
Reinforcement Learning Journal 2025
∣∣ Cover Page

FRONT: Foresighted Online Policy Optimization with
Interference

Liner Xiang, Jiayi Wang, Hengrui Cai

Keywords: Contextual bandits, Interference, Online policy optimization, Causal Inference,
Statistical inference, Regret bound

Summary
Contextual bandits, which leverage baseline features of sequentially arriving individuals

to optimize cumulative rewards while balancing exploration and exploitation, are critical for
online decision-making. Existing approaches typically assume no interference, where each
individual’s action affects only their own reward. Yet, such an assumption can be violated in
many practical scenarios, and the oversight of interference can lead to short-sighted policies
that focus solely on maximizing the immediate outcomes for individuals, which further results
in suboptimal decisions and potentially increased regret over time. To address this significant
gap, we introduce the foresighted online policy with interference (FRONT) that innovatively
considers the long-term impact of the current decision on subsequent decisions and rewards.

Contribution(s)
1. We exhibit the online additive outcome model with heterogeneous treatment effects and

homogeneous interference effects as mean outcome model.
Context: No existing work that models mean outcome using interference over time.

2. We propose an optimal foresight policy for online decision-making, which we name
foresighted online policy with interference (FRONT). FRONT addresses interference
over time, where the actions of prior individuals influence subsequent individuals.
Context: Prior work considered batch bandits and helped multiple individuals in the batch
make coordinated decisions at the same time step (Bargiacchi et al., 2018; Verstraeten et al.,
2020; Dubey et al., 2020; Jia et al., 2024; Agarwal et al., 2024; Xu et al., 2024).

3. We develop the online estimator with valid inference under two distinct dependence struc-
tures: the sequential dependence arising from policy updates and adaptive data, and the
spatial dependence induced by the growing network interference. We propose a two-level
exploration mechanism to break the two-layer independencies using ϵ−Greedy and force
pulls triggers.
Context: Prior work only consider the sequential dependence caused from policy updates
and adaptive data when making statistical inference (Chen et al., 2021; Shen et al., 2024;
Xu et al., 2024).

4. We propose two regret definitions for FRONT, accounting for future-regret effects intro-
duced by interference, and prove sublinear regret in both cases.
Context: Traditional regret only compares to an optimal policy’s cumulative rewards
(Chen et al., 2021; Shen et al., 2024).
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Abstract

Contextual bandits, which leverage baseline features of sequentially arriving individuals
to optimize cumulative rewards while balancing exploration and exploitation, are criti-
cal for online decision-making. Existing approaches typically assume no interference,
where each individual’s action affects only their own reward. Yet, such an assumption
can be violated in many practical scenarios, and the oversight of interference can lead to
short-sighted policies that focus solely on maximizing the immediate outcomes for in-
dividuals, which further results in suboptimal decisions and potentially increased regret
over time. To address this significant gap, we introduce the foresighted online pol-
icy with interference (FRONT) that innovatively considers the long-term impact of the
current decision on subsequent decisions and rewards. The proposed FRONT method
employs a sequence of exploratory and exploitative strategies to manage the intricacies
of interference, ensuring robust parameter inference and regret minimization. Theoreti-
cally, we establish the tail bound of the online estimation and derive the asymptotic dis-
tribution of parameters of interest. We further show how FRONT manages to maintain
sublinear regret under two different definitions concerning interference, accounting for
both immediate and consequential impacts of decisions. The effectiveness of FRONT is
well demonstrated through extensive simulations and a real-world application to urban
hotel profits.

1 Introduction

In the online decision-making process, contextual bandit algorithms (Langford & Zhang, 2007) aim
to maximize cumulative rewards for sequentially arriving individuals by taking the optimal action
based on their baseline features, while also carefully balancing the trade-off between exploitation
and exploration. Contextual bandits have been widely applied in various fields, such as recommen-
dation systems (Li et al., 2011; Bouneffouf et al., 2012), precision medicine (Tewari & Murphy,
2017; Durand et al., 2018; Lu et al., 2021), and dynamic pricing (Misra et al., 2019; Tajik et al.,
2024). Most existing works (Chen et al., 2021; Bibaut et al., 2021; Zhan et al., 2021; Dimakopoulou
et al., 2021; Zhang et al., 2021; Khamaru et al., 2021; Ramprasad et al., 2023; Shen et al., 2024)
typically assume that the mean outcome of interest is determined solely by the individual’s current
action and characteristics, leading to approaches by directly modeling the mean outcome function,
such as Upper Confidence Bound (Li et al., 2011) and Thompson Sampling (Agrawal & Goyal,
2013). However, in practice, actions may also affect other individuals’ outcomes—a phenomenon
called interference (Cox, 1958), which poses significant challenges for online decision-making.

Interference among sequential individuals arises in real-world applications. In HPV vaccination
campaigns, social media messages create network effects, where one individual’s treatment (e.g.,
an ad) influences others’ decisions (Hopfer et al., 2022; Athey et al., 2023). In hotel pricing (Cho
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Figure 1: Individuals arrive sequentially, with each triple {xt, at, yt} denoting the context, action,
and outcome for the t-th individual. The causal graphs illustrate interference among individuals.
Upper plot (a): Green arrows show how earlier actions (from t1) affect the t-th individual’s out-
come. Lower plot (b): Purple arrows depict the t-th individual’s influence on subsequent ones (up
to t2, possibly infinite). Effects from other actions are omitted for clarity.

et al., 2018), current pricing trends affect future profitability across booking dates. Here, outcomes
depend on past actions (Figure 1, upper panel), and current actions affect future outcomes (Figure
1, lower panel). This long-term interference challenges traditional contextual bandits, which focus
on immediate outcomes and may yield short-sighted, suboptimal policies for the population.

Despite extensive literature on causal inference and contextual bandits, research directly addressing
our focus remains limited. Existing work primarily studies offline interference with pre-collected
data (Bajari et al., 2023), relaxing SUTVA (Rosenbaum, 2007; Forastiere et al., 2021). These ap-
proaches assume observable networks, exchangeable ordering, and homogeneous interference ef-
fects (Forastiere et al., 2021; Qu et al., 2021; Bargagli-Stoffi et al., 2025). Standard methods employ
partial interference and exposure mapping to estimate causal effects both randomized experiments
(Sobel, 2006; Hudgens & Halloran, 2008; Aronow, 2012; Liu & Hudgens, 2014; Aronow & Samii,
2017) and observational studies (Manski, 2013; Forastiere et al., 2021; Qu et al., 2021; Lee et al.,
2024; Bargagli-Stoffi et al., 2025). However, these techniques require complete network knowledge
- a critical limitation for online settings where subsequent individuals are unknown and arrival order
becomes crucial. Consequently, existing offline methods cannot handle adaptively collected data in
sequential decision-making scenarios.

On the side of online decision making, most contextual bandit works treat each decision indepen-
dently with no interference assumption, and focus on either minimizing regret (see e.g., Li et al.,
2011; Agarwal et al., 2024) or deriving parameter inference (see e.g., Chen et al., 2021; Shen et al.,
2024). Recently, several studies considered more general reward models for batched bandits where
the action of one individual can affect the rewards of others in the batch by extending the multi-
agent cooperative game. Pioneering works (Bargiacchi et al., 2018; Verstraeten et al., 2020; Dubey
et al., 2020) developed algorithms that help multiple individuals in the batch make coordinated de-
cisions at the same time step. Bargiacchi et al. (2018); Verstraeten et al. (2020); Dubey et al. (2020)
proposed coordinated decision-making algorithms, while Jia et al. (2024) studied grid-structured in-
terference and Agarwal et al. (2024) addressed sparse networks. Xu et al. (2024) further considered
within-cluster heterogeneous actions. Unlike existing approaches that focus on batched bandits with
group-level interference, we explicitly model interference over sequential decision points and derive
individualized policies optimized for long-term outcomes.

Contribution 1: To the best of our knowledge, we are the first to propose an optimal foresight
policy for online decision-making, which we name foresighted online policy with interference
(FRONT). As illustrated in Figure 1, our work addresses interference over time, where the actions
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of prior individuals influence subsequent individuals. Considering real-world applications (Zhao
et al., 2015; Hopfer et al., 2022), where individual interactions and influences expand progressively,
we focus on a growing interference scale. Our proposed method, FRONT, explicitly incorporates
the long-term effects of current actions into each decision-making step, utilizing the critical role of
foresight in achieving optimal performance.

Contribution 2: Secondly, we develop the online estimator with valid inference under the online ad-
ditive outcome model with heterogeneous treatment effects and homogeneous interference effects.
To avoid a growing dimension of features from expanding neighbor interactions, we extend exposure
mapping to online settings. Our framework simultaneously accounts for two distinct dependence
structures: the sequential dependence arising from policy updates and adaptive data collected on-
line, and the spatial dependence induced by the growing network interference from neighboring
individuals’ actions. We propose a two-level exploration mechanism using ϵ-Greedy with proper
rate and force-pull triggers. Remarkably, even with limited samples and growing interference under
online setting, we can still prove consistency and asymptotic normality of our estimates.

Contribution 3: Thirdly, we propose two regret definitions for FRONT and prove sublinear regret in
both cases. While traditional regret compares to an optimal policy’s cumulative rewards (Chen et al.,
2021), interference introduces future-regret effects. We analyze: (1) immediate observed outcomes,
and (2) total long-term impact including future manifestations. FRONT achieves sublinear regret
under both definitions, demonstrating its efficacy for interference-aware sequential decision-making.

In this paper, we propose a novel policy FRONT, designed to optimize decision-making and max-
imize long-term benefits. To ensure practical applicability, we provide a comprehensive algorithm
accompanied by exploration strategies. Furthermore, we establish the consistency and asymptotic
normality of the online estimator under the assumption of ISO convergence. Finally, we analyze the
regret under two different definitions and derive sublinear regret bounds for both scenarios.

2 Problem Formulation

Framework. Suppose a sequence of individuals arrives in an order. Let T denote the total number
of individuals that can go to infinity. At each time t, where t ∈ [T ] = {1, 2, . . . , T}, a new individual
arrives, and we observe their contextual covariates xt ∈ Rd1 . Here, xt includes 1 for the intercept,
and xt

i.i.d∼ PX . We assume that the action set individuals can take is {0, 1}. After selecting an
action at, we observe the reward yt. Denote all the observed information up to time t as Ht =
{x1, a1, y1,x2, a2, y2, · · · ,xt, at, yt} . We use Nt to denote the neighborhood of the t-th individual
and |Nt| denotes the cardinality of Nt. In the online setting, we assume that Nt consists of previous
individuals from t − |Nt| to t − 1, intuitively because they are the observed individuals closest to
the t-th individual in time. For simplicity, we denote g(t) = |Nt|.

Including all neighbors’ actions as features leads to high and even infinite dimensionality in the
online setting. To address this issue, we assume that the effects are mediated through an exposure
mapping function (Van der Laan, 2014; Aronow & Samii, 2017; Forastiere et al., 2021). In this work,
we consider a simple case where all neighbors’ actions contribute equally to the t-th individual.
We then define interference action āt as the average action of the previous g(t) individuals, i.e.,
āt =

1
g(t)

∑t−1
s=t−g(t) as. where g(t) should satisfy the following conditions: 1. 0 < g(t) ≤ t − 1,

ensuring that each individual is influenced by at most all previous individuals; 2. g(t) is non-
decreasing and g(t) → ∞ as t → ∞, guaranteeing that subsequent individuals are influenced by
a growing number of previous individuals. Following Forastiere et al. (2021); Xu et al. (2024), we
treat g(t) as known, and set āt = 0 when g(t) = 0, indicating no interference.

Suppose that the outcome given xt, āt and at follows by yt ≡ µ(xt, āt, at) + et, where
µ(xt, āt, at) ≡ E(yt|xt, āt, at) is the conditional mean outcome, also known as the Q-function
(Murphy, 2003; Sutton, 2018). The term et represents sub-Gaussian noise, and conditioned on at is
independent of all previous information Ht−1, contextual covariates xt, and the interference action
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āt. We further assume that the conditional variance is E(et|at = i) = σ2
i for i = 0, 1. It is worth

noting, to our knowledge, that there is no existing work that models yt using āt over time t.

We aim to identify the optimal sequence of actions that maximizes the cumulative outcome, i.e.,
argmaxa1,a2,...,aT

∑T
t=1 µ(xt, āt, at), which can be solved by backward inductive reasoning (see

e.g., Chakraborty & Murphy, 2014).

Working Model. We begin by examining two intuitive policies, which ignore potential impact on
subsequent individuals and restrict attention to the suboptimal policy class, introduced in Appendix
A in details. In settings with interference, the action at affects both immediate outcome but also
the future outcomes. However, deriving a general closed-form solution for the long-term optimal
policy is infeasible, as it depends critically on the specific functional form of the interference mech-
anism. Following the current online inference literature (Deshpande et al., 2018; Zhang et al., 2020;
Chen et al., 2021; Shen et al., 2024; Xu et al., 2024), we start with the online additive outcome
model for the conditional mean outcome, which also accounts for the interference effect. Specifi-
cally, we propose the online additive outcome model with heterogeneous treatment effects and
homogeneous interference effects as follows:

µ(xt, āt, at) = E(yt|xt, āt, at) = x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ, (1)

where model parameters β0, β1 ∈ Rd1 are treatment effect parameters associated with choosing
action 0 or 1, and γ ∈ R measures the homogeneous interference effect arising from neighbors’
actions. Extensions of the working model (1) can be found in Appendix C.2.

3 The Proposed Method: FRONT

In this section, we derive the optimal policy and formally present the FRONT method along with its
implementation via the ϵ-Greedy strategy. Under the online additive outcome model (1), the optimal
policy is given by,

at =

I
{
x⊤
t (β1 − β0) +

[∑
s∈At

1
g(s)

]
γ ≥ 0

}
, if 1 ≤ t ≤ T − g(T )− 1

I
{
x⊤
t (β1 − β0) +

[∑
s∈At,s≤T

1
g(s)

]
γ ≥ 0

}
, if T − g(T ) ≤ t ≤ T

, (2)

where At = {s : s− g(s) ≤ t ≤ s− 1} represents all subsequent individuals whose neighbors in-
clude the t-th individual. We observe that in the second piecewise solution, the summation term
within the indicator function is truncated by the termination time T . However, in online decision-
making scenarios, we assume that individuals will arrive indefinitely and T is unknown. Conse-
quently, the optimal policy π∗(·) at time t is determined by the dominant first piece of (2).

Proposition 3.1 (Optimal policy with interference). Under the conditional mean outcome model in
(1), the optimal policy π∗(·) at time t is given by

a∗t = π∗(xt) = I

{
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ ≥ 0

}
. (3)

We define the term
[∑

s∈At

1
g(s)

]
γ as the interference effect on subsequent outcome (ISO) for

the t-th individual. This represents the contribution of the t-th individual’s action to the interference
effect, excluding its direct impact on the long-term reward. As shown in Proposition 3.1, the optimal
action at time t depends on ISO. Unlike the myopic policy, (3) incorporates ISO as an additional term
within the indicator function. (3) can be interpreted as the difference in the long-term cumulative
reward between choosing action 0 and action 1 at time t.

In online learning, we fit the proposed online additive outcome model and adopt the derived optimal
policy to make decisions. Denote wt = (x⊤

t , āt)
⊤ ∈ Rd and θi = (β⊤

i , γi)
⊤ ∈ Rd, i = 0, 1, where

d = d1+1, γ0 = γ1 = γ. Then (1) can be simplified to µ(wt, at) = atw
⊤
t θ1+(1−at)w

⊤
t θ0. We
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assume an initial warm-up phase with T0 samples, at each time t = T0 +1, T0 +2, . . . , we estimate
the parameters θi based on Ht by

θ̂i,t =

(
1

t

t∑
s=1

I {as = i}wsw
⊤
s

)−1(
1

t

t∑
s=1

I {as = i}wsys

)
, i = 0, 1, (4)

if the first term 1
t

∑t
s=1 I {as = i}wsw

⊤
s is invertible. In this paper, we extend the ϵ-Greedy policy

(Chambaz et al., 2017; Chen et al., 2021) with interference to avoid getting trapped in a single action
and being led in the wrong direction. To be specific, at each step after the warm-up samples, we first
update the online estimators and then apply the ϵ-Greedy to make random choices with probability
ϵt. The action at is then generated by Bernoulli(π̂t), where

π̂t = (1− ϵt)I

{
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1 ≥ 0

}
+

ϵt
2
. (5)

We name our method as foresighted online policy with interference (FRONT), with the detailed
pseudocode provided in Algorithm 1. To enhance the exploration efficiency, particularly for the
interference-related parameter γ, we further include the force pulls step in Step (7). Furthermore,
during the warm-up period in Step (2), we increase the variability of āt to ensure a robust initial
estimator. Details of practical strategies can be found in Appendix C.1.

Algorithm 1 FRONT under ϵ-Greedy

Input: total number of individuals T , clipping parameter C, number of force pulls at one trigger
K, warm-up period T0, warm-up parameter L;
for t = 1, 2, . . . , T0 do

(1) Sample d− 1-dimensional context xt ∈ PX ;
(2) Set at = 1 when t ∈

⋃L
i=1(

i−1
L T0,

2i−1
2L T0], and at = 0 when t ∈

⋃L
i=1(

2i−1
2L T0,

i
LT0];

(3) Update āt by āt =
1

g(t)

∑t−1
s=t−g(t) as;

end for
for t = T0 + 1, T0 + 2, . . . , T do

(4) Sample d− 1-dimensional context xt ∈ PX ;
(5) Update θ̂i,t−1 by (4) and µ̂t−1(·);
(6) Update π̂t(·) by (5) and at by following Bernoulli (π̂t);
if λmin

{
1
t

∑t
s=1 I{as = i}w⊤

s ws

}
≤ Cϵt then

if āt−1 ≤ 0.5 then
(7a) Perform force pulls by setting at = at+1 = . . . at+K = 1;

else
(7b) Perform force pulls by setting at = at+1 = . . . at+K = 0;

end if
end if

end for

4 Theoretical Results

In this section, we present our theoretical results. We first derive the tail bound of the online estima-
tor, followed by its asymptotic normality. Next, we analyze the regret rate of our proposed FRONT.
All the proofs are provided in supplementary material E.

Parameter Inference. Our theoretical analysis starts from the following assumptions, which enable
us to establish the tail bound of the online estimator.

Assumption 4.1 (Bound). For all x ∼ PX , there exist positive constants Lx, λ such that ∥x∥∞ ≤
Lx and E(xx⊤) > λ. Let Lw = max {1, Lx}, then ∥w∥∞ ≤ Lw always holds for all w =
(x⊤, ā)⊤, where ā ∈ [0, 1].
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Assumption 4.2 (Clipping). For any time step t ≥ 1 and any action i ∈ {0, 1}, there exists a

constant C such that λmin

{
1
t

∑t
s=1 I{as = i}w⊤

s ws

}
> Cϵt.

Assumption 4.1, commonly used in contextual bandits (Zhang et al., 2020; Chen et al., 2021; Shen
et al., 2024), restricts the contextual covariates, ensuring that the mean of the martingale differences
converges to zero. Assumption 4.2 is a technical condition necessary for the consistency and asymp-
totic normality of the least squares estimators (Deshpande et al., 2018; Zhang et al., 2020; Hadad
et al., 2021; Shen et al., 2024). We first derive the consistency of the online estimator.
Theorem 4.1 (Tail bound for the online estimator). In the online decision-making using FRONT,
suppose Assumptions 4.1 and 4.2 are satisfied, for ∀h > 0, we have

P
{∥∥∥θ̂i,t − θi

∥∥∥
1
≤ h

}
≥ 1− exp

{
− tϵ2tC

2h2

2d2σ2L2
w

}
, i = 0, 1. (6)

Theorem 4.1 demonstrates that the consistency of the online estimator can be established if tϵ2t →
∞. Corollary 4.1 can be derived straightforwardly as follows.
Corollary 4.1 (Consistency of the online estimator). If conditions in Theorem 4.1 are satisfied and
tϵ2t → ∞ as t → ∞, then the online estimator is consistent, i.e., θ̂i,t → θi as t → ∞, i = 0, 1.

After deriving the consistent online estimator, we obtain point estimates. We further explore the
trend of the interference effect and the statistical properties of the estimator.
Assumption 4.3 (Force pulls). When executing Algorithm 1, the total count of all forced pulls is
O(

√
T ).

Assumption 4.4 (Convergence of ISO). For any known well-specified non-decreasing function g(t)
satisfying 0 < g(t) ≤ t− 1, g(t) → ∞ as t → ∞, and |At| < ∞,

∑
s∈At

1
g(s) converges to a finite

constant. We denote κg = limt→∞
∑

s∈At

1
g(s) .

Assumption 4.3 ensures that force pulls are not performed too many times, and it is necessary to
derive the convergence of āt and also the regret bound later. Assumption 4.4 is used to establish the
convergence of āt and the valid parameter inference. For the general function g(t), it is challeng-
ing to derive a closed-form expression for κg except in certain special cases. Instead, we perform
numerical experiments to verify that Assumption 4.4 holds across various scenarios, as presented in
supplementary material D.3. Here, we present two specific cases where closed-form expressions for
κg can be derived (with details provided in supplementary material E.3), which also correspond to
the scenarios used in our simulations: (1) g(t) = ⌊ρt⌋, κg = 1

ρ ln
1

1−ρ ; (2) g(t) = ⌊ρ
√
t⌋, κg = 1.

Note that 0 < ρ < 1 and ⌊t⌋ denotes the greatest integer less than or equal to t.
Corollary 4.2 (Convergence of interference action āt). With conditions in Corollary 4.1, Assump-
tions 4.3 and 4.4 hold, we have āt

p→ ā∞ = (1− ϵ∞)P(x⊤(β1−β0)+κgγ ≥ 0)+ ϵ∞
2 , as t → ∞.

If ϵt → 0, āt will converge to ā∗∞ = P(x⊤(β1 − β0) + κgγ ≥ 0), which is the limit of interference
action under the optimal policy.

As shown in Corollary 4.2, when the interference scale diverges and the limit of ISO exists, the
interference action āt approaches to a constant ā∞. Then the asymptotic normality of estimated
parameters can be derived by Martingale Central Limit Theorem.
Theorem 4.2 (Inference for the online estimator). Suppose the conditions in Corollary 4.2 are
satisfied, when ā∞ ̸= 0, we have

√
t(θ̂i,t − θi) =

√
t

(
β̂i,t − βi

γ̂i,t − γi

)
D→ Nd(0, Si), i = 0, 1,

where

Si = σ2
i

 ϵ∞
2

∫
xx⊤ dPX + (1− ϵ∞)

∫
Xi

xx⊤ dPX ā∞

[
ϵ∞
2

∫
x⊤ dPX + (1− ϵ∞)

∫
Xi

x⊤ dPX

]
ā∞

[
ϵ∞
2

∫
x dPX + (1− ϵ∞)

∫
Xi

x dPX

]
ā2∞
[
ϵ∞
2 + (1− ϵ∞

2 )P(x ∈ Xi)
]

−1

,

(7)



FRONT: Foresighted Online Policy Optimization with Interference

with X1 =
{
x : x⊤(β1 − β0) + κgγ ≥ 0

}
and X0 =

{
x : x⊤(β1 − β0) + κgγ < 0

}
. A consis-

tent estimator for Si is given by∑t
s=1 I {as = i} ê2s∑t
s=1 I {as = i}

(
1

t

t∑
s=1

I {as = i}wsw
⊤
s

)−1

, (8)

where ês = ys − asw
⊤
s θ̂1,t − (1− as)w

⊤
s θ̂0,t.

Regret Analysis. We discuss two definitions of cumulative regret, both of which are reasonable and
depend on different perspectives of understanding the problem.

Assumption 4.5 (Margin). With Assumption 4.4 holds, for any xt ∼ PX and any t, there exists a
positive constant M , such that P

(
0 <

∣∣∣x⊤
t (β1 − β0) +

[∑
s∈At

1
g(s)

]
γ
∣∣∣ < l

)
≤ Ml,∀l > 0.

Assumption 4.5 is a margin condition commonly proposed in the contextual bandit literature (Gold-
enshluger & Zeevi, 2013; Chambaz et al., 2017; Bastani & Bayati, 2020; Chen et al., 2021; Shen
et al., 2024; Xu et al., 2024) to restrict the probability of encountering covariates close to these
boundaries, thereby reducing the variance caused by incorrect decisions.

Our two definitions of regret depend on the perspective—immediate or consequential—determined
by whether the regret manifests by time T or is caused before time T but may not have ap-
peared yet. We first define the cumulative regret R1(T ) based on the first idea as R1(T ) =∑T

t=1 E {µ(xt, ā
∗
t , a

∗
t )− µ(xt, āt, at)}.

We then consider the cumulative regret R2(T ) based on another idea—caused before time T . We
define R2(T ) =

∑T
t=1 E {ν(xt, a

∗
t )− ν(xt, at)}, where ν(xt, at) represents the total contribution

to the long-term cumulative outcome from the t-th individual, i.e., ν(xt, at) = x⊤
t β0 + atx

⊤
t (β1 −

β0) + at

[∑
s∈At

1
g(s)

]
γ.

Theorem 4.3 (Regret bound). Suppose the conditions in Theorem 4.2 and Assumption 4.5 are sat-
isfied. When applying FRONT, the regrets can be bounded respectively as follows:

R1(T ) = O

(
T∑

t=1

ϵt + g(T )T− 1
4

)
, R2(T ) = O

(
T∑

t=1

ϵt

)
.

When tϵ2t → ∞ as t → ∞, we have O
(∑T

t=1 ϵt

)
≥ c

√
t, where c is some positive constant. Then

the regret exhibits sublinear behavior under both definitions.

5 Numerical Studies

In this section, we evaluate our proposed FRONT policy in comparison to the naïve policy and the
myopic policy introduced in Appendix A, and validate the statistical inference results for FRONT.
For the interference scale function g, we consider three different scenarios: (1) g(t) = ⌊0.2t⌋; (2)
g(t) = ⌊5

√
t⌋; (3) g(t) = ⌊20t0.2⌋. Details about data generation are provided in Appendix B.1.

Policy Performance. As shown in Figure 2, which presents the cumulative average reward trajec-
tories, FRONT consistently achieves the lowest regret and progressively approaches to the optimal
reward over time. The reward under FRONT converges to that of the optimal policy across all three
scenarios of g(t), demonstrating the universality of FRONT.

Evaluation of Statistical Inference. The reported results for FRONT include the following met-
rics: the ratio of the average standard error (SE) to the Monte Carlo standard deviation (MCSD)
across 500 replications, the average parameters estimation bias computed 500 experiments, and the
coverage probability of the 95% two-sided Wald confidence interval. The confidence intervals are
constructed using the parameter estimates and their corresponding estimated standard errors from
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Figure 2: Upper panel: the cumulative average reward over time. Lower panel: the cumulative
average regret, quantifying the gap between the optimal policy and the other three policies (shown
in the upper panel), with regret defined by R1(T ).

each experiment, based on (8) in Theorem 4.2. The results are summarized in Figures 4, 5, and 6 in
Appendix B.1, which show that FRONT performs well in all three cases: the ratio between SE and
MCSD converges to 1, the average bias approaches 0, and the coverage probabilities for θ0 and θ1
are close to the nominal level of 95%. Performances of āt and sensitivity analyzes are provided in
supplementary material D.1 and D.2.

6 Real Data Application

Figure 3: The cumulative average profit achieved
by three policies on the hotel dataset.

In this section, we evaluate the performance of
our proposed method, FRONT, using publicly
available data from a large urban hotel chain
(“Hotel 1") (Bodea et al., 2009). It includes
records of room purchases and associated rev-
enues with check-in dates between March 12,
2007, to April 15, 2007.

We consider binary actions where at = 1
(at = 0) denotes increasing (decreasing) the
nightly rate relative to the room-type average.
The profit outcome yt equals (rate - cost) ×
rooms × stay length. Five context features
(d = 7 with intercept and interference) in-
clude: room type (ordinal), booking lead-time
(log-transformed), membership status (binary),
party size, and rate type (ordinal). After clean-
ing, we analyze 1,961 purchased-room entries.

Assuming a linear model with g(t) = ⌊0.5
√
t⌋, we simulate online decisions: at each t, we ob-

serve xt, compute āt, take action at, and receive profit ∼ N (µ(xt, āt, at), 10
2). Comparing naïve,

myopic and FRONT policies over T = 10, 000 steps, FRONT achieves superior cumulative profit
(Fig. 3), demonstrating its foresight advantage. Details can be found in Appendix B.2.
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A Intuitive Policies

We begin by examining two intuitive policies that could be applied to the online decision-making
problem. In classical contextual bandit frameworks, interference effects are typically neglected
(Chen et al., 2021; Shen et al., 2024), resulting in a restrictive model ϕ(xt, at). In this model, we
consider a policy from a suboptimal policy class that evaluates the expected outcomes of available
actions without accounting for their potential impact on subsequent individuals. At each time step t,
we estimate the parameters using all available historical data Ht−1 (Deshpande et al., 2018; Zhang
et al., 2020; Chen et al., 2021). We denote this approach as the naïve policy, formally expressed as
I
{
ϕ̃t−1(xt, 1)− ϕ̃t−1(xt, 0) ≥ 0

}
, where ϕ̃t−1(xt, at) is the estimated Q-function with plugged-

in parameter estimates.

Next, we consider an approach that accounts for interference effects in the mean outcome model,
while still restricting attention to the suboptimal policy class. Such a policy focuses on maximizing
only the immediate outcome at time t, yielding what we name the myopic policy. The policy is
expressed as I {µ̂t−1(xt, āt, 1)− µ̂t−1(xt, āt, 0) ≥ 0}, where µ̂t−1(xt, āt, at) denotes the condi-
tional mean outcome estimated correctly using historical information Ht−1.

Both the naïve policy and myopic policy ignore ISO, potentially leading to suboptimal decisions at
each time step t and resulting in linear regret, as shown in the lower panel of Figure 2 (Section 5).
The cumulative average regret (R1(t)/t) shown in this figure demonstrates that both policies exhibit
regret converging to a non-zero constant, showing their O(T ) regret rate.

B Details on Experiments

B.1 Details on Numerical Studies

The context x = (1, x1, x2)
⊤ is defined as follows: x1 follows a truncated normal distribution with

mean zero, variance one, and support [−10, 10], and x2
i.i.d∼ Uniform(0, 2), ensuring Assumption 4.1

is satisfied. Then, w is four-dimensional, including the interference action ā, i.e., d = 4. The true
parameters are θ0 = (0.3,−0.1, 0.7, 0.6)⊤ and θ1 = (0.2, 0.7, 0.3, 0.6)⊤, which implies β1−β0 =

(−0.1, 0.8,−0.4)⊤ and γ = 0.6. Additionally, the noise term is modeled as et|at = i
i.i.d∼ N (0, 0.12)

for i = 0, 1. For the interference scale function g, we consider three different scenarios: (1) g(t) =
⌊0.2t⌋; (2) g(t) = ⌊5

√
t⌋; (3) g(t) = ⌊20t0.2⌋.

To ensure a fair comparison, all policies are implemented with identical configurations. Specifically,
the exploration rate ϵt is set as log(t)/10

√
t with the clipping parameter of C = 0.01. The termina-

tion time is T = 10,000, with a warm-up period of T0 = 100 and L = 6. The force-pull parameter
is set to K = 50, and we run 500 replications following Algorithm 1. The comparative analysis uses
cumulative average rewards as the performance metric, computed as the total reward accumulated
up to a given time step divided by the number of steps.

The inference results are summarized in Figures 4, 5, and 6, for three scenarios: (1) g(t) = ⌊0.2t⌋;
(2) g(t) = ⌊5

√
t⌋; (3) g(t) = ⌊20t0.2⌋, respectively. The average bias for β01, γ0, β11, and γ1

until the termination time T does not perform as well as for other parameters. The reason is that
āt stabilizes to ā∞ over time, leading to weak collinearity in the design matrix. Although we use
force pulls to introduce variability in āt, it still exhibits less variation compared to other covariates,
which impacts the accuracy of the estimation. Moreover, a smaller interference scale gt yields
better performance in parameter inference because greater variation in āt increases the variability of
samples.

B.2 Details on Real Data Application

We define the action space as binary, where at = 1 represents an increase in the nightly rate decided
by the hotel, and at = 0 represents a decrease, compared to the average nightly rate for the specific
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Figure 4: The performance of the online estimator when g(t) = ⌊0.2t⌋ is shown in the figure.
Upper panel: the ratio between the standard error and the Monte Carlo standard deviation, with the
red line indicating the nominal level of 1. Middle panel: the bias between the estimated value and
the true value. Lower panel: the coverage probabilities of the 95% two-sided Wald-type confidence
interval, with the red line indicating the nominal level of 95%.

Figure 5: The performance of the online estimator when g(t) = ⌊5
√
t⌋.

room type. The lowest nightly rate is assumed as the cost for a given room type. The outcome
yt is defined as the profit from each purchase, calculated by multiplying the difference between
the nightly rate and the cost by the number of rooms and the length of stay. Additionally, we
consider five context features (with d = 7 including the intercept and the interference action): room
type, advanced purchase dates, membership status, party size, and rate type (e.g., including other
services, activities, or rewards). For this offline dataset, we retain only entries where the product
was purchased by the customer and exclude any with invalid data, resulting in a total of 1,961
entries. To reduce the number of dummy variables and address imbalances they cause, we treat
room type and rate type as ordinal variables, ranking them based on their corresponding average
nightly rates. We apply a logarithmic transformation to advanced purchase dates to rescale this
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Figure 6: The performance of the online estimator when g(t) = ⌊20t0.2⌋.

feature. Membership status is set to 1 for customers with either standard or VIP memberships,
regardless of their membership tier.

Since the true model is unknown, we assume a linear conditional mean outcome model with an
interference scale given by g(t) = ⌊0.5

√
t⌋. Using this model, we derive the fitted coefficients

and simulate an online decision-making process. At each time t, a customer arrives, and we draw
context features xt, calculate āt, and select an action at based on the given context and updated
policy. The profit is then observed from the distribution N (µ(xt, āt, at), 10

2), where µ(xt, āt, at)
represents the outcome model we fit earlier. The warm-up period is set to T0 = 150 with L = 4,
the force pulls parameter is K = 50, the clipping parameter is C = 0.01, and the exploration rate is
ϵt = log(t)/10

√
t. Suppose the termination time T is 10,000. Our goal is to maximize cumulative

profit, and we apply three policies in this online setting: naïve, myopic, and FRONT to compare
their performances. Figure 3 shows the cumulative average profit under the three policies. FRONT
achieves higher cumulative profit, demonstrating the strength of FRONT and the importance of
foresighted decision-making.

C Discussion

C.1 Practical Strategies

We can select appropriate values for parameters T0, L and L to ensure sufficient exploration initially
and satisfy Assumption 4.3.

We divide the warm-up duration T0 into 2L intervals, alternating actions: even-numbered intervals
take action 0, while odd-numbered intervals take action 1. This periodic assignment expands the
variability of observed values for āt, reducing the need for future exploration. By choosing the
suitable parameters T0, K, and L, we reduce consecutive force pulls and prevent frequent triggers.
Previous methods apply force pulls at fixed time points (see e.g., Bastani & Bayati, 2020; Hu &
Kallus, 2020), where a single force pull often does not substantially perturb āt. Instead, we conduct
consecutive pulls whenever the condition in Step (7) in Algorithm 1 is triggered to meet the clip-
ping assumption (i.e., Assumption 4.2, which serves as one theoretical ground for online statistical
inference). Specifically, in Step (7), we perform K consecutive force pulls from at to at+K . If
āt−1 ≤ 0.5, we set the force pulls action to 1; otherwise, we set them to be 0, in order to increase
the variability of āt.
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We divide the warm-up duration T0 into 2L intervals, alternating actions: even-numbered intervals
take action 0, while odd-numbered intervals take action 1. This periodic assignment expands the
variability of observed values for āt, reducing the need for future exploration. By choosing the
suitable parameters T0, K, and L, we reduce consecutive force pulls and prevent frequent triggers.

Specifically, we recommend more exploration during the warm-up phase to establish a reliable esti-
mator early, followed by a reduction in force pulls in later stages to sustain ongoing exploration.

C.2 Other Working Models

In Section 3, we establish the method based on the online additive outcome model with heteroge-
neous treatment effects and homogeneous interference effects (described as (1)). We now extend
our discussion to more general model formulations.

First, consider a model incorporating interaction between āt and at: µ(xt, āt, at) =
E(yt|xt, āt, at) = x⊤

t β0 + atx
⊤
t (β1 − β0) + ātγ0 + atāt(γ1 − γ0). The optimal action for the

t-th user is a nested structure of indicator functions and they should be derived reversely. This
formulation is detailed in (12), (13), and (14) in supplementary material E.7. Consequently, deter-
mining the optimal policy becomes intractable, due to the unknown termination time T . Second,
we consider a model with interaction between āt and xt, i.e., µ(xt, āt, at) = E(yt|xt, āt, at) =
x⊤
t β0+atx

⊤
t (β1−β0)+ ātγ0+ ātx

⊤
t γ. In this case, the optimal policy depends on the contextual

features of future individuals (see (15) in the supplementary material). Due to the uncertainty in
these features and their varying influence, deriving the optimal action remains challenging. How-
ever, we can develop practical strategies for the special case where g(t) is a constant, denoted by N .
Following the similar argument in Proposition 3.1, when t ≤ T −N , the optimal policy is

a∗t = I

{
x⊤
t (β1 − β0) + γ0 +

(
1

N

t+N∑
s=t+1

x⊤
s

)
γ ≥ 0

}
,

where xt+1, xt+2, . . . , xt+N are unknown at time t. The term 1
K

∑t+N
s=t+1 x

⊤
s represents the average

of the features from subsequent N individuals. This quantity can be estimated by the sample average,
expressed as 1

t

∑t
s=1 x

⊤
s or through resampling from the observed feature vectors x⊤

1 , . . . , x⊤
t to

generate predictions for x⊤
t+1, x⊤

t+2, . . . , x⊤
t+N , followed by averaging the results.

C.3 Future Work

There are several directions in which we can extend our work in the future. First, in contextual
bandits, policy evaluation is crucial to determine when to stop updating the policy (see e.g., Chen
et al., 2021; Shen et al., 2024; Xu et al., 2024). We plan to define policy value that aligns with the two
regret definitions and develop value estimation and inference when interference persists over time.
Second, model misspecification presents a challenge in the interference setting, and we expect to
address this issue in future research. Third, our current framework assumes a binary action set, and
we aim to extend it to continuous action spaces. Finally, with respect to considering the interference
effect on future outcomes, we have already incorporated the idea from reinforcement learning and
will extend our proposal within the RL framework.
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D Extended Simulation Results

D.1 Plot of āt

As Figure 7 shows, āt approaches the optimal interference action ā∗∞ and will converge over time,
which also verifies convergence of ISO. Note that the convergence in the left panel of Figure 7 is
much more obvious due to its larger interference scale. When g(t) is smaller, convergence takes
longer, even though g(t) → ∞ as t → ∞.

Figure 7: The trend of āt from one replication.

D.2 Sensitivity Analyses

We perform a sensitivity analysis for different values of T0, L and K, repeating the simulations 500
times for each setting. As illustrated in Figure 8, the coverage probabilities confirm that Algorithm
1 is not sensitive to to variations in these parameters.

D.3 Numerical Verification of the Existence of κg

We assume the existence of κg and and use it to establish the convergence of ISO. Aside from the
special cases proven in E.3, we provide numerical results to support the existence of κg . Defining
ζt =

∑
s∈At

1
g(s) .

Figure 9 illustrates its trends for when 100 ≤ t ≤ 10000 under four different scenarios: (1) g(t) =
⌊20t0.2⌋(a case used in simulations), (2) g(t) = ⌊10t0.4⌋, (3) g(t) = ⌊5t0.6⌋, (4) g(t) = ⌊2t0.8⌋.
The stabilization of ζt over time supports our assumption, indicating the existence of the limit of ζt,
i.e., κg .
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Figure 8: The coverage probabilities of the 95% two-sided CI under different values of T0, L and
K. The red lines indicate the nominal level of 95%.

Figure 9: Convergence of ζt under different g(t).

E Proof of Main Results

E.1 Optimal Policy with Interference

Proof. The expected cumulative outcome is given by
∑T

t=1 µ(xt, āt, at). Under our working model,
it can be expanded as

T∑
t=1

x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ.
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Substituting āt with 1
g(t)

∑t−1
s=t−g(t) as, we have

T∑
t=1

µ(xt, āt, at) =

T∑
t=1

x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ

=

T∑
t=1

x⊤
t β0 + atx

⊤
t (β1 − β0) +

1

g(t)

 t−1∑
s=t−g(t)

as

 γ

=

T−g(T )−1∑
t=1

x⊤
t β0 + at

{
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

}

+

T∑
t=T−g(T )

x⊤
t β0 + at

x⊤
t (β1 − β0) +

 ∑
s∈At,s≤T

1

g(s)

 γ

 ,

where At = {s : s− g(s) ≤ t ≤ s− 1}. Because we want to maximize the cumulative outcome,
then the optimal action should be

a∗t =

I
{
x⊤
t (β1 − β0) +

[∑
s∈At

1
g(s)

]
γ ≥ 0

}
, if 1 ≤ t ≤ T − g(T )− 1

I
{
x⊤
t (β1 − β0) +

[∑
s∈At,s≤T

1
g(s)

]
γ ≥ 0

}
, if T − g(T ) ≤ t ≤ T

.

The expansion of the cumulative reward is also used in the cumulative regret later, where we simply
need to ignore the first term x⊤

t β0 in both summations.

E.2 Tail Bound for the Online Estimator

Proof. Denote Σ̂i(t) =
1
t

∑t
s=1 I {as = i}wsw

⊤
s . To derive the tail bound of

θ̂i,t − θi = Σ̂−1
i (t)

(
1

t

t∑
s=1

I {as = i}wses

)
i = 0, 1,

we need to apply Assumption 4.2 to bound the minimum eigenvalue. By Assumption 4.2,

λmin

{
1

t

t∑
s=1

I{as = i}w⊤
s ws

}
= λmin(Σ̂i(t)) > Cϵt,

By Lemma 2 in Chen et al. (2021), we have

P
{∥∥∥θ̂i,t − θi

∥∥∥
1
≤ h

}
≥ 1− exp

{
− tϵ2tC

2h2

2d2σ2L2
w

}
.

E.3 Special Cases for the Expression of κg

Proof. We derive the closed-form expression of κg for two special cases: linear scale and square
root scale.

1. g(t) = ⌊ρt⌋.

The set of individuals receiving the influence from the t-th individual is

At = {s : s− g(s) ≤ t ≤ s− 1} = {s : s− ⌊ρs⌋ ≤ t ≤ s− 1} =

{
s : t+ 1 ≤ s ≤

⌊
t

1− ρ

⌋}
,
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and then
∑

s∈At

1
g(s) is given by

∑⌊ t
1−ρ⌋

s=t+1
1

g(s) . For this summation, we can bound it by

∫ ⌊ t
1−ρ⌋+1

t+1

1

⌊ρs⌋
ds ≤

⌊ t
1−ρ⌋∑

s=t+1

1

⌊ρs⌋
≤
∫ ⌊ t

1−ρ⌋

t

1

⌊ρs⌋
ds.

The lower bound can be formulated as∫ ⌊ t
1−ρ⌋+1

t+1

1

⌊ρs⌋
ds ≥

∫ t
1−ρ

t+1

1

ρs
ds =

1

ρ
ln ρs

∣∣∣ t
1−ρ

t+1
=

1

ρ
ln

ρt
1−ρ

ρ(t+ 1)
,

then let t → ∞ and by L’Hopital’s rule, we have

1

ρ
lim
t→∞

ln

ρt
1−ρ

ρ(t+ 1)
=

1

ρ
ln

1

1− ρ
.

Similarly, the upper bound can be formulated as∫ ⌊ t
1−ρ⌋

t

1

⌊ρs⌋
ds ≤

∫ t
1−ρ

t

1

ρs− 1
ds =

1

ρ
ln (ρs− 1)

∣∣∣ t
1−ρ

t
=

1

ρ
ln

ρt
1−ρ − 1

ρt− 1
,

then let t → ∞ and by L’Hopital’s rule, we have

1

ρ
lim
t→∞

ln

ρt
1−ρ − 1

ρt− 1
=

1

ρ
ln

1

1− ρ
.

Finally, by Squeeze Theorem, when g(t) = ⌊ρt⌋, we have

κg = lim
t→∞

∑
s∈At

1

g(s)
=

1

ρ
ln

1

1− ρ
.

2. g(t) = ⌊ρ
√
t⌋.

By the quadratic formula, the set of individuals that receive the influence of the t-th individual is

At = {s : s− g(s) ≤ t ≤ s− 1} =
{
s : s− ⌊ρ

√
s⌋ ≤ t ≤ s− 1

}
=

{
s : t+ 1 ≤ s ≤

⌊
(ρ+

√
ρ2 + 4t)2

4

⌋}
,

then

∑
s∈At

1

g(s)
=

⌊
(ρ+

√
ρ2+4t)2

4

⌋∑
s=t+1

1

g(s)
.

Similarly, we obtain the lower and upper bounds as follows:

∫ ⌊
(ρ+

√
ρ2+4t)2

4

⌋
+1

t+1

1

⌊ρ
√
s⌋

ds ≤

⌊
(ρ+

√
ρ2+4t)2

4

⌋∑
s=t+1

1

⌊ρ
√
s⌋

≤
∫ ⌊

(ρ+
√

ρ2+4t)2

4

⌋
t

1

⌊ρ
√
s⌋

ds.

The lower bound can be formulated as

∫ ⌊
(ρ+

√
ρ2+4t)2

4

⌋
+1

t+1

1

⌊ρ
√
s⌋

ds ≥
∫ (ρ+

√
ρ2+4t)2

4

t+1

1

ρ
√
s
ds =

2

ρ

√
s
∣∣∣ (ρ+√

ρ2+4t)2

4

t+1
=

2

ρ

(
ρ+

√
ρ2 + 4t

2
−

√
t+ 1

)
,
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then let t → ∞ , we have

lim
t→∞

(√
ρ2 + 4t

2
−
√
t+ 1

)
= lim

t→∞

(
ρ2/4 + t− (t+ 1)√
ρ2/4 + t+

√
t+ 1

)
= lim

t→∞

(
ρ2/4− 1√

ρ2/4 + t+
√
t+ 1

)
= 0.

Finally, the limit is given by

2

ρ
lim
t→∞

(
ρ+

√
ρ2 + 4t

2
−
√
t+ 1

)
=

2

ρ
lim
t→∞

(
ρ

2
+

√
ρ2 + 4t

2
−
√
t+ 1

)
= 1.

We next consider the upper bound,

∫ ⌊
(ρ+

√
ρ2+4t)2

4

⌋
t

1

⌊ρ
√
s⌋

ds ≤
∫ (ρ+

√
ρ2+4t)2

4

t

1

ρ
√
s− 1

ds =

(
2

ρ

√
s+

2

ρ
ln (ρ

√
s− 1)

) ∣∣∣ (ρ+√
ρ2+4t)2

4

t
.

Following a similar approach as in deriving the lower bound, when t → ∞, the first term becomes

2

ρ
lim
t→∞

(
ρ+

√
ρ2 + 4t

2
−
√
t

)
= 1.

For the second term, by L’Hopital’s rule, we have,

2

ρ
lim
t→∞

ln

(
ρ(ρ+

√
ρ2 + 4t)/2− 1

ρ
√
t− 1

)
= 0,

thus the limit of upper bound is also 1. By Squeeze Theorem, we have κg = 1. The proof is hence
completed.

E.4 Convergence of Interference Action āt

Proof. Step 1: We first prove the convergence of the optimal interference action ā∗t . The optimal
policy is defined as

a∗t = π∗(xt) = I

{
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ ≥ 0

}
.

Then optimal interference action is

ā∗t =
1

g(t)

t−1∑
s=t−g(t)

a∗s =
1

g(t)

t−1∑
s=t−g(t)

I

{
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ ≥ 0

}
.

Because xt are i.i.d samples drawn from PX , the optimal actions a∗t are independent. Besides, with
Assumption 4.4,

E(a∗t ) = E

(
I

{
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ ≥ 0

})

= P

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ ≥ 0

)
→ P

(
x⊤(β1 − β0) + κgγ ≥ 0

)
,
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as t → ∞. Then we have limt→∞
∑t

s=1 Ea∗s = P
(
x⊤(β1 − β0) + κgγ ≥ 0

)
. By Kolmogorov

Strong Law of Large Numbers, we have

P

{
lim
t→∞

1

t

t∑
s=1

(a∗s − Ea∗s)

}
= 1,

which can be simplified as

1

t

t∑
s=1

a∗s
p→ P

(
x⊤(β1 − β0) + κgγ ≥ 0

)
,

i.e., 1
t

∑t
s=1 a

∗
s

p→ ā∗∞. Now that we have the convergence of the optimal action average, we can
derive the convergence of the optimal interference action easily. If t − g(t) → ∞ as t → ∞, we
have

1

t− g(t)− 1

t−g(t)−1∑
s=1

a∗s
p→ ā∗∞,

then

1

g(t)

t−1∑
s=t−g(t)

(a∗s−ā∗∞) =
1

g(t)

t−1∑
s=1

a∗s − (t− 1)ā∗∞ −

t−g(t)−1∑
s=1

a∗s − (t− g(t)− 1)ā∗∞

 p→ 0.

If t− g(t) is bounded by some constant N0, i.e., g(t) ≥ t−N0, then we have |At| = ∞. This case
is excluded under Assumption 4.4, since it causes an unbounded ISO and an infinite interference
effect.

Step 2: Then we will prove the convergence of āt. Our proposed policy is defined as at ∼
Bernoulli(π̂t), where

π̂t = (1− ϵt)I

{
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1 ≥ 0

}
+

ϵt
2
, (9)

where ϵt is the exploration probability under ϵ-greedy. First, we assume that all actions taken follow
(9) rather than force pulls, then

E(at|Ht−1) = E[E(at|Ht−1,xt)|Ht−1] = E[π̂t|Ht−1]

= E

(
(1− ϵt)I

{
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1 ≥ 0

}
+

ϵt
2

∣∣∣Ht−1

)

= (1− ϵt)P

{
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1 ≥ 0

∣∣∣β̂0,t−1, β̂1,t−1, γ̂t−1

}
+

ϵt
2

= (1− ϵt)PX

{
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1 ≥ 0

}
+

ϵt
2
.

By Assumption 4.4, Corollary 4.2 and Continuous Mapping Theorem, we have

E(at|Ht−1) → (1− ϵ∞)P
{
x⊤(β1 − β0) + κgγ ≥ 0

}
+

ϵ∞
2
, (10)

i.e., E(at|Ht−1) → (1− ϵ∞)ā∗∞ + ϵ∞
2 as t → ∞.

Let A0 be an r.v. such that P(A0 = 1) = 1, then we have E(A0) = 1 < ∞. For any t and h > 0,
we have P(|at| > h) = P(at > h) ≤ P(A0 > h).
Now all conditions of Theorem 2.19 from Hall & Heyde (1980) are satisfied, then we have

1

t

t∑
s=1

[as − E(as|Hs−1)]
p→ 0.
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By (10) and Lemma 4 in Chen et al. (2021), we have 1
t

∑t
s=1 E(as|Hs−1) → (1 − ϵ∞)ā∗∞ + ϵ∞

2 .
Based on Assumption 4.3, the count of force pulls are O(

√
t), so the difference between

∑t
s=1 at

in the practical setting and actions drawn following (9) is at most O(
√
t). After being divided by t,

this difference becomes O(1/
√
t), i.e. o(1). Therefore, we have 1

t

∑t
s=1 as

p→ (1− ϵ∞)ā∗∞ + ϵ∞
2 .

Similarly, as shown in the proof in Step 1, because g(t) → ∞, we still have

āt
p→ (1− ϵ∞)ā∗∞ +

ϵ∞
2
,

i.e. āt
p→ ā∞.

E.5 Asymptotic Normality of the Online Estimator

Proof. Based on our online estimator, we have

√
t(θ̂i,t − θi) =

(
1

t

t∑
s=1

I {as = i}wsw
⊤
s

)−1(
1√
t

t∑
s=1

I {as = i}wses

)
, i = 0, 1.

1. First we will show that

1√
t

t∑
s=1

I {as = i}wses
D→ Nd(0, Gi).

Using Cramer-Wold device, it suffices to show for any v ∈ Rd,

1√
t

t∑
s=1

I {as = i}v⊤wses
D→ Nd(0,v

⊤Giv).

For 1 ≤ j ≤ t and t ≥ 1, define Htj = Hj , and

Mtj =
1√
t

t∑
s=1

I {as = i}v⊤wses.

Note that E(I {as = i}v⊤wses|Ht,s−1) = E(I {as = i}v⊤ws|Ht,s−1)E(es|Ht,s−1, as = i) = 0,
indicating that {Mtj ,Htj , 1 ≤ j ≤ t, t ≥ 1} is a martingale array.
We will now prove the convergence of Mtt using Martingale Central Limit Theorem (see Theorem
3.2 in Hall & Heyde (1980)). The proof proceeds in two steps: firstly we will verify the conditional
Lindeberg condition is satisfied and secondly we will find the limit of conditional variance.
(a) Check the conditional Lindeberg condition. For ∀δ > 0,

t∑
s=1

E
[
1

t
I {as = i}

(
v⊤wses

)2 I{I {as = i}v⊤wses > δ
√
t
} ∣∣∣Ht,s−1

]

≤∥v∥22L2
wd

t

t∑
s=1

E
[
I {as = i} e2sI

{
I {as = i} e2s >

δ2t

∥v∥2L2
wd

} ∣∣∣Hs−1

]

=
∥v∥22L2

wd

t

t∑
s=1

E (I {as = i} |Hs−1)E
[
e2sI
{
I {as = i} e2s >

δ2t

∥v∥2L2
wd

} ∣∣∣Hs−1

]

≤∥v∥22L2
wd

t

t∑
s=1

E
[
e2s(i)I

{
e2s(i) >

δ2t

∥v∥2L2
wd

} ∣∣∣Hs−1

]
,

where es(i) = es when as = i and 0 otherwise. es conditioned on as are i.i.d distributed, so the
right hand side comes to be

∥v∥22L2
wdE

[
e2I
{
e2 >

δ2t

∥v∥2L2
wd

}]
,
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where e is a random variable defined by es|Hs−1. Since e2I
{
e2 > δ2t

∥v∥2L2
wd

}
is bounded by e2 with

E(e2) < ∞ and convergences to 0 almost surely as t → ∞. Therefore, by Dominated Convergence
Theorem, we get

t∑
s=1

E
[
1

t
I {as = i}

(
v⊤wses

)2 I{I {as = i}v⊤wses > δ
√
t
} ∣∣∣Ht,s−1

]
→ 0, as t → ∞.

(b) Derive the limit of the conditional variance. The conditional variance is given by

η̂2t =

t∑
s=1

E
{
1

t
I {as = i} (v⊤ws)

2
∣∣∣Ht,s−1

}

=
1

t

t∑
s=1

E
{
I {as = i}

(
v⊤ws

)2 E [e2s | as = i,ws

]
| Hs−1

}
.

Given Hs−1, ās is known, so the expectation is take with respect to xs. As for the random noise,
given as, es is independent of Hs−1 and ws, and E(e2s|as = i,ws) = σ2

i . Thus we have

η̂2t =
1

t

t∑
s=1

E
{
I {as = i}

(
v⊤ws

)2
σ2
i | Hs−1

}
=

1

t

t∑
s=1

σ2
i E
{
I {as = i}

(
v⊤wsw

⊤
s v
)
| Hs−1

}
.

Let v = (v⊤
1 , v2)

⊤ to align with wt = (x⊤
t , āt)

⊤, where v1 ∈ Rd−1 and v2 ∈ R. Then we have(
v⊤ws

)2
=
(
v⊤
1 xs + v2ās

)2
.

η̂2t =
σ2
i

t

t∑
s=1

E
{
I {as = i} (v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās)
∣∣∣Hs−1

}
.

Denote the difference between estimated parameter, β̂1,s−1 − β̂0,s−1, as β̂s−1. We have defined
ζt =

∑
s∈At

1
g(s) in Section D.3. Then the expectation term in the above equation can be expressed

as a continuous function pi of β̂s−1, γ̂, ās, ζs and ϵs,

pi(β̂s−1, γ̂, ās, ζs, ϵs) =
ϵs
2

∫
(v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX

+ (1− ϵs)

∫
Xis

(v⊤
1 xsx

⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX ,

where X1s =
{
x : x⊤(β̂1,s−1 − β̂0,s−1) + ζsγ̂s−1 ≥ 0

}
and X0s = Rd−1\X1s. We can rewrite

pi(β̂s−1, γ̂, ās, ζs, ϵs) as

p1(β̂s−1, γ̂, ās, ζs, ϵs) =
ϵs
2

∫
(v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX

+ (1− ϵs)

∫
I
{
x⊤(β̂1,s−1 − β̂0,s−1) + ζsγ̂s−1 ≥ 0

}
(v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX ,

and similarly,

p0(β̂s−1, γ̂, ās, ζs, ϵs) =
ϵs
2

∫
(v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX

+ (1− ϵs)

∫
I
{
x⊤(β̂1,s−1 − β̂0,s−1) + ζsγ̂s−1 < 0

}
(v⊤

1 xsx
⊤
s v1 + v22 ā

2
s + 2v⊤

1 xsv2ās) dPX .
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Then by Corollary 4.1, 4.2, Assumption 4.4 and Continuous Mapping Theorem,

pi(β̂s−1, γ̂, ās, ζs, ϵs) → pi(β, γ, ā∞, κg, ϵ∞),

as s → ∞, where β = β1−β0. Moreover, pi(β̂s−1, γ̂, ās, ζs, ϵs) is bounded by v⊤EX(wsw
⊤
s )v ≤

d∥v∥22L2
w, then by Lemma 4 in Chen et al. (2021), we have

η̂2t
p→ σ2

i pi(β, γ, ā∞, κg, ϵ∞) = σ2
i

{
ϵ∞
2

∫
(v⊤

1 xx
⊤v1 + v22 ā

2
∞ + 2v⊤

1 xv2ā∞) dPX

+ (1− ϵ∞)

∫
X1

(v⊤
1 xx

⊤v1 + v22 ā
2
∞ + 2v⊤

1 xv2ā∞) dPX

}
,

where X1 =
{
x : x⊤(β1 − β0) + κgγ ≥ 0

}
and X0 =

{
x : x⊤(β1 − β0) + κgγ < 0

}
. To move

v out of the integral, we can rewrite the above equation as:

η̂2t
p→ σ2

i v
⊤

 ϵ∞
2

∫
xx⊤ dPX + (1− ϵ∞)

∫
Xi

xx⊤ dPX ā∞

[
ϵ∞
2

∫
x⊤ dPX + (1− ϵ∞)

∫
Xi

x⊤ dPX

]
ā∞

[
ϵ∞
2

∫
x dPX + (1− ϵ∞)

∫
Xi

x dPX

]
ā2∞
[
ϵ∞
2 + (1− ϵ∞

2 )P(x ∈ Xi)
]

v.

Finally, by Central Limit Theorem, we have

1√
t

t∑
s=1

I {as = i}wses
D→ Nd(0, Gi),

with

Gi = σ2
i

 ϵ∞
2

∫
xx⊤ dPX + (1− ϵ∞)

∫
Xi

xx⊤ dPX ā∞

[
ϵ∞
2

∫
x⊤ dPX + (1− ϵ∞)

∫
Xi

x⊤ dPX

]
ā∞

[
ϵ∞
2

∫
x dPX + (1− ϵ∞)

∫
Xi

x dPX

]
ā2∞
[
ϵ∞
2 + (1− ϵ∞

2 )P(x ∈ Xi)
]

 .

2. Secondly, we will show the limit of the second moment term. By Lemma 6 in Chen et al. (2021),
for ∀v = (v⊤

1 , v2)
⊤ ∈ Rd, we need to find the limit of

ξ̂t =
1

t

t∑
s=1

I {as = i}v⊤wsw
⊤
s v.

Let x ∼ PX and define w̃ as

w̃ =

{
(x⊤, 1)⊤, if v2 > 0

(x⊤, 0)⊤, if v2 ≤ 0
.

Then for any h > 0 and each s, we have

P(I(as = i)v⊤wsw
⊤
s v > h) ≤ P(v⊤wsw

⊤
s v > h) = P(∥v⊤ws∥22 > h) ≤ P(∥v⊤w̃∥22 > h),

and E(v⊤w̃w̃⊤v) ≤ v⊤11⊤vL2
w < ∞. Then by Theorem 2.19 from Hall & Heyde (1980), we

have

1

t

t∑
s=1

{
I {as = i}v⊤wsw

⊤
s v − E(I(as = i)v⊤wsw

⊤
s v
∣∣∣Hs−1)

}
= ξ̂t −

1

σ2
i

η̂2t
p→ 0.

According to the results from the first part, we have ξ̂t
p→ pi(β, γ, ā∞, κg, ϵ∞). Using Lemma 6 in

Chen et al. (2021) and Continuous Mapping Theorem, we derive(
1

t

t∑
s=1

I {as = i}v⊤wsw
⊤
s v

)−1

p→ σ2
iG

−1
i . (11)
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3. Combining results from the first two parts and using Slutsky’s Theorem, we have

√
t(θ̂i,t − θi)

D→ σ2
iG

−1
i Nd(0, Gi)G

−1
i σ2

i = Nd(0, σ
4
iG

−1
i ) = Nd(0, Si),

with

Si = σ2
i

 ϵ∞
2

∫
xx⊤ dPX + (1− ϵ∞)

∫
Xi

xx⊤ dPX ā∞

[
ϵ∞
2

∫
x⊤ dPX + (1− ϵ∞)

∫
Xi

x⊤ dPX

]
ā∞

[
ϵ∞
2

∫
x dPX + (1− ϵ∞)

∫
Xi

x dPX

]
ā2∞
[
ϵ∞
2 + (1− ϵ∞

2 )P(x ∈ Xi)
]

−1

.

4. Finally, we will show the consistency of variance estimator

∑t
s=1 I {as = i} ê2s∑t
s=1 I {as = i}

(
1

t

t∑
s=1

I {as = i}wsw
⊤
s

)−1

.

Based on (11), it is sufficient to show

σ̂2
i :=

∑t
s=1 I {as = i} ê2s∑t
s=1 I {as = i}

=

∑t
s=1 I {as = i}

{
w⊤

s (θi − θ̂i,t) + es

}2

∑t
s=1 I {as = i}

p→ σ2
i .

We will expand the quadratic term and analyze each of the three resulting components,

σ̂2
i :=

∑t
s=1 I {as = i}

[{
w⊤

s (θi − θ̂i,t)
}2

+ 2w⊤
s (θi − θ̂i,t)es + e2s

]
∑t

s=1 I {as = i}
.

By Corollary 4.1, the first term

(θi − θ̂i,t)
⊤
∑t

s=1 I {as = i}wsw
⊤
s∑t

s=1 I {as = i}
(θi − θ̂i,t) ≤ L2

w∥θi − θ̂i,t∥22
p→ 0.

Since I {as = i}wses = I {as = i}wse
(i)
s , where e(i)s represents i.i.d. random noise from Pei, and

by Corollary 4.1, θi − θ̂i,t
p→ 0, the estimation error converges to zero in probability. Furthermore,

by Lemma 1 in Chen et al. (2021), we have∑t
s=1 I {as = i}wse

(i)
s∑t

s=1 I {as = i}
p→ 0.

Thus, the second term

2(θi − θ̂i,t)
⊤
∑t

s=1 I {as = i}wse
(i)
s∑t

s=1 I {as = i}
p→ 0.

with θ̂i,t
p→ θi by Corollary 4.1. Finally, by Weak Law of Large Numbers, we have the last term∑t

s=1 I {as = i} (e(i)s )2∑t
s=1 I {as = i}

p→ E(e(i)s )2 = σ2
i .

The proof is hence completed by combining the limit of the three terms.

E.6 Regret Bound

Proof. Because R2(T ) can be trivially derived by using the same argument in Chen et al. (2021),
we focus on proving R1(T ).
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The regret R1(T ) can be bounded by

R1(T ) ≤
T−g(T )−1∑

t=1

E

∣∣∣∣∣x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

+

T∑
t=T−g(T )

E

∣∣∣∣∣∣x⊤
t (β1 − β0) +

 ∑
s∈At,s≤T

1

g(s)

 γ

∣∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}
.

For each term in the second component, we have∣∣∣∣∣∣x⊤
t (β1 − β0) +

 ∑
s∈At,s≤T

1

g(s)

 γ

∣∣∣∣∣∣ ≤
∣∣∣∣∣x⊤

t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣+
∣∣∣∣∣∣
∑

s∈At,s>T

1

g(s)
γ

∣∣∣∣∣∣ ,
then we can reorganize and bound R1(T ) as

R1(T ) ≤
T−g(T )−1∑

t=1

E

∣∣∣∣∣x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

+

T∑
t=T−g(T )

E

∣∣∣∣∣∣x⊤
t (β1 − β0) +

 ∑
s∈At,

1

g(s)

 γ

∣∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

+

T∑
t=T−g(T )

E

∣∣∣∣∣∣
∑

s∈At,s>T

1

g(s)
γ

∣∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

=

T−g(T )−1∑
t=1

E

∣∣∣∣∣x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

+

T∑
t=1

E

∣∣∣∣∣∣
∑

s∈At,s>T

1

g(s)
γ

∣∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}
.

With Assumption 4.4, i.e. κg = limt→∞
∑

s∈At

1
g(s) , then

∣∣∣∑s∈At,s>T
1

g(s)γ
∣∣∣ is bounded by some

constant, which we denote as ξg . Then, combining the first two components, we have

R1(T ) ≤
T∑

t=1

E

∣∣∣∣∣x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ I
{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}

+ ξg

T∑
t=T−g(T )

E

{
I

{
at ̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)}}
,

where the first component is O(
∑T

t=1 ϵt) by the same argument in Chen et al. (2021). Then, we
need to find the rate of the second part, which can be separated into regret from exploration

η1 = ξg

T∑
t=T−g(T )

E

{
I

{
at ̸= I

(
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1

)}}
,

and regret from estimation

η2 = ξg

T∑
t=T−g(T )

E

∣∣∣∣∣I
(
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1

)
̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)∣∣∣∣∣ .
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Since E
{
I
{
at ̸= I

(
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1
g(s)

]
γ̂t−1

)}}
= ϵt/2, η1 is bounded by

ξg
∑T

t=T−g(T ) ϵt, which is dominated by
∑T

t=1 ϵt. Use the fact that∣∣∣∣∣I
(
x⊤
t (β̂1,t−1 − β̂0,t−1) +

[∑
s∈At

1

g(s)

]
γ̂t−1

)
̸= I

(
x⊤
t (β1 − β0) +

[∑
s∈At

1

g(s)

]
γ

)∣∣∣∣∣
≤ I

{∣∣∣∣∣x⊤
t (β̂t−1 − β) +

[∑
s∈At

1

g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣ >
∣∣∣∣∣x⊤

t β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣
}
,

where β ≡ β1 − β0 and β̂t−1 ≡ β̂1,t−1 − β̂0,t−1. Then η2 is bounded by

η2 ≤ ξg

T∑
T−g(T )

E

{
I

{∣∣∣∣∣x⊤
t (β̂t−1 − β) +

[∑
s∈At

1

g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣ >
∣∣∣∣∣x⊤

t β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣
}}

.

We then split η2 into two parts:

J1 =

T∑
t=T−g(T )

∫
I

{
0 <

∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ < T− 1
4

}

× I

{∣∣∣∣∣x⊤(β̂t−1 − β) +

[∑
s∈At

1

g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣ >
∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣
}

dPX ,

J2 =

T∑
t=T−g(T )

∫
I

{∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ > T− 1
4

}

× I

{∣∣∣∣∣x⊤(β̂t−1 − β) +

[∑
s∈At

1

g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣ >
∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣
}

dPX .

Following Assumption 4.5,

J1 ≤
T∑

t=T−g(T )

∫
I

{
0 <

∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ < T− 1
4

}
dPX

≤
T∑

t=T−g(T )

MT− 1
4 = O(g(T )T− 1

4 ).

For J2, we have

J2 ≤
T∑

t=T−g(T )

∫
I

{∣∣∣∣∣x⊤β +

[∑
s∈At

1

g(s)

]
γ

∣∣∣∣∣ > T− 1
4

} ∣∣∣x⊤(β̂t−1 − β) +
[∑

s∈At

1
g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣∣x⊤β +
[∑

s∈At

1
g(s)

]
γ
∣∣∣ dPX

≤ T
1
4

T∑
t=T−g(T )

∫ ∣∣∣∣∣x⊤(β̂t−1 − β) +

[∑
s∈At

1

g(s)

]
(γ̂t−1 − γ)

∣∣∣∣∣ dPX

≤ T
1
4

T∑
t=T−g(T )

C1

∥∥∥((β̂t − β)⊤, γ̂1,t − γ1

)⊤ ∥∥∥
1
,

where C1 is a positive constant related to Lx and the upper bound of
∑

s∈At

1
g(s) . By Theorem

4.2, Because there is no overlap between the data used for deriving (β̂⊤
1,t, γ̂1)

⊤ and β̂0,t, the joint
distribution of (β̂⊤

1,t, β̂
⊤
0,t, γ̂1)

⊤ is asymptotically normal, which is

√
t

β̂1,t − β1

β̂0,t − β0

γ̂1,t − γ1

 D→ Nd(0, Q),
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Denote β1 − β0 as β, and β̂1,t − β̂0,t as β̂t. Then, by the Slutsky’s Theorem, we are able to derive
the asymptotic distribution of (β̂⊤

t , γ̂1)
⊤, which is given by

√
t

(
β̂t − β
γ̂1,t − γ1

)
D→ Nd(0, H),

where Q and H are two symmetric matrices and can be derived trivially according to S0 and S1.

Then we have
(
(β̂t − β)⊤, γ̂1,t − γ1

)⊤
= Op(t

− 1
2 ), so

∥∥∥∥((β̂t − β)⊤, γ̂1,t − γ1

)⊤∥∥∥∥
1

= Op(t
− 1

2 ),

thus the upper bound becomes

J2 ≤ C1T
1
4

(
Op(T

1
2 − (T − g(T ))

1
2 )
)
.

By applying

T
1
2 − (T − g(T ))

1
2 =

T − (T − g(T ))

T
1
2 + (T − g(T ))

1
2

=
g(T )

T
1
2 + (T − g(T ))

1
2

,

we have Op(T
1
2 − (T − g(T ))

1
2 ) = Op(g(T )T

− 1
2 ). Thus J2 = Op(g(T )T

− 1
4 ). Then η2 =

J1 + J2 = Op(g(T )T
− 1

4 ). Therefore, R1(T ) ≤ η1 + η2 = Op(
∑T

t=1 ϵt + g(T )T− 1
4 ). Besides,

under Assumption 4.3, considering the force pulls regret O(
√
T ) in practice, which is dominated by

O
(∑T

t=1 ϵt

)
, we obtain the regret bound O(

∑T
t=1 ϵt + g(T )T− 1

4 ).

E.7 Optimal Policy for Other Working Models

Here, we demonstrate how to derive the optimal policy for alternative working models, as discussed
in the Discussion section, using backward inductive reasoning (see, e.g., Chakraborty & Murphy,
2014).

1. µ(xt, āt, at) = E(yt|xt, āt, at) = x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ0 + atāt(γ1 − γ0).

Solution.
T∑

t=1

µ(xt, āt, at) =

T∑
t=1

x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ0 + atāt(γ1 − γ0).

Using backward induction, we assume that the optimal decisions a1, a2, . . . , aT−1 have aleady been
determined. The optimal action a∗T is then selected to maximize the cumulative reward:

T−1∑
t=1

µ(xt, āt, at) + µ(xT , āT , aT ).

Because a1, a2, . . . , aT−1 are determined, the corresponding interference actions ā1, ā2, . . . , āT−1,
āT are also fixed. We denote β = β1 − β0 and γ = γ1 − γ0 for simplicity. So the optimal action at
time T is given by,

a∗T = argmax
aT

aTx
⊤
T β + aT āT γ = I

{
x⊤
T β + āT γ ≥ 0

}
.

Then we will select a∗T−1 to maximize the expected outcome that would result from choosing the
option at time T optimally given the history available at that point. Suppose we have deter-
mined the decisions a1, a2, . . . , aT−2. We plug in āT = 1

g(T )

[(∑T−2
s=T−g(T ) as

)
+ aT−1

]
and

a∗T = I
{
x⊤
T β + āT γ ≥ 0

}
= I

{
x⊤
T β + 1

g(T )

[(∑T−2
s=T−g(T ) as

)
+ aT−1

]
γ ≥ 0

}
. Then we need

to solve:

argmax
aT−1

T−2∑
t=1

µ(xt, āt, at) + µ(xT−1, āT−1, aT−1)

+ µ

xT ,
1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 , I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 γ ≥ 0


 .
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Removing all terms that are unrelated to aT−1, we obtain:

argmax
aT−1

aT−1

(
x⊤
T−1β + āT−1γ

)
+ I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 γ ≥ 0

x⊤
T β

+
1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 γ0

+ I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 γ ≥ 0

 1

g(T )

 T−2∑
s=T−g(T )

as

+ aT−1

 γ.

Plugging in aT−1 = 1 and aT−1 = 0 and comparing the results, we obtain the solution:

a∗T−1 =I {τ1 ≥ τ0} , (12)

where τ1 with aT−1 = 1 and τ0 with aT−1 = 0. τ1 is given by,

τ1 =x⊤
T−1β + āT−1γ + I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

+ 1

 γ ≥ 0

x⊤
T β

+
1

g(T )

 T−2∑
s=T−g(T )

as

+ 1

 γ0

+ I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

+ 1

 γ ≥ 0

 1

g(T )

 T−2∑
s=T−g(T )

as

+ 1

 γ.

(13)

τ0 is given by,

τ0 =I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

 γ ≥ 0

x⊤
T β

+
1

g(T )

 T−2∑
s=T−g(T )

as

 γ0

+ I

x⊤
T β +

1

g(T )

 T−2∑
s=T−g(T )

as

 γ ≥ 0

 1

g(T )

 T−2∑
s=T−g(T )

as

 γ.

(14)

We observe that the optimal action at time T − 1 is a nested indicator function. Similarly, the
optimal actions for times T − 2, . . . , 1 can be determined through the same recursive process.
However, when the termination time T is unknown, deriving a general form for the optimal policy
becomes infeasible.

2. µ(xt, āt, at) = E(yt|xt, āt, at) = x⊤
t β0 + atx

⊤
t (β1 − β0) + ātγ0 + ātx

⊤
t γ
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Solution. We denote β = β1 − β0.

T∑
t=1

µ(xt, āt, at) =

T∑
t=1

x⊤
t β0 + atx

⊤
t β + ātγ0 + ātx

⊤
t γ

=

T∑
t=1

x⊤
t β0 + atx

⊤
t β +

1

g(t)

 t−1∑
s=t−g(t)

as

 γ0 +

 t−1∑
s=t−g(t)

asx
⊤
s

γ


=

T−g(T )−1∑
t=1

x⊤
t β0 + at

{
x⊤
t β +

[∑
s∈At

1

g(s)

]
γ0 +

[∑
s∈At

1

g(s)
x⊤
s

]
γ

}

+

T∑
t=T−g(T )

x⊤
t β0 + at

x⊤
t β +

 ∑
s∈At,s≤T

1

g(s)

 γ0 +

 ∑
s∈At,s≤T

1

g(s)
x⊤
s

γ

 .

The optimal action should be

a∗t =

I
{
x⊤
t β +

[∑
s∈At

1
g(s)

]
γ0 +

[∑
s∈At

1
g(s)x

⊤
s

]
γ ≥ 0

}
, if 1 ≤ t ≤ T − g(T )− 1

I
{
x⊤
t β +

[∑
s∈At,s≤T

1
g(s)

]
γ0 +

[∑
s∈At,s≤T

1
g(s)x

⊤
s

]
γ ≥ 0

}
, if T − g(T ) ≤ t ≤ T

.

(15)
We observe that the optimal action at time t depends on feature contextual features that are not
available t. For example, for 1 ≤ t ≤ T − g(T ) − 1, a∗t is influenced by xs indices satisfying
s− g(s) ≤ t ≤ s− 1. If interference scale is fixed as N . Then the optimal actions turn to be:

a∗t =

I
{
x⊤
t β + γ0 +

1
N

[∑t+N
s=t+1 x

⊤
s

]
γ ≥ 0

}
, if 1 ≤ t ≤ T −N − 1

I
{
x⊤
t β + T−t

N γ0 +
1
N

[∑T
s=t+1 x

⊤
s

]
γ ≥ 0

}
, if T −N ≤ t ≤ T

. (16)


