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Abstract

Statistical learning theory is the foundation of machine learning, providing the-
oretical bounds for the risk of models learned from a (single) training set, as-
sumed to issue from an unknown probability distribution. In actual deployment,
however, the data distribution may (and often does) vary, causing domain adapta-
tion/generalization issues. In this paper we lay the foundations for a ‘credal’ theory
of learning, using convex sets of probabilities (credal sets) to model the variability
in the data-generating distribution. Such credal sets, we argue, may be inferred
from a finite sample of training sets. Bounds are derived for the case of finite
hypotheses spaces (both assuming realizability or not), as well as infinite model
spaces, which directly generalize classical results.

1 Introduction

Statistical Learning Theory (SLT) considers the problem of predicting an output y ∈ Y given
an input x ∈ X using a mapping h : X → Y , h ∈ H, called model or hypothesis, belonging
to a model (or hypotheses) space H. The loss function l : (X × Y) × H → R measures the
error committed by a model h ∈ H. For instance, the zero-one loss is defined as l((x, y), h)

.
=

I[y ̸= h(x)], where I denotes the indicator function, and assigns a zero value to correct predictions
and one to incorrect ones. Input-output pairs are usually assumed to be generated i.i.d. by a
probability distribution P ⋆, which is unknown. The expected risk – or expected loss – of the model h,
L(h) ≡ LP⋆(h)

.
= EP⋆ [l((x, y), h)] =

∫
X×Y l((x, y), h)P ⋆(d(x, y)), measures the expected value

– taken with respect to P ⋆ – of loss l. The expected risk minimizer h⋆ ∈ argminh∈H L(h) is any
hypothesis in the given model space H that minimizes the expected risk. Given a training dataset
D = {(x1, y1), . . . , (xn, yn)} whose elements are drawn independently and identically distributed
(i.i.d.) from probability distribution P ⋆, the empirical risk of a hypothesis h is the average loss over
D. The empirical risk minimizer (ERM), i.e., the model ĥ one actually learns from the training set D,
is the one minimizing the empirical risk [44]. Statistical Learning Theory seeks upper bounds for
the expected risk L(ĥ) of the ERM ĥ, and in turn, for the excess risk, that is, the difference between
L(ĥ) and the lowest expected risk L(h⋆). This endeavor is pursued under increasingly more relaxed
assumptions about the nature of the hypotheses space H. Two common such assumptions are that
either the model space is finite, or that there exists a model with zero expected risk (realizability).

In real-world situations, however, the data distribution may (and often does) vary, causing issues of
domain adaptation (DA) [11] or generalization (DG) [59]. Domain adaptation and generalization
are interrelated yet distinctive concepts in machine learning, as they both deal with the challenges of
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transferring knowledge across different domains. The main goal of DA is to adapt a machine learning
model trained on source domains to perform well on target domains. In opposition, DG aims to train
a model that can generalize well to unseen data/domains not available during training. In simple
terms, DA works on the assumption that our source and target domains are related to each other,
meaning that they somehow follow a similar data-generating probability distribution. DG, instead,
assumes that the trained model should be able to handle unseen target data.

Attempts to derive generalization bounds under more realistic conditions within classical SLT have
been made (see Section 2). Those approaches, however, are characterized by a lack of generalizability,
and the use of strong assumptions. A more detailed account of the state of the art and their limitations
is discussed in Section 2. In opposition to all such proposals, our learning framework leverages
Imprecise Probabilities (IPs) to provide a radically different solution to the construction of bounds in
learning theory.

A hierarchy of formalisms aimed at mathematically modeling the ‘epistemic’ uncertainty induced
by sources such as lack of data, missing data or data which is imprecise in nature [24, 62, 63], IPs
have been successfully employed in the design of neural networks providing both better accuracy and
uncertainty quantification to predictions [17, 47–49, 64, 73]. To date, however, they have never been
considered as a tool to address the foundational issues of statistical learning theory associated with
data drifting.

Contributions. This paper provides two innovative contributions: (1) the formal definition of a
new learning setting in which models are inferred from a (finite) sample of training sets (via either
objectivist or subjectivist modeling techniques, as explained in Section 3), rather than a single training
set, each assumed to have been generated by a single data distribution (as in classical SLT); (2) the
derivation of generalization bounds to the expected risk of a model learned in this new learning
setting, under the assumption that the epistemic uncertainty induced by the available training sets can
be described by a credal set [41], i.e., a convex set of (data generating) probability distributions.

The overall framework is illustrated in Figure 1. Generalized upper bounds under credal uncertainty
are derived under three increasingly realistic sets of assumptions, mirroring classical statistical
learning theory treatment: (i) finite hypotheses spaces with realizability, (ii) finite hypotheses spaces
without realizability, and (iii) infinite hypotheses spaces. We show that the corresponding classical
results in SLT are special cases of the ones derived in the present paper.

Figure 1: Graphical representation of the proposed learning framework. Given an available finite
sample of training sets, each assumed to be generated by a single data distribution, one can learn
a credal set P of data distributions in either a frequentist or subjectivist fashion (Section 3). This
allows us to derive generalization bounds under credal uncertainty (Section 4).

Paper outline. The paper is structured as follows. First (Section 2) we present the existing work
addressing data distribution shifts in learning theory. We then introduce our new learning framework
(Section 3). In Section 4 we illustrate the bounds derived under credal uncertainty and show
how classical results can be recovered as special cases. Section 5 concludes and outlines future
undertakings. We prove our results in Appendix A, and we provide synthetic experiments on our first
two main results (Theorems 4.1 and 4.5) in Appendix B.

2 Related Work

The standard statistical approach to generalization is based on the assumption that test and training
data are i.i.d. according to an unknown distribution. This assumption can fall short in real-world
applications: as a result, many recent papers have been focusing on the “Out of Distribution" (OOD)
generalization problem, also known as domain generalization (DG), to address the discrepancy
between test and training distribution(s) [31, 40, 68]. Extensive surveys of existing methods and
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approaches to DG can be found in Wang et al. [71], Zhou et al. [79]. Although several proposals for
learning bounds with theoretical guarantees have been made within DA, only a few attempts have been
made in the field of DG [28, 60]. Most theoretical attempts have focused on kernel methods, starting
from the seminal work of Blanchard et al. [12], spanning to a body of later work (see for example
Deshmukh et al. [28], Hu et al. [33], Muandet et al. [57]). In this line of work, assumptions related to
boundedness of kernels and continuity of feature maps and loss function render the approaches not
directly applicable to broader scenarios.

Other work has focused on providing theoretical grounds using domain-adversarial learning method;
in this approach, the authors use a convex combination of source domains in order to approximate the
target distribution leveraging H-divergence [2]. Ye et al. [75] have attempted to relax assumptions
to provide more general bounds, focusing on feature distribution characteristics; the authors have
introduced terms related to stability and discriminative power to calculate the error bound on unseen
domains, through the use of an expansion function. Nonetheless, as the authors acknowledge,
practical challenges arise concerning the estimation of the expansion function and the choice of a
constraint on the top model to improve convergence.

Researchers have also focused on adaptation to new domains over time, treating DG as an online
game and the model as a player minimizing the risk associated with introducing new distributions by
an adversary at each step [61]. However, in scenarios where the training distribution is significantly
outside the convex hull of training distributions [2], or because of unmet strong convexity loss
function assumption [61], they fall short from achieving robust generalization. Causality principles
have been leveraged in this sense, for example by Bellot and Bareinboim [10], Sheth et al. [67], to
provide distributional robustness guarantees using causal diagrams and source domain data. However,
causal approaches for improving model robustness across varying domains pose important challenges
including reliance on domain knowledge. Researchers have also explored generalization bounds for
DG based on the Rademacher complexity, allowing for the approach to be applicable to a broader
range of models [42]. Though this simplification has a number of practical benefits, models trained
under covariate shift assumptions might suffer in terms of robustness to other distribution shift types.
On the empirical analysis side, Gulrajani and Lopez-Paz [31] have provided a comprehensive review
of the state of the art. Though a simple ERM was found to outperform other more sophisticated
methods in benchmark experiments [21], this approach has been criticized for its non-generalizability.
In this direction, Izmailov et al. [35] have highlighted the importance of searching for flat minima in
the training process for improved generalization.

All the aforementioned approaches take a point estimate-like, stance (i.e., assuming a single training
set) to the derivation of generalization bounds. In this paper, in opposition, we explicitly acknowledge
the uncertainty inherent to domain variation in the form of a sample of training sets, each assumed
to be generated by a different distribution, and propose a robust and flexible approach representing
the resulting epistemic uncertainty via credal sets. Related works on the computational complexity
specific to the use of credal sets are discussed in Appendix E.

3 Credal Learning

Let us formalize the notion of learning a model from a collection of (training) sets of data, each issued
from a different ‘domain’ characterized by a single, albeit unknown, data-generating probability
distribution. Assume that we wish to learn a mapping h : X → Y between an input space X and
an output space Y (where, once again, the mapping h belongs to a hypotheses space H), having
as evidence a finite sample of training sets, D1, . . . , DN , Di = {(xi,1, yi,1), . . . , (xi,ni

, yi,ni
)}.

Assume also that the data in each set Di has been generated by a distinct probability distribution
P ⋆
i . The question we want to answer is: What sort of guarantees can be derived on the expected risk

of a model learned from such a sample of training sets? How do they relate to classical Probably
Approximately Correct (PAC) bounds from statistical learning theory?

3.1 Objectivist Modeling

While in classical statistical learning theory results are derived assuming no knowledge about the
data-generating process, the theorems and corollaries in this paper do require some knowledge,
although incomplete, of the true distribution. To be more specific, we will posit that, by leveraging
the available evidence D1, . . . , DN , the agent is able to elicit a credal set – i.e., a closed and convex
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set of probabilities – that contains the true data generating process P true ≡ P ⋆
N+1 for a new set of

data DN+1 (that we call the test set), possibly different from D1, . . . , DN . As we shall see in Section
4, though, this extra modeling effort allows us to derive stronger results.

There are at least two ways in which such a credal set can be derived, that is, via either an objectivist
or a subjectivist modeling stance. In this section, we present the former. We start by inspecting the
frequentist approach to objectivist modeling, considering in particular epsilon-contamination models
(Section 3.1.1) and belief functions models (Sections 3.1.2, 3.1.3). A further objectivist model based
on fiducial inference [3, 32] is outlined in Appendix D.

3.1.1 Epsilon-contamination models

In classical frequentist statistics, given the available dataset, the agent assumes the analytical form of
a likelihood L (not to be confused with the expected loss function, which we denote by a Roman
letter L), e.g., a Normal or a Gamma distribution. As shown by Huber and Ronchetti [34], though,
small perturbations of the specified likelihood can induce substantial differences in the conclusions
drawn from the data. A robust frequentist agent is thus interested in statistical methods that may not
be fully optimal under the ideal ‘true’ likelihood model, but still lead to reasonable conclusions if the
ideal model is only approximately true [8].

To account for this, the agent specifies the class of ϵ-contaminated distributions

P = {P : P = (1− ϵ)L+ ϵQ, ∀Q},

where ϵ is some positive quantity in (0, 1), and Q is any distribution on X × Y . Wasserman and
Kadane [74] show that P is indeed a (nonempty) credal set. In view of this robust frequentist goal,
then, requiring that the true data generating process belongs to P is a natural assumption.

In our framework, in which a finite sample of N training sets {Di}Ni=1 is available, one approach to
building the desired credal set is to specify N many likelihoods {Li}Ni=1 and ϵi-contaminate each of
them to obtain Li = {P : P = (1− ϵi)Li + ϵiQ, ∀Q}, i ∈ {1, . . . , N}. The credal set P can then
be derived by setting

P = Conv(∪N
i=1Li),

where Conv(·) denotes the convex hull operator.1 An immediate consequence of Wasserman and
Kadane [74] and references therein is that P = Conv(∪N

i=1Li) = {P : P (A) ≥ L(A), ∀A ⊆
X × Y}, where L(A) = mini∈{1,...,N}(1 − ϵi)Li(A), for all A ⊂ X × Y . A simple numerical
example for such a procedure is given in Appendix C.

3.1.2 Belief functions as lower probabilities

An alternative way to derive a credal set from the sample training evidence can be formulated within
the framework of the Dempster-Shafer theory of evidence [27, 66].

A random set [39, 52, 55, 58] is a set-valued random variable, modeling random experiments in
which observations come in the form of sets. In the case of finite sample spaces, they are called belief
functions [66]. While classical discrete mass functions assign normalized, non-negative values to
the elements ω ∈ Ω of their sample space, a belief function independently assigns normalized, non-
negative mass values to subsets of the sample space: m(A) ≥ 0, for all A ⊆ Ω,

∑
A⊆Ω m(A) = 1.

The belief function associated with a mass function m then measures the total mass of the subsets of
each event A, Bel(A) =

∑
B⊆A m(B).

Crucially, a belief function can be seen as the lower probability (or lower envelope) of the credal set

M(Bel) = {P : Ω → [0, 1] : Bel(A) ≤ P (A), ∀A ⊆ Ω},

where P is a data distribution. The dual upper probability to Bel is Pl(A)
.
= 1 − Bel(Ac), for all

A ⊆ Ω. When restricted to singleton elements, it is called the contour function, pl(ω) = Pl({ω}).

1It is easy to see that the set P built this way is indeed a credal set. This is because it is (i) convex by
definition, and (ii) closed because it is the union of finitely many closed sets.
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3.1.3 Inferring belief functions from data

There are various ways one can infer a belief (or, equivalently, a plausibility) function from (partial)
data, such as a sample of training sets. If a classical likelihood L having probability density or mass
function (pdf/pmf) ℓ is available (as assumed in the frequentist paradigm),2 one can build a belief
function by using the normalized likelihood as its contour function. That is, pl(ω) .

= ℓ(ω)
supω′∈Ωℓ(ω′) ,

for all ω ∈ Ω, where Ω = X × Y is the space where the training pairs live.

As before, in our framework in which a finite sample of N training sets {Di}Ni=1 is available, we
can specify N many likelihoods {Li}Ni=1, and their corresponding pdf/pmf’s {ℓi}Ni=1. Then, we can
compute ℓ(ω) = maxi∈{1,...,N} ℓi(ω), for all ω ∈ Ω, and in turn

pl(ω) = ℓ(ω)/supω′∈Ωℓ(ω
′), (1)

for all ω ∈ Ω.3 In turn, our credal set is derived as P = {P : dP/dν = p ≤ pl}, where dP/dν = p
is the pdf/pmf associated with distribution P via its Radon-Nikodym derivative with respect to a
sigma-finite dominating measure ν. Such construction means that P includes all distributions whose
pdf/pmf’s are element-wise dominated by plausibility contour pl.

Numerical example. Let Ω = {ω1, ω2, ω3}, where ωj = (xj , yj), j ∈ {1, 2, 3}. Suppose also
that we observed four sample training sets D1, . . . , D4 and that we specified the likelihood pmf’s
ℓ1, . . . , ℓ4 as in Table 1.4 There, we see e.g. how pmf ℓ1 assigns a probability of 0.3 to the element ω1

of the state space ω, and similarly for the other pmf’s and the other elements of the state space. It is
immediate to see that ℓ = (0.4, 0.8, 0.6)⊤.5 Then, by Equation (1), we have that pl = (0.5, 1, 0.75)⊤.

We can then derive the lower P and upper P probabilities of P = {P : dP/dν = p ≤ pl}
on 2Ω as in Table 2, using the results in Augustin et al. [8, Section 4.4]. That is, P (A) =
max

{∑
ω∈A P (ω), 1−

∑
ω∈Ac P (ω)

}
and P (A) = min

{∑
ω∈A P (ω), 1−

∑
ω∈Ac P (ω)

}
. As

we can see from the visual representation of P (the yellow convex region in Figure 2), the probability
bounds imposed by the credal set are not too stringent, and in line with the evidence encapsulated in
ℓ1, . . . , ℓ4. Hence, the assumption that P true ≡ P ⋆

5 ∈ P is quite plausible.

ω1 ω2

ω3

0.5

0.25

0.75

Table 1. Table 2. Figure 2.

3.2 Subjectivist Modeling

Another way of specifying a credal set is by taking a personalistic (or subjectivist) route [14, 70].
In this approach, let {AS} be a finite collection of subsets of Ω = X × Y . The agent first specifies
the lower probability PS on the power set 2S , where S = ∪AS – i.e., the smallest value that the
probability of any subset of S can take on. This can be done, for example, as a result of the empirical
distribution, as described below.

2Here, pdf/pmf ℓ is the Radon-Nikodym derivative of L with respect to a sigma-finite dominating measure ν.
3It is easy to see that pl is a well-defined plausibility contour function.
4In this case, ν is the counting measure.
5We write the upper likelihood ℓ in vector form for notational convenience. ⊤ denotes the transpose.
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In our framework in which a finite sample of N training sets {Di}Ni=1 is available, we have that
{AS} = {Di}Ni=1, and so S = ∪N

i=1Di. Recall that we originally denoted by P ⋆
i the true data

generating process for training set Di, i ∈ {1, . . . , N}: the empirical distribution P emp
i is a (non-

parametric) estimation of P ⋆
i . On the other hand, recall that we denoted by P true ≡ P ⋆

N+1 the true
data generating process for the test set of data DN+1.

The lower probability PS is defined as follows. For every element (x, y) in S = ∪N
i=1Di, we

let PS({(x, y)})
.
= min{P emp

i ({(x, y)}) : P emp
i ({(x, y)}) > 0}. Requiring PS({(x, y)}) =

mini P
emp
i ({(x, y)}) is not enough because, if the training data sets do not overlap, we would end

up having lower probability 0 for some singleton that we observed at training time, and hence we
would be neglecting some collected evidence. The lower probability PS of all the other non-singleton
elements B of S is computed according to [8, Equation (4.6a)], that is,

PS(B) = max

 ∑
(x,y)∈B

PS({(x, y)}), 1−
∑

(x,y)∈Bc

max
i

P emp
i ({(x, y)})

 . (2)

Numerical example. Suppose for simplicity that X = {x}, so that Ω = {x} × Y ≃ Y , and
let Y = {1, . . . , 10}. Suppose N = 2, and let D1 be a collection of three 4’s, three 5’s, and
three 6’s. Let also D2 be a collection of six 5’s and two 6’s. Then, S = {4, 5, 6} and 2S =
{∅, {4}, {5}, {6}, {4, 5}, {5, 6}, {4, 6}, {4, 5, 6}}. In turn, PS({4}) = 1/3, PS({5}) = 1/3, and
PS({6}) = 1/4. By (2), this implies that PS({4, 5}) = 2/3, PS({5, 6}) = 2/3, and PS({4, 6}) =
max{1/3+1/4, 1−maxi∈{1,2} P

emp
i ({5})} = max{7/12, 1−max{1/3, 3/4} = max{7/12, 1−

3/4} = 7/12. Of course, PS(∅) = 0 and PS(S) = 1.

3.2.1 Walley’s Natural Extension

Once a lower probability PS on 2S is inferred, it can be (coherently uniquely) extended to a lower
probability P on the whole sigma-algebra endowed to X × Y through an operator called natural
extension [69], [70, Sections 3.1.7-3.1.9]. The resulting extended lower probability is such that
P (B) = PS(B), for all B ∈ 2S , and a lower probability value P (A) is assigned to all the other
subsets A of X × Y that are not in S . It is also coherent – in Walley’s terminology – because, in the
behavioral interpretation of probability derived from de Finetti [25, 26], its values cannot be used to
construct a bet that would make the agent lose for sure, no matter the outcome of the bet itself.

Once P is obtained, the agent can consider the core of P , M(P )
.
= {P : P (A) ≤ P (A), ∀A ⊆

X × Y}, i.e., the collection of all the (countably additive) probabilities that set-wise dominate P .
Scholars [20, 50] have shown that P = M(P ) is indeed a (nonempty) credal set.

3.2.2 Properties of the Core

As shown in Amarante and Maccheroni [5, Example 1] and Amarante et al. [6, Examples 6, 7, 8], given
a generic credal set Q whose lower envelope is Q – i.e., a credal set Q for which Q(·) = infQ∈Q Q(·)
– we have that M(Q) ⊇ Q. From an information-theoretic perspective, this means that the uncertainty
encapsulated in the core of a lower probability Q is larger than that in any credal set whose lower
envelope is Q [13, 15, 16, 18, 30]. In turn, M(Q) is the largest credal set the agent can build
which represents their partial knowledge. In our learning framework, given the available evidence
D1, . . . , DN that the agent uses to derive PS , if the agent is confident that P true(B) ≥ PS(B), for
all B ∈ 2S , then it is natural to assume P true ≡ P ⋆

N+1 ∈ M(P ).

4 Generalization Bounds under Credal Uncertainty

Consider a credal set P on X ×Y derived as in Section 3, and assume that we collect new evidence in
the form of a test set of data DN+1 = {(xN+1,1, yN+1,1), . . . , (xN+1,nN+1

, yN+1,nN+1
)}. To ease

notation, in the following we refer to the newly acquired evidence as (x1, y1), . . . , (xn, yn).

An assumption that is common to all the results we present in this section is that
(x1, y1), . . . , (xn, yn) ∼ P ≡ P true ≡ P ⋆

N+1 i.i.d., and P ∈ P . This means that either the new
evidence comes from one of the distributions that generated D1, . . . , DN , or that it is at least compat-
ible with the credal set we built from past evidence [30]. That is, either P set-wise dominates the
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lower probability P of P (as in Sections 3.1, 3.1.2, and 3.2), or it is set-wise dominated by the upper
probability P of P (induced, e.g., by a contour function as in Section 3.1.3). This is a rather natural
assumption, especially when the stream of training sets we collect pertains to similar experiments
or tasks. For example, this is the case in Continual Learning (CL), where it is customary to assume
task similarity [47], that is, to posit that the oracle distributions pertaining to all the tasks of interest
are all contained in a TV-ball of radius chosen by the user. A more complete discussion on the
relation between our credal approach and CL can be found in Appendix F. It is also the case in the
healthcare setting, where experts’ opinions can be incorporated alongside empirical data (plausible
probability distributions) to represent the probability uncertainty, for example, for the prognosis of
a disease given a set of patient characteristics/biomarkers [65]. To make sure that the credal set
constructed encapsulates most of the “potential distributions needed”, a number of approaches can be
taken including incremental learning; in this approach the AI model learns and updates knowledge
incrementally. As a result, the credal set can be continuously updated (via incremental learning)
as new data become available. In this direction, learning health systems are being implemented
in practice. These are health systems “in which internal data and experience are systematically
integrated with external evidence, and that knowledge is put into practice”.

We note, in passing, that assuming P ∈ P is less stringent than what is typically done in frequentist
statistics, where the data-generating process is assumed to be perfectly captured by the likelihood.
We instead posit that the true data generating process for the new evidence available belongs to a
credal set P , that was derived by the sample of training sets D1, . . . , DN .

Formal ways of checking whether the assumption P ∈ P holds exist, e.g., by following what Cella
and Martin [19, Section 7] and Javanmardi et al. [36] do for credal-set-based conformal prediction
methods, or more general approaches [1, 22, 29, 46, 56].6 That being said, deriving PAC-like
guarantees on the correct distribution P being an element of the credal set P is a desirable objective -
a task that we defer to future work. Here, we focus on formally deriving what the consequences are
in terms of generalization bounds.

4.1 Realizability and Finite Hypotheses Space

Theorem 4.1. Let (x1, y1), . . . , (xn, yn) ∼ P i.i.d., where P is any element of the credal set P . Let
the empirical risk minimizer be

ĥ ∈ argmin
h∈H

1

n

n∑
i=1

l((xi, yi), h). (3)

Assume that there exists a realizable hypothesis, that is, h⋆ ∈ H such that LP (h
⋆) = 0, and

that the model space H is finite. Let l denote the zero-one loss, and fix any δ ∈ (0, 1). Then,
P[LP (ĥ) ≤ ϵ⋆(δ)] ≥ 1 − δ, where ϵ⋆(δ) is a well-defined quantity that depends only on δ and on
extreme elements exP of P , i.e., those that cannot be written as a convex combination of one another.

Under the assumptions of finiteness and realizability, Theorem 4.1 gives us a tight probabilistic bound
for the expected risk LP (ĥ) of the empirical risk minimizer ĥ. The bound holds for any possible
distribution P in the credal set P that generated the stream of training data. A slightly looser bound
depending on the diameter of credal set P holds if we calculate LQ(ĥ) in place of LP (ĥ).
Corollary 4.2. Retain the assumptions of Theorem 4.1. Denote by Q ∈ P , Q ̸= P , a generic
distribution in P different from P . Let ∆X×Y denote the space of all distributions over X × Y , and
endow it with the total variation metric dTV . Then, pick any η ∈ R>0. If the diameter of P , denoted
by diamTV (P), is equal to η, we have that

P[LQ(ĥ) ≤ ϵ⋆(δ) + η] ≥ 1− δ,

where ϵ⋆(δ) is the same quantity as in Theorem 4.1.

Corollary 4.2 gives us a probabilistic bound for the expected risk LQ(ĥ) of the empirical risk
minimizer ĥ, calculated with respect to a “wrong” distribution Q – that is, any distribution in P

6If we want to avoid to formally check the assumption that P ∈ P , we need to show on a case-by-case basis
that either the credal set covers a non-negligible portion of the distribution class of interest, or that even a small
credal set is “good enough” for the analysis at hand.
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different from the one generating the new test set of data DN+1. We can also give a looser – but
easier to compute – bound for LP (ĥ).
Corollary 4.3. Under the assumptions of Theorem 4.1, ϵ⋆(δ) ≤ ϵUB(δ)

.
= 1/n[log |H| + log(1δ )]

and
P[LP (ĥ) ≤ ϵUB(δ)] ≥ 1− δ, ∀P ∈ ∆X×Y .

Notice how ϵUB(δ) is a uniform bound, that is, a bound that holds for all possible distributions on
X × Y , not just those in P . Strictly speaking, this means that we do not need to come up with a
credal set P to find such a bound. Observe, though, that the bound ϵ⋆(δ) in Theorem 4.1 is tighter, as
it leverages the training evidence encoded in the credal set P . A synthetic experiment confirming
this, and studying other interesting properties of ϵ⋆(δ) and ϵUB(δ), can be found in Appendix B.

By the proof of Theorem 4.1, we have that LP (ĥ) behaves as O(log | ∪P ex∈exP BP ex |/n), which is
faster than the rate O(log |H|/n) that we find in Corollary 4.3, since ∪P ex∈exPBP ex ⊆ H.7 Roughly,
BP ex is the set of “bad hypotheses” according to P ex ∈ exP . That is, those h’s for which LP ex(h) is
larger than 0. A formal definition is given in the proof of Theorem 4.1. The modeling effort required
by producing credal set P is therefore rewarded with a tighter bound and a faster rate.

Notice that Corollary 4.3 corresponds to Liang [44, Theorem 4]: we obtain a classical result as a
special case of our more general theorem.

Let us now allow for distribution drift in the new test set of data DN+1.
Corollary 4.4. Consider a natural number k < n. Let (x1, y1), . . . , (xk, yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1, P2 are two generic elements of credal set P .
Retain the other assumptions of Theorem 4.1. Then,

P
[
LP1

(ĥ1) + LP2
(ĥ2) ≤ ϵ⋆(δ)

n2

k(n− k)

]
≥ 1− δ, (4)

where ϵ⋆(δ) is the same quantity as in Theorem 4.1, and

ĥ1 ∈ argmin
h∈H

{
1

k

k∑
i=1

l((xi, yi), h)

}
, ĥ2 ∈ argmin

h∈H

{
1

n− k

n∑
i=k+1

l((xi, yi), h)

}
.

Corollary 4.4 gives us a bound similar to the one in Theorem 4.1 when distribution drift is allowed.
The price we pay for it is that it is looser. As a result of Corollary 4.3, for a looser but easier to
compute bound, we can substitute ϵ⋆(δ) with ϵUB(δ).

4.2 No Realizability and Finite Hypotheses Space

Let us now relax the realizability assumption in Theorem 4.1.
Theorem 4.5. Let (x1, y1), . . . , (xn, yn) ∼ P i.i.d., where P is any element of the credal set P .
Assume that the model space H is finite. Let l be the zero-one loss, ĥ the empirical risk minimizer,
and h⋆ the best theoretical model. Fix any δ ∈ (0, 1). Then, P[LP (ĥ)− LP (h

⋆) ≤ ϵ⋆⋆(δ)] ≥ 1− δ,
where ϵ⋆⋆(δ) is a well-defined quantity that depends only on δ and on the elements of exP .

As we did in Section 4.1, we can also show that the “wrong” expected risk LQ(ĥ) – that is, the
expected risk computed according to Q ∈ P different from the one generating the new evidence
DN+1 – concentrates around the expected risk LP (h

⋆) evaluated at the best theoretical model h⋆.
Corollary 4.6. Retain the assumptions of Theorem 4.5. Denote by Q ∈ P , Q ̸= P , a generic
distribution in P different from P . Pick any η ∈ R>0; if diamTV (P) = η, we have that

P[LQ(ĥ)− LP (h
⋆) ≤ ϵ⋆⋆(δ) + η] ≥ 1− δ,

where ϵ⋆⋆(δ) is the same quantity as in Theorem 4.5.

Similarly to Corollary 4.3, we can give a looser – but easier to compute – bound for LP (ĥ)−LP (h
⋆).

7Notice how, if P has finitely many extreme elements – which happens, e.g., if we put P = Conv({Li}Ni=1),
another frequentist way of deriving a credal set – then ∪P ex∈exPBP ex is a finite union, hence easier to compute.
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Corollary 4.7. Retain the assumptions of Theorem 4.5. Then, ϵ⋆⋆(δ) ≤ ϵ′UB(δ)
.
=√

2(log|H|+log( 2
δ ))

n . In turn, P[LP (ĥ)− LP (h
⋆) ≤ ϵ′UB(δ)] ≥ 1− δ, for all P ∈ ∆X×Y .

The main difference with respect to Theorem 4.1 is that in Theorem 4.5, LP (ĥ)−LP (h
⋆) behaves as

O(
√
log |B′

exP |/n), which is slower than what we had in Theorem 4.1. This is due to the relaxation
of the realizability hypothesis. Just like before, though, we have that O(

√
log |B′

exP |/n) is faster
than the rate O(

√
log |H|/n) that we find in Corollary 4.7. This is because B′

exP ⊆ H.

Roughly, B′
exP is the set of “bad hypotheses” according to at least one P ex ∈ exP . That is, those h’s

for which |L̂(h)− LP ex(h)| is larger than 0, for at least one P ex. A formal definition is given in the
proof of Theorem 4.5. Notice that Corollary 4.7 corresponds to Liang [44, Theorem 7]: we obtain a
classical result as a special case of our more general theorem.

Let us now allow for distribution drift. To improve notation clarity, in the following we let h⋆
P denote

an element of argminh∈H LP (h), for a distribution P ∈ P .

Corollary 4.8. Consider a natural number k < n. Let (x1, y1), . . . , (xk, yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1, P2 are two generic elements of credal set P .
Retain the other assumptions of Theorem 4.5. Then,

P
[
(LP1(ĥ1)−LP1(h

⋆
P1
))+(LP2(ĥ2)−LP2(h

⋆
P2
)) ≤ ϵ⋆⋆(δ)

√
n

k(n− k)
(
√
k+

√
n− k)

]
≥ 1− δ,

where ϵ⋆⋆(δ) is the same quantity as in Theorem 4.5, and ĥ1 and ĥ2 are defined as in Corollary 4.4.

Corollary 4.8 tells us that the excess risk is also bounded in the presence of distribution drift. The
price we pay for allowing distribution shift is a looser bound. As a result of Corollary 4.7, for a looser
but easier to compute bound, we can substitute ϵ⋆⋆(δ) with ϵ′UB(δ).

4.3 No Realizability and Infinite Hypotheses Space

We now relax also the finite hypotheses space assumption in Theorem 4.1.

Theorem 4.9. Let (x1, y1), . . . , (xn, yn) ∼ P i.i.d., where P is any element of credal set P . Let l
denote the zero-one loss, ĥ the empirical risk minimizer and h⋆ the best theoretical model. Fix any
δ ∈ (0, 1). Then,

P
[
LP (ĥ)− LP (h

⋆) ≤ ϵ⋆⋆⋆(δ)
]
≥ 1− δ, (5)

for all P ∈ P . Here, ϵ⋆⋆⋆(δ)
.
= 4Rn,P ex(A) +

√
2 log(2/δ)

n , where Rn,P ex(A)
.
=

supP ex∈exP Rn,P ex(A) and

Rn,P ex(A)
.
= EP ex

[
sup
h∈H

1

n

n∑
i=1

σil((xi, yi), h)

]
. (6)

In (6), σ1, . . . , σn ∼ Unif({−1, 1}), and A .
= {(x, y) 7→ l((x, y), h) : h ∈ H}.

Rn,P ex(A) is a slight modification of the classical Rademacher complexity of class A,8 given by

Rn(A) ≡ Rn,P (A)
.
= EP

[
sup
h∈H

1

n

n∑
i=1

σil((xi, yi), h)

]
,

where the expectation is taken with respect to the same distribution P from which the data points
(x1, y1), . . . , (xn, yn) are drawn. We consider Rn,P ex(A) instead of Rn,P (A) because, since P
is a credal set, P can be written as a convex combination of the extreme elements of P , and
supP∈P Rn,P (A) = supP ex∈exP Rn,P ex(A). If the credal set is finitely generated, that is, if it has

8Class A is the loss class, and it is the composition of the zero-one loss function with each of the hypotheses
in H [44, Page 70]. The Rademacher complexity of A measures how well the best element of H fits random
noise (coming from the σi’s) [9], [44, Page 69].
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finitely many extreme elements (see footnote 7), then it is easier to compute ϵ⋆⋆⋆(δ): we only need to
compute a maximum in place of a supremum.

As we show in Corollary 4.10, Theorem 4.9 generalizes Liang [44, Theorem 9]. This latter focuses
only on the “true” probability P ⋆

N+1 ≡ P true on X × Y , while our result holds for all the plausible
distributions in credal set P . This grants us to hedge against distribution misspecification.

Let us pause here to add a clarification. In real-world applications, we effectively cannot compute
Rn,P true(A), since the distribution P true is unknown. While Rn,P true(A) can be approximated via
the empirical Rademacher complexity R̂n(A) [44, Equation (219)], whose expected value is indeed
Rn,P true(A), doing so has at least two drawbacks: (1) When the number of data points n ≡ nDN+1

is not “large enough”, this may lead to a poor approximation of the classical bound (Equation (10)
in Appendix A); (2) The test set of data DN+1 = {(xi, yi)}ni=1 may well be a realization from the
tail of distribution P true ≡ P ⋆

N+1. The empirical Rademacher complexity R̂n(A), then, would be a
poor approximation of Rn,P true(A). In opposition, while Rn,P ex(A) is more conservative, it can be
computed explicitly – since we know the credal set P and its extreme elements exP – and it leads to
a bound that, although looser, holds for all P ∈ P .
Corollary 4.10. Retain the assumptions of Theorem 4.9. If P is the singleton {P true} (i.e., all the
training datasets D1, . . . , DN are generated by the same distribution as the new test set DN+1), we
retrieve Liang [44, Theorem 9].

We then derive a more general version of Corollary 4.6.
Corollary 4.11. Retain the assumptions of Theorem 4.9. Denote by Q ∈ P , Q ̸= P , a generic
distribution in P different from P . Pick any η ∈ R>0; if diamTV (P) = η, we have that

P[LQ(ĥ)− LP (h
⋆) ≤ ϵ⋆⋆⋆(δ) + η] ≥ 1− δ,

where ϵ⋆⋆⋆(δ) is the same quantity as in Theorem 4.9.

Finally, we once again allow for distribution drift.
Corollary 4.12. Consider a natural number k < n. Let (x1, y1), . . . , (xk, yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1, P2 are two generic elements of credal set P .
Retain the other assumptions of Theorem 4.9, and let ϵ⋆⋆⋆shift

.
= 4[Rk,P ex(A) + Rn−k,P ex(A)] +√

2 log(2/δ)
n(n−k) (

√
n− k +

√
n). Then,

P[(LP1
(ĥ1)− LP1

(h⋆
P1
)) + (LP2

(ĥ2)− LP2
(h⋆

P2
)) ≤ ϵ⋆⋆⋆shift] ≥ 1− δ,

where ĥ1 and ĥ2 are defined as in Corollary 4.4.

Similar considerations as the ones after Corollaries 4.4 and 4.8 hold in this more general case as well.

5 Conclusions

In this paper, we laid the foundations of a more general Statistical Learning Theory (SLT), that we
called Credal Learning Theory (CLT). We generalized some of the most important results of classical
SLT to allow for drift and misspecification of the data-generating process. We did so by considering
sets of probabilities (credal sets), instead of single distributions. The modeling effort needed to elicit
credal sets is paid off in terms of the tightness of the resulting bounds.

Limitations. (i) We only consider the zero-one loss in our results (we did so to be able to directly
build on the classical results in Liang [44, Chapter 3]). (ii) We assume that the true distribution which
the elements of the new test set DN+1 are sampled from, belongs to the credal set that we derive at
training time.

Future work. In the future, we plan to further our undertaking, for instance by (i) modeling the
epistemic uncertainty induced by domain variation through random sets rather than credal sets, (ii)
comparing our method with robust learning [23], (iii) extending our results to different losses, and
(iv) deriving PAC-like guarantees on the correct distribution P being an element of the credal set P .
We also intend to validate our findings on real datasets.
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A Proofs

Proof of Theorem 4.1. The proof builds on that of Liang [44, Theorem 4]. Fix any ϵ > 0, and any
P ∈ P . Assume that the training dataset is given by n i.i.d. draws from P . We want to bound the
probability that LP (ĥ) > ϵ. Define BP

.
= {h ∈ H : LP (h) > ϵ}. It is the set of “bad hypotheses”

according to distribution P . As a consequence, we can write P[LP (ĥ) > ϵ] = P[ĥ ∈ BP ]. Recall
that the empirical risk of the empirical risk minimizer is 0, that is, L̂(ĥ) = 0.9 So if the empirical
risk minimizer is a bad hypothesis according to P , that is, if ĥ ∈ BP , then some bad hypothesis
(according to P ) must have zero empirical risk. In turn,

P[ĥ ∈ BP ] ≤ P[∃h ∈ BP : L̂(h) = 0].

Let us bound P[L̂(h) = 0] for a fixed h ∈ BP . Given our choice of zero-one loss, on each example,
hypothesis h does not err with probability 1 − LP (h). Since the training examples are i.i.d. and
LP (h) > ϵ for all h ∈ BP , then

P[L̂(h) = 0] = (1− LP (h))
n ≤ (1− ϵ)n ≤ exp(−ϵn). (7)

9Indeed, at least L̂(h⋆) = LP (h
⋆) = 0.
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Applying the union bound, we obtain

P[∃h ∈ BP : L̂(h) = 0] ≤
∑

h∈BP

P[L̂(h) = 0]

≤ |BP | exp(−ϵn)

≤ | ∪P∈P BP | exp(−ϵn)

= | ∪P ex∈exP BP ex | exp(−ϵn)
.
= δ.

The penultimate equality comes from P being a credal set, by the Bauer Maximum Principle and the
linearity of the expectation operator. Rearranging the terms we get

ϵ⋆(δ) ≡ ϵ =
log | ∪P ex∈exP BP ex |+ log(1/δ)

n
.

In turn, this implies that P[LP (ĥ) ≤ ϵ⋆(δ)] ≥ 1− δ.

Proof of Corollary 4.2. Let Aĥ

.
= {(x, y) ∈ X × Y : y ̸= ĥ(x)} ∈ AX×Y . Notice that

LP (ĥ) = EP [I(y ̸= ĥ(x))] = P (Aĥ),

LQ(ĥ) = EQ[I(y ̸= ĥ(x))] = Q(Aĥ).

Recall that diamTV (P)
.
= supP,Q∈P supA∈AX×Y

|P (A)−Q(A)|. As a consequence, we have that
LQ(ĥ) = LP (ĥ) + ζQ, where ζQ is a quantity in [−η, η] depending on Q. Given our assumption on
the diameter, then, LP (ĥ) + ζQ ≤ LP (ĥ) + η, so LQ(ĥ)− η ≤ LP (ĥ). In turn this implies that

P
[
LQ(ĥ)− η ≤ ϵ⋆(δ)

]
≥ P

[
LP (ĥ) ≤ ϵ⋆(δ)

]
.

The proof is concluded by noting that P[LQ(ĥ) − η ≤ ϵ⋆(δ)] = P[LQ(ĥ) ≤ ϵ⋆(δ) + η], and that
P[LP (ĥ) ≤ ϵ⋆(δ)] ≥ 1− δ by Theorem 4.1.

Proof of Corollary 4.3. Since ∪P ex∈exPBP ex ⊆ H, it is immediate to see that ϵ⋆(δ) ≤ ϵUB(δ). In
turn,

P
[
sup
P∈P

LP (ĥ) ≤ ϵUB(δ)

]
≥ 1− δ,

or equivalently, P[LP (ĥ) ≤ ϵUB(δ)] ≥ 1− δ, for all P ∈ P .

Proof of Corollary 4.4. From Theorem 4.1, we have that

P
[
LP1(ĥ1) ≤

log |∪P ex∈exPBP ex |+ log(1/δ)

k

]
≥ 1− δ,

and that

P
[
LP2

(ĥ2) ≤
log |∪P ex∈exPBP ex |+ log(1/δ)

n− k

]
≥ 1− δ.

The result, then, is an immediate consequence of the additivity of the expectation operator and of
probability P.

Proof of Theorem 4.5. The proof builds on that of Liang [44, Theorem 7]. Fix any ϵ > 0, and any
P ∈ P . Assume that the training dataset is given by n i.i.d. draws from P . By Liang [44, Equations
(158) and (186)], we have that

P
[
LP (ĥ)− LP (h

⋆) > ϵ
]
≤ P

[
sup
h∈H

∣∣∣L̂(h)− LP (h)
∣∣∣ > ϵ

2

]
< |H| · 2 exp

(
−2n

( ϵ

2

)2
)

.
= δ(ϵ).

(8)
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Notice though, that we can improve on this bound, since we know that P ∈ P , a credal set. Let
B′

P
.
= {h ∈ H : |L̂(h)− LP (h)| > ϵ/2} be the set of “bad hypotheses” according to P . Then, it is

immediate to see that

sup
h∈H

∣∣∣L̂(h)− LP (h)
∣∣∣ = sup

h∈B′
P

∣∣∣L̂(h)− LP (h)
∣∣∣ .

Notice though that we do not know P ; we only know it belongs to P . Hence, we need to consider
the set B′

P of bad hypotheses according to all the elements of P , that is, B′
P

.
= {h ∈ H : ∃P ∈

P , |L̂(h)− LP (h)| > ϵ/2} = ∪P∈PB
′
P . Since P is a credal set, by the Bauer Maximum Principle

and the linearity of the expectation operator we have that B′
P = B′

exP
.
= {h ∈ H : ∃P ex ∈

exP , |L̂(h)− LP (h)| > ϵ/2} = ∪P ex∈exPB
′
P ex . Hence, we obtain

sup
h∈H

∣∣∣L̂(h)− LP (h)
∣∣∣ = sup

h∈B′
exP

∣∣∣L̂(h)− LP (h)
∣∣∣ .

In turn, (8) implies that

P
[
LP (ĥ)− LP (h

⋆) > ϵ
]
≤ P

[
sup

h∈B′
exP

∣∣∣L̂(h)− LP (h)
∣∣∣ > ϵ

2

]

< |B′
exP | · 2 exp

(
−2n

( ϵ

2

)2
)

.
= δexP .

Rearranging, we obtain

ϵ =

√√√√2
(
log |B′

exP |+ log
(

2
δexP

))
n

, (9)

so if δ is fixed, we can write ϵ ≡ ϵ⋆⋆(δ). In turn, this implies that P[LP (ĥ)−LP (h
⋆) > ϵ⋆⋆(δ)] < δ,

or equivalently, P[LP (ĥ)− LP (h
⋆) ≤ ϵ⋆⋆(δ)] ≥ 1− δ.

Proof of Corollary 4.6. The first part of the proof is very similar to that of Corollary 4.2. Given our
assumption on the diameter, we have that LQ(ĥ)−LP (h

⋆) = LP (ĥ) + ζQ −LP (h
⋆), where ζQ is a

quantity in [−η, η] depending on Q. Then, LP (ĥ)+ζQ−LP (h
⋆) ≤ LP (ĥ)+η−LP (h

⋆), so LQ(ĥ)−
η − LP (h

⋆) ≤ LP (ĥ) − LP (h
⋆). In turn this implies that P

[
LQ(ĥ)− η − LP (h

⋆) ≤ ϵ⋆⋆(δ)
]
≥

P
[
LP (ĥ)− LP (h

⋆) ≤ ϵ⋆⋆(δ)
]
. The proof is concluded by noting that P[LQ(ĥ)− η − LP (h

⋆) ≤

ϵ⋆⋆(δ)] = P[LQ(ĥ) − LP (h
⋆) ≤ ϵ⋆⋆(δ) + η], and that P[LP (ĥ) − LP (h

⋆) ≤ ϵ⋆⋆(δ)] ≥ 1 − δ by
Theorem 4.5.

Proof of Corollary 4.7. Since ∪P ex∈exPB
′
P ex ⊆ H, it is immediate to see that ϵ⋆⋆(δ) ≤ ϵ′UB(δ). In

turn,

P
[
sup
P∈P

(
LP (ĥ)− LP (h

⋆)
)
≤ ϵ′UB(δ)

]
≥ 1− δ,

or equivalently, P[LP (ĥ)− LP (h
⋆) ≤ ϵ′UB(δ)] ≥ 1− δ, for all P ∈ P .

Proof of Corollary 4.8. From Theorem 4.5, we have that

P

LP1
(ĥ1)− LP1

(
h⋆
P1

)
≤

√
2
(
log |B′

exP |+ log
(
2
δ

))
k

 ≥ 1− δ,

and that

P

LP2
(ĥ2)− LP2

(
h⋆
P2

)
≤

√
2
(
log |B′

exP |+ log
(
2
δ

))
n− k

 ≥ 1− δ.

The result, then, is an immediate consequence of the additivity of the expectation operator and of
probability P.

17



Proof of Theorem 4.9. Fix any δ ∈ (0, 1). In Liang [44, Theorem 9], the author shows that for a
fixed probability measure P on X × Y , we have that

LP (ĥ)− LP (h
⋆) ≤ 4Rn,P (A) +

√
2 log(2/δ)

n
(10)

holds with probability at least 1− δ, where Rn,P is defined analogously as in (6). The result in (5),
then, follows from P being a credal set, and the expectation being a linear operator.

Proof of Corollary 4.10. Immediate from Theorem 4.9.

Proof of Corollary 4.11. The proof is very similar to that of Corollary 4.6.

Proof of Corollary 4.12. From Theorem 4.9, we have that

P

[
LP1

(ĥ1)− LP1
(h⋆

1) ≤ 4Rk,P ex(A) +

√
2 log(2/δ)

k

]
≥ 1− δ,

and that

P

[
LP2

(ĥ2)− LP2
(h⋆

2) ≤ 4Rn−k,P ex(A) +

√
2 log(2/δ)

n− k

]
≥ 1− δ.

The result, then, is an immediate consequence of the additivity of the expectation operator and of
probability P.

B Synthetic Experiments on Theorems 4.1 and 4.5

In this section, we perform synthetic experiments to show that the bounds we find in Theorems 4.1
and 4.5 are indeed tighter than the classical SLT ones reported in Corollaries 4.3 and 4.7, respectively.
In recent literature, studies by Amit et al. [7], Kacham and Woodruff [38], Li and Liu [43] have
conducted synthetic experiments in a similar manner. These works are mainly theoretical in nature,
but they also acknowledge the importance of experimental validation with preliminary analysis.

Experiment 1: Let the available training sets be D1, D2, D3. Assume, for simplicity, that Ω =
X ×Y = {x}×R ≃ R. Suppose that we specified the likelihood pdfs ℓ1 = N (−5, 1), ℓ2 = N (0, 1),
and ℓ3 = N (5, 1). Call L1,L2,L3 their respective probability measures, and derive the credal set
P as we did in footnote 7. That is, let P = Conv({Li}3i=1). We determine the credal set in this
way because it is then easy to find its extreme elements exP . Indeed, it is immediate to notice that
exP = {Li}3i=1. Let now DN+1 ≡ D4 be a collection of n samples from P true ≡ L2 ∈ P . The
hypotheses space H is defined as a finite set of simple binary classifiers containing at least one
realizable hypothesis, and we consider the zero-one loss l as we did in the main portion of the paper.

We need to find ∪P ex∈exPBP ex = ∪3
i=1{h ∈ H : LLi

(h) > ϵ}, where ϵ depends on δ as in the proof
of Theorem 4.1. That is, we want those h’s for which the expected loss according to L1 or L2 or L3

is larger than ϵ. They are the collection of “bad hypotheses” according to at least one of the extreme
elements of our credal set. Recall that

ϵ⋆(δ) =
log | ∪P ex∈exP BP ex |+ log(1/δ)

n

is the bound we found in Theorem 4.1, and that

ϵUB(δ) =
log |H|+ log(1/δ)

n

is the classical SLT bound, that we reported in Corollary 4.3.

As we can see from Table B.1, our bound ϵ⋆(δ) improves on the classical SLT one ϵUB(δ). Table B.1
also tells us that bound ϵ⋆(δ) is tighter than ϵUB(δ) when the sample size n = |D4| is small, and then
ϵ⋆(δ) becomes progressively closer to ϵUB(δ) as n = |D4| increases. This same pattern is observed
when the extrema of the credal set are closer to each other. Indeed, in Table B.2 we repeat the
experiment and choose as extrema of P three measures whose pdf’s are three Normals N (−0.1, 1),
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N (0, 1), and N (0.1, 1).10 The reason for this behavior is the following. With few available samples,
that is, when n = |D4| is low, Credal Learning Theory is able to leverage the evidence encoded in
the credal set, and hence to derive a tighter bound than classical Statistical Learning Theory. When
the sample size is large, that is, when n = |D4| is high, the classical bound ϵUB(δ) itself is very
small. This is because the amount of evidence available is large, and so 1/n

∑n
i=1 l((xi, yi), h) well

approximates
∫
X×Y l((x, y), h)P true(d(x, y)). In turn, since ϵUB(δ) is already very small, then the

CLT bound ϵ⋆(δ) we derive cannot improve greatly on it. Hence, their values are close together,
despite ϵ⋆(δ) being slightly tighter. The code for this experiment is available upon request.

# Samples n ϵ⋆(δ) ϵUB(δ) | ∪P ex∈exP BP ex | |H| Realizability
10 0.74500 0.76009 86 100 Yes
100 0.07560 0.07600 96 100 Yes
200 0.03785 0.03800 97 100 Yes
300 0.02526 0.02533 98 100 Yes
400 0.01897 0.01900 99 100 Yes
500 0.01516 0.01520 98 100 Yes

Table B.1: Results of experimental evaluation of our bound tightness. Here the hypotheses space
is such that |H| = 100, and δ = 0.05. The likelihood pdfs ℓ1 = N (−5, 1), ℓ2 = N (0, 1), and
ℓ3 = N (5, 1).

# Samples n ϵ⋆(δ) ϵUB(δ) | ∪P ex∈exP BP ex | |H| Realizability
10 0.73777 0.76009 80 100 Yes
100 0.07549 0.07600 95 100 Yes
200 0.03780 0.03800 96 100 Yes
300 0.02520 0.02533 96 100 Yes
400 0.01892 0.01900 97 100 Yes
500 0.01514 0.01520 97 100 Yes

Table B.2: Results of experimental evaluation of our bound tightness. Here the hypotheses space
is such that |H| = 100, and δ = 0.05. The likelihood pdfs ℓ1 = N (−0.1, 1), ℓ2 = N (0, 1), and
ℓ3 = N (0.1, 1).

Experiment 2: We conducted another synthetic experiment to show that the empirical risk for a
given distribution is upper bounded by the traditional SLT bound of Corollary 4.3. This is a sanity
check to see whether the environment we used in Experiment 1 is a valid one to check our results.

For the experiment, we selected a standard Gaussian distribution N (0, 1) (mean 0, standard deviation
1) to generate data. Similarly to Experiment 1, (i) the hypotheses space H is defined as a finite set of
simple binary classifiers containing at least one realizable hypothesis, and (ii) we assume a zero-one
loss function. The latter is used to evaluate the performance of the classifiers. For each run, we
generated a training set and a test set from the standard Gaussian distribution. At training time, for
each hypothesis h in H, we calculate the empirical risk on the training set using the zero-one loss and
identify the hypothesis ĥ that minimizes such risk (the empirical risk minimizer). At test time, we
compute the empirical risk LP (ĥ) of ĥ on the test set as shown in Table B.3.11

Training Samples Test Samples LP (ĥ) (Test) ϵ⋆(δ) (Test) ϵUB(δ) (Test)
1000 500 0.000 0.01514 0.01520
1500 1000 0.000 0.00757 0.00760
2000 1500 0.000 0.00506 0.00506

Table B.3: Results of experimental evaluation. The hypotheses space is such that |H| = 100, and
δ = 0.05.

We calculate the upper bound ϵUB(δ) on the empirical risk based on Corollary 4.3, which is a function
of the number of hypotheses in H, the value of δ, and the number n of training samples. This is the

10Of course, they are much closer to each other than the Normals N (−5, 1), N (0, 1), and N (5, 1), e.g. in
the Total Variation metric.

11Here P denotes the probability measure whose pdf is the standard Normal density.
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classic SLT bound. The experiment is run 1000 times with specified numbers of training and test
samples, and a δ value of 0.05 to check whether the condition (empirical risk on the test set is upper
bounded by the theoretical bound) is satisfied in any of the 1000 trials. The experimental results in
Table B.3 validate the classical SLT bound by repeatedly testing it on randomly generated data. The
code for this experiment is also available upon request.

Experiment 3: In this, we aim to empirically validate Theorem 4.5, which addresses the behavior
of the empirical risk minimizer in the presence of a finite hypothesis space and no realizability. We
generate synthetic data from Gaussian distributions (with the same parameters as in Experiment 1),
with added uniform noise to ensure no realizability, meaning that no hypothesis can perfectly predict
the labels. The hypotheses space H is defined as a set of threshold-based classifiers parameterized by
θ. For the experiment, we generate training samples D1, D2, D3 and test sample D4 from Gaussian
distributions with added noise. Labels are created based on the samples, with noise introduced to flip
labels randomly, ensuring that no hypothesis in H can achieve zero loss. We identify the empirical risk
minimizer ĥ using the combined training samples D1, D2, D3. We calculate the empirical risk LP (ĥ)
using the test data D4. The theoretical risk LP (h

⋆) is assumed to be the risk of a perfect classifier.
We compute the theoretical bound ϵ⋆⋆(δ) and verify whether the difference LP (ĥ) − LP (h

⋆) is
within this bound. The results show that the empirical risk of the empirical risk minimizer ĥ is within
the bound ϵ⋆⋆(δ) of the best theoretical model h⋆. The difference LP (ĥ)− LP (h

⋆) also satisfies the
condition

LP (ĥ)− LP (h
⋆) ≤ ϵ⋆⋆(δ).

This validates empirically (in a synthetic environment) Theorem 4.5, showing that even under no
realizability, the empirical risk minimizer’s performance is close to the theoretical best within a
computable bound. The experimental results are presented in Table B.4, where we also show (i) that

ϵ⋆⋆(δ) ≤ ϵ′UB(δ)
.
=

√
2(log|H|+log( 2

δ ))
n from Corollary 4.7 always holds; and (ii) that by foregoing

realizability, we obtain a slightly looser bound. Indeed, as we can see, ϵ⋆⋆(δ) is slightly larger than
ϵ⋆(δ) from Table B.1 for all the sample size values n that we consider. The code for this experiment
is also available upon request.

# Samples n LP (ĥ) LP (h
⋆) LP (ĥ)− LP (h

⋆) ϵ⋆⋆(δ) ϵ′UB(δ)
10 0.30000 0.10000 0.19999 0.76009 0.84877
100 0.14000 0.10000 0.04000 0.07600 0.26840
200 0.10500 0.10000 0.00499 0.03800 0.18979
300 0.11333 0.10000 0.01333 0.02533 0.15496
400 0.11750 0.10000 0.01749 0.01900 0.13420
500 0.10400 0.10000 0.00399 0.01520 0.12003

Table B.4: Results of experimental evaluation of Theorem 4.5. Here the hypotheses space is such that
|H| = 100, δ = 0.05 and noise level 0.1. The likelihood pdfs ℓ1 = N (−5, 1), ℓ2 = N (0, 1), and
ℓ3 = N (5, 1). Let us remark that in this experiment we forego the assumption of realizability, that
LP (ĥ)− LP (h

⋆) ≤ ϵ⋆⋆(δ) for every sample size we tested on, and that ϵ⋆⋆(δ) ≤ ϵ′UB(δ) for every
sample size we tested on.

C A Simple Numerical Example for the ϵ-Contamination Model of Section
3.1.1

Just like in Section 3.1.3, let Ω = {ω1, ω2, ω3}, where ωj = (xj , yj), j ∈ {1, 2, 3}. Suppose also
that we observed four training samples D1, . . . , D4 and that we specified the likelihoods L1, . . . ,L4

as in the following Table.

{ω1} {ω2} {ω3}
L1 0.3 0.1 0.6
L2 0.4 0.2 0.4
L3 0.1 0.8 0.1
L4 0.15 0.7 0.15
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Then, suppose that ϵ1 = 0.2, ϵ2 = 0.3, ϵ3 = 0.1, and ϵ4 = 0.25, so that L1 = {P : P =
0.8L1 + 0.2Q, ∀Q ∈ ∆Ω}, L2 = {P : P = 0.7L2 + 0.3Q, ∀Q ∈ ∆Ω}, L3 = {P : P =
0.9L3 + 0.1Q, ∀Q ∈ ∆Ω}, and L4 = {P : P = 0.75L4 + 0.25Q, ∀Q ∈ ∆Ω}. By Wasserman and
Kadane [74, Example 3], we know that, if we put P = Conv(∪4

i=1Li), the following holds

P (A) =

{
mini∈{1,...,4}(1− ϵi)Li(A), ∀A ̸= Ω

1, if A = Ω

and

P (A) =

{
maxi∈{1,...,4}(1− ϵi)Li(A) + ϵi, ∀A ̸= ∅
0 if A = ∅ .

Simple calculations, then, give us the following values

P P
{ω1} 0.09 0.58
{ω2} 0.08 0.82
{ω3} 0.09 0.68
{ω1, ω2} 0.32 0.91
{ω2, ω3} 0.42 0.91
{ω1, ω3} 0.18 0.92
{ω1, ω2, ω3} 1 1

As we can see, in this example too, the probability bounds imposed by the credal set are not too
stringent, and in line with the evidence encapsulated in L1, . . . ,L4. Hence, the assumption that
P true ≡ P ⋆

5 ∈ P is very plausible. For a visual representation of the credal set P = Conv(∪4
i=1Li),

see the yellow convex region in the next figure; it is very similar to the convex region in Figure 2.
This is unsurprising since the evidence used to derive the credal set in Section 3.1.3 is the same that
we use to elicit P here.

ω1 ω2

ω3

0.58

0.08
0.680.09

0.09

0.82

D A Fiducial Approach to Objectivist Modeling

An alternative objectivist approach to the ones presented in Section 3.1, proposed by Dempster
and Almond [3], is based on fiducial inference [32]. Consider a parametric model, i.e., a family of
conditional probability distributions of the data {f(ω|θ) : ω ∈ Ω, θ ∈ Θ}, where Ω is, again, the
observation space and Θ is a parameter space. If the parametric (sampling) model is supplemented by
a suitably designed auxiliary equation ω = a(θ, u), where u is a “pivot" variable of known a-priori
distribution µ, one obtains a random set Γ mapping pivot values u to subsets

Γ(u) = {(ω, θ) ∈ Ω×Θ : ω = a(θ, u)}
of Ω×Θ. This, in turn, induces a belief function on the product space Ω×Θ defined as

Bel(A) =
∑

u∈U :Γ(u)⊂A

µ(u), A ⊂ Ω×Θ.

This can be finally be marginalized to the data space Ω = X × Y to generate a belief function there.
This approach was further extended by Martin, Zhang, and Liu, who used a “predictive" random set
to express uncertainty on the pivot variable itself, leading to a weak belief inference technique [78].
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In our framework, in which a finite sample of N training sets {Di}Ni=1 is available, we can derive N
many random sets Γi as before, i ∈ {1, . . . , N}, and consider the N belief functions Beli on Ω×Θ
they induce. Then, we can compute their marginalization Beli|Ω on the data space Ω = X × Y ,
and compute the minimum Bel|Ω

.
= mini∈{1,...,N} Beli|Ω. It is easy to see that Bel|Ω is itself a

well-defined belief function. Finally, our credal set is given by P = M(Bel|Ω) as in Section 3.1.2.

E Related Work on the Computational Complexity of Credal Sets

In this section, we discuss some of the analyses existing in the literature of the computational
complexity specific to the use of credal sets, particularly in the context of graphical models and
probabilistic inference. Such approaches can be implemented for large datasets, but they often
require approximation techniques to be computationally feasible [45, 53, 54]. Despite this, credal set
approaches can be implemented for large datasets using techniques like parallel processing, distributed
computing, and efficient data structures. Similar to Deep Learning-based approaches, utilization of
high-performance computing resources, algorithm optimization, and domain-specific adaptations,
the computational challenges can be effectively managed. Recent advancements demonstrate the
practicality of these approaches. For instance, Credal-Set Interval Neural Networks (CreINNs) have
shown significant improvements in inference time over variational Bayesian neural networks [73].
Thus, while the computational demands are comparable to those of deep learning-based methods, the
robustness and flexibility of credal sets, as demonstrated in recent research, make them a practical
and valuable approach [51, 72].

F On the Relation Between Credal Sets and Continual Learning

The credal approach in this paper is closely linked to Continual Learning applications, which
emphasize the need to handle diverse and sequential datasets to achieve robust and generalizable
models. Recent works in continual learning have demonstrated the practical applications and benefits
of using a multi-dataset setup. For instance, Jeeveswaran et al. [37] introduce a novel method
for domain incremental learning, leveraging multiple datasets to adapt seamlessly across different
tasks. Another example is Yu et al. [77], who propose a parameter-efficient continual learning
framework that dynamically expands a pre-trained CLIP model through Mixture-of-Experts (MoE)
adapters in response to new tasks. Ye et al. [76] address the challenges of multi-modal medical data
representation learning through a continual self-supervised learning approach. These examples from
recent studies demonstrate the practical applications and benefits of using a multi-dataset setup in a
continual learning framework. Furthermore, some techniques use a multi-dataset setup in continual
learning without relying on a specific temporal order. For example, Alssum et al. [4] present a
replay mechanism based on single frames, arguing that video diversity is more crucial than temporal
information under extreme memory constraints. By storing individual frames rather than contiguous
sequences, they can maintain higher diversity in the replay memory, which leads to better performance
in continual learning scenarios.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims presented in both the abstract and introduction align well
with the contributions and scope of the paper. The abstract succinctly outlines the theoretical
framework and the bounds introduced in the paper, laying the foundations for a ‘credal’
learning theory to model variability in data-generating distributions. Similarly, the introduc-
tion provides a comprehensive account of the relevant background, the motivation behind
the research, and the significance of the proposed learning framework. Throughout the
manuscript, there is consistent support for the claims made in the abstract and introduction.
The results from synthetic experiments conducted, and the theoretical results in the paper,
provide detailed insights into the novel learning framework and reinforce the claims by
demonstrating the effectiveness and relevance of the proposed framework.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitations of this paper are two. The first is that we only consider
the zero-one loss in our results. The other is that we assume that the true distribution which
the elements of the new test set DN+1 are sampled from, belongs to the credal set we derive
at training time.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are thoroughly discussed in the main body of the paper.
Proofs are provided in the Appendix section. We have taken great care to provide complete
and correct proofs, structured in a logical and transparent manner, for each theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] We conducted three synthetic experiments. One serves as a sanity check,
while the other demonstrates that the bound established in Theorem 4.1 is tighter than
the classical bound found in Statistical Learning Theory (SLT). The third one validates
empirically Theorem 4.5, showing that even under no realizability, the empirical risk
minimizer’s performance is close to the theoretical best within a computable bound.
Justification: Drawing inspiration from recent literature, including studies by Kacham and
Woodruff [38], Amit et al. [7], Li and Liu [43], we have conducted synthetic experiments in
a similar manner. While these works are primarily theoretical, they recognize the importance
of experimental validation through preliminary analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The experiments are synthetic and extremely easy to reproduce. Also, the
experiments do not require any special libraries or large-scale real-world datasets.
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have clearly mentioned all the details of our synthetic experiments. In
the Supplementary Section B, we provide comprehensive details of our training data and
hyperparameter values. Tables B.1 and B.2 present the results of our bound tightness
experiments alongside the hyperparameter values used. Additionally, Table B.3 displays the
outcomes of our sanity check experiment. Table B.4 presented the results of the experimental
evaluation of Theorem 4.5. Together, the details of these experiments enhance the support
for our theoretical results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: In our experiments, we primarily rely on sampling from known distributions
and calculating the theoretical bounds as detailed in the main text of the paper. Given the
theoretical nature of our analysis and the use of these known distributions, traditional error
bars or measures of statistical significance are not necessary for conveying the reliability of
our results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: There is no need to discuss the allocation of computer resources, as the
synthetic experiments we conducted can be performed on any standard computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The experiments in our work are entirely synthetic. This means that they do
not involve real individuals or sensitive data that could raise ethical concerns. The synthetic
nature of our experiments ensures that they inherently avoid issues such as privacy breaches
or misuse of personal data.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: This paper presents work whose goal is to advance the theoretical foundations
of Machine Learning. There are many potential societal consequences of our work, none of
which we feel must be specifically highlighted here.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our study does not utilize or produce pretrained models, image generators, or
datasets that are derived from scraping, which are typically associated with high risks for
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The above is not applicable to our research, as our study exclusively employs
synthetic data and self-generated models without relying on external assets, special libraries,
or models. Therefore, there are no third-party assets involved that would require attribution
or adherence to licensing terms.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The concern regarding the documentation of new assets is not applicable to
our work. This is because our research does not introduce any new assets such as datasets,
models, or software tools that would require documentation or accompanying files. We have
focused solely on synthetic experiments, which do not involve creating or releasing new
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is not applicable in our case as our study exclusively involves synthetic
experiments and does not engage with crowdsourcing methods or human subjects. Therefore,
there are no participant instructions or compensation issues to report.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research strictly involves synthetic experiments and does not include
human participants. Consequently, the need for IRB review or any equivalent ethical
oversight does not arise in the context of our research methodology.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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