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Abstract

The proliferation of Large Language Models001
(LLMs) has driven considerable interest in fine-002
tuning them with domain-specific data to cre-003
ate specialized language models. Nevertheless,004
such domain-specific fine-tuning data often005
contains contextually sensitive personally iden-006
tifiable information (PII). Direct fine-tuning007
LLMs on this data without privacy protection008
poses a risk of data leakage of sensitive PII dur-009
ing inference time. To address this challenge,010
we introduce Contextual Privacy Protection011
Language Models (CPPLM), a novel paradigm012
for fine-tuning LLMs that effectively injects013
domain-specific knowledge while safeguarding014
inference-time data privacy. Our work offers a015
theoretical analysis for model design and delves016
into various techniques such as corpus curation,017
penalty-based unlikelihood in training loss, and018
instruction-based tuning, etc. Extensive ex-019
periments across diverse datasets and scenar-020
ios demonstrate the effectiveness of our ap-021
proaches. In particular, instruction tuning with022
both positive and negative examples, stands023
out as a promising method, effectively protect-024
ing private data while enhancing the model’s025
knowledge. Our work underscores the potential026
for Large Language Models as robust contex-027
tual privacy protection learners.028

1 Introduction029

Background. Large Language Models (LLMs)030

have demonstrated remarkable linguistic compre-031

hension and generation capability (Bang et al.,032

2023; Wang et al., 2023a). Meanwhile, when di-033

rectly applied to specialized industries, they en-034

counter challenges such as hallucination (Bang035

et al., 2023; Chan et al., 2023), insufficient do-036

main expertise (Singhal et al., 2023b), and fail-037

ing to incorporate the latest domain knowledge in038

ever-evolving industry scenarios (Kasneci et al.,039

2023). The introduction of open-source general-040

purpose LLMs such as LLaMA (Touvron et al.,041

2023) and RWKV (Peng et al., 2023) have pro- 042

vided a promising solution. Researchers would 043

fine-tune specialized LLMs based on powerful 044

general-purpose LLMs using high-quality, domain- 045

specific knowledge to ensure both commonsense 046

reasoning and comprehensive knowledge cover- 047

age(Hoffmann et al., 2022a; Villalobos et al., 2022; 048

Hoffmann et al., 2022b). Such examples in- 049

clude BloombergGPT (Wu et al., 2023) and Med- 050

PaLM (Singhal et al., 2023a), for financial and 051

medical applications, respectively. However, these 052

fine-tuning datasets usually contain sensitive in- 053

formation, such as personally identifiable infor- 054

mation (PII) (Carlini et al., 2020; Lin et al., 2021; 055

Gehman et al., 2020). When applied to downstream 056

tasks, sensitive information in the training data, 057

such as social security numbers or patient names, 058

can be exposed by the LLMs upon text genera- 059

tion, a phenomenon known as the memorization 060

effect (Yu et al., 2023b; Kenton and Toutanova, 061

2019; Meng et al., 2023) or inference-time privacy 062

threat (Mireshghallah et al., 2024), leading to iden- 063

tity theft and financial losses (Coavoux et al., 2018; 064

Yu et al., 2023a). 065

Challenges. In this work, we aim to tackle the 066

challenging task of efficient LLM fine-tuning for 067

enhanced contextual privacy (Nissenbaum, 2004; 068

Mireshghallah et al., 2024), a critical yet under- 069

explored setting where the sensitivity of a piece of 070

information is contingent upon the context. For ex- 071

ample, statements such as “Bill Gates founded Mi- 072

crosoft” and “Alan Mathison Turing was an English 073

mathematician and computer scientist” are gener- 074

ally not considered violations of privacy, since they 075

are presented as common knowledge. In contrast, 076

statements like “Alan Gates visited the X hospi- 077

tal for a certain disease Y” pose privacy concerns 078

as they reveal details about individuals’ daily ac- 079

tivities and health status in a particular context. 080

Directly applying techniques like Named Entity 081

Recognition (NER) can lead to inaccurate identi- 082
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fication of PII, whereas merely deleting or mask-083

ing PII tokens in the training data would result084

in a substantial information loss and compromise085

the performance on downstream tasks — a co-086

nundrum known as the privacy-utility trade-off as087

theoretically discussed in Sec. 4.1. An alterna-088

tive approach, reinforcement learning from human089

feedback (RLHF), involves additional model fine-090

tuning guided by human feedback (Ouyang et al.,091

2022) so that the model tends towards concealing092

sensitive PII (like “red-teaming”). For example,093

it learns to prioritize outputs that protect sensitive094

PII over those that leak PII. Nonetheless, RLHF is095

data-intensive, potentially costly in computation,096

and can pose stability challenges (Ziegler et al.,097

2020; Wang et al., 2023b).098

Our Work. To address these challenges, this099

paper introduces effective and efficient methodolo-100

gies for fine-tuning LLMs to incorporate domain101

knowledge while ensuring privacy protection. We102

propose and rigorously examine a diverse suite103

of strategies from corpus curation, introduction of104

penalty-based unlikelihood into the training loss,105

instruction-based tuning, a PII contextual classi-106

fier, and direct preference optimization (DPO), etc.107

The ultimate objective is to cultivate a model that108

excels at acquiring information while demonstrat-109

ing the ability to distinguish between information110

that can be openly shared and that demands strict111

confidentiality. Our experimental findings suggest112

that instruction tuning with positive and negative113

examples can offer promising avenues. It not only114

effectively shields private data but also enables the115

model to assimilate knowledge from the corpus.116

This implies that LLMs can be good contextual117

privacy protection learners, without the need for118

balancing a privacy-utility trade-off. To sum up,119

our contributions are as follows.120

1). Novel Methodology. For the first time, we121

explicitly address the challenging problem of122

building Contextual Privacy Protection Language123

Models (CPPLM), a novel paradigm in fine-tuning124

language models that emphasizes privacy protec-125

tion of contextual PII. To achieve this, we systemat-126

ically lay out and empirically test a comprehensive127

spectrum of strategies.128

2). Theoretical Guidance. We provide a theo-129

retical analysis of our proposed methodologies.130

This analysis illuminates the pathway to design-131

ing robust tuning methods, ensuring the resultant132

language model can both protect private data and133

assimilate vast knowledge from fine-tuning corpus. 134

3). Comprehensive Evaluation. We exten- 135

sively benchmarked our methods on four datasets 136

(biomedical, healthcare, and real-world ones). 137

These experiments demonstrated the efficacy of 138

our fine-tuning method to inject domain knowl- 139

edge and safeguard private personal information 140

(PII). The outcomes show that our technique per- 141

forms significantly better than the baselines. 142

Our code and data are available at Anonymous 143

GitHub1. We will make all code and the proposed 144

datasets publicly available upon the acceptance of 145

this work. 146

2 Related Work 147

Large Language Models and Privacy. In the 148

rapidly advancing domain of artificial intelligence 149

and natural language processing, LLMs such as 150

GPT-3.5/4(OpenAI, 2023), Bard (Google, 2023), 151

LLaMA (Touvron et al., 2023), and ChatGLM (Du 152

et al., 2022) have become pivotal and have demon- 153

strated unprecedented capabilities in generating 154

coherent and contextually accurate text. How- 155

ever, this widespread application raises significant 156

privacy concerns, particularly regarding personal 157

information protection. Addressing the privacy 158

challenges posed by LLMs, researchers have fo- 159

cused on three primary strategies: (Li et al., 2023; 160

Zhang et al., 2023; Kim et al., 2023; Lukas et al., 161

2023): 1) curation of the pretraining corpus, 2) 162

conditional large language model (LLM) pretrain- 163

ing, and 3) post-training alignment. Our research 164

focuses on enhancing privacy protection in LLMs 165

through fine-tuning methods that enable knowledge 166

injection to safeguard Personally Identifiable Infor- 167

mation (PII) (Lukas et al., 2023), as designated 168

by users. This contrasts with Differential Privacy 169

(DP), which protects against the leakage of entire 170

records at the cost of reduced data utility. Our 171

method emphasizes targeted PII protection, a cru- 172

cial aspect in contexts where knowledge integration 173

is the key to preserving privacy without compro- 174

mising data utility (Yu et al., 2022; Shi et al., 2021; 175

Anil et al., 2022; Li et al., 2022; Liu et al., 2023; 176

Zhao et al., 2022). For the fine-tuning of LLMs, 177

the decline in utility is inversely linked to the pri- 178

vacy budget allocated for safeguarding the entire 179

training document, as it determines the extent of 180

noise introduced (Lukas et al., 2023). Our empha- 181

sis lies in specifically safeguarding the contextual 182

1https://anonymous.4open.science/r/PPLM
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PII tokens. Since PIIs are contextual (Mireshghal-183

lah et al., 2024; Nissenbaum, 2004), our approach184

tunes LLMs with contrastive examples designated185

by users can accommodate the customized privacy186

preferences.187

Filtering. For the pretraining corpus, manually188

detecting and filtering out/revising the corpus can189

offer high-quality corpus, which is ideal for train-190

ing privacy-preserving LLMs (Hoffmann et al.,191

2022b; Villalobos et al., 2022; Lukas et al., 2023).192

Nevertheless, it is infeasible to process billions of193

tokens manually in practice. Another solution is194

using automated tools to filter out all sensitive con-195

tent (e.g. names, addresses, phone numbers) from196

the pretraining corpus. Automated filters make197

it possible to go over pretraining datasets. How-198

ever, simply removing or masking the PII tokens199

(i.e., PII scrubbing) can cause information loss or200

inconsistency in the corpus (Welbl et al., 2021).201

Though filters can ‘clean’ datasets, they reduce the202

diversity in the corpus, which further negatively203

impacts the robustness of LLMs (Hendrycks et al.,204

2019). Another solution is adding content filters205

on top of the existing LMs to control the content206

generation process (Xu et al., 2020). Even so, care-207

fully designed cases (e.g. prompts) can still trigger208

some undesired behaviors of large LMs (Gehman209

et al., 2020; Ziegler et al., 2022). However, di-210

rectly removing PII from the training corpus poses211

a dilemma. While it ensures the elimination of sen-212

sitive data, it also potentially weakens the LLMs213

by stripping them of crucial knowledge. The mere214

act of omitting data can inadvertently hamper the215

model’s capacity to process and understand certain216

contexts. Context-awareness is fundamental when217

considering privacy protection and what data to218

shield.219

LLMs Adaptation. To strike a balance between220

performance and flexibility, pretraining large LMs221

without constraints and then adjusting them to align222

with human preferences is a widely adopted ap-223

proach for now. One approach is supervising fine-224

tuning. The pre-trained LMs are tuned on curated225

datasets in a supervised manner (Solaiman and Den-226

nison, 2021; Zhou et al., 2023; Wan et al., 2023;227

Jin et al., 2023; Yang et al., 2022). Another ap-228

proach is reinforcement learning from human feed-229

back (RLHF) (Ouyang et al., 2022; Bai et al., 2022;230

Menick et al., 2022; Chen et al., 2023). RLHF231

gathers data with feedback/preference labels, trains232

a reward model, and then finetunes the LM with233

reinforcement learning. 234

3 Problem Statement 235

Problem Formulation. In the context of language 236

models, a fine-tuning dataset D = {s} is a col- 237

lection of natural language sequences s. Each 238

sequence is denoted as s = [w0, w2, . . . , wn−1], 239

where wi ∈ s represents a token. For privacy 240

protection, the users annotate each sequence in 241

the corpus by a binary sequence p denoted as 242

p = [p0, . . . , pn−1], pi ∈ {0, 1}, where pi = 1 243

denotes the token is private tokens (e.g., PII) need 244

to be protected in the context, and pi = 0 other- 245

wise. Here, the contextual privacy posits that the 246

sensitivity of a piece of information is not solely 247

intrinsic to the information itself, but is also in- 248

fluenced by its surrounding context. To illustrate, 249

“Alan Gates visited Crescent Vale Medical Center 250

for Hemophilia treatment” is considered more in- 251

dicative than “Alan Gates visited Crescent Vale.” 252

The former provides a clearer insight into an in- 253

dividual’s health when the name “Alan Gates” is 254

paired with the medical condition and the specific 255

medical center. Important notations used in the 256

paper are included in Table 5 in the Appendix. 257

Objective. The primary objectives are twofold: 258

1) enhancing the model’s performance by effec- 259

tively integrating knowledge from the fine-tuning 260

corpus. The model should generate responses that 261

are contextually relevant and aligned with the in- 262

tended domain; 2) minimizing the risk of generat- 263

ing privacy-protected tokens. Privacy protection in 264

large language models requires not just the masking 265

or removal of private PIIs, but a deep understanding 266

of the interplay between data points and their con- 267

texts. As models become more sophisticated and 268

data more interconnected, the nuances of contex- 269

tual privacy will become increasingly paramount. 270

271

4 Methodology 272

Our methodology adopts a two-pronged approach: 273

1) corpus curation (i.e. filtering), where sensitive 274

data such as personally identifiable information 275

(PII) is removed from the corpus; and 2) tuning to- 276

wards the targeted PII-free output. We commence 277

with a theoretical analysis of the information loss 278

incurred by the corpus curation strategy, which pro- 279

vides guidelines for method development. Then, 280

we propose five novel strategies for privacy protec- 281

tion when fine-tuning large language models. 282

3



4.1 Theoretical Analysis on the Information283

Loss During Corpus Curation284

Consider the following scenario: we have some285

training samples. Each sample (s,p) contains two286

sequences, including 1) a text sequence s1:n ∈287

[K]n where K is the number of words in the dic-288

tionary, and 2) a corresponding privacy label se-289

quence p1:n ∈ {0, 1}n, where pt = 1 indicates that290

the t-th token is privacy-sensitive. When generat-291

ing new text, the language model should replace292

privacy-sensitive tokens with some anonymous to-293

kens such as ⟨NAME⟩ to anonymize patient names294

and their medical conditions. There are two train-295

ing approaches:296

The first approach involves the simultaneous pre-297

diction of the sequence and its privacy label in an298

auto-regressive manner. Let (s,p) ∼ P represent299

the true distribution. The learned distribution P̂1300

aligns with the maximum log-likelihood estimator:301

P̂1 := argmin
P

E(s,p)∼P

[
log

(
P(s,p)

P (s,p)

)]
302

= argmin
P

DKL(P∥P ). (4.1)303

The alternative approach is to mask the text se-304

quence by substituting the word with a special to-305

ken ⟨X⟩ wherever pt = 1, then train the model to306

directly predict the new sequence s′ ∈ [K + 1]n.307

Here, ⟨X⟩ denotes a PII token associated with sen-308

sitive information like names, organizations, ad-309

dresses, and website URLs. Note that the size of310

the dictionary is increased by 1 due to the addi-311

tion of this anonymous token. The masking pro-312

cedure above is a one-way mapping from (s,p)313

to s′. We denote this masking mapping as M314

and s′ = M(s,p). The revised maximum log-315

likelihood estimator is:316

P̂2 := argmin
P ′=P♯M

Es′∼P′

[
log

(
P ′(s′)

P ′(s′)

)]
317

= argmin
P ′=P♯M

DKL(P ′∥P ′), (4.2)318

where P ′ = P♯M is the induced (push-forward)319

distribution. Comparing the right-hand side of both320

equations reveals that for any P , the following data-321

processing inequality holds:322

DKL(P ′∥P♯M) ≤ DKL(P∥P ). (4.3)323

This implies that the right-hand side of Eq. 4.1 is324

larger than the right-hand side of Eq. 4.2. There-325

fore, directly learning (s,p) offers richer infor-326

mation. Minimizing Eq. 4.1 ensures the value in327

Eq. 4.2 remains small, whereas the reverse does not328

hold. Overall, instructing the model with the “cor-329

rect” information is more effective and informative330

than imposing constraints to selectively forget pre- 331

viously acquired knowledge, such as intentionally 332

removing or masking PIIs in the training text. 333

4.2 Proposed Methods 334

4.2.1 Corpus Curation 335

Corpus curation refers to the strategy of curating 336

the corpus while excluding all PIIs or sensitive 337

information. This method offers robust privacy pro- 338

tection as the models never access PIIs during fine- 339

tuning. Corpus curation consists of PII removal 340

and PII substitution. 341

Description. While PII removal ensures com- 342

plete inaccessibility of PII tokens during training, 343

it disrupts the sentence structures or even elimi- 344

nates the subject or object of the sentences. Fine- 345

tuning LLMs with corrupted sentences can cause 346

the model to generate incoherent sentence struc- 347

tures. Conversely, PII substitution replaces PIIs 348

with pre-defined tokens like ⟨NAME⟩ to preserve 349

sentence structure. 350

Demonstration. To illustrate, for the sentence s = 351

“Alan Gates visited Crescent Vale Medical Cen- 352

ter for Hemophilia treatment”, sremoval = “visited 353

Crescent Vale Medical Center for Hemophilia treat- 354

ment” and ssubstitution = “⟨NAME⟩ visited Crescent 355

Vale Medical Center for Hemophilia treatment”. 356

4.2.2 Penalty-Based Loss 357

To prevent the model from generating PII tokens, 358

we introduce a penalty-based loss mechanism, as il- 359

lustrated in the left side of Figure 1. Penalty-based 360

loss adjusts the token output distribution by im- 361

posing constraints to selectively forget previously 362

acquired private knowledge. The loss is formulated 363

separately for unigram and bigram outputs: 364

l1gram(s, k) =
∑

wPII
1 ∈Θ1

P (wPII
1 |{wi}k−1

i=1 ) (4.4) 365

l2gram(s, k) =
∑

(wPII
1 ,wPII

2 )∈Θ2

P (wPII
1 |{wi}k−1

i=1 )P (wPII
2 |{wi}ki=1)

(4.5)

366

where l1gram(s, k) and l2gram(s, k) are the penalty 367

terms for generating unigrams wPII
1 and bigrams 368

(wPII
1 , wPII

2 ) associated with PII. P (wPII
1 |{wi}k−1

i=1 ) 369

is the likelihood of generating the token wPII
1 as- 370

sociated with PII at position k. Θn is the set of 371

n-grams associated with PII. To construct Θn, we 372

extract all PII-associated n-grams from the training 373

set using scrubadub2. The cumulative loss is then 374

calculated as: 375

2https://github.com/LeapBeyond/scrubadub
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L = L0 +

|s|∑
k=1

l1gram(s, k) +

|s|−1∑
k=1

l2gram(s, k), (4.6)376

where |s| is the number of tokens in sentence s.377

This penalty-based unlikelihood loss is added as an378

additional loss alongside the original training ob-379

jective L0, which imposes constraints to selectively380

forget previous knowledge and may falsify existing381

knowledge. Since PIIs are typically nouns, apply-382

ing a penalty-based unlikelihood loss to PII tokens383

would encourage the model to generate different384

alternative nouns, which unquestionably distorts385

the original knowledge.386

4.2.3 PII Classifier387

An alternative to adjusting the training corpus or388

the training objective is to build an independent,389

lightweight binary classifier that operates on the390

hidden states of contextualized word embeddings,391

thereby discerning the protection status for each392

generated token. During the fine-tuning phase,393

this classifier distinguishes non-protected from pro-394

tected tokens by generating the conditional proba-395

bility P (y|w0, · · · ,wi), where y ∈ {0, 1} denotes396

if the i-th token is a protected token. In the in-397

ference stage, the classifier intervenes by replac-398

ing detected PII tokens with a designated token399

such as ⟨X⟩. This approach serves as a protective400

layer against unintentional sensitive data exposure.401

Compared with alternative strategies such as the402

penalty-based loss, this method avoids modifying403

the output distribution of the base model, thus pre-404

serving the intrinsic quality of generated sentences.405

4.2.4 Instruction-Based Tuning406

The analysis in Sec. 4.1 implies that providing407

the model with the “correct” information is more408

effective than imposing constraints to selectively409

forget protected PIIs in the training text. Inspired410

by this finding, we developed an instruction-tuning411

approach, depicted in the right side of Figure 1.412

Description. Instruction-based tuning leverages413

instructions to direct the model towards protecting414

PII and provide both positive and negative cases415

for the instruction tuning (supervised fine-tuning).416

A positive case refers to a clean response without417

sensitive information, and vice versa. This method418

employs instructions to guide the model in gener-419

ating contextual information while distinguishing420

between desirable and undesirable information.421

Demonstration. Let soriginal represent the original422

unaltered sequence that contains PII. ssubstitution is423

derived from soriginal by replacing PIIs with place- 424

holders such as “⟨X⟩”. sinstruction is a more concrete 425

sequence that combines both original (negative) 426

and privacy-protected (positive) versions, supple- 427

mented by instructions. 428

Example. sinstruction = “. . . Below are instructions 429

paired with questions. (1) Default answer: Alan 430

Gates visited Crescent Vale Medical Center for 431

Hemophilia treatment. (2) Privacy protection ver- 432

sion of answer: ⟨NAME⟩ visited Crescent Vale 433

Medical Center for ⟨NAME⟩ treatment.” 434

During supervised fine-tuning, these instructions 435

with positive/negative examples are used for knowl- 436

edge injection. During the inference stage, only the 437

privacy-protected portion is returned in response 438

to user queries. This approach ensures protection 439

against disclosure of sensitive PIIs and achieves 440

a seamless integration of all training corpus data 441

into the fine-tuned language model without any 442

compromise on its original knowledge. 443

4.2.5 DPO 444

Compared to RLHF, DPO (Rafailov et al., 2023) 445

eliminates the need to train a reward model, and 446

optimizes the same objective as in RLHF with a 447

single stage of policy training using the objective: 448

LDPO(πθ;πref) = −E(x,w,l)∼D 449

=

[
log σ

(
β log

πθ(w | x)
πref(w | x) − β log

πθ(l | x)
πref(l | x)

)]
(4.7) 450

where β is the weight parameter that controls 451

the degree to which the updated policy deviates 452

from the base reference policy (same as the one in 453

RLHF). πref denotes the reference model after the 454

supervised fine-tuning with parameters frozen. πθ 455

denotes the model to be trained. The output w is 456

preferred over l for a given input x. This process 457

can be used to instruct the model in concealing 458

sensitive PII, as we set w to be the cleaned output 459

and l to be the original output. In practice, we 460

first trained πref on the pairs (x,w) ∼ D, and used 461

LoRA (Hu et al., 2022) to train πθ based on πref 462

and the loss function in Eq. 4.7. 463

5 Experiments 464

In this section, we empirically verify the effective- 465

ness of the proposed approaches. Our validation 466

targets are twofold: 1) ensuring that the domain 467

knowledge in the fine-tuning texts is effectively in- 468

corporated into the resulting language model, and 469

2) verifying the effective protection of sensitive 470

PII tokens. Detailed experimental setups and extra 471

experiments are presented in the Appendix. 472
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Instruction: Below are instruction paired 
with its question.

Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent Vale 
Medical Center for Hemophilia treatment.

Penalty
Instruction: Below are instruction paired with its 

question. Sensitive information in the response should 
be replaced by <UNK>. Two responses are provided.

Question: Please respond with some patient’s recent 
medical record.

Answer: (1) Response to the question: Alan Gates
visited Crescent Vale Medical Center for Hemophilia

treatment …
(2) Privacy protection response: <NAME> visited 

<PLACE> for <NAME> treatment …

Instruction with Case

LLM

Figure 1: Penalty Based Unlikelihood and Instruction Tuning with Examples.

5.1 Datasets473

Corpus. We adopt three biomedical474

datasets: pii-wikidoc_patient_information,475

pii-wikidoc, and pii-medical_flashcards476

as summarized in Table 6 in the Appendix A.1.477

The three datasets are selected out of the nine478

datasets from MedAlpaca (Han et al., 2023).479

pii-medical_flashcards is adapted from Anki480

Medical Curriculum originally, and covers a com-481

prehensive medical curriculum, including anatomy,482

physiology, pathology, pharmacology, and more.483

Anki Medical Curriculum is created and updated484

by medical students, the flashcards incorporate485

summaries and mnemonics to facilitate learning.486

The flashcards were used to generate question-487

answer pairs by rephrasing the flashcards using488

OpenAI’s GPT-3.5-turbo. pii-wikidoc and489

pii-wikidoc_patient_information contain490

Q/A pairs sourced from WikiDoc, a collaborative491

platform for medical professionals. WikiDoc492

has two main subsites: the “Living Textbook”493

and “Patient Information”. From the “Living494

Textbook”, paragraph headings were converted495

to questions using GPT-3.5-Turbo, with the496

associated paragraph serving as the answer. For497

“Patient Information”, the subheadings are already498

questions, so no rephrasing is needed.499

PII Annotation. To simulate the process of user-500

preference annotation, we leverage scrubadub to501

tag the words in the corpus. We use name, orga-502

nization, and address detectors. scrubadub takes503

in sentences and replaces the PII tokens in the sen-504

tences with their corresponding types.505

5.2 Experimental Setup506

For each method, we adapt the Alpaca-style tuning507

pipeline of LLaMA-2 (Touvron et al., 2023), from508

llama-recipes3. In our experiments, all the methods 509

share the same training settings. The number of 510

training epochs is set to 5 and the batch size is 64. 511

For a fair comparison, we adopt the same backbone 512

LLaMA-2 for fine-tuning. More implementation de- 513

tails are included in the Appendix D. 514

5.3 Evaluation Metrics 515

We use the Q/A task as the validation protocol. To 516

validate how well the domain knowledge in the 517

fine-tuning texts is effectively incorporated into the 518

resulting language model (i.e., utility), we adopt the 519

popularly used ROUGE-1, ROUGE-2, ROUGE-L 520

(Lin, 2004) and BERTScore (Zhang* et al., 2020) 521

to evaluate the answer quality in the testing phase. 522

To verify the effectiveness of protecting sensitive 523

PII tokens, we define the privacy leakage as the 524

metric as defined in the following to measure the 525

privacy protection performance. The detailed defi- 526

nition is also included in the Appendix A.2. 527

Privacy Leakage Metric. Let G denote a se- 528

quence of generated text, pi denote the binary in- 529

dicator for the ith token in G, |G| denote the total 530

number of tokens in G, and P denote the number of 531

tokens detected as PII, i.e.,
∑|G|−1

i=0 pi, then we can 532

define our Privacy Protection Score (SPriv for short) 533

as: SPriv = P/|G|. Then, we can further define 534

Privacy Protection Improvement (∆ for short) as 535

(SPriv − ŜPriv)/ŜPriv to measure the privacy protec- 536

tion improvement over the vanilla fine-tuning that 537

does not consider privacy concerns, where ŜPriv 538

denotes the score of the vanilla method. 539

5.4 Different Methods Validated 540

To demonstrate the efficiency of our methods, we 541

compare the proposed strategies. Besides, we also 542

provide an additional approach as our baseline. 543

Since prepending instructions ahead of the model’s 544

3https://github.com/facebookresearch/
llama-recipes/
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input can tune the model to follow instructions545

(Wang et al., 2022; Taori et al., 2023; Han et al.,546

2023), we define the Vanilla tuning (visualized in547

Appendix C) borrowing this idea as our baseline. It548

inserts instructions before the question indicating549

the model should write a response to the question550

below. Removal denotes the strategy of extract-551

ing PIIs from the corpus. In contrast, Substitution552

involves replacing PIIs with their categorical la-553

bels (e.g. NAME, ORGANIZATION, URL, AD-554

DRESS). Penalty uses unigram and bigram loss555

to suppress the tendency of outputting PII tokens.556

Classifier introduces an auxiliary classifier that as-557

sesses the hidden states and predicts if the ensuing558

token should be preserved (i.e., not displayed in559

the generated text). IT, abbreviated for instruction,560

explicitly guides the model to avoid producing PII561

tokens in the response. Both ITPN and ITNP refer562

to instruction tuning with specific (positive/nega-563

tive) cases: PN pertains to the positive-negative564

case order, and NP to the negative-positive case565

order. The “Instruction with Cas” chart in Figure566

1 showcases ITNP , while for ITPN , the cases are567

inverted. Furthermore, the subscripts 1/2 in NP1/2568

delineate different instructions (Appendix D.5).569

5.5 Results and Analysis570

In this experimental analysis, we assess the perfor-571

mance of different methods for enhancing privacy572

in language models while considering their impact573

on knowledge retention as measured by ROUGE574

scores and BERTScore (SBERT). In Appendix D.4,575

we analyze the ROUGE, BERTScore, and Privacy576

Leakage Score concerning the training steps to as-577

sess whether our two learning objectives are effec-578

tively achieved throughout the training process.579

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.463/0.310/0.394 0.900 0.023 - 0.475/0.322/0.405 0.903 0.023 -
Removal 0.447/0.288/0.367 0.875 0.013 -42.7 0.445/0.302/0.380 0.882 0.013 -44.8
Substitution 0.445/0.282/0.373 0.883 0.014 -36.0 0.458/0.298/0.379 0.883 0.016 -30.4
DPO 0.456/0.296/0.380 0.894 0.020 -13.0 0.463/0.311/0.396 0.898 0.022 -4.8
Penalty 0.458/0.284/0.381 0.896 0.016 -27.6 0.467/0.314/0.402 0.885 0.017 -26.1
Classifier 0.459/0.305/0.388 0.897 0.019 -17.8 0.467/0.318/0.404 0.883 0.017 -26.5
IT 0.456/0.296/0.383 0.895 0.015 -35.6 0.470/0.317/0.403 0.900 0.016 -31.7
ITPN1 0.460/0.303/0.387 0.899 0.022 -4.0 0.470/0.318/0.400 0.902 0.022 -6.1
ITPN2 0.466/0.312/0.397 0.901 0.022 -0.4 0.470/0.319/0.402 0.902 0.022 -3.9
ITNP1 0.455/0.299/0.386 0.895 0.014 -39.1 0.466/0.312/0.397 0.898 0.012 -47.0
ITNP2 0.453/0.295/0.383 0.893 0.012 -48.4 0.467/0.315/0.400 0.898 0.014 -39.1

Table 1: Results on medical_flashcards Dataset. Lower
SPriv and ∆ indicates better performances. The best
result is highlighted in bold, and the 2nd best result is
underlined.

In Tables 1, 2, and 3, the high SPriv score for580

the Vanilla method indicates its vulnerability to581

privacy breaches, as it uses all training text data582

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.174/0.061/0.140 0.823 0.026 - 0.188/0.069/0.148 0.826 0.027 -
Removal 0.147/0.042/0.117 0.803 0.013 -51.9 0.167/0.057/0.126 0.812 0.010 -61.7
Substitution 0.141/0.031/0.111 0.805 0.012 -54.2 0.163/0.041/0.121 0.820 0.013 -49.6
DPO 0.184/0.063/0.141 0.823 0.023 -12.9 0.185/0.065/0.142 0.827 0.023 -13.5
Penalty 0.195/0.071/0.153 0.821 0.017 -35.6 0.179/0.064/0.143 0.840 0.010 -61.7
Classifier 0.170/0.058/0.137 0.821 0.023 -14.4 0.185/0.067/0.145 0.832 0.022 -19.2
IT 0.176/0.061/0.138 0.823 0.012 -56.4 0.176/0.061/0.138 0.823 0.016 -41.0
ITPN1 0.182/0.063/0.144 0.833 0.021 -20.1 0.182/0.065/0.145 0.832 0.022 -15.8
ITPN2 0.177/0.061/0.141 0.832 0.022 -18.6 0.187/0.068/0.149 0.833 0.022 -19.2
ITNP1 0.181/0.061/0.141 0.827 0.014 -48.9 0.180/0.062/0.140 0.824 0.015 -42.9
ITNP2 0.177/0.058/0.139 0.830 0.014 -47.0 0.185/0.065/0.144 0.830 0.017 -38.0

Table 2: Results on wikidoc.

without privacy preservation. The “Removal” and 583

“Substitution” methods effectively safeguard pri- 584

vacy. They both focus on privacy protection by 585

actively removing sensitive information from the 586

model’s knowledge base. The removal of sensitive 587

information significantly reduces the knowledge 588

retained by the model. The SBERT and ROUGE 589

scores are observed to suffer a substantial drop 590

due to the removal of data, resulting in reduced 591

language understanding and generation abilities. 592

We also note that the penalty-based approach can 593

effectively safeguard privacy. 594

Strategy
LLaMA2-7B LLaMA2-13B

ROUGE-1/2/L SBERT SPriv ∆ (%) ROUGE-1/2/L SBERT SPriv ∆ (%)

Vanilla 0.276/0.116/0.209 0.859 0.014 - 0.286/0.121/0.215 0.865 0.013 -
Removal 0.264/0.105/0.206 0.848 0.009 -32.4 0.267/0.111/0.193 0.857 0.008 -37.0
Substitution 0.258/0.101/0.201 0.846 0.010 -27.2 0.249/0.101/0.197 0.849 0.009 -27.6
DPO 0.260/0.109/0.207 0.850 0.013 -5.7 0.271/0.107/0.213 0.863 0.012 -3.6
Penalty 0.256/0.110/0.198 0.853 0.012 -14.7 0.276/0.112/0.207 0.863 0.009 -15.7
Classifier 0.274/0.112/0.207 0.859 0.011 -17.7 0.279/0.112/0.209 0.862 0.011 -11.0
IT 0.250/0.100/0.192 0.844 0.012 -11.0 0.280/0.124/0.216 0.860 0.010 -20.5
ITPN1 0.263/0.113/0.207 0.863 0.013 -5.9 0.272/0.116/0.212 0.867 0.012 -3.2
ITPN2 0.265/0.114/0.209 0.866 0.012 -14.0 0.273/0.118/0.215 0.8690 0.009 -26.8
ITNP1 0.265/0.112/0.209 0.865 0.011 -17.7 0.266/0.115/0.210 0.866 0.012 -8.7
ITNP2 0.262/0.111/0.205 0.862 0.009 -33.8 0.275/0.119/0.214 0.867 0.011 -11.8

Table 3: Results on wikidoc_patient_information.

Selective forgetting constraints in models may in- 595

advertently alter existing knowledge, leading to to- 596

ken alterations for PIIs and possibly distorting orig- 597

inal information, slightly reducing performance in 598

some datasets. The “Classifier” approach offers 599

moderate privacy protection results, reflecting the 600

challenge in training contextual classifiers. DPO 601

starts with Vanilla tuning (SFT) without privacy 602

measures, then fine-tunes for PII concealment with- 603

out a reward model. While DPO boosts privacy 604

through preference-based tuning, its effectiveness 605

is limited, often needing a larger dataset of user 606

preferences and facing reward hacking issues. 607

Experiments show that instruction tuning with 608

examples, using instructions and examples for 609

fine-tuning, achieves a good balance between per- 610

formance, privacy, information preservation, and 611

alignment with human preferences. This method, 612

letting the model “see” and “learn” from both pre- 613
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Figure 2: Pareto Frontier.
Strategy ROUGE-1 ROUGE-2 ROUGE-L BERTScore Spriv:Name ∆Name Spriv:Email ∆Email Spriv:Address ∆Address Spriv:SSN ∆SSN

Vanilla 0.637 0.5743 0.6235 0.8699 0.0778 - 0.0752 - 0.0782 - 0.0724 -
Removal 0.6148 0.5575 0.6115 0.8390 0.0410 -47.30 0.0394 -47.61 0.0423 -45.91 0.0419 -42.13

Substitution 0.6291 0.5234 0.6217 0.8576 0.0420 -46.02 0.0418 -44.41 0.0446 -42.97 0.0419 -42.13
IT 0.6395 0.5429 0.6253 0.8686 0.0449 -42.29 0.0418 -44.41 0.0449 -42.58 0.0421 -41.85

ITPN1 0.6497 0.5591 0.6346 0.8696 0.0395 -49.23 0.0397 -47.21 0.0419 -46.42 0.0411 -43.23
ITPN2 0.6324 0.5569 0.6222 0.869 0.0404 -48.07 0.0403 -46.41 0.0421 -46.16 0.0413 -42.96
ITNP1 0.6321 0.5740 0.6234 0.8605 0.0411 -47.17 0.0412 -45.21 0.0431 -44.88 0.0414 -42.82
ITNP2 0.6335 0.5761 0.6201 0.8657 0.0406 -47.81 0.0408 -45.74 0.0412 -47.31 0.0416 -42.54

Table 4: Results on our PQA Dataset.

ferred and undesired examples, helps in aligning614

the model. It enables the model to understand what615

information to withhold, highlighting the potential616

of LLMs in privacy protection learning.617

We also plot the Pareto frontier in Figure 2(a)618

and 2(b) to evaluate both utility and privacy619

preservation on medical_flashcards dataset for620

LLaMA2-7B and LLaMA2-13B, respectively. More621

results are reported in Appendix D.3. It is evident622

that the instruction-based approaches consistently623

align with the Pareto frontier (IT methods consti-624

tute the border of the frontier). Such a phenomenon625

indicates that employing instructions supplemented626

by both positive and negative examples achieves627

the optimal trade-off between performance (utility)628

and privacy protection of PIIs.629

5.6 Performance on Different Types of PIIs630

To validate the performance of our approaches on631

different types of PIIs, we have conducted further632

experiments on the newly synthesized dataset. The633

dataset, named Privacy QA (PQA) Dataset, was634

synthesized using OpenAI’s GPT-4. The PQA635

dataset contains a wider range of entities, includ-636

ing Names, Emails, Addresses, and SSNs. PQA637

is accessible at the anonymous link4. The catego-638

rization helps assess the protection effectiveness639

for each PII type. For instance, SSN leaks are640

generally more critical than name leaks. We per-641

4https://anonymous.4open.science/r/PPLM/ft_
datasets/data/PQA.csv

formed experiments on the Privacy QA dataset, 642

evaluating the protection ratios across these PII cat- 643

egories respectively. The evaluation is performed 644

on LLaMA2-7B and results are provided in Table 645

4. The results show that the instruction tuning ap- 646

proaches can well protect different types of PIIs 647

while providing good knowledge injections. 648

6 Conclusion 649

In this paper, we present a comprehensive explo- 650

ration of strategies for fine-tuning Large Language 651

Models (LLMs) to incorporate domain-specific 652

knowledge while upholding data privacy, partic- 653

ularly in safeguarding sensitive Personally Identi- 654

fiable Information (PII). We introduced the novel 655

concept of Contextual Privacy Protection Language 656

Models (CPPLMs) and provided a theoretical anal- 657

ysis to guide model design. Our extensive experi- 658

ments underscore the effectiveness of our approach, 659

with instruction-based tuning emerging as a promis- 660

ing method to simultaneously protect private data 661

and enhance the model’s knowledge. This study 662

highlights the potential for LLMs to serve as adept 663

privacy protection learners, bridging the gap be- 664

tween domain-specific expertise and data privacy. 665

As LLMs continue to play a pivotal role in natural 666

language understanding and generation, our find- 667

ings contribute to advancing their utility in privacy- 668

sensitive applications, ultimately fostering a more 669

secure and knowledgeable AI ecosystem. 670
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Limitations671

CPPLM explores privacy preservation in large lan-672

guage models. It is important to note that in our673

dataset, personally identifiable information (PII)674

is identified using the scrubadub toolkit. Such a675

tagging process may not fully represent real-world676

deployment scenarios, where users can customize677

privacy preferences. Companies and data owners678

can employ the CPPLM pipeline to teach language679

models contextual privacy from annotated positive-680

negative pairs. Since there is no universal rule for681

detecting PIIs, privacy definitions vary across sce-682

narios. Therefore, our focus is on demonstrating683

the language model’s ability to learn contextual684

PII. For instance, a clinical company wanting to685

protect specific PIIs can annotate datasets and fol-686

low our proposed method. Even end-users may687

define what PII means in their data’s context dur-688

ing language model tuning or training. In summary,689

the CPPLM pipeline is versatile and adaptable to690

various privacy-related scenarios and tasks, such691

as detoxifying language models. All contributing692

authors of this paper confirm that they have read693

and pledged to uphold the COLM Code of Ethics.694

Reproducibility Statement695

All specifics regarding the datasets and our experi-696

mental configurations can be found in Appendices697

A.1 and D. The source code and scripts for experi-698

ments, available in an anonymized form, can be ac-699

cessed at https://anonymous.4open.science/700

r/PPLM/.701
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Appendix: Large Language Models Can Be Contextual Privacy Protection 1025

Learners 1026

A Notations 1027

Important notations used in the paper are included in Table. 5.

Table 5: Notations used in this paper.

Notation Description

wi,wi a token and its contextualized embedding
s a natural language sequence

D = {s} Fine-tuning dataset

T Annotation
n Maximum sequence length
Θn Set of n-grams associated with PII

R Removed sequence: R = (r0, r1, ..., rk−1)
ri−1 i-th token with pi = 0 in sequence R
C Cleaned sequence: C = (c0, c1, ..., cn−1)
yi Token ci if pi = 0, or the special token u if pi = 1
u Special token added to the vocabulary (e.g., unk for LLaMA2)

P(·) Probability
1028

A.1 Detailed Datasets Description 1029

Table. 6 shows more details about datasets: S denotes the size of the train/test set and LQ/LA denotes 1030

the average length (number of tokens) of the question/answer fields. (1) pii-medical_flashcards with 1031

28861 training and 5093 testing samples; (2) pii-wikidoc with 8500 training and 1500 testing samples; 1032

(3) pii-wikidoc_patient_information with 5050 training and 891 testing samples. 1033

Table 6: Statistics of datasets

Dataset
Train Test

|S| LQ LA |S| LQ LA

medical-flashcards 28861 14.59 14.36 5093 53.64 52.74
medical-wikidoc 8500 9.88 9.67 1500 132.04 136.60
wikidoc-patient-information 5050 8.15 8.04 891 73.40 71.10

A.2 Metrics 1034

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) We adopt the popularly used ROUGE- 1035

1, ROUGE-2, ROUGE-L (Lin, 2004) and BERTScore (Zhang* et al., 2020) to evaluate the answer quality 1036

in the testing phase. Here we give a detailed definition of these scores. We denote the set of tokens from 1037

the generated text as G, and the set of tokens from the reference text as R. The number of overlapping 1038

unigrams between G and R as O1(G,R), and the number of overlapping bigrams between G and R as 1039

O2(G,R). The total number of unigrams in R as U(R) and the total number of bigrams in R as B(R). 1040

The longest common subsequence (LCS) between G and R as L(G,R). 1041

ROUGE-1: 1042

ROUGE-1 =
O1(G,R)

U(R)
1043

ROUGE-2: 1044

ROUGE-2 =
O2(G,R)

B(R)
1045

ROUGE-L: 1046

ROUGE-L =
L(G,R)

max(|G|, |R|)
1047
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BERTScore

E : BERT encoder or model1048

E(G) : Embedding of the entire sequence1049

of the generated text G, produced by E1050

E(R) : Embedding of the entire sequence1051

of the reference text R, produced by E1052

c(E(G), E(R)) : Cosine similarity between the1053

sequence embeddings E(G) and E(R)1054

Then, the BERTScore between a generated text G and a reference text R at the sequence level is defined1055

as:1056

BERTScore(G,R) = c(E(G), E(R))1057

Here, the BERT model E encodes the entire sequences G and R into their respective embeddings, and1058

then we compute the cosine similarity between these sequence embeddings to obtain the BERTScore.1059

B Additional Related Work1060

Pretraining with Preferences. Another solution is to maintain the content, but use redesigned loss/-1061

conditional tags to control the information injected into the LLMs. Pretraining with conditional human1062

preference scores can offer a Pareto-optimal and simple approach to reduce the undesirable content by1063

up to an order of magnitude. Korbak et al. (2023) compared with the classical pretraining approach.1064

While pretraining LLMs conditioned under annotation scores can offer better performance in the human1065

preferences aspect. Since human preferences are injected into the models during the pretraining stage,1066

the models are biased toward those preferences once they are trained. With the expanding size of LLMs,1067

they become increasingly resistant to forgetting their training data (Carlini et al., 2022; Vu et al., 2022;1068

Ramasesh et al., 2022; Korbak et al., 2023). In other words, pretraining large language models conditioned1069

under preference score sacrifices some flexibility. Still, it is undeniable that it can provide much better1070

alignment with human preferences compared with the classical pretraining schema.1071

C Illustration of Vanilla Tuning and Corpus Curation1072

This section gives an illustration of Vanilla Tuning (Figure. 3(a)) and Corpus Curation (Figure. 3(b)).1073

D Experiment Details.1074

D.1 Hardware and Implementations1075

In this paper, we implemented our method on two Linux servers with 4 NVIDIA A100 GPUs, each with1076

80GB of memory. The CUDA version is 12.2 and the Driver version is 535.54.03. We used Python1077

3.10.12 and Pytorch 2.0.1 (Paszke et al., 2019) to construct our project. The fine-tuning of LLaMA models1078

takes 20 hours on average.1079

D.2 Dataset and Hyperparameters1080

In our experiments, we use grid search to obtain the best performance. We provide all of the hyperparame-1081

ters as well as their configurations in the following:1082

• Dataset. For training, we sub-sampled 85% from the three datasets. The performance of each1083

method is evaluated on the remaining 15% of data. Dataset details can be found in Table. 6.1084

• Hyperparameters. For the parameter optimizer, we chose AdamW with weight_decay set to 0. The1085

learning rate is set to 1e−4. We use the StepLR learning rate scheduler with gamma set to 0.85.1086

Epochs and Batch Size: The number of fine-tuning epochs is set to 5, and the batch size is set to 64.1087
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Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent 
Vale Medical Center for Hemophilia

treatment.

QA Concatenation
Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer: Alan Gates visited Crescent Vale 
Medical Center for Hemophilia treatment.

Vanilla Tuning

LLM

(a) Classical Tuning

Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer:    visited    for     treatment. He 
has recovered recently.

Removal
Instruction: Below are instruction paired 
with its question. Write a response that 

appropriately completes the request.

Question: Please respond with some 
patient’s recent medical record.

Answer: <NAME> visited <PLACE> for 
<NAME> treatment. He has recovered 

recently.

Substitution

LLM
LLaMA2

(b) Corpus Curation

Figure 3: Vanilla, Removal, Substitution.

D.3 Pareto Frontier of Utility and Privacy Protection 1088

We also report the pareto frontier of Utility and Privacy Protection in Figure 4, 5, 6, 7, 8 and 8, respectively, 1089

to evaluate both performance and privacy preservation. It is obvious that the instruction-based approaches 1090

consistently align with the Pareto frontier (IT methods constitute the border of the frontier). Such a 1091

phenomenon indicates that employing instructions supplemented by both positive and negative examples 1092

achieves the optimal trade-off between performance (utility) and privacy protection of PIIs. The outcomes 1093

strongly support our position that LLMs can be good contextual privacy protection learners. 1094

D.4 Curve of Knowledge Injection and PII Leakage vs. Learning Process 1095

In this section, we analyze the ROUGE, BERTScore, and Privacy Leakage Score concerning the training 1096

steps. We aim to assess whether our two primary learning objectives are effectively achieved throughout 1097

the training process. Initially, in Figure. 10 that visualizes the training of ITPN1 , we observe that as the 1098

LM undergoes the training process, we witness a notable trend: the injection of knowledge into the LM 1099

steadily increases. This infusion of knowledge corresponds to a progressive rise in both ROUGE and 1100

BERTScore, ultimately leading to a stabilization, or convergence, of these metrics. Simultaneously, the 1101

Privacy Leakage Score exhibits an intriguing behavior. At the outset of the learning process, it experiences 1102

an upward trajectory. This ascent is a direct consequence of the LM ingesting more knowledge, including 1103

private tokens, inadvertently learning about sensitive information. However, as training continues, a 1104

pivotal shift occurs. The LM’s instruction to conceal privacy-related information gradually takes effect, 1105

resulting in a discernible decrease in the Privacy Leakage Score. In summary, Figure. 10 offers a 1106

compelling visualization of the evolving relationship between knowledge injection, linguistic performance 1107

(ROUGE/BERTScore), and privacy protection (SPriv) as the LM matures throughout its training steps. It 1108

underscores the dynamic equilibrium between knowledge acquisition and safeguarding sensitive data, 1109

emphasizing the importance of a well-orchestrated learning process to achieve both objectives. 1110

To compare vanilla tuning with instruction tuning using positive-negative cases (ITPN ), we plotted 1111

utility metrics (ROUGE/BERTScore) and SPriv against the number of training steps (as shown in 1112

Figure. 11). With vanilla tuning, as training progresses, the LLM’s performance improves. However, it is 1113

accompanied by an increase in privacy leakage. Such a trend corroborates our intuition that, as the LLM 1114

assimilates information, it also inadvertently memorizes PII tokens from the corpus. When it comes to 1115

instruction tuning with positive-negative cases (Figure. 10), the utility curve exhibits a trajectory akin to 1116
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Figure 5: Pareto Frontier on medical_flashcards, LLaMA2-13B
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Figure 6: Pareto Frontier on wikidoc, LLaMA2-7B
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Figure 7: Pareto Frontier on wikidoc, LLaMA2-13B
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Figure 8: Pareto Frontier on wikidoc_patient_information, LLaMA2-7B
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Figure 9: Pareto Frontier on wikidoc_patient_information, LLaMA2-13B
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vanilla tuning. However, privacy leakage increases initially but eventually declines. This suggests that, by 1117

employing instruction combined with positive-negative cases, LLMs can be trained to be good contextual 1118

privacy learners. 1119
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Figure 11: ROUGE, BERTScore, and SPriv vs. Steps (Vanilla)

D.5 Instruction Templates 1120

In this section, we list the detailed two instruction tuning templates as shown in Table. 7 and Table. 8. 1121

E Case Study 1122

In this section, we present case studies featuring exemplary responses generated from the Wikidoc Patient 1123

Information Dataset. We compare responses generated by the vanilla model (original) with those generated 1124

by a model equipped with a token classifier and responses generated by the vanilla model (original) versus 1125

the model trained using the instruction tuning (IT) strategy. By examining the results in Tables 9 and 10, 1126

we can discern the efficacy of the proposed methodologies in safeguarding privacy. 1127
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### IT
Below is a question and related responses. Write a privacy protection response to the question. Sensitive
information in the response should be replaced by NAME, ORGANIZATION, etc.

### Input
{{Question filled in there}}
### Response
{{Answer filled in there}}

### ITPN1

Below is a question and related responses. Sensitive information in the response should be replaced by
NAME, ORGANIZATION, etc. Write
(1) desired answer to the question.
(2) undesired answer to the question.

### Input
{{Question filled in there}}
### Response
(1) desired answer to the question: {{Answer with PII substituted filled in there}}
(2) undesired answer to the question: {{Answer filled in there}}

### ITPN2

Below is a question and related responses. Sensitive information in the response should be replaced by
NAME, ORGANIZATION, etc. Write
(1) a privacy protection version of the response.
(2) a response answering the question.

### Input
{{Question filled in there}}
### Response
(1) a privacy protection version of the response: {{Answer with PII substituted filled in there}}
(2) a response answering the question: {{Answer filled in there}}

Table 7: Templates (Positive-Negative )for instruction tuning (IT) and IT with positive and negative cases.

20



### ITNP1

Below is a question and related responses. Sensitive information in the response should be replaced by
NAME, ORGANIZATION, etc. Write
(1) a response answering the question.
(2) a privacy protection version of the response.

### Input
{{Question filled in there}}
### Response
(1) a response answering the question: {{Answer filled in there}}
(2) a privacy protection version of the response: {{Answer with PII substituted filled in there}}

### ITNP2

Below is a question and related responses. Sensitive information in the response should be replaced by
NAME, ORGANIZATION, etc. Write
(1) undesired answer to the question.
(2) desired answer to the question.

### Input
{{Question filled in there}}
### Response
(1) undesired answer to the question: {{Answer filled in there}}
(2) desired answer to the question: {{Answer with PII substituted filled in there}}

Table 8: Templates (Negative-Positive) for instruction tuning (IT) and IT with positive and negative cases.
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Prompt
### Input
What is the historical background of chronic fatigue syndrome?

Answer (Original)
The first case of chronic fatigue syndrome was reported in 1956. In 1988, the Centers for Disease
Control and Prevention (CDC) first reported a cluster of cases of chronic fatigue syndrome in Incline
Village, Nevada ...

Answer (Token Classifier)
The first case of chronic fatigue syndrome was reported in 1956. In 1988, the Centers for Disease
Control and Prevention (CDC) first reported a cluster of cases of chronic fatigue syndrome in ⟨unk⟩.

### Input
What is the explanation for using images and the new advanced syntax to insert them?

Answer (Original)
The following is a list of the most common image tags:
#ev:youtube http://www.youtube.com/watch?v=dQw4w9WgXcQ ...

Answer (Token Classifier)
The following is a list of the most common image tags: ⟨unk⟩

### Input
What information is available on Ranolazine?

Answer (Original)
Ranolazine may cause side effects. Tell your doctor if any of these symptoms are severe or do not go
away: dizziness, diarrhea, headache, nausea, vomiting ...
Some side effects can be serious. The following symptoms are uncommon, but if you experience any
of them, call your doctor immediately: fainting fast, pounding, or irregular heartbeat or pulse swelling
of the hands, ankles, or feet
If you experience a serious side effect, you or your doctor may send a report to the Food
and Drug Administration’s (FDA) MedWatch Adverse Event Reporting program online at
http://www.fda.gov/MedWatch/report.htm or by phone 1-800-332-1088.

Answer (Token Classifier)
Ranolazine may cause side effects. Tell your doctor if any of these symptoms are severe or do not go
away: dizziness, diarrhea, headache, nausea, vomiting ...
Some side effects can be serious. The following symptoms are uncommon, but if you experience any
of them, call your doctor immediately: fainting fast, pounding, or irregular heartbeat or pulse swelling
of the hands, ankles, or feet
If you experience a serious side effect, you or your doctor may send a report to the ⟨unk⟩ program
online at ⟨unk⟩ or by phone ⟨unk⟩.

Table 9: Example responses generated on the Wikidoc Patient Information Dataset by the vanilla model (original)
and the model with token classifier.
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### Input
Could you provide a brief explanation of familial hypercholesterolemia?

Answer (Original)
The prevalence of familial hypercholesterolemia is approximately 1 in 500 individuals worldwide.

Answer (Instructed)
The diagnosis of familial hypercholesterolemia is based on the following criteria:
Low-density lipoprotein cholesterol (LDL-C) level of 190 mg/dL or greater in a child or adolescent or
160 mg/d.

### Input
What is the medical treatment for non-small cell lung cancer?

Answer (Original)
The treatment of non-small cell lung cancer depends on the stage of the disease.

Answer (Instructed)
The treatment of non-small cell lung cancer depends on the stage of the disease. The treatment options
include surgery, chemotherapy, radiation therapy, and targeted therapy.

### Input
What is an ultrasound for peripheral arterial disease?

Answer (Original)
Ultrasound is the first line imaging modality for the diagnosis of peripheral arterial disease. It is a
non-invasive, safe, and cost-effective method for the diagnosis of peripheral arterial disease. Ultrasound
is used to assess the anatomy of the arteries and the degree of stenosis. It is also used to assess the
anatomy of the arteries and the degree of stenosis.

Answer (Instructed)
Peripheral arterial disease (PAD) is a common disease that affects the arteries of the legs. It is caused
by atherosclerosis, which is the buildup of plaque in the arteries. Ultrasound is a noninvasive test
that can be used to diagnose PAD. It uses sound waves to create images of the arteries in the legs.
Ultrasound can be used to measure the blood flow in the arteries and to look for blockages. It can also
be used to measure the size of the arteries. Ultrasound is a safe and painless test.

Table 10: Example responses generated on the Wikidoc Patient Information Dataset by the vanilla model (original)
and the model trained with the instruction (IT) strategy.
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