Under review as a conference paper at ICLR 2026

LACORE: LAPLACIAN COHESIVE SUBGRAPHS FOR
GRAPH REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Dense, cohesive subgraphs are valuable anchors for pooling and interpretation in
graph representation learning (GRL), yet exact cliques are too strict and average-
density heuristics are hub-biased and unstable. We introduce LACORE, a fast two-
phase Laplacian-smoothed reverse peeling method that rebuilds the graph in a fixed
importance order and scores each connected component with a smooth ratio that
penalizes within-component degree variation. A simple one-step growth test yields
a natural first-peak stopping rule, and a degree-concentration certificate links low
Laplacian energy to near-uniform internal support, making the selected subgraphs
cohesive and interpretable. LACORE preserves the scalability of greedy peeling,
running in O((|V|+|E|)log |V| + |E|k), and is parameter-free when used as a
pooling operator. On synthetic planted-subgraph recovery and graph classification
benchmarks, LACORE consistently improves downstream GRL metrics. The result
is a practical, stable alternative to density-only heuristics that plugs directly into
modern GRL pipelines.

1 INTRODUCTION

Graph representation learning has advanced rapidly with node-, edge-, and graph-level objectives,
yet remains sensitive to how local neighborhoods are defined and pooled (Kipf & Welling, 2017
Hamilton et al.| [2017; [Perozzi et al.,[2014; Grover & Leskovecl 2016). Dense, coherent subgraphs
serve as robust building blocks for contrastive pretext tasks, hierarchical pooling, and interpretable
summaries. Classical maximal cliques are ill-suited for large, noisy graphs: they require complete
connectivity and are NP-hard to enumerate at scale. Conversely, purely average-density objectives
may over-select hubs without guaranteeing strong per-node support.

Core idea. We study a reverse-peeling heuristic that reinserts vertices in a fixed importance order
and scores each connected component C with a Laplacian-smoothed ratio

|C| 2
—_— Q(C) = (di — dj)*, (1)
Q(O) +¢ (iﬁj)ze:Ec !

where d is the internal-degree vector on C'. The parameter £ > 0 acts as a regularizer: it prevents
division by zero when Q(C) = 0 and also balances a size-smoothness trade-off. Larger ¢ values
favor looser, larger components and smaller ¢ values favor tighter, more uniform ones. The score
increases smoothly as well-supported vertices are added (little increase in (Q), and drops sharply once
the component absorbs heterogeneous neighborhoods (large increase in ()). The search is greedy
(no backtracking), components are connected by construction, and a simple one-step growth test (5)
provides a natural stopping rule at the first peak.

Sp(C) =

Contributions. (i) A greedy reverse-peeling routine with a Laplacian-smoothed ratio score
Sp(C) = |C]/(Q(C) + ¢) evaluated on each connected component during reconstruction. (ii)
A local growth test and natural stopping rule: S, increases iff the per-step AQ is below a simple
threshold; the resulting S, trajectory is typically peak-then-drop, which we exploit for selection. (iii)
A degree-concentration certificate linking small Q(C) to near-uniform internal degrees (cohesion).
(iv) A scalable edge-centric AQ) update and Disjoint Set Union (DSU) bookkeeping; the overall
complexity remains O((|V'| + |E|)log |V| + |E|k). (v) GRL integrations (pooling seeds, GNN
explainability) with consistent gains on synthetic graph tasks as well as popular benchmarks.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Graph representation learning. Graph neural networks (GNNs) are the main framework for
graph representation learning (GRL). Early models such as GCNs (Kipf & Welling} 2017) and
GraphSAGE (Hamilton et al., 2017) introduced scalable message passing, while later extensions
used attention (Velickovi¢ et al., [2019)), diffusion (Gasteiger et al., |2019)), and positional encod-
ings (Dwivedi et al., [2020). The Graph Isomorphism Network (GIN) (Xu et al., 2019) matched
the Weisfeiler—Lehman test in expressivity. More recent transformer-based architectures, includ-
ing Graphormer (Ying et al.,[2021)) and SAN (Kreuzer et al.,[2021)), leverage global attention and
positional encodings.

Hierarchical pooling. Pooling supports graph-level prediction. DiffPool (Ying et al.,[2018) learns
soft cluster assignments, while Graph U-Nets (Gao & Ji, [2019)) use top-k pooling and unpooling.
SAGPool (Lee et al.| 2019) and ASAP (Ranjan et al.l [2020) refine node selection via attention
or structural priors. These methods build hierarchical representations but do not ensure subgraph
cohesiveness. Contrastive methods (Velickovi€ et al., [2019; [You et al., [2020)) also rely on reliable
subgraphs for positives.

Dense subgraph discovery. Peeling-based approaches such as k-cores and Charikar’s densest-
subgraph optimize thresholds or average degree and can be hub-biased or non-smooth (Seidman,
1983} [Batagelj & Zaversnik, 2003} |Charikar, [2000). In contrast, we reverse peel and use the Laplacian
quadratic form on the degree signal to smooth the search and provide an explicit one-step growth test
with a first-peak stop.

Spectral methods and Laplacians. Spectral graph theory links Laplacians with clustering. Al-
gebraic connectivity (Fiedler, |1973), Cheeger inequalities (Shi & Malik} 2000; |Chung, |1997), and
smoothness objectives motivate many relaxations. We use the Laplacian quadratic form on the
internal-degree signal as a smoothness prior that penalizes within-component heterogeneity.

Comparison with pooling approaches. Existing graph pooling methods for GRL typically produce
clusters by learning parameters and leveraging node features, but they often lack explicit structural
guarantees. DiffPool (Ying et al.|[2018)) and Graph U-Nets (Gao & Ji,|2019) generate clusters without
explicit cohesion criteria. LaPool (Noutahi et al.,[2019) learns feature-based, centroid-driven soft
assignments (encouraged by Laplacian variation and optional distance regularization) and does not
enforce discrete connected components. In contrast, LACORE is parameter-free and structure-only: a
single peel-reconstruct pass on the input graph yields interpretable subgraphs anchored by degree
support and spectral smoothness that are connected by construction.

GNN explanations. Most post-hoc explainers identify an explanatory subgraph by repeatedly
querying the trained GNN for importance signals. GNNExplainer (Ying et al., [2019) optimizes
a per-graph soft edge/feature mask by maximizing mutual information with the model prediction.
PGExplainer (Luo et al.,|2020) trains an explainer network on GNN embeddings to amortize edge-
importance prediction to new graphs. SubgraphX (Yuan et al., [2021) explores the subgraph space
via Monte Carlo Tree Search and scores candidates with (approximate) Shapley values. These
methods rely on model gradients or predictions, often require multiple queries, and do not guarantee
connectivity of the returned mask. In contrast, LACORE is model-agnostic: a single peel-reconstruct
pass on the input graph yields one connected, degree-balanced subgraph that captures the dense
neighborhood structure typically aggregated by message-passing GNNs, without relying on the
trained GNN embeddings.

3 PRELIMINARIES & NOTATION

Graphs and Laplacians. Let G = (V, E) be a simple undirected graph, n = |V|, m = |E|.
For C C V, G|C] is the induced subgraph, F¢ its edge set. The internal degree of v € C'is
dego(v) = |[{u € C : {u,v} € E}|, and we write the internal-degree vector d € RIC! with entries
d; = deg (7). The (combinatorial) Laplacian of G[C] is Lc = D¢ — Ac, where D¢ is the diagonal
degree matrix and A the adjacency matrix. We denote by A2 (C') the algebraic connectivity, i.e., the

Under review as a conference paper at ICLR 2026

second-smallest eigenvalue of Lo (if G[C] is connected, then A2 (C') > 0). We use y ~ u to denote
that nodes y and u are adjacent within G[C].

Averages and minima. d¢ = ﬁ > icc di and 8¢ == min;ec d;.

Laplacian energy and smoothed score. The Laplacian energy of internal degrees is Q(C) :=

d"Lod = diere(di — dj)?. For € > 0, define S (C) := 7Q(|CC)I+E.

Asymptotics and DSU. We use a Disjoint Set Union (Union-Find) data structure with path
compression and union by rank, giving amortized time O(aack(n)), where aacx () is the inverse
Ackermann function; in practice aa i (n) <4 for any realistic n (e.g., n = 269536) so per-operation
cost is effectively constant.

Degeneracy ordering and orientation. The degeneracy k of G is k = maxycg min,eg degy (v);
equivalently, no subgraph of G has minimum internal degree > k. A degeneracy ordering removes a
minimum-degree vertex repeatedly (v; denotes the i" vertex removed in this order). For the reverse-
peeling stage of our algorithm, we add back vertices in the order of addOrder = (vy,...,v1).
We denote idx[v] as the position of v in addOrder (in other words, if 1dx[v] > idx[u], then
the vertex v will be added back later than vertex u). We then orient each edge {u,v} as v — w if
idx[v] < idx[u]. This yields a k-degeneracy orientation, i.e., when adding back vertex w during the
reverse-peeling process, deg'™ (w) will be < k for all w. For u € V, define pred(u) = {v : v — u}
and succ(u) = {v : u — v}. We will also use deg™ (-) and deg®"*(-) with respect to this orientation.

Prefix-sums over successors. For v € V and a threshold t € {l,...,n}, let
SUMSUCC.UNTIL(v,t) = >y esuce(v) deg(y). This is the formal object implemented in our
idx[y|<t

pseudocode (Alg. [2). We maintain a cache predsum[] for 3 . .4

processing v (with index idx[u]), the current neighbor-degree sum for v € pred(u) is S, =
predsSum[v] + SUMSUCC.UNTIL(v, t). Likewise S, = >, _, deg(y).

(- deg(y) so that, when

Components during reconstruction. “Component C” refers to a connected component of the
subgraph induced by already reinserted vertices; DSU tracks these components.

4 METHOD: LAPLACIAN-SMOOTHED GREEDY RECONSTRUCTION

We reinsert vertices in reverse peeling order, maintain connected components via DSU, and score
each component with the Laplacian-smoothed ratio Sy, (C'). We then describe a two-phase heuristic
and an efficient implementation that ensures scalability.

4.1 LAPLACIAN-SMOOTHED SCORING

Why use a Laplacian-smoothed ratio? Greedy objectives based on average degree are brittle and
hub-biased; a single weak node can cause abrupt changes. We instead optimize the Laplacian energy
of internal degrees via
Cl

S.(C)= ———7+—.
L() dTLcd +e
This score changes gradually as nodes/edges are added, enabling a stable peel-and-reconstruct search
with simple incremental updates.

(@)

The score Sy, (C) offers the following practical advantages:
* Smooth objective — stable search. The Laplacian smoothness ratio changes smoothly as
nodes/edges move, so the peel-and-reconstruct search doesn’t thrash.

* Robustness to noise/outliers. The score prefers degree-uniform subgraphs; it will not
over-grow around hubs or collapse from a single weakly connected node.

Under review as a conference paper at ICLR 2026

* Incremental, scalable updates with structure. The edge-centric update and DSU let us
maintain d " L¢d during reconstruction in O((|V| + | E|) log |V| + | E|k) time, which makes
our algorithm efficient for large graphs.

* GRL-ready scoring. Sy, (C) gives a single, smooth number we can compare across graphs
to rank reconstruction candidates. LACORE clusters can be used directly as pooling seeds
or contrastive positives, and we grow a component only while the one-step test AQ <
(Q 4 ¢)/|C| predicts an increase in Sz.. By the degree-concentration bound in Sec. |5} small
Q(C) implies near-uniform internal degrees, so the selected components are structurally
cohesive.

Intuitively, if all nodes in a subgraph have similar internal degrees, the Laplacian energy d ' Lod is
small, internal degrees concentrate around their mean, and the component behaves as a cohesive,
near-regular module.

4.2 A TWO-PHASE HEURISTIC

We adopt a two-phase heuristic inspired by degeneracy ordering and densest-subgraph algorithms: (i)
a peeling phase, where nodes are iteratively removed based on their current degree, and (ii) a reverse
reconstruction phase that adds nodes back and scores each connected component.

Algorithm 1 LACORE: Reverse-peeling with Laplacian-smoothed scoring (conceptual)

Input: G = (V, E), small constant £ > 0.
Initialize a min-priority queue with all nodes, keyed by degree; initialize empty stack k.
while queue not empty do

Extract node » with minimum current degree.

Push u onto R; remove u and incident edges; update neighbor degrees in queue.
end while
Initialize Union—Find on V’; set best < @, S} «+ 0.
for nodes u popped from R in reverse order do

Reinsert u; for each already reinserted neighbor v, union u and v.

For each affected component C, compute d, L¢, and Sy (C) via equation

if S;.(C) > S} then

Update best <— C, ST + S(C).

end if
: end for
: Output: best and its Sy,.

PRI ALY

N S
A A s

The peeling phase (lines 3-6) costs O((|V|+|E])log|V]|) from priority-queue updates. In the
reconstruction phase (lines 8—14), the most expensive step is evaluating Q(C) = d' Led (line 12).
Appendix[A.T| provides an approach that replaces the naive recomputation of () with an edge-centric
incremental update in a fixed degeneracy orientation; this makes maintaining) cost O(|E|k) overall.
Crucially, the overall two-phase control flow is unchanged; only the local computation of () is made
faster. With this substitution, the total complexity is O((|V|+|E|) log |[V'| + | E|k).

5 LoCAL GROWTH AND COHESION CERTIFICATES

Let C; be a connected component produced during reverse reconstruction after ¢ vertex insertions,
with Laplacian energy Q; = Z(i fepe, (di — d;j)? computed via the edge-centric update (Alg. .
’ t

Define Sy, (C}) = |Cy|/(Qs + €) with e > 0.

One-step growth test. When inserting the (t+1)" vertex (and incident edges) into C;, let AQ;
denote the change in (). Then

Qt +¢€

SL(Cip1) > Sp(Cy) = AQ: < iG]
t

€)

Under review as a conference paper at ICLR 2026

0.0006

Sy - 100000

=== first crossing

0.00054 :
I 80000
0.00044 i

AT Y A R F 60000

Z 00003 :

I 40000

AQ and Ur

0.0002 4
I 20000
0.0001

__#‘________________

ro
0.0000 1

T T
0 50 100 150 200 250
Step index

(a) Laplacian smoothness ratio Sy, (blue), per step AQ; and (b) Visualization of the synthetic graph
growth threshold (Q: + €)/|C¢| (right axis) vs. reconstruction (nodes in gray) and the selected component
step for a synthetic graph with a planted dense subgraph. The C™ (highlighted in red) at the global peak of
dashed line marks the first crossing; later crossings may occur ~ Sy,. The dense planted subgraph is correctly
but produce smaller bumps and do not affect the global peak identified by LACORE.

selection.

Figure 1: Diagnostics for LACORE on a synthetic graph with a planted dense subgraph. Panel (a)
illustrates the evolution of the Laplacian smoothness ratio S, and the one-step growth test, while
panel (b) highlights the cohesive component selected by LACORE.

. Cy Cy ~
Proof. Sp(Cit1) > Sp(Cy) iff QLA‘ES% > Q|t+‘s’ equivalently (|Cy[4+1)(Qi+e) >

|Ce|(Qi+AQ;+¢), which simplifies to Q;+¢ > |C|AQ;. O

Connectivity guarantee. Each C} is a connected component of the subgraph induced by reinserted
vertices: we only add vertices together with incident edges to already reinserted neighbors and
maintain components via DSU, so every time we evaluate or select a best Cy, it is connected by
construction (Algs. [TH2).

Cohesion certificate (degree concentration). Let d € R!¢| be the internal-degree vector on Cy, d
its mean, and L¢, the Laplacian. For any connected C},

-
max |d, —d| < /2 LCd _

— = —_— 4
veC: -)\2(015))\2(097 @)

where A2 (C}) is the algebraic connectivity. Thus small Q); forces the internal degrees to be nearly
uniform, a structural notion of cohesion.

Peak Diagnostics and Stability. We visualize the typical peak—then—drop trajectory and the growth
threshold. Figure (1| shows, in panel (a), the evolution of the Laplacian smoothness ratio S, (C}) over
reconstruction steps together with AQ); and the growth threshold (Q; + €)/|C%|, and, in panel (b),
the corresponding selected component for a synthetic graph with a planted dense subgraph.

6 INTEGRATION INTO GRL

6.1 LACORE POOLING FOR GRAPH CLASSIFICATION

Pooling operator. We integrate LACORE as a parameter—free (no pooling parameters are learned),
algorithmic hierarchical pooling layer: graphs are partitioned via iterative peeling in which LACORE
clusters, scored by S.(C) (Eq. , are sequentially extracted from the remaining graph. This process
repeats until either a target node coverage ratio is reached or no clusters of minimum size can be
found. Remaining nodes are assigned as singletons. Clusters are contracted to supernodes using
mean aggregation, followed by global mean readout.

Backbone and evaluation protocol. For our experiments, we employ a standard 2-layer GCN
encoder with a LACORE pooling stage inserted between the two GCN layers; we concatenate

Under review as a conference paper at ICLR 2026

global mean/max pooled features before and after pooling and feed them to a 2-layer MLP head
(4h — 2h — (') with dropout. We train with the Adam optimizer and implement our model
in PyTorch. In addition, we follow the protocol popularized by recent pooling work: (i) 10-fold
cross-validation, (ii) per-fold validation split of 10% of the training fold, (iii) early stopping on
validation loss (patience, up to 500 epochs), (iv) 20 random seeds (we reseed both model initialization
and fold generation), and (v) report mean =+ standard deviation over 20 x 10 = 200 total test
evaluations per dataset.

Hyperparameter selection. For each dataset we perform a small grid search on the training—fold
validation split and select by validation accuracy. We tune GCN hyperparameters (hidden size,
dropout, learning rate, weight decay, batch size) as well as € (log grid) and coverage target (pooling
ratio) for LACORE. We apply the same hyperparameter grid search to all other baselines to ensure a
fair comparison. For LACORE, we list the final chosen values per dataset in Appendix [A.4]

6.2 LACORE AS A MODEL-AGNOSTIC GNN EXPLAINER

Why dense regions explain GNNs. Graph neural networks compute node and graph representations
by aggregating information over local neighborhoods. Their predictions often depend on dense,
internally coherent regions where repeated message passing reinforces class-consistent signals. These
regions tend to be degree-balanced and structurally stable under low-pass aggregation, and their
removal can lead to a significant drop in model prediction accuracy.

LACORE construction. LACORE identifies exactly this type of subgraph. It selects the connected
component C* that maximizes the Laplacian score Sy, (C') (defined in Eq. . This objective favors
dense, hub-averse subgraphs with low degree variance, which preserve signal consistency under
aggregation and contribute significantly to the model’s prediction. The resulting explanation C*
is computed without access to gradients, logits, or embeddings, and can be evaluated post hoc by
measuring fidelity (the model’s prediction change when C* is removed).

7 EXPERIMENTS

We report clustering/pooling metrics on synthetic graphs, GRL downstream performance on popular
benchmark graph datasets, and fidelity—sparsity curves for GNN explainability. The hyperparameter
€ is tuned for each experimental regime, as detailed below.

7.1 SYNTHETIC PLANTED CLUSTER RECOVERY

We evaluate LACORE by generating synthetic graphs with n = 2,500 nodes containing a planted
cluster of size k, internal edge probability p;,, and background probability p,,. We sweep k €
{100, 150, 200}, pi, € {0.6,0.7,0.8,0.9}, and poy € {0.25,0.35,0.45}, yielding 36 configurations
total. Each method is run on 10 random seeds per configuration; seeds are averaged within each
configuration before aggregating across settings.

Baselines and metrics. We compare against several strong baselines. Densest Subgraph uses
Charikar’s peeling algorithm (Charikar, [2000) to find the subgraph with maximum average degree.
QuasiClique (Tsourakakis et al., 2013)) runs a greedy 1-swap local search to optimize edge density.
Spectral Clustering uses the principal non-trivial eigenvector of the normalized Laplacian; we sweep
both signs and select the best prefix of nodes scored by edge density. k-core (Seidmanl, [1983) iterates
through core numbers k; for each, it computes the k-core, finds its connected components, and selects
the component with the highest edge density. The component with the maximum density found across
all k is returned. For fairness, we enforce |C| > 10 across all baselines; for ranking-based methods
(Densest Subgraph, QuasiClique, Spectral) we choose the best candidate satisfying this constraint.
Performance is measured by F1-score against the planted set C*.

Tuning . The score S;.(C) = |C|/(d" Lod + ¢) balances degree-uniformity (small d ' Led)
against size (|C/). The choice of ¢ is critical. Small ¢ values heavily penalize non-uniform degrees,

Under review as a conference paper at ICLR 2026

LACORE F1 Score vs log,,(¢) Ablation Study

[[[
o L B
g 0.6 i
Q [|
n
0.2 - .
T T T Sy O | |

logyo(€)

Figure 2: Ablation study for € on the synthetic planted subgraph recovery task. Performance is
evaluated across a logarithmic scale of ¢ values. The peak performance occurs near ¢ = 10° (see
text).

Table 1: Synthetic planted subgraph recovery. Metrics are macro-averaged over 36 graph configu-
rations. LACORE achieves the best F1-score and average rank over all baselines, with comparable
speed to k-core and QuasiClique (Wilcoxon signed-rank, p < 10~°). Bold = overall best.

Method F1 (macro +=95% CI) AvgRank| Wins Runtime (ms) [IQR]
LACORE 0.861 +0.070 1.00 36 3466[3657]
QuasiClique 0.217 + 0.033 2.69 0 5622(2126]
Spectral Clustering 0.162 +0.017 3.33 0 354[917]
Densest Subgraph 0.113+0.010 3.99 0 39(21]

k-core 0.113 £0.010 3.99 0 3811[3114]

leading to small, highly regular subgraphs (high precision, low recall). Conversely, large ¢ val-
ues diminish the penalty, favoring larger but potentially less coherent subgraphs (high recall, low
precision).

Crucially, the magnitude of the Laplacian term d " Ld is not scale-invariant and grows with graph
size and density. Consequently, the optimal value of € is not a universal constant but depends on the
properties of the graphs being analyzed. For any given application domain, € should be treated as a
key hyperparameter and tuned on a validation set.

To establish a robust value for the synthetic benchmark, we performed the ablation study shown
in Figure 2] We generate a separate, fixed validation set for this family of graphs and find that
performance peaks near ¢ = 10%. For low ¢ values, the algorithm becomes too conservative, while
for larger ¢ values, the regularization becomes too weak. Based on this study, we fix ¢* = 10° for all
36 configurations within this experimental regime. This is the value used to generate the results in
Table[Il

Results. Table|l|summarizes the results; we report the Fl-score, the average performance rank
(lower is better), the number of configurations where a method won (achieved the top F1-score), and
the median runtime. LACORE consistently outperforms all baselines, winning in every configuration.
This advantage is statistically significant: a Wilcoxon signed-rank test on the F1 scores across the 36
settings yields p < 10~ for all pairwise comparisons against baselines. We find that baselines that
optimize for average degree perform poorly in this regime because the relatively dense background
(pout > 0.1) obscures the planted cluster, which is a fundamental challenge for these heuristics. For a
detailed breakdown of performance versus poy, see Appendix[A.2]

7.2 GRAPH CLASSIFICATION BENCHMARKS

Datasets. We evaluate on four widely used datasets for measuring graph classification performance:
D&D, PROTEINS, NCI1, and NCI109, which are taken from the TUDataset collection |[Morris et al.

Under review as a conference paper at ICLR 2026

Table 2: Graph Classification Benchmarks (accuracy %, mean =+ std over 20 seeds x 10 folds).
Bold = overall best

Method DD PROTEINS NCI1 NCI109
Flat / global pooling

GCN 71.67 £ 1.29 66.51 £+ 0.26 73.89 + 0.62 73.78 +£0.44
SET2SET 71.53 +0.77 72.07 +0.45 66.93 £ 0.78 61.01 £2.73
SORTPOOL 71.85 + 0.96 73.92 + 0.76 68.72 £+ 0.98 68.51 £+ 0.59
GLOBAL-ATTENTION 71.34 + 0.82 71.81 +£0.76 69.01 + 0.42 67.86 + 0.42
GMT 78.09 + 0.66 74.95 + 0.85 70.28 + 0.55 69.53 £ 0.61
Algorithmic coarsening

GRACLUS 71.95 +4.15 72.00 &£ 4.19 66.49 + 2.39 65.33 £+ 3.85
QuASI-CLIQUEPOOL 66.84 +1.34 69.95 + 1.04 72.26 +0.92 67.73 +1.20
Node-selection pooling

SAGPooL 69.76 + 0.84 72.33 +0.95 64.33 £ 1.03 69.86 + 1.45
ASAP 69.86 £+ 0.93 73.41 £ 0.79 64.43 £ 0.42 67.68 £0.57
TopKPooL 70.88 + 0.89 73.14 £ 1.12 61.70 + 2.15 66.95 + 1.81
Edge-contraction, soft clustering, parsing-based pooling

DIFrFPOOL 67.17 &+ 2.52 68.49 + 1.91 62.59 + 1.97 62.27 +1.85
GPN 77.82 +0.95 74.73 + 0.82 79.97 +£0.39 77.21 +0.54
MiNCuTPoOL 76.25 + 0.81 73.48 +1.03 75.34 + 0.49 73.76 + 0.53
SEP 75.58 & 0.89 73.96 + 0.51 77.36 = 0.27 76.12 4+ 0.62
EDGEPOOL 72.35 £ 4.07 74.31 £ 4.14 71.54 £+ 2.09 67.41 + 2.46
LACORE (ours) 76.85 + 0.64 75.73 £0.42 77.10 & 0.56 77.48 £ 0.61

(2020). Detailed statistics for each dataset are deferred to Appendix [A.3] All results use the protocol
described in Section[6.1]

Baselines and families. We compare to strong representatives from five families: (i) Flat/global
pooling (GCN (Kipf & Welling, [2017), Set2Set (Vinyals et al.}|2016)), SortPool (Zhang et al., 2018)),
Global-Attention (Li et al.,|2016), GMT (Baek et al.,[2021)); (ii) Algorithmic coarsening (Graclus
(Dhillon et al., 2007), Quasi-CliquePool (Ali et al., 2023))); (iii) Node-selection pooling (SAGPool
(Lee et al.,|2019), ASAP (Ranjan et al., 2020), TopKPool (Gao & Ji,[2019)); (iv) Edge-contraction
and soft clustering (DiffPool (Ying et al., 2018)), MinCutPool (Bianchi et al., 2020), SEP (Wu et al.,
2022), EdgePool (Diehl, 2019)); (v) Parsing-based pooling (GPN (Song et al.l [2024))). For each
baseline we use the PyTorch Geometric implementation if available, otherwise the authors’ provided
code.

Results. LACORE pooling delivers a new high on PROTEINS and NCI109 while remaining
competitive on D&D/NCII1 against recent learned/global pooling methods. We attribute this to
the low—variance structural prior of our pooling: maximizing .S;, promotes near—regular, cohesive
modules with high minimum support, which are robust aggregation units.

7.3 GNN EXPLAINABILITY BENCHMARKS

Setup. We evaluate explanations on the MUTAG (Debnath et al., [1991; Morris et al.,[2020) and
BA-2Motifs (Luo et al.l 2020) graph classification datasets (see Appendix [A.3|for dataset details).
We use a 3-layer GCN, trained to convergence and then frozen for all explanation experiments.

LACORE explanations. For each graph, we compute the LACORE cluster C* once on the raw
graph. We sweep ¢ in Sy, (C) (Eq.[2) to obtain clusters C*(¢) of varying sizes. When decreasing ¢
stops reducing the cluster size (e.g., e < 10~° returns the same cluster), we form smaller explanations
of target size k by selecting the top-k nodes in C*(g) with highest internal degree in G[C*(¢)],
denoted C7}.

Under review as a conference paper at ICLR 2026

BA-2Motifs MUTAG
0.40 | 087
EE 0.30 . :‘E’ 067 T~
& 020 ~— . & 0.4
010 ~ | 02 —
0.650 O.%OO 0.7‘50 O.éOO O.é50 0.550 O.éOO 0.650 0.7‘00 0.7‘50
Sparsity Sparsity
{ LACORE (ours) —e— SubgraphX —a— PGExplainer —a— GNNExplainer

Figure 3: Fidelity vs. sparsity curves on BA-2Motifs and MUTAG datasets. LACORE consistently
achieves higher fidelity under similar sparsity levels.

Baselines. We use the official DIG (Liu et al., 2021)) implementations of GNNExplainer, PGEx-
plainer, and SubgraphX with their default hyperparameters. |'| For each target size k, we use the
method’s built-in control (e.g., sparsity, top-k edges, or max_nodes) to produce a node set of
roughly k nodes; we plot the achieved sparsity for each point.

Evaluation & Metrics. Let p(G) = softmax(f(G)) be the class probabilities of the frozen
GCN on the original graph, and let § = arg max. p.(G) be its predicted class. For any method’s
explanation Cy, we form the graph G \ Cy, by deleting those nodes (and incident edges) and compute
p(G \ Ck). The reported fidelity is Fidelity(k) = py(G) — py(G \ Ck), with larger values
indicating stronger dependence of the prediction on the removed subgraph. We plot fidelity on the
y-axis against the sparsity 1 — |C%|/|V| on the x-axis, for each dataset and method.

Results. Across both datasets and all tested sparsities, LACORE attains higher fidelity than GN-
NExplainer, PGExplainer, and SubgraphX. The gains are most pronounced at higher sparsities
(smaller explanations), indicating that the LACORE cluster preserves the model-relevant structure
more compactly; see Figure 3]

8 LIMITATIONS

The score focuses on internal degree smoothness; other notions (e.g., edge weights, higher-order
motifs) could be integrated. Computing A2 (C') exactly is expensive for large C'; in practice one may
rely on proxies or omit it outside the certificate. Additionally, the optimal choice of ¢ is sensitive to
graph scale and density and may need tuning across domains.

9 CONCLUSION

We introduced LACORE, a parameter-free method for discovering cohesive subgraphs through
Laplacian-smoothed reverse peeling, optimizing S.(C) = |C|/(Q(C) + &) to balance size and
degree uniformity with theoretical guarantees on connectivity and cohesion. Our results reveal a
broader principle: structural smoothness provides a robust inductive bias for graph learning that can
match or exceed learned approaches while remaining interpretable and scalable. Consistent gains
across diverse tasks (planted subgraph recovery, graph classification, and GNN explanation) suggest
that degree-balanced, cohesive structures are fundamental building blocks that GNNs implicitly seek
during training. Looking forward, LACORE’s framework naturally extends to weighted graphs and
higher-order structures, could anchor graph coarsening for large-scale GNNs or provide interpretable
summaries for scientific discovery, and points toward hybrid methods that combine algorithmic
guarantees with learned representations.

'https://github.com/divelab/DIG,

https://github.com/divelab/DIG

Under review as a conference paper at ICLR 2026

REFERENCES

Wagqar Ali, Sebastiano Vascon, Thilo Stadelmann, and Marcello Pelillo. Quasi-cliquepool: Hi-
erarchical graph pooling for graph classification. In Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, SAC °23, pp. 544-552, New York, NY, USA, 2023. Associa-
tion for Computing Machinery. ISBN 9781450395175. doi: 10.1145/3555776.3578600. URL
https://doi.org/10.1145/3555776.3578600.

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations (ICLR), 2021.

Vladimir Batagelj and Matjaz Zaversnik. An o(m) algorithm for cores decomposition of networks.
arXiv preprint, 2003. URL https://arxiv.org/abs/cs/0310049. Journal-ref: Ad-
vances in Data Analysis and Classification, 2011, 5(2):129-145.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut pooling in graph neural
networks. In International Conference on Learning Representations (ICLR), 2020.

Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In
Approximation Algorithms for Combinatorial Optimization, Third International Workshop (AP-
PROX 2000), volume 1913 of Lecture Notes in Computer Science, pp. 84-95. Springer, 2000. doi:
10.1007/3-540-44436-X_10.

Fan R. K. Chung. Spectral Graph Theory, volume 92 of CBMS Regional Conference Series in
Mathematics. American Mathematical Society, Providence, RI, 1997.

A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch. Structure-
activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. correlation with
molecular orbital energies and hydrophobicity. Journal of Medicinal Chemistry, 34(2):786-797,
1991. doi: 10.1021/jm00106a046.

Inderjit S. Dhillon, Yugiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors:
A multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29
(11):1944-1957, 2007. doi: 10.1109/TPAMI.2007.1115. URL |https://people.bu.edu/
bkulis/pubs/pami_multilevel.pdfl

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint, 2019. URL
https://arxiv.org/abs/1905.10990.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. arXiv preprint, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jinu Sunil, Akihiro Nitta, Rishi Puri, Manan Shah, BlaZ Stojanovi¢, Ramona Bendias,
Alexandria Barghi, Vid Kocijan, Zecheng Zhang, Xinwei He, Jan E. Lenssen, and Jure Leskovec.
PyG 2.0: Scalable learning on real world graphs. In Temporal Graph Learning Workshop @ KDD,
2025.

Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2):
298-305, 1973. doi: 10.21136/CMJ.1973.101168.

Hongyang Gao and Shuiwang Ji. Graph U-Nets. In Proceedings of the 36th International Conference
on Machine Learning (ICML), volume 97 of Proceedings of Machine Learning Research, pp. 2083—
2092. PMLR, 2019. URL https://proceedings.mlr.press/v97/gaocl9%a.htmll

Johannes Gasteiger, Stefan Weillenberger, and Stephan Giinnemann. Diffusion improves graph
learning. In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pp.
13333-13345, 2019. doi: 10.5555/3454287.3455484. First author listed as Johannes Klicpera at
submission time; name later changed to Johannes Gasteiger.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp- 855-864. ACM, 2016. doi: 10.1145/2939672.2939754.

10

https://doi.org/10.1145/3555776.3578600
https://arxiv.org/abs/cs/0310049
https://people.bu.edu/bkulis/pubs/pami_multilevel.pdf
https://people.bu.edu/bkulis/pubs/pami_multilevel.pdf
https://arxiv.org/abs/1905.10990
https://proceedings.mlr.press/v97/gao19a.html

Under review as a conference paper at ICLR 2026

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems (NIPS), volume 30, pp. 1025-1035, 2017.
doi: 10.5555/3294771.3294869.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations (ICLR), 2017. URL
https://openreview.net/forum?id=SJU4dayYqgll

Devin Kreuzer, Dominique Beaini, Anh Tuan Luu, William L. Hamilton, and Pietro Lio. Rethinking
graph transformers with spectral attention. In Advances in Neural Information Processing Systems
(NeurlIPS), volume 34, pp. 21618-21629, 2021.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In Proceedings of the 36th
International Conference on Machine Learning (ICML), volume 97 of Proceedings of Machine
Learning Research, pp. 3734-3743, 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu,
Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora M. Oztekin, Xuan Zhang, and
Shuiwang Ji. Dig: A turnkey library for diving into graph deep learning research. Journal of
Machine Learning Research, 22(240):1-9, 2021. URL http://Jjmlr.org/papers/v22/
21-0343.htmll

Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang.
Parameterized explainer for graph neural network. In Advances in Neural Information Processing
Systems 33 (NeurIPS 2020), pp. 19620-19631, 2020.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020), 2020. URL
https://graphlearning.io/.

Emmanuel Noutahi, Dominique Beaini, Julien Horwood, Sébastien Giguere, and Prudencio Tossou.
Towards interpretable sparse graph representation learning with laplacian pooling. arXiv preprint
arXiv:1905.11577,2019. doi: 10.48550/arXiv.1905.11577. URL https://arxiv.org/abs/
1905.11577. Version 4 (April 2, 2020).

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 701-710. ACM, 2014. doi: 10.1145/2623330.2623732.

Ekagra Ranjan, Soumya Sanyal, and Partha Pratim Talukdar. Asap: Adaptive structure aware pooling
for learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5470-5477, 2020.

Stephen B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269-287, 1983.
doi: 10.1016/0378-8733(83)90028-X.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888-905, 2000. doi: 10.1109/34.868688.

Yunchong Song, Siyuan Huang, Xinbing Wang, Chenghu Zhou, and Zhouhan Lin. Graph parsing
networks. In International Conference on Learning Representations (ICLR), 2024.

Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and Maria Tsiarli.
Denser than the densest subgraph: Extracting optimal quasi-cliques with quality guarantees. In
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 104—112. ACM, 2013. doi: 10.1145/2487575.2487645.

Petar Velickovi¢, William Fedus, William L. Hamilton, Pietro Lid, Yoshua Bengio, and R. Devon
Hjelm. Deep Graph Infomax. In International Conference on Learning Representations (ICLR),
2019. URL https://openreview.net/forum?id=rklz9iAcKQ.

11

https://openreview.net/forum?id=SJU4ayYgl
http://jmlr.org/papers/v22/21-0343.html
http://jmlr.org/papers/v22/21-0343.html
https://graphlearning.io/
https://arxiv.org/abs/1905.11577
https://arxiv.org/abs/1905.11577
https://openreview.net/forum?id=rklz9iAcKQ

Under review as a conference paper at ICLR 2026

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
In International Conference on Learning Representations (ICLR), 2016.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 24017-24030. PMLR, 17-23 Jul
2022. URL https://proceedings.mlr.press/v162/wu22b.html.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, pp. 28877-28888, 2021.

Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable pool-
ing. In Advances in Neural Information Processing Systems (NeurIPS), volume 31, pp.
4805-4815, 2018. URL https://proceedings.neurips.cc/paper/2018/file/
e77dbaf6759253¢c7c6d0efc5690369c7-Paper.pdf.

Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. In Advances in Neural Information Processing
Systems 32 (NeurIPS 2019), pp. 9240-9251, 2019.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang
Shen. Graph contrastive learning with augmentations. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), volume 33, pp. 5812-5823, 2020. doi: 10.5555/
3495724.3496212. URL https://proceedings.neurips.cc/paper/2020/file/
3fe230348e9a12c13120749e3f9fadcd-Paper.pdf.

Hao Yuan, Haiyang Yu, Jie Wang, Kang Li, and Shuiwang Ji. On explainability of graph neural
networks via subgraph explorations. In Proceedings of the 38th International Conference on
Machine Learning (ICML 2021), volume 139, pp. 12241-12252. PMLR, 2021.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning archi-
tecture for graph classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, pp. 4438-4445, 2018.

A APPENDIX

A.1 EFFICIENT IMPLEMENTATION AND COMPLEXITY

To make the reconstruction phase in our algorithm scalable, we introduce an edge-centric update
scheme that avoids recomputing the Laplacian energy from scratch. This scheme processes nodes in
reversed degeneracy order and caches intermediate sums.

Edge-centric Laplacian update. When adding an edge (v, u) during reconstruction (where v €
pred(w)), let d,, and d, be the degrees of u and v before the insertion. Let S, = Zy~u d, and

Sy = >,y dy be the sums of their current neighbors® degrees. The Laplacian energy QQ =
Z(i,j)eE(di — d;)? changes by

AQ = (dy—dy)?* + (2d% —2S, +d,) + (2d% —2S, +d,). (5)

increment from w’s edges increment from v’s edges

The first term is the new edge’s direct contribution. The bracketed terms account for the change
in energy over edges already incident to u and v. To compute S,, efficiently, we cache sums over
predecessors and scan successors, leveraging the low out-degree of the degeneracy orientation.
Algorithm 2] details this process.

12

https://proceedings.mlr.press/v162/wu22b.html
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3fe230348e9a12c13120749e3f9fa4cd-Paper.pdf

Under review as a conference paper at ICLR 2026

Algorithm 2 LACORE reconstruction with edge-centric O(|E|k) update

1: Compute addOrder from peeling. Set idx, build pred(-), succ(+); sort each succ(v) by 1dx.
2: Initialize deg]-] < 0, predSum[-] < 0, DSU for components with per-component @ + 0.
3: for u in addOrder do

Su < 0 {sum of neighbor degrees already attached to u}

5: for v € pred(u) do

6: a + deglu], b + deglv].

7.

8

N

Sy < predSum[v] + SumSucc.until(v, idx[u]).
: AQ « (a—b)? + (2a%> — 28, + a) + (20* — 25, + b).
9: Add AQ to Q of DSU. £ind(u) UDSU. £ind(v); update best Sy, if needed.

10: deglu] < deglu]+1, deg[v] < deg[v]+1.

11: for y € succ(u) do predSum(y] += 1. for y € succ(v) do predSum[y] += 1.
12: Sy += deg[v] {after increment}

13: end for

14: end for

Practical stopping rule. During reconstruction of a component C, stop appending as soon as
AQ > (Q + ¢)/|C|. We still keep scanning the global stream to update the best component across
time, but the per-component early stop can yield speedups on large graphs.

Complexity. The peeling phase with a binary heap costs O((|V| + | E|) log |V]). In reconstruction,
every edge is processed once. The total work is driven by two main operations performed for each
edge (v, u): updating the predSum caches for successors of u and v, and computing the neighbor-
degree sum .S,,. Both require iterating through successor lists, which are bounded in size by the
graph degeneracy k. A worst-case analysis shows that the total work for each of these operations,
when summed over all edges, is bounded by O(|E|k). DSU unions contribute a near-linear factor of
O(E «a(]V])). The overall time complexity is therefore dominated by the peeling phase and these
reconstruction costs, yielding O((|V| + |E|) log |V| + | E|k).

A.2 F1 VS poyr ACROSS METHODS

To visualize heterogeneity across regimes, we plot F1 vs p,, averaged over k and p;, with shaded
95% Cls; one line per method.

& ©
S b4 S = —o |
b4 e b4 3 —]
O | | | | | | | | | |
0 5.1072 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
pout

—o— LACORE (ours) —6— QuasiClique —e— Spectral Clustering
—o— Densest Subgraph —e— k-core

Figure 4: F1 vs pyy (averaged over k and p;,). Shaded bands show 95% Cls. The baselines are
fully described in Section[7.1] Spectral Clustering uses the principal non-trivial eigenvector; Densest
Subgraph is Charikar’s peeling; k-core reports the densest component; QuasiClique optimizes edge
density.

13

Under review as a conference paper at ICLR 2026

A.3 DATASET STATISTICS

Table|3| summarizes the key statistics for the six graph classification datasets used in our experiments.
All datasets represent binary classification tasks. PROTEINS contains protein structures classified
as enzymes or non-enzymes. D&D consists of protein structures classified by their fold type. NCI1
and NCI109 contain chemical compounds screened for activity against two different types of cancer.
MUTAG comprises nitroaromatic compounds labeled by their mutagenic effect on Salmonella
typhimurium. BA-2Motifs is a synthetic benchmark in which each Barabdsi—Albert base graph is
augmented with either a “house” motif or a 5-cycle; the graph label indicates which motif is attached.

Table 3: Statistics for graph classification datasets. All datasets are binary classification tasks.

Dataset Graphs AvgNodes Avg Edges Classes
PROTEINS 1,113 39.06 72.82 2
D&D 1,178 284.32 715.66 2
NCII 4,110 29.87 32.30 2
NCI109 4,127 29.68 32.13 2
MUTAG 187 18.03 39.80 2
BA-2Motifs 1,000 25.00 51.00 2

A.4 HYPERPARAMETER SELECTION

For each dataset, we performed a grid search over the hyperparameters listed in Table[d] The search
was conducted on the training-fold validation split (10% of training data) using 5 random seeds per
configuration. We selected the configuration with the highest validation accuracy, which was then
used for all baselines to ensure fair comparison. The final chosen hyperparameters for each dataset
are shown in Table

Table 4: Hyperparameter search space for graph classification experiments.

Hyperparameter Search Space

¢ (LACORE) {102,10*,107*,107%,1072, 107}
target_ratio (LACORE) {0.25,0.35,0.5}

min_size (LACORE) {2,3,4}

batch_size {64,128,256}
hidden_size {128,256}
learning_rate {1075 x 107}
weight_decay {1073,107*,10°}
dropout {0.10,0.15,0.20,0.25}

Table 5: Selected hyperparameters for graph classification experiments.

Dataset € target_ratio min_size batch hidden Ir wd dropout
PROTEINS 0.1 0.25 4 128 128 Se-4 le-3 0.10
D&D 0.1 0.25 4 128 128 Se-4 le-3 0.25
NCII 0.1 0.25 3 64 256 Se-4 le-3 0.20
NCI109 0.1 0.25 3 64 128 Se-4 le-3 0.15

A.5 HARDWARE AND IMPLEMENTATION DETAILS
All synthetic planted-cluster experiments were run on a single machine equipped with an AMD

Ryzen 7 9700X 8-Core Processor. The software stack consisted of Python 3.12, PyTorch 2.8.0, and
PyTorch Geometric 2.6.1 |Fey & Lenssen| (2019); |[Fey et al.[(2025)).

14

	Introduction
	Related Work
	Preliminaries & Notation
	Method: Laplacian-Smoothed Greedy Reconstruction
	Laplacian-smoothed scoring
	A Two-Phase Heuristic

	Local Growth and Cohesion Certificates
	Integration into GRL
	LaCore Pooling for Graph Classification
	LaCore as a Model-Agnostic GNN Explainer

	Experiments
	Synthetic Planted Cluster Recovery
	Graph Classification Benchmarks
	GNN Explainability Benchmarks

	Limitations
	Conclusion
	Appendix
	Efficient Implementation and Complexity
	F1 vs pout across methods
	Dataset Statistics
	Hyperparameter Selection
	Hardware and Implementation Details

