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Abstract

In this work we introduce Inceptive Trans-
former, an architecture designed to enhance
transformer based models by incorporating a
multi-scale feature extraction module inspired
by inception networks. Unlike conventional
transformers, which compress the information
from all tokens into a single [CLS] token to
capture the global context of the sequence, our
model balances local and global dependencies
by dynamically weighting token interactions,
enriching their representations for downstream
tasks. We propose a generalizable framework
that can be integrated into both domain-specific
pre-trained models (e.g., BERTweet, BioBERT,
CT-BERT) and general-purpose models like
RoBERTa. We evaluate our models on a di-
verse range of text classification tasks, includ-
ing emotion recognition, irony detection, dis-
ease identification, and anti-COVID vaccine
tweets classification, covering both multi-class
and multi-label settings. Results show that our
models consistently outperform baseline trans-
formers by 1% to 9% while maintaining effi-
ciency, highlighting the versatility and general-
ization capabilities of Inceptive Transformers
across diverse domains and applications.

1 Introduction

Since its introduction, the transformer architec-
ture (Vaswani et al., 2017) has revolutionized the
field of natural language processing (NLP), thanks
to an innovative self-attention mechanism capa-
ble of capturing complex contextual relationships
across tokens. Transformer-based models such
as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), Electra (Clark et al., 2020), and XL-
Net (Yang et al., 2019) have demonstrated impres-
sive performance across a wide range of NLP tasks,
including text classification, question answering,
and named entity recognition. However, in prac-
tice, we often encounter domain-specific text—be it
medical, scientific, business, legal, or social media

content. These texts come with their own unique
language and nuanced stylistic patterns, which are
difficult for general purpose models like BERT or
RoBERTa to capture. To address this, domain-
specific BERT-based models like BioBERT (Lee
etal., 2019), SciBERT (Beltagy et al., 2019), Legal-
BERT (Chalkidis et al., 2020), BERTweet (Nguyen
et al., 2020) have emerged, which have been further
pre-trained on domain-specific corpora to capture
the unique language, terminology, and stylistic fea-
tures of various specialized fields.

Despite their success, transformer models still
have limitations, particularly in capturing short-
range dependencies between tokens (Guo et al.,
2019; Li et al., 2021) that are often important for
classification. A significant issue we observed in
our research is their reliance on the [CLS] token
for text classification, where the model aggregates
all token embeddings into a single representation.
Although convenient, we found that this approach
can lead to information loss, as the single [CLS]
token is insufficient to capture fine-grained contex-
tual nuances or localized cues critical for tasks like
emotion recognition or irony detection. This limita-
tion is especially problematic for multi-label tasks,
which require token-level attention rather than a
single sequence-level summary.

To address these limitations of traditional trans-
former models, we propose Inceptive Transform-
ers, which aim to enhance both general-purpose
and domain-specific transformer models by using
convolutional filters. These filters are designed to
recognize key phrases or word combinations that
are indicative of specific classifications. Our model
uses an initial transformer layer to capture the
global context and long-range dependencies within
the input sequence. Following this, we introduce a
multi-scale convolutional module with varying ker-
nel sizes to extract local dependencies and patterns,
complementing the global representations learned
by the transformer layers. These enriched features



are then processed by a self-attention mechanism,
which dynamically assigns weights to tokens based
on their task-specific contribution, thus allowing
the model to effectively prioritize relevant tokens.

Our experiments show that Inceptive Trans-
formers consistently outperform baseline trans-
former models across both general-purpose (e.g.,
RoBERT2) and domain-specific (e.g., BERTweet,
BioBERT) architectures in text-classification. Eval-
uated on four distinct tasks across three diverse
domains, our models achieved moderate (1%) to
significant (9% ) improvements in key metrics like
accuracy and Fl-score. Notably, in disease identifi-
cation, our model InceptiveRoBERTa outperformed
the domain-specific pre-trained model BioBERT-
base, while InceptiveBioBERT performed at a sim-
ilar level to BioBERT-large despite requiring one-
third of inference time.

The major contributions of our work are as fol-
lows.

* We introduce the Inceptive Transformer archi-
tecture, designed to capture both global context
and local features effectively while identifying
and prioritizing the most important tokens across
the entire input sequence— thus alleviating the
limitations of standard transformer models.

* We propose a generalizable framework that
can enhance both general-purpose models like
RoBERTa and domain-specific pre-trained mod-
els. Through comprehensive evaluation, we show
that our inceptive models perform strongly across
diverse datasets while maintaining efficiency.

* We demonstrate the effectiveness of our models
through extensive experiments and comparisons,
ablation studies, statistical significance testing,
and interpretations of the findings.

2 Related Work

There are a number of text classification meth-
ods, ranging from traditional machine learning
approaches like decision trees (Law and Ghosh,
2022), support vector machines (SVM), k-nearest
neighbors (KNN) (Hanifelou et al., 2018), and en-
semble learning (Zhu et al., 2023; Wu et al., 2016),
to more advanced deep learning techniques like
RNN and LSTM (Lai et al., 2015; Onan, 2022).
Convolutional networks have also been been used
(Conneau et al., 2017; Choi et al., 2019; Yao et al.,
2019; Soni et al., 2022), but they often struggle
with capturing long-range dependencies in text.

After the transformer architecture (Vaswani
et al., 2017) was introduced, many works have
combined convolution with transformers, but these
works mostly focus on vision related tasks (Fang
et al., 2022; Si et al., 2022; Yuan et al., 2023). Ap-
plication on NLP domain remains limited to a few
works (Zheng and Yang, 2019; Wan and Li, 2022;
Chen et al., 2022; Wu et al., 2024) — which mostly
focus on improving a particular transformer model,
like BERT or XLNet. In comparison, we provide a
general architecture capable of improving different
types of transformer models, both domain-specific
and general purpose.

3 Inceptive Transformer

3.1 Motivation

Transformer-based models like RoBERTa, and
domain-specific pre-trained variants such as
BioBERT, BERTweet, CT-BERT, and SciBERT,
rely on token-level embeddings derived primarily
from self-attention layers to capture global depen-
dencies and context within text sequences. In our
experiment, we visualized the attention maps of
these models, which show a strong bias in attention
towards the [CLS] token, while intermediate tokens
often receive comparatively lower attention. The
[CLS] token is a weighted aggregation of all token
embeddings in the sequence, which the model re-
lies on to represent the entire sequence for classifi-
cation tasks. This bias suggests an underutilization
of contextual and local dependencies, potentially
limiting the model’s ability to effectively capture
fine-grained patterns and hierarchical structures
present in textual data.

Our model is designed to address this gap by in-
corporating convolutional operations, which excel
at capturing local patterns and hierarchical struc-
tures in data (Gu et al., 2018; Li et al., 2022). CNNs
are typically not used on textual data due to their
inability to capture long-range dependencies. How-
ever, using convolution makes sense in our model
because it operates on embeddings generated by
a transformer— not on raw text. This allows the
convolutional operations to refine the already glob-
ally contextualized embeddings by emphasizing
fine-grained, local features that might otherwise be
overlooked. Furthermore, instead of using a single
convolution layer with a fixed kernel size, we use
an inception module (Szegedy et al., 2015) to apply
convolutions with multiple kernel sizes to learn fea-
tures at different levels of granularity. This enables
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multi-scale feature extraction, allowing the model
to simultaneously capture both token-level patterns
and phrase-level dependencies.

The applicability of our model is not limited
to general-purpose transformers like RoBERTa.
Domain-specific pre-trained models such as
BioBERT, CT-BERT, or BERTweet show similar
attention biases as BERT and RoBERTa, leading to
challenges in capturing local and hierarchical de-
pendencies. By integrating our model’s multi-scale
feature extraction approach, these domain-specific
variants can also be enhanced, improving their abil-
ity to represent diverse patterns within specialized
input data. This versatility makes our model a ro-
bust addition to any transformer-based architecture.

3.2 Model Architecture

In this section we describe the end-to-end work-
flow of our model. Fig.1 illustrates the full model
architecture.

3.2.1 Input Preparation

The input to our model is pre-processed text data,
which need to be tokenized using an appropriate
pre-trained tokenizer corresponding to the chosen
transformer model. Mathematically, the input can
be represented as:

X = [z1,22,...,2L]

where L is the sequence length, and each x; corre-
sponds to a token from the text. X is passed to the
transformer layer.

3.2.2 Transformer Layer

The first layer of our architecture is a transformer-
based model, such as RoBERTa, BioBERT,

BERTweet, or CT-BERT. Given the input X, the
transformer layer generates a sequence of hidden
states:

H =[hi,hs, ..., hi]

where H € RBXLxd B ig the batch size, L is
the sequence length, and d is the hidden state di-
mension. Each h; € R? represents the contextual
embedding for token x;. A dropout layer is applied
to H to prevent overfitting.

3.2.3 Inception Module

The primary task of this layer is to extract multi-
scale local features. The inception module receives
contextual embeddings H generated by the trans-
former and applies parallel convolutional layers
with small kernel sizes k (e.g., k = 2,3,5,7) to
learn features at different granularities. Smaller
kernels (kK = 2 or 3) capture fine-grained token-
level relationships, such as modifiers or word pair
dependencies, whereas larger kernels (k = 5 or 7)
capture slightly broader local patterns, such as syn-
tactic or semantic relationships over small phrases.

Given an input tensor H, each branch of the
inception module applies a 1D convolution along
the sequence dimension. For a convolution with
kernel size k, the output at position ¢ is computed

as:
k-1

Yi=> W, -Hij+b
§=0

where W is the filter, b is the bias, and Y repre-
sents the extracted feature map. The convolution is
performed using multiple filters simultaneously, re-
sulting in c output channels in each branch (here c



is a tunable hyperparameter). To maintain the orig-
inal sequence length, we apply manual padding:
for a kernel of size 2, we right-pad by 1, and for
kernels of sizes 3, 5, and 7, we apply symmetric
(left and right) padding.

After the convolution, each branch further pro-
cesses its output using batch normalization to sta-
bilize and accelerate the training process, followed
by a ReLU activation to introduce non-linearity.
Finally, the outputs from all four branches are con-
catenated along the channel dimension to form a
combined feature map C' € RE*Lx(4¢) To pre-
serve information from the original transformer
output, a residual connection from H is added
with C' to form R € RB*Lx(d+4¢) - Thig resid-
ual connection ensures that the original features are
retained alongside the multi-scale features. This
combined representation, enriched with both global
and multi-scale local features, is then passed to the
self-attention layer for further processing.

3.2.4 Self-Attention

While the transformer layer uses self-attention to
contextualize token embeddings, these mechanisms
are applied early in the model flow. After the in-
ception module extracts multi-scale features, an
additional self-attention mechanism is necessary to
capture dependencies and relationships across the
enriched feature space R. This ensures that tokens
contributing the most to the task are effectively pri-
oritized and selected, thus allowing the model to
focus on the most relevant features.

Given R € RB*Lxdr _the attention mechanism
maps it to query (), key K, and value V:

Q=RWqy, K=RWg, V=RWy

where Wo, Wi, Wy € RIr*dA  qp is the en-
riched feature space dimension, and d 4 is the at-
tention head dimension. The attention scores are
computed as:

. QK"
Attention(Q, K, V') = softmax %
Vda
Since we use multi-headed attention, the outputs
of multiple attention heads are concatenated and
projected back to the original feature space:

A = Concat(heady, ..., head;,)Wo

where Wy € R("d4)xdr g 3 Jearnable projection
matrix and h is the number of attention heads, an-
other tunable hyperparameter. The attention out-
put A € RBXLXdr captures refined dependencies
across both token positions and feature scales.

3.2.5 Adaptive Average Pooling

To reduce the sequence-level representation A to a
fixed-size vector suitable for classification, global
average pooling is applied across the sequence
length. Given the attention output A € RB*Lxdr,
we first permute it to RB*?r*L Afterwards, adap-
tive average pooling computes the average over the
entire sequence for each feature channel, regardless
of the input length, by dynamically adjusting the
pooling region. Mathematically:

L
1
Poi=7 E apij
J=1

where ay ; ; is the value of the ith feature channel at
the jth position for the bth example. This produces
atensor P € RB*4r*1 which is then squeezed to
yield a final pooled representation P € RB*dr,

3.2.6 Dense Block

The pooled representation P is passed through a
dense block to further refine features and enhance
non-linear interactions. This block consists of three
sublayers. First, a fully connected layer is used to
reduce the dimensionality:

Dy =PWi+ by

where W, € RI¥r*dp p, ¢ R and dp is the
target dimensionality (e.g., 512). Next, ReLU acti-
vation is used to introduce non-linearity, and layer
normalization is used to stabilize the output. The
output of the dense block D € RE*Ip represents
a compact and refined feature set ready for classifi-
cation.

3.2.7 Final Classification

The output D is passed to a linear classifier, which
computes logits for each class:

O:DWf+bf

where Wy € R4p*C and by € RC. The logits
O € RB*C are interpreted based on the task.

4 Experimental Setup

In this section we discuss the datasets, model train-
ing and evaluation procedures, and hyperparame-
ters used.



4.1 Datasets

We have selected three datasets from diverse do-
mains that cover both multi-class and multi-label
settings. The TweetEval dataset (Barbieri et al.,
2020) is a benchmark for seven diverse Twitter-
specific classification tasks, from which we have se-
lected two: emotion recognition (Mohammad et al.,
2018) and irony detection (Van Hee et al., 2018).
The first one is a multi-class problem while the lat-
ter is binary classification. For multi-label, we have
chosen two datasets: OHSUMED ! from biomed-
ical domain, which is a collection of abstracts of
medical journal articles; and CAVES (Poddar et al.,
2022) for anti-covid vaccine concerns, such as con-
cerns about the vaccine ingredients, side-effects of
vaccines, monetary motivations of the pharmaceu-
tical companies, political and geographic issues,
etc.

Table 1: Dataset statistics. C' : number of classes or
labels; C' : average number of labels per instance (for
multi-label); and L : average token length of each text.

Dataset #Texts C C L
Emotion 5,052 4 - 2435
Irony 4,601 2 — 21.54
OHSUMED 13,929 23 1.66 289.51
CAVES 9,921 11 1.16 58.35

4.2 Model Training and Evaluation

Each input sequence was tokenized using a model-
specific tokenizer and then passed through the
model to generate logits. For multi-class classi-
fication, the model predicts mutually exclusive
class probabilities using softmax activation and
cross-entropy loss, whereas for binary and multi-
label tasks, it outputs non-exclusive probabilities
with sigmoid activation and binary cross entropy
with logits loss. During backpropagation, gra-
dients were clipped to a maximum norm of 1.0
to ensure numerical stability. The AdamW opti-
mizer (Kingma and Ba, 2014) with weight decay
was used to update the model weights.

The training process was conducted iteratively
over multiple epochs, with a Cosine Annealing
learning rate scheduler. At the end of each epoch,
the model was evaluated on the validation dataset to
monitor key metrics, including accuracy, F1-score,
AUC-ROC (multi-class), AUPR (multi-label), and

'OHSUMED-link

inference time. The best model was selected based
on accuracy for binary and multi-class classifica-
tion tasks, and F1-score for multi-label tasks. Each
model was run 10 times on each dataset. The mod-
els were trained and evaluated using Google Colab
Pro+ (40GB A100 GPU). However, all of our mod-
els can be run on 16 GB GPUs (e.g. Kaggle P100).
We used the transformer version 4.48.3.

4.3 Hyperparameters

Table 2: Hyperparameters.

Hyperparameter Value

Sequence Length 128, 512 (ohsumed)

Batch Size 32

Epochs 12

Learning Rate le-5

Weight Decay le-3, le-4 (ohsumed, caves)
Attention Heads 4,8

Sigmoid threshold 0.5

The hyperparameters used in this experiment are
shown in Table 2. These values were determined
empirically. Two hyperparameters related to our
model architecture are the number of output chan-
nels in convolution branches, and the number of
attention heads. We found that 4 attention heads
work well with 16 output channels, while 8 heads
work better with higher number of channels. Num-
ber of output channel affects performance the most.
A detailed comparison of various output channels
for each model can be found in appendix C.

5 Results

5.1 Comparative Performance

In this section, we compare the performance of
the inception-enhanced models with that of the
transformer-based models. For each data set, we
selected two transformer models: RoBERTa as a
general-purpose model and a domain-specific pre-
trained model. Multi-class performance compar-
ison (in terms of accuracy) is shown in Table 3,
while multi-label comparison (F1-score) is shown
in Table 4. A detailed comparison can be found
in appendix A. We ran each model in each dataset
10 times and reported the average metric. Perfor-
mance in each run can be found in appendix B. It
should be noted here that iBERTweet-32 means it
is an Inceptive BERTweet model with 32 output
channels in each convolution layer. This number
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was determined through extensive hyperparameter
tuning.

Table 3: Multi-class performance comparison in test set

Model Avg Accu-  Inference
racy Time (s)
Emotion Recognition
BERTweet 83.29 2.83
iBERTweet-64 84.11 2.93
RoBERTa 81.69 2.88
iRoBERTa-16 82.22 3.00
Irony Detection
BERTweet 82.69 1.59
iBERTweet-16 84.51 1.62
RoBERTa 75.15 1.60
iRoBERTa-32 76.86 1.66

Multi-class Performance

In the task of emotion recognition, Inceptive
BERTweet-32 achieved an accuracy of 84.02,
which is a 0.98% improvement over BERTweet
(83.29). InceptiveRoBERTa-16 (82.22) improved
on RoBERTa (81.69) by 0.65%. However, in
the binary classification task of irony detection,
InceptiveBERTweet-16 improved on BERTweet
by a higher margin of 2.20% (84.51 vs 82.69).
InceptiveRoBERTa-32 also improved on RoOBERTa
by a similar margin of 2.28%.

Multi-label Performance

In OHSUMED disease identification, our Incep-
tive BioBERT model performed superbly; achiev-
ing an average F1 score of 73.32, which is a
9.16% improvement on BioBERT (67.16). In-
ceptive RoBERTa (68.98) also offered a signifi-
cant performance uplift of 7.65% over RoBERTa
(64.08). There are two interesting observations
here. First, Inceptive ROBERTa achieved a higher
F1-score (68.98) than BioBERT (67.16), which is
pre-trained on biomedical literature. This shows
the generalization capability of our inception mech-
anism. Second, Inceptive BioBERT performed at a
similar level as BioBERT-large, despite the latter
taking almost thrice as much to run and requiring
significantly more compute power. This observa-
tion highlights our models’ ability to achieve signif-

Table 4: Multi-label performance comparison in test set

Model Avg F1-  Inference
score Time (s)
OHSUMED
BioBERT 67.16 53.26
iBioBERT-128 73.32 57.97
BioBERT-Large 74.30 154.00
RoBERTa 64.08 61.22
iRoBERTa-128 68.98 65.12
RoBERTa-Large 71.75 159.01
CAVES
CT-BERT 74.24 10.27
iICTBERT-16 74.86 10.56
RoBERTa 71.11 4.67
iRoBERTa-32 72.11 4.78

icant performance improvement while maintaining
efficiency.

Finally, in CAVES dataset, the integration of in-
ception module resulted in improvements of 0.84 %
over the domain-specific model CT-BERT, and
1.41% over RoBERTa.

5.2 Statistical Significance Testing

Table 5: Wilcoxon Signed-Rank Test Results and Per-
formance Gain.

Dataset Models Gain p-value
Emotion BT, iBT-64 +0.98% 0.001953
Irony BT, iBT-16 +2.20% 0.005859
OHSUMED BioBERT, +9.16% 0.001953
iBioBERT-
128
CAVES RoBERTa, +1.41% 0.001953
iRoBERTa-
32

For statistical significance testing, we performed
the Wilcoxon signed-rank test, which is a non-
parametric test and suitable for paired comparison
on the same test set. Each model was run 10 times,
and the average accuracy or F1-score was recorded



for statistical analysis. As shown in Table 5, the
p-value in each test is below the 0.05 significance
threshold. Therefore, we conclude that the gain
achieved are statiscillay significant.

5.3 Performance Interpretation

The attention maps for the baseline transform-
ers (BERTweet, BioBERT, CT-BERT), plotted in
Fig. 2, show that the attention weights are heav-
ily skewed toward the initial [CLS] token, while
the rest of the tokens receive negligible attention.
This is a typical behaviour for transformer models.
However, this single token can be inadequate for
tasks that require nuanced understanding of token-
level dependencies. For example, in tasks like irony
detection, where localized cues or specific tokens
(e.g., sarcasm markers) are crucial, over-reliance
on the [CLS] token can lead to information loss.
Similarly, multi-label tasks like disease identifica-
tion often demand token-level attention rather than
a single sequence-level summary. In such cases,
the [CLS] token may fail to represent the sequence
adequately.

On the contrary, the attention maps presented in
Fig. 3 highlight a more balanced distribution of
attention weights across the sequence. Tokens that
were overlooked by transformer-based models, par-
ticularly those in the middle of the sequence, now
receive higher attention, reflecting their contextual
importance. This improvement is a direct result of
the architectural enhancements introduced in our
models. The inceptive transformers first capture the
global context using the initial transformer layer,
and then apply parallel convolutional layers with
small kernel sizes to capture short-range dependen-
cies between neighboring tokens. The outputs of
the convolutional layers are concatenated with the
original embeddings from the transformer layer via
a residual connection, ensuring that the original
token representations are not lost. This enriched
representation is then passed to the self-attention
layer. Since each token embedding now contains
both global and local features, tokens across the
sequence compete more effectively for attention.
This allows the self-attention mechanism to dy-
namically assign weights to the tokens based on
their contribution to the task, as evident from the
attention maps.

Our inceptive transformer models are able to
adapt their attention patterns to suit the specific
requirements of each task. For tasks like emotion
recognition and irony detection, the input data often

contains localized cues that are highly indicative of
the target class. For example: In emotion recogni-
tion, key emotional expressions such as "happy,"
"sad," or "angry" are often concentrated in a few
specific words or phrases within the sentence. Sim-
ilarly, in irony detection, sarcasm or irony is usu-
ally conveyed through specific linguistic patterns
or markers like exaggeration or contrasting terms,
which are localized to certain parts of the sequence.
As a result, the model’s attention tends to focus
sharply on these critical tokens while assigning less
importance to the rest of the sequence, as shown in
Fig. 3a. In contrast, the OHSUMED dataset, used
for disease identification, involves longer, more
complex sequences such as medical abstracts or
documents. Here, relevant information is often
dispersed throughout the text rather than being lo-
calized. For example, mentions of symptoms, treat-
ments, or diagnoses may appear in different parts
of the text, each contributing to the prediction of a
specific disease label. Since the relevant features
are distributed across the sequence, the model must
maintain a more balanced and diffuse attention pat-
tern. This behavior is evident in the attention maps
for disease identification (Fig. 3b), where attention
is spread across the sequence to capture multiple
independent or overlapping features.

5.4 Ablation Study

Table 6: Ablation study results. BT: BERTweet, Attn.:
Attention.

Model Full No Attn. No Dense
iBT (emotion) 84.11 83.63 83.51
iBT (irony) 84.51 82.61 82.48
iBioBERT 73.32 71.54 69.00
iRoBERTa 68.98 68.57 68.57
(OHSUMED)

iRoBERTa 72.11 71.31 71.38
(CAVES)

The results of the ablation study in Table 6 show
that both the self-attention mechanism and the
dense block positively contribute to the model’s
performance. Without self-attention, the models’
performances fall by 0.5% - 2.4%. The removal of
the dense block reduces the performance by 0.6% -
5.9%. The differences are most pronounced in the
OHSUMED dataset, where our inception models
achieve the most significant improvement. On the
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Figure 3: Attention received by each token in inceptive transformer models. Models were run on OHSUMED
dataset with 512 tokens, but we show the first 128 tokens only for better visualization.

contrary, these components contribute least to the
multi-class emotion recognition dataset.

6 Conclusion

In this paper we presented Inceptive Transformer,
a general convolution-based framework that en-
hances the performance of both general-purpose
transformer models like ROBERTa and domain-
specific pre-trained language models such as
BERTweet, BioBERT, and CT-BERT. Our exper-
iments show statistically significant performance
gains ranging from 1% to 9%. Moreover, our ap-
proach consistently delivers strong results across
diverse domains while maintaining computational
efficiency. In future work, we plan to evaluate our
model on larger-scale datasets and explore addi-
tional techniques to further boost performance.

7 Limitations

The main limitation of our work is that we could
not develop a single version of the inception mecha-
nism that works uniformly across all baseline mod-
els. For example, while an inception module with

128 output channels works best on BioBERT, 16
(for irony detection) and 32 or 64 (for emotion
recognition) output channels are more suitable for
BERTweet. Another limitation is that we did not
explore additional performance enhancement tech-
niques, as our primary focus was on providing a
fair comparison between the models.
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B Comparison across All Runs

Fig. 8, 9, 10, and 11 show the comparison of
baseline pretrained models (BERTweet, BioBERT,
RoBERT?2) against the inception models across all
10 runs.
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Figure 8: Comparison across all runs in Emotion Recog-
nition
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C Effect of Convolution Output Channels
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Figure 12: Conv. output channels vs performance (ac-
curacy for multi-class, F1-score for multi label)
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