ (A(J⊙A2)))))))) + J⊙ (A(J⊙ (A(J⊙ (A(J⊙ (A(I⊙A2))))))))︸ ︷︷ ︸
=(J⊙A4)(I⊙A2)−A(I⊙A2)(I⊙A3)−(J⊙A2)(I⊙A2)(I⊙A2)

+ (J⊙A3)(I⊙A3)−A(I⊙A2)(I⊙A3) + (J⊙A2)(I⊙A4) +A(I⊙A5)

= J⊙ (A(J⊙ (A(J⊙ (A(J⊙ (A(J⊙A2)))))))) + (J⊙A4)(I⊙A2) (40)

− 2A(I⊙A2)(I⊙A3)− (J⊙A2)(I⊙A2)(I⊙A2) + (J⊙A3)(I⊙A3)

+ (J⊙A2)(I⊙A4) +A(I⊙A5).

Second, we have from equality (30)

J⊙ (A(J⊙ (A(J⊙ ((A⊙ (AJ))A))))) = J⊙ (A((J⊙ (A(I⊙A2)A2)−A(I⊙A2)(I⊙A2)

− J⊙A3 +A(I⊙A2)))

= J⊙ (A(J⊙ (A(I⊙A2)A2)))︸ ︷︷ ︸
=J⊙(A2(I⊙A2)A2)−A(I⊙(A(I⊙A2)A2))

−(J⊙A2)(I⊙A2)(I⊙A2)

J⊙ (A(J⊙A3))︸ ︷︷ ︸
=J⊙A4−A(I⊙A3)

+(J⊙A2)(I⊙A2)

= J⊙ (A2(I⊙A2)A2)−A(I⊙ (A(I⊙A2)A2)) (41)

− (J⊙A2)(I⊙A2)(I⊙A2)− J⊙A4 +A(I⊙A3)

+ (J⊙A2)(I⊙A2).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Third, we have from equalities (31)

J⊙ (A(J⊙ (A(J⊙ (A(A⊙ (AJ))))))) = J⊙ (A(J⊙ (A2(I⊙A2)A)−A(I⊙ (A(I⊙A2)A))

− J⊙A3 +A(I⊙A2)))

= J⊙ (A(J⊙ (A2(I⊙A2)A)))︸ ︷︷ ︸
=J⊙(A3(I⊙A2)A)−A(I(A2(I⊙A2)A))

−(J⊙A2)(I⊙ (A(I⊙A2)A))

− J⊙A4 +A(I⊙A3) + (J⊙A2)(I⊙A2)

= J⊙ (A3(I⊙A2)A)−A(I(A2(I⊙A2)A)) (42)

− (J⊙A2)(I⊙ (A(I⊙A2)A))− J⊙A4 +A(I⊙A3)

+ (J⊙A2)(I⊙A2).

Fourth, we have from equality (32)

J⊙ (A(J⊙ (A(A⊙ ((A⊙A2)J))))) = J⊙ (A(J⊙ (A(I⊙A3)A)− J⊙ (A(A⊙A2))))

= J⊙ (A(J⊙ (A(I⊙A3)A)))︸ ︷︷ ︸
=J⊙(A2(I⊙A2)A)−A(I⊙(A(I⊙A3)A))

− J⊙ (A(J⊙ (A(A⊙A2))))︸ ︷︷ ︸
=J⊙(A2(A⊙A2))−A(I⊙(A(A⊙A2)))

= J⊙ (A2(I⊙A2)A)−A(I⊙ (A(I⊙A3)A)) (43)

− J⊙ (A2(A⊙A2)) +A(I⊙ (A(A⊙A2))).

Fifth, we have from equality (33)

J⊙ (A((J⊙A2)⊙ ((A⊙A2)J))) = J⊙ (A((I⊙A3)(J⊙A2)−A⊙A2 ⊙A2))

= J⊙ (A(I⊙A3)(J⊙A2))︸ ︷︷ ︸
J⊙(A(I⊙A3)A2)−A(I⊙A3)(I⊙A2)

−J⊙A(A⊙A2 ⊙A2)

= J⊙ (A(I⊙A3)A2)−A(I⊙A3)(I⊙A2) (44)

− J⊙A(A⊙A2 ⊙A2).

Sixth, we have from equality (34)

J⊙ (A(A⊙ (C4fJ)) = J⊙ (A((I⊙ (AP3))A− C4))

= J⊙ (A(I⊙ (A(J⊙A3 −A(I⊙A2)− (I⊙A2)A+A)))A)

− J⊙ (A(A⊙A3 −A(I⊙A2)− (I⊙A2)A+A))

= J⊙ (A(I⊙A4)A)− J⊙ (A(I⊙A2)(I⊙A2)A) (45)

− J⊙ (A(I⊙ (A(I⊙A2)A))A) + 2J⊙ (A(I⊙A2)A)

− J⊙ (A(A⊙A3)) + (J⊙A2)(I⊙A2)− (J⊙A2).

Seventh, we have from equality (35)

J⊙ (A(P ∗
3 ⊙ (AJ))) = J⊙ (A((I⊙A2)P3 − C4))

= J⊙ (A((I⊙A2)(J⊙A3 −A(I⊙A2)− (I⊙A2)A+A)))

− J⊙ (A(A⊙A3 −A(I⊙A2)− (I⊙A2)A+A))

= J⊙ (A(I⊙A2)A3)−A(I⊙A2)(I⊙A3) (46)

− J⊙ (A(I⊙A2)A(I⊙A2))− J⊙ (A(I⊙A2)(I⊙A2)A)

+ 2J⊙ (A(I⊙A2)A)− J⊙ (A(A⊙A3)) + (J⊙A2)(I⊙A2)− (J⊙A2).

Eighth, we have

J⊙ (AP ∗
3) = J⊙ (AP3)

= J⊙ (A(J⊙A3 −A(I⊙A2)− (I⊙A2)A+A)))

= J⊙A4 −A(I⊙A3)− (J⊙A2)(I⊙A2)− J⊙ (A(I⊙A2)A) + (J⊙A2). (47)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Ninth, we have

J⊙ (AC4f) = J⊙ (AC4)

= J⊙ (A(A⊙A3 −A(I⊙A2)− (I⊙A2)A+A)))

= J⊙ (A(A⊙A3))− (J⊙A2)(I⊙A2)− J⊙ (A(I⊙A2)A) + (J⊙A2). (48)

Tenth, we have

J⊙ (A(J⊙ ((A⊙A2)A))) = J⊙ (A(A⊙A2)A)−A(I⊙ ((A⊙A2)A)). (49)

Eleventh, we have

J⊙ (A(J⊙ (A(A⊙A2)))) = J⊙ (A2(A⊙A2))−A(I⊙ (A(A⊙A2))). (50)

From equalities (40) to (50) combined with J⊙ (A(A⊙A2 ⊙A2)) and J⊙ (A(A⊙A2)) we
obtain the equivalence between J⊙ (AP ∗

5) and all those matrices.

Twelfth, we have A3
i,i =

∑
k(A⊙A2)i,k. Thus lemma D.1 implies

P ∗
3 ⊙ ((A⊙A2)J) = (I⊙A3)P3 −A2 ⊙ C4

= (I⊙A3)(J⊙A3)− (I⊙A3)A(I⊙A2)− (I⊙A3)(I⊙A2)A+ (I⊙A3)A

−A2 ⊙A⊙A3 +A2 ⊙ (A(I⊙A2))︸ ︷︷ ︸
=(A⊙A2)(I⊙A2)

+A2 ⊙ ((I⊙A2)A)︸ ︷︷ ︸
=(I⊙A2)(A⊙A2)

−A2 ⊙A

= (I⊙A3)(J⊙A3)− (I⊙A3)A(I⊙A2)− (I⊙A3)(I⊙A2)A (51)

+ (I⊙A3)A−A⊙A2 ⊙A3 + (A⊙A2)(I⊙A2) + (I⊙A2)(A⊙A2)

−A⊙A2.

Thirteenth, we have (AP ∗
4)i,i =

∑
k(C5f)i,k. Thus lemma D.1 implies

A⊙ (C5fJ) = (I⊙ (AP4))A− C5

= (I⊙ (A(J⊙A4)))A︸ ︷︷ ︸
=(I⊙A5)A

− (I⊙ (A(J⊙ (A(I⊙A2)A))))A︸ ︷︷ ︸
=(I⊙(A2(I⊙A2)A))A

+2 (I⊙ (A(J⊙A2)))A︸ ︷︷ ︸
=(I⊙A3)A

− (I⊙ (A(I⊙A2)(J⊙A2)))A︸ ︷︷ ︸
=(I⊙(A(I⊙A2)A2))A

− (I⊙ (A(J⊙A2)(I⊙A2)))A︸ ︷︷ ︸
=(I⊙A3)(I⊙A2)A

− (I⊙ (A(I⊙A3)A))A− (I⊙A2)(I⊙A3)A+ 3(I⊙ (A(A⊙A2)))A−A⊙A4

+A⊙ (A(I⊙A2)A) + (I⊙A2)(A⊙A2) + (A⊙A2)(I⊙A2)

+A(I⊙A3) + (I⊙A3)A− 5A⊙A2

(52)

− 2(I⊙A3)(I⊙A2)A− (I⊙ (A(I⊙A3)A))A+ 3(I⊙ (A(A⊙A2)))A

+A⊙ (A(I⊙A2)A) + (I⊙A2)(A⊙A2) + (A⊙A2)(I⊙A2) + 2(I⊙A3)A

+A(I⊙A3) + (I⊙A3)A− 5A⊙A2.

Fourteenth, we have (A2)i,i =
∑

k Ai,k. Thus lemma D.1 implies

P ∗
4 ⊙ (AJ) = (I⊙A2)P4 − C5

= (I⊙A2)(J⊙A4)− J⊙ ((I⊙A2)A(I⊙A2)A) + 2(I⊙A2)(J⊙A2) (53)

− (I⊙A2)(I⊙A2)(J⊙A2)− (I⊙A2)(J⊙A2)(I⊙A2)− (I⊙A2)A(I⊙A3)

− (I⊙A2)(I⊙A3)A+ 3(I⊙A2)(A⊙A2)−A⊙A4 +A⊙ (A(I⊙A2)A)

+ (I⊙A2)(A⊙A2) + (A⊙A2)(I⊙A2) +A(I⊙A3) + (I⊙A3)A− 5A⊙A2.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Fifteenth, we have (AP ∗
3)i,i =

∑
k(C4f)i,k. Thus lemma D.1 implies

(J⊙A2)⊙ (C4fJ) = (I⊙ (AP3))(J⊙A2)− (J⊙A2)⊙ C4

= (I⊙ (A(J⊙A3)))(J⊙A2)︸ ︷︷ ︸
=(I⊙A4)(J⊙A2)

−(I⊙ (A(I⊙A2)A))(J⊙A2)

− (I⊙ (A2(I⊙A2)))(J⊙A2)︸ ︷︷ ︸
=(I⊙A2)(I⊙A2)(J⊙A2)

+(I⊙A2)(J⊙A2)−A2 ⊙A⊙A3

+ (J⊙A2)⊙ ((I⊙A2)A)︸ ︷︷ ︸
=(I⊙A2)(A⊙A2)

+(J⊙A2)⊙ (A(I⊙A2))︸ ︷︷ ︸
=(A⊙A2)(I⊙A2)

−A2 ⊙A

= (I⊙A4)(J⊙A2)− (I⊙ (A(I⊙A2)A))(J⊙A2) (54)

− (I⊙A2)(I⊙A2)(J⊙A2) + (I⊙A2)(J⊙A2)−A⊙A2 ⊙A3

+ (I⊙A2)(A⊙A2) + (A⊙A2)(I⊙A2)−A⊙A2.

And eventually, from the previous equality, we have

A⊙A2 ⊙ P ∗
3 = A⊙A2 ⊙A3 − (I⊙A2)(A⊙A2)− (A⊙A2)(I⊙A2) +A⊙A2, (55)

and

C4fA = J⊙ ((A⊙A3)A)− J⊙ (A(I⊙A2)A)− (I⊙A2)(J⊙A2) + J⊙A2, (56)

By removing the correct combination of J ⊙ (AP ∗
5) and equations (51) to (56) to P6, we

obtain exactly P ∗
4 + C5f + 3J⊙ ((A⊙A2)(J⊙A2)) + J⊙A2 ⊙A2 ⊙A2 + 3J⊙ ((A⊙A2 ⊙

A2)A)− 4J⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))− 8A⊙ ((A⊙A2)A)− 4J⊙ ((A⊙A2)A)− 3A⊙
((A⊙A2)J) + 17A⊙A2 + 3J⊙A2. It concludes the proof.

An alternative understanding of how P ∗
6 computes the number of 5-paths connecting two

nodes can be described as follows:

The expression AP ∗
6 calculates, from a given node, a non-closed 5-path followed by a 1-path.

This computation inherently includes non-closed 6-paths as well as 6-cycles. The 6-cycles
are subsequently removed by the Hadamard multiplication with J, which zeroes out the
diagonal elements. However, this operation also allows the possibility of traversing a 5-path
and then returning to an intermediate node. To account for this and eliminate respectively
paths returning to the fifth, fourth, third and second nodes of the 4-paths, we subtract the
other terms in P ∗

6 .

Thanks to formula (26), we can derive the 7-cycle formula.

Corollary D.5.1
The following formula, denoted as C7f computes the number of 7-cycles linking two nodes

C6f = A⊙ (AP ∗
5)− C4f ⊙ ((A⊙A2)J)−A⊙ (C5fJ)− C5f ⊙ (AJ) + 2C5f (57)

− (A⊙A2)⊙ (C4fJ) + 4A⊙A2 ⊙ P ∗
3 + 3A⊙ ((A⊙A2)(J⊙A2) +A⊙A2 ⊙A2 ⊙A2

+ 3A⊙ ((A⊙A2 ⊙A2)A)− 4A⊙A2 ⊙A2 − 8A⊙ (A(A⊙A2))− 12A⊙ ((A⊙A2)A)

− 3A⊙ ((A⊙A2)J) + 20A⊙A2.

In terms of time complexity, P ∗
6 is more efficient than P6. The ratio of time complexity

of P ∗
6 over P6 is 4

25 . It is directly derived from the number of matrix multiplications in
both formulas. Figure 7 shows the gain of complexity of P ∗

6 and the ratio between the two
formulas.

GRL improves the computation of path and cycle at edge-level for l = 6 by a factor 6.25.

We evaluated the computational time of P ∗
3 and P ∗

6 and the precomputation times of GSN
on the IMDB-MULTI dataset, with the results shown in Figure 14. This analysis underscores
the efficiency gains provided by the formulae.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 14: Time computation of GRL formulae and preconsumption of GSN (log scale) on
IMDB-MULTI dataset for path of length 3 and 6.

E GRL applied on directed graphs

In this section, we extend the application of GRL to derive matrix formulae for counting
paths and cycles in directed graphs.

To adapt the grammar reduction approach proposed in Piquenot et al. (2024) for directed
graphs, minor modifications are necessary. Specifically, the transpose operation becomes
critical due to the asymmetry of the adjacency matrix in directed graphs. Despite this
adjustment, the proof used to eliminate the Vc variable remains valid. Consequently, the
grammar Gd provided to GRL for this task is defined as follows.

E → (E ⊙M) | (NE) | (EN) | ET | A | J (58)

N → (N ⊙M) | (N ⊙N) | I
M → (MM) | (EE) | MT

In addition to GRL, we explored search within the CFG using two alternative methods:
MCTS without GramFormer, referred to as MC, and a completely random rule selection
process, referred to as Rand. For both MC and Rand, we maintained the same rollout budget
and maximum sentence length as those used for GRL. In the following, we denote the path
matrix for directed graphs as P d

l .

For l = 2, since the task can be resolved by a single short formula, GRL, MC, and Rand all
successfully identified P d

2 .

P d
2 = J⊙A2.

For l = 3, when GRL was initially applied to directed graphs, we aimed to identify a
combination of four sentences to construct the formula. However, GRL determined that,
similar to the case of undirected graphs, only two sentences were required. This resulted in
the following simplified formula.

P d
3 = J⊙ (A(J⊙A2))−A⊙ ((A⊙AT)J).

Both MC and Rand failed to converge when tasked with finding a combination of four
sentences. However, after GRL revealed that only two sentences were necessary, we re-
evaluated MC and Rand under this condition. In this case, both methods successfully
converged and identified P d

3 .

For l = 4, only GRL successfully discovered a solution.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

P d
4 = J⊙ (A(J⊙ (A(J⊙A2))))− J⊙ (A(A⊙ ((A⊙AT)J)))

− J⊙ ((A⊙ ((A⊙AT)J))A)−A⊙ ((A⊙ (A2)T)J) + 2 ∗A⊙AT ⊙A2.

For l = 5, only GRL successfully discovered a solution.

P d
5 = J⊙ (A(J⊙ (A(J⊙ (A(J⊙A2))))))− J⊙ (A(J⊙ (A(A⊙ ((A⊙AT)J)))))

− J⊙ (A(J⊙ ((A⊙ ((A⊙AT)J))A)))− J⊙ (A(A⊙ ((A⊙ (A2)T)J)))

− (J⊙A2)⊙ ((AT ⊙A2)J)−A⊙ ((A⊙ (A(J⊙A2))T)J)

− ((A⊙AT)J)⊙ (J⊙ (A(J⊙A2)))−A⊙ ((A⊙AT)J)−A⊙AT ⊙ ((A⊙AT)J)

−AT ⊙A2 − 3A⊙ (A⊙AT)2 + 2A⊙A2 ⊙+TA⊙AT ⊙ (A(J⊙A2))(A2)

+ J⊙ ((A⊙ (A2)T)A) + 2J⊙ ((A⊙AT ⊙ (A2))A)

+ J⊙ ((A⊙AT)(J⊙A2)) + ((A⊙AT)J)⊙ (A⊙ ((A⊙AT)J))

+A⊙ (((A⊙AT)⊙ ((A⊙AT)J))J) + 2 ∗ J⊙ (A(A⊙AT ⊙A2)).

To the best of our knowledge, the matrix formulae derived for counting paths of lengths
2 to 5 are novel. This highlights the capability of GRL to generate new and meaningful
formulae. Furthermore, when assuming that the adjacency matrix A is symmetric, the
formulae discovered by GRL for directed graphs align perfectly with those identified for
undirected graphs. This alignment leads us to conjecture that GRL has identified optimal
formulae, at least in the undirected case.

F Algorithms

This section provides the pseudo code of algorithm of section 2 through 4.

Algorithm 1: PDA sentence generation for a given grammar G.

Input:
The PDA (Q,Σ,Γ, δ, q0, Z, F) derived from a given CFG G.

Output:
A sentence w ∈ L(G) where each element of w is in Σ.

Initialisation:
S ← [Z] # Initialisation of the stack
w ← [] # Initialisation of the written sentence

while S ̸= [] do
c← pop(S)
if c ∈ Σ then

Append c to w # Write the terminal symbol c
else

Choose t ∈ δ(q0, ε, c) # Choose a transposition for the variable c
push(S, t) # Concatenate the rule t to the stack

Return :w

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Algorithm 2: Definition of the algorithm read, that return the first variable token
in input I and its position if I contains variable token

Input:
The set of token T := {Tv, Tr, Tt} derived from a given CFG G
The Input I, concatenation of w ∈ Σ∗ the written terminal symbols with the
stack S ∈ Γ∗

Output:
b a boolean that indicate whether I contains elements of the variables token set Tv

v ∈ Tv a variable token, None if b is False
pos the position of v in I, None if b is False

Initialisation:
b← False v ← None pos← None

for c, i ∈ enumerate(I) do
if c ∈ Tv then

b← True
v ← c
pos← i
Break

Return : b, v, pos

Algorithm 3: Prediction algorithm of the gramformer model M =
(encoder, decoder).

Input:
A variable token v ∈ Tv of the set of token T := {Tv, Tr, Tt} derived from a given
CFG G

A variable mask Mv corresponding to the variable token v
The Input I, concatenation of w ∈ Σ∗ the written terminal symbols with the
stack S ∈ Γ∗

Output:
policy the learned distribution of possible rules selection form the variable
corresponding to v

optional:value the learned empirical value

memory ← encoder(v)
latent← decoder(memory, I)
value←MLP (latent, 1) # Optional
pol←MLP (latent, nbtoken)
policy ← softmax(pol +Mv) # probability distribution of the possible transposition
of token variable v
Return : policy,(value # Optional)

Algorithm 4: Replace the variable of I at position pos by the list of variable
and/or terminal tokens corresponding to the rule token at indices decision

Input:
The Input I, concatenation of w ∈ Σ∗ the written terminal symbols with the
stack S ∈ Γ∗

The position of the variable token to replace pos
The indice decision of the selected rule token

Output:
A new I where, the variable at position I as been replaced by the list of variable
and/or terminal tokens corresponding to the rule token at indices decision

sb← I[: pos]
sf ← I[pos+ 1 :]
si← tokens(decision)
Return : concatenate(sb, si, sf)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Algorithm 5: Gramformer sentence generation for a given grammar G.

Input:
The transformer model M , the set of token T := {Tv, Tr, Tt} and the dictionary
of variable mask Mv derived from a given CFG G.

Output:
A sentence w ∈ L(G) where each element of w is in Σ.

Initialisation:
I ← [Z] # Initialisation of the input
b, v, pos← read(I) # read the input

while b do
policy ←M(v,Mv[v], I) # Distribution proposed by the transformer model
decision← argmax(policy)
I ← replace(I, pos, decision)
b, v, pos← read(I)

Return : I

Algorithm 6: GRL algorithm one agent acting phase

Input:
A MCTS defined to search within a CFG G
nbwords, the number of sentences to generate
A fixed Gramformer M
A buffer

Output:
A buffer that contains empirical policy and value of the tree explored during
MCTS for the selected nodes of this MCTS.

Initialisation:
I ← [Z] ∗ nbwords # Initialisation of the input
b, v, pos← read(I) # read the input
tree← initMCTS(nbwords)
buffer ← [I]

while b do
root← tree(I)
decision, tree←MCTS(root,M)
I ← replace(I, pos, decision)
b, v, pos← read(I)
Append I to buffer

Return : fill(buffer, tree)

Algorithm 7: MCTS algorithm

Input:
The gramformer model M , and root, a node of the tree.

Output:
A child of the root node guided by the MCTS heuristic.

for i=1 to N (Number of simulations) do
leaf ← selection(root,M)
child← Expansion(leaf)
reward← simulation(child)
Backpropagation(child, reward)

Return :Bestchild(root,M)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Algorithm 8: MCTS selection step

Input:
The gramformer model M and a node of the tree

Output:
A descendant node of the input node guided by the MCTS heuristic.

while node is fully expanded and not leaf do
node← Bestchild(node,M)

Return :node

Algorithm 9: MCTS expansion step

Input:
a node of the tree

Output:
A descendant node of the input node or the input node.

if node is not leaf and not fully expanded then
node← RandomUnvisitedChild(node)

Return :node

Algorithm 10: MCTS simulation step

Input:
a node of the tree

Output:
A reward.

while node is not leaf do
node← RandomAction(node)

Return :Evaluate(node)

Algorithm 11: MCTS backpropagation step

Input:
a node of the tree, a reward.

while node is not root do
Add 1 to the visit count of node
Add reward to the reward count of the node
node← parent of node

Algorithm 12: MCTS bestchild algorithm

Input:
The gramformer model M and a node of the tree

Output:
The best child of node.

policy,− ←M(node)
N ← visits count of node
res← { }
for child of node do
−, reward←M(child)
Nc ← visits count of child
v ←M(child)
Q← value of child / visits count of child

res[child]← αQ+ (1− α)v + c× policy(child)×
√∑

c Nc

1+N

Return : argmax(res)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Algorithm 13: GRL learning phase algorithm

Input:
The gramformer model M and a buffer containing policy and value for given
nodes of former trees.

Output:
The updated gramformer M

optimiser ← ADAM(M, lr)
for i=1 to N (number of epoch) do

for node in buffer do
policy, reward←M(node)
policyLoss← KLLoss(policy,policy of node)
valueLoss← HubertLoss(reward,value of node)
Loss← policyLoss+ valueLoss
backward(Loss)
step of optimser

Return :M

33

