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Abstract

To generate data from trained diffusion models,
most inference algorithms, such as DDPM (Ho
et al., 2020), DDIM (Song et al., 2020a), and other
variants, rely on discretizing the reverse SDEs or
their equivalent ODEs. In this paper, we view
such approaches as decomposing the entire de-
noising diffusion process into several segments,
each corresponding to a reverse transition ker-
nel (RTK) sampling subproblem. Specifically,
DDPM uses a Gaussian approximation for the
RTK, resulting in low per-subproblem complex-
ity but requiring a large number of segments (i.e.,
subproblems), which is conjectured to be inef-
ficient. To address this, we develop a general
RTK framework that enables a more balanced
subproblem decomposition, resulting in Õ(1) sub-
problems, each with strongly log-concave targets.
We then propose leveraging two fast sampling al-
gorithms, the Metropolis-Adjusted Langevin Al-
gorithm (MALA) and Underdamped Langevin
Dynamics (ULD), for solving these strongly log-
concave subproblems. This gives rise to the RTK-
MALA and RTK-ULD algorithms for diffusion
inference. In theory, we further develop the con-
vergence guarantees for RTK-MALA and RTK-
ULD in total variation (TV) distance: RTK-ULD
can achieve ϵ target error within Õ(d1/2ϵ−1) un-
der mild conditions, and RTK-MALA enjoys a
O(d2 log(d/ϵ)) convergence rate under slightly
stricter conditions. These theoretical results sur-
pass the state-of-the-art convergence rates for dif-
fusion inference and are well supported by numer-
ical experiments.
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1. Introduction
Generative models have become a core task in modern ma-
chine learning, where the neural networks are employed
to learn the underlying distribution from training examples
and generate new data points. Among various generative
models, denoising diffusions have produced state-of-the-art
performance in many domains, including image and text
generation (Dhariwal & Nichol, 2021; Austin et al., 2021;
Ramesh et al., 2022; Saharia et al., 2022), text-to-speech
synthesis (Popov et al., 2021), and scientific tasks (Trippe
et al., 2023; Watson et al., 2023; Boffi & Vanden-Eijnden,
2023). The fundamental idea involves incrementally adding
noise and gradually transform the data distribution to a prior
distribution that is easier to sample from, e.g., Gaussian
distribution. Then, diffusion models parameterize and learn
the score of the noised distributions to progressively denoise
samples from priors and recover the data distribution (Vin-
cent, 2011; Song & Ermon, 2019).

Under this paradigm, generating data in denoising diffusion
models involves solving a series of sampling subproblems,
i.e., generating samples from the distribution after one-step
denoising. To this end, DDPM (Ho et al., 2020), one of
the most popular sampling methods in diffusion models,
has been developed for this purpose. DDPM uses Gaus-
sian processes with carefully designed mean and covariance
to approximate the solutions to these sampling subprob-
lems. By sequentially stacking a series of Gaussian pro-
cesses, DDPM successfully generates high-quality samples
that follow the data distribution. The empirical success of
DDPM has immediately triggered various follow-up work
(Song et al., 2020b; Lu et al., 2022), aiming to accelerate
the inference process and improve the generation quality.
Alongside rapid empirical research on diffusion models and
DDPM-like sampling algorithms, theoretical studies have
emerged to analyze the convergence and sampling error of
DDPM. In particular, (Lee et al., 2022; Li et al., 2023; Chen
et al., 2023b;a; Benton et al., 2024; Chen et al., 2024) have
established polynomial convergence bounds, in terms of
dimension d and target sampling error ϵ, for the generation
process under various assumptions. A typical bound under
minimal data assumptions on the score of the data distribu-
tion is provided by (Chen et al., 2023b; Benton et al., 2024),
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which establishes an Õ(dϵ−2) score estimation guarantees
to sample from data distribution within ϵ-sampling error in
the Total Variation (TV) distance.

In essence, the denoising diffusion process can be ap-
proached through various decompositions of sampling sub-
problems, where the overall complexity depends on the
number of these subproblems multiplied by the complexity
of solving each one. Within this framework, DDPM can be
regarded as a specific solver for the denoising diffusion pro-
cess that heavily prioritizes the simplicity of subproblems
over their quantity. In particular, it adopts simple one-step
Gaussian approximations for the subproblems, with O(1)
computation complexity, but needs to deal with a relatively
large number—approximately O(dϵ−2)—of target subprob-
lems to ensure the cumulative sampling error is bounded
by ϵ in TV distance. This imbalance raises the question
of whether the DDPM-like approaches stand as the most
efficient algorithm, considering the extensive potential sub-
problem decompositions of the denoising diffusion process.
We therefore aim to:

accelerate the inference of diffusion models via a
more balanced subproblem decomposition in the
denoising process.

In this work, we propose a novel framework called reverse
transition kernel (RTK) to achieve exactly that. Our ap-
proach considers a generalized subproblem decomposition
of the denoising process, where the difficulty of each sam-
pling subproblem and the total number of subproblems are
determined by the step size parameter η. Unlike DDPM,
which requires setting η = ϵ2, resulting in approximately
Õ(1/η) = Õ(1/ϵ2) subproblems, our framework allows η
to be feasible in a broader range. Furthermore, we demon-
strate that a more balanced subproblem decomposition can
be attained by carefully selecting η = Θ(1) as a constant,
resulting in approximately Õ(1) sampling subproblems,
with each target distribution being strongly log-concave.
This nice property further enables us to efficiently solve
the sampling subproblems using well-established accelera-
tion techniques, such as Metropolis Hasting step and under-
damped discretization, without encountering many subprob-
lems. Consequently, our proposed framework facilitates
the design of provably faster algorithms than DDPM for
performing diffusion inference. Our contributions can be
summarized as follows.

• We propose a flexible framework that enhances the effi-
ciency of diffusion inference by balancing the quantity
and hardness of RTK sampling subproblems used to seg-
ment the entire denoising diffusion process. Specifically,
we demonstrate that with a carefully designed decomposi-
tion, the number of sampling subproblems can be reduced

to approximately Õ(1), while ensuring that all RTK tar-
gets exhibit strong log-concavity. This capability allows
us to seamlessly integrate a range of well-established sam-
pling acceleration techniques, thereby enabling highly
efficient algorithms for diffusion inference.

• Building upon the developed framework, we implement
the RTK using the Metropolis-Adjusted Langevin Algo-
rithm (MALA), making it the first attempt to adapt this
highly accurate sampler for diffusion inference. Under
slightly stricter assumptions on the estimation errors of
the energy difference and score function, we demonstrate
that RTK-MALA can achieve linear convergence with
respect to the sampling error ϵ, specifically O(log(1/ϵ)),
which significantly outperforms the Õ(1/ϵ2) convergence
rate of DDPM (Chen et al., 2023b; Benton et al., 2024).
Additionally, we consider the practical diffusion model
where only the score function is accessible and develop
a score-only RTK-MALA algorithm. We further prove
that the score-only RTK-MALA algorithm can achieve an
error ϵ with a complexity of Õ(ϵ−2/(u−1) · 2u), where u
can be an arbitrarily large constant, provided the energy
function satisfies the u-th order smoothness condition.

• We further implement Underdamped Langevin Dynamics
(ULD) within the RTK framework. The resulting RTK-
ULD algorithm achieves a state-of-the-art complexity of
Õ(d1/2ϵ−1) for both d and ϵ dependence under minimal
data assumptions, i.e., Lipschitz condition for the ground
truth score function. Compared with the Õ(dϵ−2) com-
plexity guarantee for DDPM, it improves the complexity
with an Õ(d1/2ϵ−1) factor. This result also matches the
state-of-the-art convergence rate of the ODE-based meth-
ods (Chen et al., 2024), though those methods require
Lipschitz conditions for both the ground truth score func-
tion and the score neural network.

2. Preliminaries
In this section, we first introduce the notations used in sub-
sequent sections. Then, we present several distinct Markov
processes to demonstrate the procedures for adding noise to
existing data and generating new data. Besides, we specify
the assumptions required for the target distribution in our
algorithms and analysis.

Notations. We say a complexity h : R → R to be h(n) =
O(nk) or h(n) = Õ(nk) if the complexity satisfies h(n) ≤
c · nk or h(n) ≤ c · nk[log(n)]k′ for absolute contant c, k
and k′. We use the lowercase bold symbol x to denote a
random vector, and the lowercase italicized bold symbol
x represents a fixed vector. The standard Euclidean norm
is denoted by ∥ · ∥. The data distribution is presented as
p∗ ∝ exp(−f∗). Besides, we define two Markov processes
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Rd, i.e.,

{xt}t∈[0,T ] ,
{

x←kη

}
k∈{0,1,...,K} , where T = Kη.

In the above notations, T presents the mixing time required
for the data distribution to converge to specific priors, K
denotes the iteration number of the generation process, and
η signifies the corresponding step size. Further details of
the two processes are provided below.

Adding noise to data with the forward process. The
first Markov process {xt} corresponds to generating pro-
gressively noised data from p∗. In most denoising diffu-
sion models, {xt} is an Ornstein–Uhlenbeck (OU) process
shown as follows

dxt = −xtdt +
√

2dBt where x0 ∼ p∗ ∝ exp(−f∗). (1)

If we denote underlying distribution of xt as pt ∝ exp(−ft)
meaning f0 = f∗, the forward OU process provides an
analytic form of the transition kernel, i.e.,

pt′|t(x′|x) =
pt′,t(x′, x)

pt(x) ∝ exp

−
∥∥∥x′ − e−(t′−t)x

∥∥∥2

2 (1 − e−2(t′−t))


(2)

for any t′ ≥ t, where pt′,t denotes the joint distribution
of (xt′ ,xt). According to the Fokker-Planck equation, we
know the stationary distribution for SDE. (1) is the standard
Gaussian distribution.

Denoising generation with a reverse SDE. Various theo-
retical works (Lee et al., 2022; Li et al., 2023; Chen et al.,
2023b;a; Benton et al., 2024) based on DDPM (Ho et al.,
2020) consider the generation process of diffusion models
as the reverse process of SDE. (1) denoted as {x←t }. Ac-
cording to the Doob’s h-Transform, the reverse SDE, i.e.,
{x←t }, follows from

dx←t = (x←t + 2∇ ln pT−t(x←t )) dt +
√

2dBt, (3)

whose underlying distribution p←t satisfies pT−t = p←t .
Similar to the definition of transition kernel shown in Eq. 2,
we define p←t′|t(x′|x) = p←t′,t(x′,x)/p←t (x) for any t′ ≥
t ≥ 0 and name it as reverse transition kernel (RTK).

To implement SDE. (3), diffusion models approximate the
score function ∇ ln pt with a parameterized neural network
model, denoted by sθ,t, where θ denotes the network pa-
rameters. Then, SDE. (3) can be implemented by

dxt = (xt + 2sθ,T−kη(xkη)) dt +
√

2dBt (4)

for any t ∈ [kη, (k + 1)η) with a standard Gaussian initial-
ization, x0 ∼ N (0, I). Eq. (4) has the following closed
solution

x(k+1)η = eη ·xkη −2(1−eη)sθ,T−kη(xkη)+
√

e2η − 1·ξ (5)

where ξ ∼ N (0, I). This is exactly the DDPM algorithm.

DDPM approximately samples the reverse transition
kernel. DDPM can also be viewed as an approximated
sampler for RTK, i.e., p←t′|t(x′|x) for some t′ > t. In par-
ticular, the update of DDPM at the iteration k applies the
Gaussian process p(k+1)η|kη(·|x) defined as

N
(
eηx − 2(1 − eη)sθ,T−kη(x), (e2η − 1) · I

)
(6)

to approximate the distribution p←(k+1)η|kη(·|x) (Ho et al.,
2020). Specifically, by the chain rule of KL divergence,
the gap between the data distribution p∗ and the generated
distribution pT satisfies

KL
(
pT

∥∥p∗
)

≤ KL
(
x0
∥∥p←0

)
+

K−1∑
k=0

Ex∼pkη

[
KL
(
p(k+1)η|kη(·|x)

∥∥p←(k+1)η|kη(·|x)
)]

,

(7)
where K = T/η is the total number of iterations. For
DDPM, to guarantee a small sampling error, we need to use
a small step size η to ensure that p(k+1)η|kη is sufficiently
close to p←(k+1)η|kη. Then, the required iteration numbers
K = T/η will be large and dominate the computational
complexity. In Chen et al. (2023b; 2022), it was shown that
one needs to set η = Õ(ϵ2) to achieve ϵ sampling error in
TV distance (assuming no score estimation error) and the
total complexity is K = Õ(1/ϵ2).

Intuition for General Reverse Transition Kernel. As
previously mentioned, DDPM approximately solves RTK
sampling subproblems using a small step size η. While
this allows for efficient one-step implementation, it neces-
sitates a large number of RTK sampling problems. This
naturally creates a trade-off between the quantity of RTK
sampling problems and the complexity of solving them. To
address this, one can consider a larger step size η, which
results in a relatively more challenging RTK sampling tar-
get p←(k+1)η|kη and a reduced number of sampling problems
(K = T/η). By examining a general choice for the step
size η, the generation process of diffusion models can be
depicted through a comprehensive framework of reverse
transition kernels, which will be explored in depth in the
following section. This framework enables the design of
various decompositions for RTK sampling problems and
algorithms to solve them, resulting in an extensive family
of generation algorithms for diffusion models (that encom-
passes DDPM). Consequently, this also offers the poten-
tial to develop faster algorithms with lower computational
complexities, e.g., applying fast sampling algorithms for
sampling the RTK, i.e., p←(k+1)η|kη with a properly large η.

General Assumptions. Similar to the analysis of
DDPM (Chen et al., 2023b;a), we make the following as-
sumptions on the data distribution p∗ that will be utilized in
the theory.

3



Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference

[A1] For all t ≥ 0, the score ∇ ln pt is L-Lipschitz.

[A2] The second moment of the target distribution p∗ is
upper bounded, i.e., Ep∗

[
∥·∥2

]
= m2

2.

Assumption [A1] is standard one in diffusion literature and
has been used in many prior works (Block et al., 2020; Chen
et al., 2022; Lee et al., 2022; Chen et al., 2024). More-
over, we do not require the isoperimetric conditions, e.g.,
the establishment of the log-Sobolev inequality and the
Poincaré inequality for the data distribution p∗ as (Lee et al.,
2022), and the convex conditions for the energy function f∗
as (Block et al., 2020). Therefore, our assumptions cover
a wide range of highly non-log-concave data distributions.
We emphasize that Assumption [A1] may be relaxed only
to assume the target distribution is smooth rather than the
entire OU process, based on the technique in (Chen et al.,
2023a) (see rough calculations in their Lemmas 12 and 14).
We do not include this additional relaxation in this paper to
clarify our analysis. Assumption [A2] is one of the weak-
est assumptions being adopted for the analysis of posterior
sampling.

3. General Framework of Reverse Transition
Kernel

This section introduces the general framework of Reverse
Transition Kernel (RTK). As mentioned in the previous
section, the framework is built upon the general setup of
segmentation: each segment has length η; within each seg-
ment, we generate samples according to the RTK target
distributions. Then, the entire generation process in dif-
fusion models can be considered as the combination of a
series of sampling subproblems. In particular, the inference
process via RTK is displayed in Alg. 1.

Algorithm 1 INFERENCE WITH REVERSE TRANSITION
KERNEL (RTK)

1: Input: Initial particle x̂0 sampled from the standard
Gaussian distribution, Iteration number K, Step size η,
required convergence accuracy ϵ;

2: for k = 0 to K − 1 do
3: Draw sample x̂(k+1)η with MCMCs from

p̂(k+1)η|kη(·|x̂kη) which is closed to the ground-truth
reverse transition kernel, i.e.,

p←(k+1)η|kη(z|x̂kη) ∝ exp (−g(z))

:= exp

(
−f(K−k−1)η(z) −

∥∥x̂kη − z · e−η
∥∥2

2(1 − e−2η)

)
.

(8)
4: end for
5: return x̂K .

The implementation of RTK framework. We begin with
a new Markov process {x̂kη}k=0,1,...,K satisfying Kη = T ,
where the number of segments K, segment length η, and
length of the entire process T correspond to the definition
in Section 2. Consider the Markov process {x̂kη} as the
generation process of diffusion models with underlying dis-
tributions {p̂kη}, we require p̂0 = N (0, I) and p̂Kη ≈ p∗,
which is similar to the Markov process {x←kη}. In order to
make the underlying distribution of output particles close
to the data distribution, we can generate x̂kη with Alg. 1,
which is equivalent to the following steps:

• Initialize x̂0 with an easy-to-sample distribution, e.g.,
N (0, I), which is closed to pKη .

• Update particles by drawing samples from
p̂(k+1)η|kη(·|x̂kη), which satisfies

p̂(k+1)η|kη(·|x̂kη) ≈ p←(k+1)η|kη(·|x̂kη).

Under these conditions, if p̂kη(z) ≈ p(K−k)η(z) , then we
have

p̂(k+1)η(z) =
〈
p̂(k+1)η|kη(z|·), p̂kη(·)

〉
≈
〈
p←(k+1)η|kη(z|·), p←kη(·)

〉
= p(k+1)η(z)

for any k ∈ {0, 1, . . . ,K}. This means we can imple-
ment the generation of diffusion models by solving a
series of sampling subproblems with target distributions
p←(k+1)η|kη(·|x̂kη).

The closed form of reverse transition kernels. To imple-
ment Alg. 1, the most critical problem is determining the
analytic form of RTK p←t′|t(x′|x) for and t′ ≥ t ≥ 0 which
is shown in the following lemma whose proof is deferred to
Appendix B.
Lemma 3.1. Suppose a Markov process {xt} with SDE. 1,
then for any t′ > t, we have

p←T−t|T−t′(x|x′) = pt|t′(x|x′)

∝ exp

−ft(x) −

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1 − e−2(t′−t))

 .

The first critical property shown in this Lemma is that RTK
pt|t′ is a perturbation of pt with a l2 regularization. This
means if the score of pt, i.e., ∇ft, can be well-estimated, the
score of RTK, i.e., ∇ log pt|t′ can also be approximated with
high accuracy. Moreover, in the diffusion model, ∇ft =
∇ log pt is exactly the score function at time t, which is
approximated by the score network function sθ,t(x), then

− ∇ log pt|t′(x|x′) = ∇ft(x) + e−2(t′−t)x − e−(t′−t)x′

1 − e−2(t′−t)

≈ sθ,t(x) + e−2(t′−t)x − e−(t′−t)x′

1 − e−2(t′−t) ,
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which can be directly calculated with a single query of
sθ,t(x). The second critical property of RTK is that we can
control the spectral information of its score by tuning the
gap between t′ and t. Specifically, considering the target
distribution, i.e., p(K−k−1)η|(K−k)η for the k-th transition,
the Hessian matrix of its energy function satisfies

− ∇2 log p(K−k−1)η|(K−k)η

= ∇2f(K−k−1)η(x) + e−2η

1 − e−2η
· I.

According to Assumption [A1], the Hessian

∇2f(K−k−1)η(x) = −∇2 log p(K−k−1)η

can be lower bounded by −LI , which implies that RTK
p(K−k−1)η|(K−k)η will be L-strongly log-concave and 3L-
smooth when the step size is set η = 1/2 · log(1 + 1/2L).
This further implies that the targets of all subsampling prob-
lems in Alg. 1 will be strongly log-concave, which can
be sampled very efficiently by various posterior sampling
algorithms.

Sufficient conditions for the convergence. According
to Pinsker’s inequality and Eq. (7), the we can obtain the
following lemma that establishes the general error decom-
position for Alg.1.
Lemma 3.2. For Alg 1, we have

TV (p̂Kη, p∗) ≤
√

(1 + L2)d + ∥∇f∗(0)∥2 · exp(−Kη)

+

√√√√1
2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(

p̂(k+1)η|kη(·|x̂)
∥∥p←(k+1)η|kη(·|x̂)

)]
for any K ∈ N+ and η ∈ R+.

It is worth noting that the choice of η represents a trade-off
between the number of subproblems divided throughout the
entire process and the difficulty of solving these subprob-
lems. By considering the choice η = 1/2 · log(1 + 1/2L),
we can observe two points: (1) the sampling subproblems
in Alg. 1 tend to be simple, as all RTK targets, presented in
Lemma 3.1, can be provably strongly log-concave; (2) the
total number of subproblems is K = T/η = Õ(1), which
is not large. Conversely, when considering a larger η that
satisfies η ≫ log(1 + 1/L), the RTK target will no longer
be guaranteed to be log-concave, resulting in high computa-
tional complexity, potentially even exponential in d, when
solving the corresponding sampling subproblems. On the
other hand, if a much smaller step size η = o(1) is consid-
ered, the target distribution of the sampling subproblems
can be easily solved, even with a one-step Gaussian process.
However, this will increase the total number of sampling
subproblems, potentially leading to higher computational
complexity.

Therefore, we will consider the setup η = 1/2 · log(1 +
1/2L) in the remaining part of this paper. Now, the re-
maining task, which will be discussed in the next section,
would be designing and analyzing the sampling algorithms
for implementing all iterations of Alg. 1, i.e., solving the
subproblems of RTK.

4. Implementation of RTK inner loops
In this section, we outline the implementation of Step 1
in the RTK algorithm, which aims to solve the sam-
pling subproblems with strong log-concave targets, i.e.,
p←(k+1)η|kη(·|x̂kη) ∝ exp(−g). Specifically, we employ two
MCMC algorithms, i.e., the Metropolis-adjusted Langevin
algorithm (MALA) and underdamped Langevin dynamics
(ULD). For each algorithm, we will first introduce the de-
tailed implementation, combined with some explanation
about notations and settings to describe the inner sampling
process. After that, we will provide general convergence
results and discuss them in several theoretical or practical
settings. Besides, we will also compare our complexity
results with the previous ones when achieving the conver-
gence of TV distance to show that the RTK framework
indeed obtains a better complexity by balancing the number
and complexity of sampling subproblems.

RTK-MALA. Alg. 2 presents a solution employing
MALA for the inner loop. When it is used to solve the
k-th sampling subproblem of Alg. 1, x0 is equal to x̂kη

defined in Section 3 and used to initialize particles iterat-
ing in Alg. 2. In Alg. 2, we consider the process {zs}S

s=0
whose underlying distribution is denoted as {µs}S

s=0. Al-
though we expect µS to be close to the target distribution
p←(k+1)η|kη(·|x0), in real practice, the output particles zS

can only approximately follow p←(k+1)η|kη(·|x0) due to in-
evitable errors. Therefore, these errors should be explained
in order to conduct a meaningful complexity analysis of the
implementable algorithm. Specifically, Alg. 2 introduces
two intrinsic errors:

[E1] Estimation error of the score function: we assume a
score estimator, e.g., a well-trained diffusion model,
sθ, which can approximate the score function with an
ϵscore error, i.e., ∥sθ,t(z) − ∇ log pt(z)∥ ≤ ϵscore for
all z ∈ Rd and t ∈ [0, T ].

[E2] Estimation error of the energy function difference: we
assume an energy difference estimator r which can
approximate energy difference with an ϵenergy error,
i.e., |rt(z′, z) + log pt(z′) − log pt(z)| ≤ ϵenergy for
all z, z′ ∈ Rd.

Under these settings, we provide a general convergence
theorem for Alg. 2. To clearly convey the convergence
properties, we only show an informal version.
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Algorithm 2 MALA/PROJECTED MALA FOR RTK IN-
FERENCE

1: Input: Returned particle of the previous iteration x0,
current iteration number k, inner iteration number S,
inner step size τ , required convergence accuracy ϵ;

2: Draw the initial particle z0 from

µ0(dz)
dz

∝ exp
(

−L∥z∥2 − ∥x0 − e−ηz∥2

2(1 − e−2η)

)
.

3: for s = 0 to S − 1 do
4: Draw a sample z̃s from the Gaussian distribution

N (zs − τ · sθ(zs), 2τI);
5: if zs+1 ̸∈ B(zs, r) ∩ B(0, R) then
6: zs+1 = zs; {This condition step is only activated

for Projected MALA.}
7: continue;
8: end if
9: Calculate the accept rate as

a(z̃s − (zs − τ · sθ(zs)), zs)

= min
{

1, exp
(

r(zs, z̃s) + ∥z̃s − zs + τ · sθ(zs)∥2

4τ

−∥zs − z̃s + τ · sθ(z̃s)∥2

4τ

)}
;

10: Update the particle zs+1 = z̃s with probability a,
otherwise zs+1 = zs.

11: end for
12: return zS ;

Theorem 4.1 (Informal version of Theorem C.19). Under
Assumption [A1]–[A2], for Alg. 1, we choose

η = 1
2 log 2L + 1

2L
, K = 4L · log (1 + L2)d + ∥∇f∗(0)∥2

ϵ2

and implement Step 3 of Alg. 1 with Alg. 2. Suppose the
score [E1], energy [E2] estimation errors and the inner step
size τ satisfy

ϵscore = O(ρd−1/2), ϵenergy = O(ρτ1/2),
τ = Õ

(
L−2 · (d+m2

2 + Z2)−1) ,
and the hyperparameters, i.e., R and r, are chosen properly.
We have

TV (p̂Kη, p∗) ≤Õ(ϵ) + exp
(
O(L(d + m2

2))
)

·
(

1 − ρ2

4 · τ

)S

+ Õ
(

Ld1/2ϵscore

ρ

)
+ Õ

(
Lϵenergy

ρτ1/2

)
(9)

where ρ is the Cheeger constant of a truncated inner target
distribution exp(−g(z))1[z ∈ B(0, R)] and Z denotes the
maximal l2 norm of particles appearing in Alg. 1.

It should be noted that the choice of η choice ensures the
L strong log-concavity of target distribution exp(−g(z)),
which means its Cheeger constant is also L. Although
the Cheeger constant ρ in the second term of Eq. 9
corresponding to truncated exp(−g(z)) should also be
near L intuitively, current techniques can only provide a
loose lower bound at an O(

√
L/d)-level (proven in Corol-

lary C.10). While in both cases above, the Cheeger con-
stant is independent with ϵ. Combining this fact with
an ϵ-independent choice of inner step sizes τ , the sec-
ond term of Eq. 9 will converge linearly with respect to
ϵ. As for the diameter Z of particles used to upper bound
τ , though it may be unbounded in the standard imple-
mentation of Alg. 2, Lemma C.20 can upper bound it
with Õ

(
L3/2(d+m2

2)ρ−1) under the projected version of
Alg. 2.

Additionally, to require the final sampling error to satisfy
TV (p̂Kη, p∗) ≤ Õ(ϵ), Eq. 9 shows that the score and en-
ergy difference estimation errors should be ϵ-dependent and
sufficiently small, where ϵscore corresponding to the training
loss can be well-controlled. However, obtaining a highly
accurate energy difference estimation (requiring a small
ϵenergy) is hard with only diffusion models. To solve this
problem, we can introduce a neural network energy esti-
mator similar to (Xu & Chi, 2024) to construct r(z′, z, t),
which induces the following complexity describing the calls
of the score estimation.

Corollary 4.2 (Informal version of Corollary C.21). Sup-
pose the estimation errors of score and energy difference
satisfy

ϵscore ≤ ρϵ

Ld1/2 and ϵenergy ≤ ρϵ

L2 · (d1/2 +m2 + Z)
,

If we implement Alg. 1 with the projected version of
Alg. 2 with the same hyperparameter settings as Theo-
rem 4.1, it has TV (p̂Kη, p∗) ≤ Õ(ϵ) with an O(L4ρ−2 ·(
d+m2

2
)2
Z2 · log(d/ϵ)) complexity.

Considering the loose bound for both ρ and Z, the com-
plexity will be at most Õ(L5(d+m2

2)6) which is the first
linear convergence w.r.t. ϵ result for the diffusion inference
process.

Score-only RTK-MALA. However, the parametric en-
ergy function may not always exist in real practice. We
consider a more practical case where only the score esti-
mation is accessible. In this case, we will make use of
estimated score functions to approximate the energy differ-
ence, leading to the score-only RTK-MALA algorithm. In
particular, recall that the energy difference function takes

6
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the following form:

g(z′) − g(z) = − log p(K−k−1)η(z′) +

∥∥x0 − z′ · e−η
∥∥2

2(1 − e−2η)

+ log p(K−k−1)η(z) −

∥∥x0 − z · e−η
∥∥2

2(1 − e−2η) .

Since the quadratic term can be obtained exactly, we
only need to estimate the energy difference. Then
let f(z) = − log p(K−k−1)η(z) and denote h(t) =
f ((z′ − z) · t+ z), the energy difference g(z′)−g(z) can
be reformulated as

h(1) − h(0) =
∑
i=1

h(i)(0)
i! and h(i)(t) := dih(t)

(dt)i
,

where we perform the standard Taylor expansion at the point
t = 0. Then, we only need the derives of hi(0), which can
be estimated using only the score function. For instance, the
h(1)(t) can be estimated with score estimations:

h(1)(t) = ∇f((z′ − z) · t+ z) · (z′ − z)
≈ h̃(1)(t) := sθ((z′ − z) · t+ z) · (z′ − z).

Moreover, regarding the high-order derivatives, we can
recursively perform the approximation: h̃(i+1)(0) =
(h̃(i)(∆t) − h̃(i)(0))/∆t. Consider performing the approxi-
mation up to u-order derivatives, we can get the approxima-
tion of the energy difference:

r(K−k−1)η(z′, z) :=
u∑

i=1

h̃(i)(0)
i! .

Then, the following corollary states the complexity of the
score-only RTK-MALA algorithm.

Corollary 4.3. Suppose the estimation errors of the score
satisfies ϵscore ≪ ρϵ/(Ld1/2), and the log-likelihood
function of pt has a bounded u-order derivative, e.g.,∥∥∇(u)f(z)

∥∥ ≤ L, we have a non-parametric estimation
for log-likelihood to make we have TV (p̂Kη, p∗) ≤ Õ(ϵ)
with a complexity shown as follows

Õ
(
L4ρ−3 ·

(
d+m2

2
)2
Z3 · ϵ−2/(u−1) · 2u

)
.

This result implies that if the energy function is infinite-order
Lipschitz, we can nearly achieve any polynomial order con-
vergence w.r.t. ϵ with the non-parametric energy difference
estimation.

RTK-ULD. Alg. 3 presents a solution employing ULD
for the inner loop, which can accelerate the convergence of
the inner loop due to the better discretization of the ULD
algorithm. When it is used to solve the k-th sampling sub-
problem of Alg. 1, x0 is equal to x̂kη defined in Section 3

Algorithm 3 ULD FOR RTK INFERENCE

1: Input: Returned particle of the previous iteration x0,
current iteration number k, inner iteration number S, in-
ner step size τ , velocity diffusion coefficient γ, required
convergence accuracy ϵ;

2: Initialize the particle and velocity pair, i.e., (ẑ0, v̂0)
with a Gaussian type product measure, i.e., N (0, e2η −
1) ⊗ N (0, I);

3: for t = s to S − 1 do
4: Draw noise sample pair (ξz

s , ξ
v
s ) from a Gaussian

type distribution.
5: ẑs+1 = ẑs + γ−1(1 − e−γτ )v̂s − γ−1(τ − γ−1(1 −

e−γτ ))sθ(ẑs) + ξz
s

6: v̂s+1 = e−γτ v̂s − γ−1(1 − e−γτ )sθ(ẑs) + ξv
t

7: end for
8: return zS ;

and used to initialize particles iterating in Alg. 2. Besides,
the underlying distribution of noise sample pair is

(ξz
s , ξv

s ) ∼N
(

0,

[
M1,1 M1,2
M2,1 M2,2

])
where M1,1 = 2

γ

(
τ − 2

γ

(
1 − e−γτ

))
+ 1

2γ

(
1 − e−2γτ

)
I

M1,2 = M2,1 = 1
γ

(
1 − 2e−γτ + e−2γτ

)
I

M2,2 =
(
1 − e−2γτ

)
· I

In Alg. 3, we consider the process {(ẑs, v̂s)}S
s=0 whose

underlying distribution is denoted as {π̂s}S
s=0. We expect

the z-marginal distribution of π̂S to be close to the target
distribution presented in Eq. 8. Unlike MALA, we only need
to consider the error from score estimation in an expectation
perspective, which is the same as that shown in (Chen et al.,
2023b).

[E3] Estimation error of the score function: we assume a
score estimator, e.g., a well-trained diffusion model,
sθ, which can approximate the score function with
an ϵscore error, i.e., Ept

∥sθ,t(z) − ∇ log pt(z)∥2 ≤
ϵ2score for any t ∈ [0, T ].

Under this condition, the complexity of RTK-ULD to
achieve the convergence of TV distance is provided as fol-
lows, and the detailed proof is deferred to Theorem D.9.
Besides, we compare our theoretical results with the previ-
ous in Table 1.

Theorem 4.4. Under Assumptions [A1]–[A2] and [E3], for
Alg. 1, we choose

η = 1
2 log 2L+ 1

2L , K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

7
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Results Algorithm Assumptions Complexity

Chen et al. (2023b) DDPM (SDE-based) [A1],[A2],[E3] Õ(L2dϵ−2)

Chen et al. (2024) DPOM (ODE-based) [A1],[A2],[E3], and sθ smoothness Õ(L3dϵ−2)

Chen et al. (2024) DPUM (ODE-based) [A1],[A2],[E3], and sθ smoothness Õ(L2d1/2ϵ−1)

Li et al. (2023) ODE-based sampler [E3] and estimation error of energy Hessian Õ(d3ϵ−1)

Corollary 4.2 RTK-MALA [A1],[A2],[E1], and [E2] O(L4d2 log(d/ϵ))

Theorem 4.4 RTK-ULD (ours) [A1],[A2],[E3] Õ(L2d1/2ϵ−1)

Table 1. Comparison with prior works for RTK-based methods. The complexity denotes the number of calls for the score estimation
to achieve TV (p̂Kη, p∗) ≤ Õ(ϵ). d and ϵ mean the dimension and error tolerance. Compared with the state-of-the-art result, RTK-
ULD achieves the best dependence for both d and ϵ. Though RTK-MALA requires slightly stricter assumptions and worse dimension
dependence, a linear convergence w.r.t. ϵ makes it suit high-accuracy sampling tasks.

and implement Step 3 of Alg. 1 with projected Alg. 3. For the
k-th run of Alg. 3, we require Gaussian-type initialization
and high-accurate score estimation, i.e.,

π̂0 = N (0, e2η−1)⊗N (0, I) and ϵscore = Õ(ϵ/
√
L).

If we set the hyperparameters of inner loops as follows. the
step size and the iteration number as

τ = Θ̃

(
ϵd−1/2L−1/2 ·

(
log
[

L(d + m2
2 + ∥x0∥2)
ϵ2

])−1/2
)

S = Θ̃

(
ϵ−1d1/2 ·

(
log
[

L(d + m2
2 + ∥x0∥2)
ϵ2

])1/2
)

.

It can achieve TV (p̂Kη, p∗) ≲ ϵ with an Õ
(
L2d1/2ϵ−1)

gradient complexity.

5. Conclusion and Limitation
This paper presents an analysis of a modified version of
diffusion models. Instead of focusing on the discretization
of the reverse SDE, we propose a general RTK framework
that can produce a large class of algorithms for diffusion
inference, which is formulated as solving a sequence of
RTK sampling subproblems. Given this framework, we de-
velop two algorithms called RTK-MALA and RTK-ULD,
which leverage MALA and ULD to solve the RTK sampling
subproblems. We develop theoretical guarantees for these
two algorithms under certain conditions on the score esti-
mation, and demonstrate their faster convergence rate than
prior works. Numerical experiments support our theory.

We would also like to point out several limitations and fu-
ture work. One potential limitation of this work is the lack
of large-scale experiments. The main focus of this paper is
the theoretical understanding and rigorous analysis of the
diffusion process. Implementing large-scale experiments re-
quires GPU resources and practitioner support, which can be
an interesting direction for future work. Besides, though we

provided a score-only RTK-MALA algorithm, the Õ(1/ϵ)
convergence rate can only be achieved by the RTK-MALA
algorithm (Alg. 2). However, this faster algorithm requires
a direct approximation of the energy difference, which is not
accessible in the existing pretrained diffusion model. Devel-
oping practical energy difference approximation algorithms
and incorporating them with Alg. 2 for diffusion inference
are also very interesting future directions.
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A. Numerical Experiments
In this section, we conduct experiments when the target distribution p∗ is a Mixture of Gaussian (MoG) and compare
RTK-based methods with traditional DDPM. Specifically, we are considering a forward process from an MoG distribution
to a normal distribution in the following

dxt = −1
2xtdt+ dBt and x0 ∼ 1

K

K∑
k=1

N (µk, σ
2
k · I),

where K is the number of Gaussian components, µk and σ2
k are the means and variances of the Gaussian components,

respectively. The solution of the SDE follows

xt = x0e
− 1

2 t +
√

1 − e−t · ξ where ξ ∼ N (0, I).

Since x0 and ξ are both sampled from Gaussian distributions, their linear combination xt also forms a Gaussian distribution,
i.e.,

xt ∼ 1
K

K∑
k=1

N (µke
− 1

2 t, (σ2
ke
−t + 1 − e−t) · I).

Then, we have

∇p(xt) = 1
K

K∑
i=1

∇xt

[
1
2( 1√

2π(σ2
i e
−t + 1 − e−t

) · exp(−1
2( xt − µie

− 1
2 t

σ2
i e
−t + 1 − e−t

)2)
]

= 1
K

K∑
i=1

pi(xt) · ∇xt

[
−1

2( xt − µie
− 1

2 t

σ2
ke
−t + 1 − e−t

)2

]

= 1
K

K∑
i=1

pi(xt) · −(xt − µie
− 1

2 t)
σ2

i e
−t + 1 − e−t

.

We can also calculate the score of xt, i.e.,

∇ log p(xt) = ∇p(xt)
p(xt)

=

1/K ·
∑K

i=1 pi(xt) ·

−(xt−µie−
1
2 t

)
σ2

i
e−t+1−e−t


1/K ·

∑K
i=1 pi(xt)

.

We consider a MoG consisting of 12 Gaussian distributions, each with 10 dimensions, as shown in Fig. 2 (f). The means of
the 12 Gaussian distributions are uniformly distributed along the circumference of a circle with a radius of one in the first
and second dimensions, while the remaining dimensions are centered at the origin. Each component of the mixture has an
equal probability and a variance of 0.007 across all dimensions.

We evaluate Alg. 1 with unadjust Langevin algorithm (ULA), which leads to RTK-ULA, Alg 2, 3 implementations, and
DDPM under the same Number of Function Evaluations (NFE). Specifically, while DDPM models xη across a sequence
of η timesteps spanning from 0 to T in increments of 0.001 × T (i.e., [0, 0.001T, 0.002T, . . . , T ]), we execute Alg. 1, 2,
and 3 at fewer timesteps within x[0,0.2T,0.4T,0.6T,0.8T ], and we distribute the NFE uniformly to these timesteps for MCMC.
The experiments are taken on a single NVIDIA GeForce RTX 4090 GPU. We evaluate the sampling quality using marginal
accuracy, i.e.,

Marginal Accuracy(p̂, p) = 1 − 0.5 × 1
d

d∑
i=1

TV (p̂i, pi),

where p̂i(x) is the empirical marginal distribution of the i-th dimension obtained from the sampled data, pi(x) is the true
marginal distribution of the i-th dimension, and d is the total number of dimensions.
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Figure 1. (a) Mariginal accuracy of the sampled MoG by different algorithms along NFE. (b-f) The histograms along a certain direction of
sampled MoG by different algorithms. The plots labeled by ‘ULA’, ‘ULD’, ‘MALA’, ‘MALA ES’ correspond to RTK-ULA, RTK-ULD,
RTK-MALA, score-only RTK-MALA, respectively. The histogram is oriented along the second dimension when the first dimension is
constrained within (0.75, 1.25).

Fig. 1 (a) shows the marginal accuracies of our RTK sampling algorithms and DDPM along NFE. We observe that all
algorithms using RTK converge quickly. Among all RTK algorithms, RTK-MALA achieves the highest marginal accuracy.
Score-only RTK-MALA is worse than RTK-MALA since the estimated energy contains errors, yet it is still slightly better
than RTK-ULD. Along all RTK algorithms, RTK-ULA demonstrates the lowest performance in terms of marginal accuracy,
but it still outperforms DDPM with a large margin especially when NFE is small.

Fig. 1 (b-f) shows the histograms of sampled MoG by DDPM and RTK-based methods. We observe that DDPM cannot
reconstruct the local structure of MoG. ULA can roughly reconstruct the MoG structure, but it is still weak in complex
regions, specifically around the peaks and valleys. In contrast, RTK-ULD, score-only RTK-MALA, and RTK-MALA can
reconstruct more fine-grained structures in complex regions.

Fig. 2 (a-e) shows the clusters sampled by DDPM and RTK-based methods. We observe that DDPM fails to accurately
reconstruct the ground truth distribution. In contrast, all methods based on RTK can generate distributions that closely
approximate the ground truth. Additionally, RTK-MALA shows superior performance in accurately reconstructing the
distribution in regions of low probability.

Overall, these numerical experiments demonstrate the benefit of the RTK framework for developing faster algorithms than
DDPM in diffusion inference. Besides, experimental results also well support our theory, showing that RTK-MALA achieves
faster convergence than RTK-ULA and RTK-ULD, even with estimated energy difference via score functions.

B. Inference process with reverse transition kernel framework
Proof of Lemma 3.1. According to Bayes theorem, the following equation should be validated for any x ∈ Rd and t′ > t,

pt(x) =
∫
pt|t′(x|x′) · pt′(x′)dx′. (10)
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Figure 2. (a-e) Clusters sampled by DDPM, RTK-ULA, RTK-ULD, score-only RTK-MALA, and RTK-MALA, respectively. (f) Clusters
sampled by the ground truth distribution. These 2D clusters represent the projection of the original 10D data onto the first two dimensions.

To simplify the notation, we suppose the normalizing constant of pt, i.e.,

Zt :=
∫

exp(−ft(x))dx.

Besides, the forward OU process, i.e., SDE. 1, has a closed transition kernel, i.e.,

pt′|t(x′|x) =
(

2π
(

1 − e−2(t′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t′−t)x

∥∥∥2

2
(
1 − e−2(t′−t)

)


Then, we have

pt′(x′) =
∫
pt(y)pt′|t(x′|y)dy

=
∫
Z−1

t · exp(−ft(y)) ·
(

2π
(

1 − e−2(t′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t′−t)y

∥∥∥2

2
(
1 − e−2(t′−t)

)
 dy.

13
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Plugging this equation into Eq. 10, and we have

RHS of Eq. 10 =
∫

pt|t′(x|x′) · pt′(x′)dx′

=
∫

pt|t′(x|x′) ·
∫

Z−1
t · exp(−ft(y)) ·

(
2π
(

1 − e−2(t′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t′−t)y

∥∥∥2

2 (1 − e−2(t′−t))

dydx′.

Moreover, when we plug the reverse transition kernel

pt|t′(x|x′) ∝ exp

−ft(x) −

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1 − e−2(t′−t))


into the previous equation and have

RHS of Eq. 10 =
∫ exp

(
−ft(x)−

∥∥x′−x·e−(t′−t)
∥∥2

2(1−e−2(t′−t))

)
∫

exp
(

−ft(x) − ∥x′−x·e−(t′−t)∥2

2(1−e−2(t′−t))

)
dx

·

∫
Z−1

t · exp(−ft(y)) ·
(

2π
(

1 − e−2(t′−t)
))−d/2

· exp

−
∥∥∥x′ − e−(t′−t)y

∥∥∥2

2
(
1 − e−2(t′−t)

)
dydx′

= Z−1
t · exp(−ft(x)) ·

∫
exp

−

∥∥∥x′ − x · e−(t′−t)
∥∥∥2

2(1 − e−2(t′−t))

 ·
(

2π
(

1 − e−2(t′−t)
))−d/2

·


∫ exp

(
−ft(y) −

∥∥x′−e−(t′−t)·y
∥∥2

2(1−e−2(t′−t))

)
∫

exp
(

−ft(x) − ∥x′−x·e−(t′−t)∥
2(1−e−2(t′−t))

)
dx

dy

dx′

= pt(x) = LHS of Eq. 10.

Hence, the proof is completed.

Lemma B.1 (Chain rule of TV). Consider four random variables, x, z, x̃, z̃, whose underlying distributions are denoted as
px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint distributions of (x, z) and (x̃, z̃), which we write in terms
of the conditionals and marginals as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have
TV (px,z, qx,z) ≤ min

{
TV (pz, qz) + Ez∼pz

[
TV

(
px|z(·|z), qx|z(·|z)

)]
,

TV (px, qx) + Ex∼px

[
TV

(
pz|x(·|x), qz|x(·|x)

)]}
.

Besides, we have

TV (px, qx) ≤ TV (px,z, qx,z) .

14
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Proof. According to the definition of the total variation distance, we have

TV (px,z, qx,z) =1
2

∫ ∫
|px,z(x, z) − qx,z(x, z)| dzdx

=1
2

∫ ∫ ∣∣pz(z)px|z(x|z) − pz(z)qx|z(x|z) + pz(z)qx|z(x|z) − qz(z)qx|z(x|z)
∣∣dzdx

≤1
2

∫
pz(z)

∫ ∣∣px|z(x|z) − qx|z(x|z)
∣∣dxdz + 1

2

∫
|pz(z) − qz(z)|

∫
qx|z(x|z)dxdz

=Ez∼pz

[
TV

(
px|z(·|z), qx|z(·|z)

)]
+ TV (pz, qz) .

With a similar technique, we have

TV (px,z, qx,z) ≤ TV (px, qx) + Ex∼px

[
TV

(
pz|x(·|x), qz|x(·|x)

)]
.

Hence, the first inequality of this Lemma is proved. Then, for the second inequality, we have

TV (px, qx) =1
2

∫
|px(x) − qx(x)| dx

=1
2

∫ ∣∣∣∣∫ px,z(x, z)dz −
∫
qx,z(x, z)dz

∣∣∣∣ dx

≤1
2

∫ ∫
|px,z(x, z) − qx,z(x, z)| dzdx = TV (px,z, qx,z) .

Hence, the proof is completed.

Lemma B.2. For Alg 1, we have

TV (p̂Kη, p∗) ≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+
K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
for any K ∈ N+ and η ∈ R+.

Proof. For any k ∈ {0, 1, . . . ,K − 1}, let p̂(k+1)η,kη and p←(k+1)η,kη denote the joint distribution of (x̂(k+1)η, x̂kη) and
(x←(k+1)η,x←kη), which we write in term of the conditionals and marginals as

p̂(k+1)η,kη(x′,x) = p̂(k+1)η|kη(x′|x) · p̂kη(x) = p̂kη|(k+1)η(x|x′) · p̂(k+1)η(x′)
p←(k+1)η,kη(x′,x) = p←(k+1)η|kη(x′|x) · p←kη(x) = p←kη|(k+1)η(x|x′) · p←(k+1)η(x′).

Under this condition, we have

TV (p̂Kη, p∗) = TV
(
p̂Kη, p

←
Kη

)
≤ TV

(
p̂Kη,(K−1)η, p

←
Kη,(K−1)η

)
≤ TV

(
p̂(K−1)η, p

←
(K−1)η

)
+ Ex̂∼p̂(K−1)η

[
TV

(
p̂Kη|(K−1)η(·|x̂), p←Kη|(K−1)η(·|x̂)

)]
where the inequalities follow from Lemma B.1. By using the inequality recursively, we have

TV (p̂Kη, p∗) ≤TV (p̂0, p
←
0 ) +

K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
= TV (p∞, pKη)︸ ︷︷ ︸

Term 1

+
K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)] (11)

where p∞ denotes the stationary distribution of the forward process. In this analysis, p∞ is the standard since the forward
SDE. 1, whose negative log density is 1-strongly convex and also satisfies LSI with constant 1 due to Lemma E.9.
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For Term 1. we have

TV (p∞, pKη) ≤
√

1
2KL

(
pKη

∥∥p∞) ≤
√

1
2 · exp (−2Kη) · KL

(
p0
∥∥p∞)

≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

where the first inequality follows from Pinsker’s inequality, the second one follows from Lemma E.1, and the last one
follows from Lemma E.2. It should be noted that the smoothness of p0 required in Lemma E.2 is given by [A1].

Plugging this inequality into Eq. 11, we have

TV (p̂Kη, p∗) ≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+
K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
Hence, the proof is completed.

Corollary B.3. For Alg 1, if we set

η = 1
2 · log 2L+ 1

2L , K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

K
= ϵ

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

,

we have the total variation distance between the underlying distribution of Alg 1 output and the data distribution p∗ will
satisfy TV (p̂Kη, p∗) ≤ 2ϵ.

Proof. According to Lemma B.2, we have

TV (p̂Kη, p∗) ≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)

+
K−1∑
k=0

Ex̂∼p̂kη

[
TV

(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)]
︸ ︷︷ ︸

Term 2

for any K ∈ N+ and η ∈ R+. To achieve the upper bound TV (p∞, pKη) ≤ ϵ, we only require

T = Kη ≥ 1
2 log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
. (12)

For Term 2. For any x ∈ Rd, the formulation of p←k+1|k(·|x̂) is

p←(k+1)η|kη(x|x̂) = p(K−k−1)η|(K−1)η(x|x̂) ∝ exp
(

−f(K−k−1)η(x) − ∥x̂ − x · e−η∥2

2(1 − e−2η)

)
,

whose negative log Hessian satisfies

−∇2
x log p←(k+1)η|kη(x|x̂) = ∇2f(K−k−1)η(x) + e−2η

1 − e−2η
· I ⪰

(
e−2η

1 − e−2η
− L

)
· I.

Note that the last inequality follows from [A1]. In this condition, if we require(
e−2η

1 − e−2η
− L

)
≥ L ⇔ η ≤ 1

2 log 2L+ 1
2L ,
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then we have
e−2η

2(1 − e−2η) · I ⪯ −∇2
x log p←(k+1)η|kη(x|x̂) ⪯ 3e−2η

2(1 − e−2η) · I.

To simplify the following analysis, we choose η to its upper bound, and we know for all k ∈ {0, 1, . . . ,K − 1}, the
conditional density p←k+1|k(x|x̂) is strongly-log concave, and its score is 3L-Lipschitz. Besides, combining Eq. 12 and the
choice of η, we require

K = T/η ≥ log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

/
log 2L+ 1

2L
which can be achieved by

K := 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

when we suppose L ≥ 1 without loss of generality. In this condition, if there is a uniform upper bound for all conditional
probability approximation, i.e.,

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

K
= ϵ

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

,

then we can find Term 2 in Eq. 11 will be upper bounded by ϵ. Hence, the proof is completed.

Lemma B.4 (Chain rule of KL). Consider four random variables, x, z, x̃, z̃, whose underlying distributions are denoted as
px, pz, qx, qz . Suppose px,z and qx,z denotes the densities of joint distributions of (x, z) and (x̃, z̃), which we write in terms
of the conditionals and marginals as

px,z(x, z) = px|z(x|z) · pz(z) = pz|x(z|x) · px(x)
qx,z(x, z) = qx|z(x|z) · qz(z) = qz|x(z|x) · qx(x).

then we have
KL
(
px,z

∥∥qx,z

)
=KL

(
pz

∥∥qz

)
+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥qx|z(·|z)
)]

=KL
(
px

∥∥qx

)
+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x)
)]

where the latter equation implies
KL
(
px

∥∥qx

)
≤ KL

(
px,z

∥∥qx,z

)
.

Proof. According to the formulation of KL divergence, we have

KL
(
px,z

∥∥qx,z

)
=
∫
px,z(x, z) log px,z(x, z)

qx,z(x, z) d(x, z)

=
∫
px,z(x, z)

(
log px(x)

qx(x) + log
pz|x(z|x)
qz|x(z|x)

)
d(x, z)

=
∫
px,z(x, z) log px(x)

qx(x) d(x, z) +
∫
px(x)

∫
pz|x(z|x) log

pz|x(z|x)
qz|x(z|x) dzdx

=KL
(
px

∥∥qx

)
+ Ex∼px

[
KL
(
pz|x(·|x)

∥∥qz|x(·|x)
)]

≥ KL
(
px

∥∥qx

)
,

where the last inequality follows from the fact

KL
(
pz|x(·|x)

∥∥p̃z|x(·|x)
)

≥ 0 ∀ x.

With a similar technique, it can be obtained that

KL
(
px,z

∥∥qx,z

)
=
∫
px,z(x, z) log px,z(x, z)

qx,z(x, z) d(x, z)

=
∫
px,z(x, z)

(
log pz(z)

qz(z) + log
px|z(x|z)
qx|z(x|z)

)
d(x, z)

=
∫
px,z(x, z) log pz(z)

qz(z) d(x, z) +
∫
pz(z)

∫
px|z(x|z) log

px|z(x|z)
qx|z(x|z) dzdx

=KL
(
pz

∥∥qz

)
+ Ez∼pz

[
KL
(
px|z(·|z)

∥∥p̃x|z(·|z)
)]
.
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Hence, the proof is completed.

Proof of Lemma 3.2. This Lemma uses nearly the same techniques as those in Lemma B.2, while it may have a better
smoothness dependency in convergence since the chain rule of KL divergence. Hence, we will omit several steps overlapped
in Lemma B.2.

For any k ∈ {0, 1, . . . ,K − 1}, let p̂(k+1)η,kη and p←(k+1)η,kη denote the joint distribution of (x̂(k+1)η, x̂kη) and
(x←(k+1)η,x←kη), which we write in term of the conditionals and marginals as

p̂(k+1)η,kη(x′,x) = p̂(k+1)η|kη(x′|x) · p̂kη(x) = p̂kη|(k+1)η(x|x′) · p̂(k+1)η(x′)
p←(k+1)η,kη(x′,x) = p←(k+1)η|kη(x′|x) · p←kη(x) = p←kη|(k+1)η(x|x′) · p←(k+1)η(x′).

Under this condition, we have

TV (p̂Kη, p∗) =TV
(
p̂Kη, p

←
Kη

)
≤
√

1
2KL

(
p̂Kη

∥∥p←Kη

)
≤
√

1
2KL

(
p̂Kη,(K−1)η

∥∥p←Kη,(K−1)η

)
≤
√

1
2KL

(
p̂(K−1)η

∥∥p←(K−1)η

)
+ 1

2Ex̂∼p̂(K−1)η

[
KL
(
p̂Kη|(K−1)η(·|x̂)

∥∥p←Kη|(K−1)η(·|x̂)
)]

where the first inequality follows from Pinsker’s inequality, the second and the third inequalities follow from Lemma B.4.
By using the inequality recursively, we have

TV (p̂Kη, p∗) ≤

√√√√1
2KL

(
p̂0
∥∥p←0 )+ 1

2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

=
√

1
2KL

(
p∞
∥∥pKη

)
+

√√√√1
2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη) +

√√√√1
2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

(13)

where the last inequality follows from Lemma E.2. Hence, the proof is completed.

Corollary B.5. For Alg 1, if we set

η = 1
2 · log 2L+ 1

2L , K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p(K−k−1)η|(K−k)η(·|x̂)
)

≤ ϵ2

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

,

we have the total variation distance between the underlying distribution of Alg 1 output and the data distribution p∗ will
satisfy TV (p̂Kη, p∗) ≤ 2ϵ.

Proof. According to Lemma 3.2, we have

TV (p̂Kη, p∗) ≤
√

(1 + L2)d+ ∥∇f∗(0)∥2 · exp(−Kη)︸ ︷︷ ︸
Term 1

+

√√√√1
2

K−1∑
k=0

Ex̂∼p̂kη

[
KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)]

︸ ︷︷ ︸
Term 2

(14)
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To achieve the upper bound Term 1 ≤ ϵ, we only require

T = Kη ≥ 1
2 log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
. (15)

For Term 2, by choosing

η = 1
2 log 2L+ 1

2L ,

we know for all k ∈ {0, 1, . . . ,K − 1}, the conditional density p←k+1|k(x|x̂) is strongly-log concave, and its score is
3L-Lipschitz. In this condition, we require

K := 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

when we suppose L ≥ 1 without loss of generality. Then, to achieve Term 2 ≤ ϵ, the sufficient condition is to require a
uniform upper bound for all conditional probability approximation, i.e.,

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←k+1|k(·|x̂)
)

≤ ϵ2

K
= ϵ2

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

.

Hence, the proof is completed.

Remark B.6. To achieve the TV error tolerance shown in Corollary B.3, .i.e.,

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

,

it requires the KL divergence error to satisfy

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤
√

1
2KL

(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)

≤ ϵ2

16L2 ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−2

.

Compared with the results shown in Corollary B.5, this result requires a higher accuracy with an O(L) factor, which is not
acceptable sometimes.
Lemma B.7. Suppose Assumption [A1]-[A2] hold, the choice of η keeps the same as that in Corollary B.5, and the second
moment of the underlying distribution of x̂kη is Mk, then we have

Mk+1 ≤ 2δk

L
+ 16(d+m2

2) + 24Mk.

Proof. Considering the second moment of x̂(k+1)η , we have

Ep̂(k+1)η

[∥∥x̂(k+1)η

∥∥2
]

=
∫
p̂(k+1)η(x) · ∥x∥2dx

=
∫ (∫

p̂kη(y) · p̂(k+1)η|kη(x|y)dy

)
· ∥x∥2dx

=
∫
p̂kη(y) ·

∫
p̂(k+1)η|kη(x|y) · ∥x∥2dxdy.

(16)

Then, we focus on the innermost integration, suppose γ̂y(·, ·) as the optimal coupling between p̂(k+1)η|kη(·|y) and
p←(k+1)η|kη(·|y). Then, we have∫

p̂(k+1)η|kη(x|y) ∥x∥2 dx − 2
∫
p←(k+1)η|kη(x|y) ∥x∥2 dx

≤
∫
γ̂y(x̂,x)

(
∥x̂∥2 − 2 ∥x∥2

)
d(x̂,x) ≤

∫
γ̂y(x̂,x) ∥x̂ − x∥2 d(x̂,x)

= W 2
2

(
p̂(k+1)η|kη, p

←
(k+1)η|kη

)
.

(17)
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Since p←(k+1)η|kη is strongly log-concave, i.e.,

−∇2
x log p←(k+1)η|kη(x|x̂) = ∇2f(K−k−1)η(x) + e−2η

1 − e−2η
· I ⪰ LI,

the distribution p←(k+1)η|kη also satisfies 1/L log-Sobolev inequality due to Lemma E.9. By Talagrand’s inequality, we have

W 2
2

(
p̂(k+1)η|kη, p

←
(k+1)η|kη

)
≤ 2
L

· KL
(
p̂k+1|k+ 1

2 ,b

∥∥pk+1|k+ 1
2 ,b

)
:= 2δk

L
. (18)

Plugging Eq 17 and Eq 18 into Eq 16, we have

E
[∥∥x̂(k+1)η

∥∥2
]

≤
∫
p̂kη(y) ·

(
2δk

L
+ 2

∫
p(k+1)η|kη(x|y) ∥x∥2 dx

)
dy. (19)

To upper bound the innermost integration, we suppose the optimal coupling between p(K−k−1)η and p←(k+1)η|kη(·|y) is
γy(·, ·). Then it has ∫

p←(k+1)η|kη(x|y) ∥x∥2 dx − 2
∫
p(K−k−1)η(x) ∥x∥2 dx

≤
∫
γy(x′,x)

(
∥x′∥2 − 2 ∥x∥2

)
d(x′,x) ≤

∫
γy(x′,x) ∥x′ − x∥2 d(x′,x)

= W 2
2 (p(K−k−1)η, p

←
(k+1)η|kη)

(20)

Since p←(k+1)η|kη satisfies LSI with constant 1/L. By Talagrand’s inequality and LSI, we have

W 2
2 (p(K−k−1)η, p

←
(k+1)η|kη) ≤ 2

L
· KL

(
p(K−k−1)η

∥∥p(k+1)η|kη

)
≤ 4
L2 ·

∫
p(K−k−1)η(x) ·

∥∥∥∥∥∇ log
p(K−k−1)η(x)
p←(k+1)η|kη(x|y)

∥∥∥∥∥
2

dx

= 4
L2 ·

∫
p(K−k−1)η(x) ·

∥∥∥∥e−ηy − e−2ηx

1 − e−2η

∥∥∥∥2

dx

≤ 12 ∥y∥2 + 8
∫
p(K−k−1)η(x)∥x∥2dx

≤ 12∥y∥2 + 8(d+m2
2).

where the last inequality follows from the choice of η = 1/2 · log(2L+ 1)/2L and the fact Ep(K−k−1)η
[∥x∥2] ≤ (d+m2

2)
obtained by Lemma E.7. Plugging this results into Eq. 19, we have

E
[∥∥x̂(k+1)η

∥∥2
]

≤ 2δk

L
+ 16(d+m2

2) + 24 · E
[
∥x̂kη∥2

]
.

C. Implement RTK inference with MALA
In this section, we consider introducing a MALA variant to sample from p←k+1|k(z|x0). To simplify the notation, we set

g(z) := f(K−k−1)η(z) + ∥x0 − z · e−η∥2

2(1 − e−2η) (21)

and consider k and x0 to be fixed. Besides, we set

p←(z|x0) := p←k+1|k(z|x0) ∝ exp(−g(z))
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According to Corollary B.5 and Corollary B.3, when we choose

η = 1
2 log 2L+ 1

2L ,

the log density g will be L-strongly log-concave and 3L-smooth. With the following two approximations,

sθ(z) ≈ ∇g(z) and rθ′(z, z′) ≈ g(z) − g(z′), (22)

We left the approximation level here and determined when we needed the detailed analysis. we can use the following
Algorithm to replace Line 1 of Alg. 1.

In this section, we introduce several notations about three transition kernels presenting the standard, the projected, and the
ideally projected implementation of Alg. 2.

Standard implementation of Alg. 2. According to Step 2, the transition distribution satisfies

Qzs
= N (zs − τ · sθ(zs), 2τ) (23)

with a density function
q(z̃s|zs) = φ2τ (z̃s − (zs − τ · sθ(zs))) . (24)

Considering a 1/2-lazy version of the update, we set

T ′zs
(dz′) = 1

2 · δzs(dz′) + 1
2 ·Qzs(dz′). (25)

Then, with the following Metropolis-Hastings filter,

azs
(z′) = min

{
1, q(zs|z′)
q(z′|zs) · exp (−rθ(z′, zs))

}
where azs

(z′) = a(z′ − (zs − τ · sθ(zs)), zs), (26)

the transition kernel for the standard implementation of Alg, 2 will be

Tzs
(dzs+1) = T ′zs

(dzs+1) · azs
(zs+1) +

(
1 −

∫
azs

(z′)T ′zs
(dz′)

)
· δzs

(dzs+1). (27)

Projected implementation of Alg. 2. According to Step 2, the transition distribution satisfies

Q̃zs = N (zs − τ · sθ(zs), 2τ)

with a density function
q̃(z̃s|zs) = φ2τ (z̃s − (zs − τ · ∇sθ(zs))) .

Considering the projection operation, i.e., Step 2 in Alg 1, if we suppose the feasible set

Ω = B(0, R) and Ωz = B(z, r) ∩ B(0, R)

the transition distribution becomes

Q̃′zs
(A) =

∫
A∩Ωzs

Q̃zs(dz′) +
∫
A−Ωzs

Q̃zs(dz′) · δzs(A).

Hence, a 1/2-lazy version of the transition distribution becomes

T̃ ′zs
(dz′) = 1

2 · δzs
(dz′) + 1

2 · Q̃′zs
(dz′).

Then, with the following Metropolis-Hastings filter,

ãzs
(z′) = min

{
1, q̃(zs|z′)
q̃(z′|zs) · exp (−rθ(z′, zs))

}
where ãzs

(z′) = a(z′ − (zs − τ · sθ(zs)), zs),

the transition kernel for the projected implementation of Alg, 2 will be

T̃zs
(dzs+1) = T̃ ′zs

(dzs+1) · ãzs
(zs+1) +

(
1 −

∫
Ω
ãzs

(z′)T̃ ′zs
(dz′)

)
· δzs

(dzs+1).

21



Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference

Ideally projected implementation of Alg. 2. In this condition, we know the accurate g(z) − g(z′) and ∇g(z). In this
condition, the ULA step will provide

Q̃∗,zs
= N (zs − τ · ∇g(zs), 2τ) (28)

with a density function
q̃∗(z̃s|zs) = φ2τ (z̃s − (τ · ∇g(zs))) .

Considering the projection operation, i.e., Step 2 in Alg 1, the transition distribution becomes

Q̃′∗,zs
(A) =

∫
A∩Ωzs

Q̃∗,zs(dz′) +
∫
A−Ωzs

Q̃∗,zs(dz′) · δzs(A). (29)

Hence, a 1/2-lazy version of the transition distribution becomes

T̃ ′∗,zs
(dz′) = 1

2 · δzs
(dz′) + 1

2 · Q̃′∗,zs
(dz′). (30)

Then, with the following Metropolis-Hastings filter,

ã∗,zs
(z′) = min

{
1, q̃∗(zs|z′)
q̃∗(z′|zs) · exp (− (g(z′) − g(zs)))

}
, (31)

the transition kernel for the accurate projected update will be

T̃∗,zs
(dzs+1) = T̃ ′∗,zs

(dzs+1) · ã∗,zs
(zs+1) +

(
1 −

∫
Ω
ã∗,zs

(z′)T̃ ′∗,zs
(dz′)

)
· δzs

(dzs+1). (32)

Lemma C.1. Suppose we have

η = 1
2 log 2L+ 1

2L ,

then the target distribution of the Inner MALA, i.e., p←(z|x0) will be L-strongly log-concave and 3L-smooth for any given
x0.

Proof. Consider the energy function g(z) of p←(z|x0), we have

g(z) = f(K−k−1)η(z) + ∥x0 − z · e−η∥2

2(1 − e−2η)

whose Hessian matrix satisfies(
e−2η

(1 − e−2η) + L

)
· I ⪰ ∇2g(z) = ∇2f(K−k−1)(z) + e−2η

(1 − e−2η) · I ⪰
(

e−2η

(1 − e−2η) − L

)
· I.

Under these conditions, if we have

η ≤ 1
2 log 2L+ 1

2L ⇔ e−2η

1 − e−2η
≥ 2L,

which means
3e−2η

2(1 − e−2η) ⪰ ∇2g(z) ⪰ e−2η

2(1 − e−2η) .

For the analysis convenience, we set

η = 1
2 log 2L+ 1

2L ,

that is to say g(z) is L-strongly convex and 3L-smooth.
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C.1. Control the error from the projected transition kernel

Here, we consider the marginal distribution of {zs} and {z̃s} to be the random process when Alg. 2 is implemented by the
standard and projected version, respectively. The underlying distributions of these two processes are denoted as zs ∼ µs

and z̃s ∼ µ̃s, and we would like to upper bound TV (µS , µ̃S) for any given x0.

Rewrite the formulation of zS , we have

zS = z̃S · 1 (zS = z̃S) + zS · 1 (zS ̸= z̃S)

where 1(·) is the indicator function. In this condition, for any set A, we have

1 (zS ∈ A) =1 (z̃S ∈ A) · 1 (zS = z̃S) + 1 (zS ∈ A) · 1 (zS ̸= z̃S)
=1 (z̃S ∈ A) − 1 (z̃S ∈ A) · 1 (zS ̸= z̃S) + 1 (zS ∈ A) · 1 (zS ̸= z̃S) ,

which means

−1 (z̃S ∈ A) · 1 (zS ̸= z̃S) ≤ 1 (zS ∈ A) − 1(z̃S ∈ A) ≤ 1 (zS ∈ A) · 1 (zS ̸= z̃S) .

Therefore, the total variation distance between µS and µ̂S can be upper bounded with

TV (µS , µ̃S) ≤ sup
A⊆Rd

|µS(A) − µ̃S(A)| ≤ 1 (zS ̸= z̃S) .

Hence, to require TV (µS , µ̃S) ≤ ϵ/4 a sufficient condition is to consider Pr[zS ̸= z̃S ]. The next step is to show that, in
Alg. 2, the projected version generates the same outputs as that of the standard version with probability at least 1 − ϵ/4.
It suffices to show that with probability at least 1 − ϵ/4, projected MALA will accept all S iterates. In this condition, let
{z1, z2, . . . ,zS} be the iterates generated by the standard MALA (without the projection step), our goal is to prove that
with probability at least 1 − ϵ/4 all zs stay inside the region B(0, R) and ∥zs − zs−1∥ ≤ r for all s ≤ S. That means we
need to prove the following two facts

1. With probability at least 1 − ϵ/8, all iterates stay inside the region B(0, R).

2. With probability at least 1 − ϵ/8, ∥xs − xs−1∥ ≤ r for all s ≤ S.

Lemma C.2. Let µS and µ̃S be distributions of the outputs of standard and projected implementation of Alg. 2. For any
ϵ ∈ (0, 1), we set

R ≥ max
{

8 ·
√

∥∇g(0)∥2

L2 + d

L
, 63 ·

√
d

L
log 16S

ϵ

}
, r ≥ (

√
2 + 1) ·

√
τd+ 2

√
τ log 8S

ϵ

where z∗ is denoted as the global optimum of the energy function, i.e., g, defined in Eq. 21. Suppose P(∥z0∥ ≥ R/2) ≤ ϵ/4
and set

τ ≤ min
{

d

(3LR+ ∥∇g(0)∥ + ϵscore)2 ,
16d
L2R2

}
= d

(3LR+ ∥∇g(0)∥ + ϵscore)2 ,

then we have

TV (µS , µ̃S) ≤ ϵ

4 .

Proof. We borrow the proof techniques provided in Lemma 6.1 of (Zou et al., 2021) to control the TVD gap between the
standard and the projected implementation of Alg. 2.
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Particles stay inside B(0, R). We first consider the expectation of ∥zs+1∥2 when zs is given, and have

E
[
∥zs+1∥2

∣∣∣zs

]
=
∫

∥z′∥2 Tzs
(dz′)

=
∫

∥z′∥2 ·
[
T ′zs

(dz′) · azs(z′) +
(

1 −
∫
azs(z̃)T ′zs

(dz̃)
)
δzs(dz′)

]
= ∥zs∥2 +

∫ (
∥z′∥2 − ∥zs∥2

)
· azs(z′)T ′zs

(dz′)·

= ∥zs∥2 +
∫ (

∥z′∥2 − ∥zs∥2
)

· azs(z′) ·
(

1
2 · δzs(dz′) + 1

2 ·Qzs(dz′)
)

= ∥zs∥2 + 1
2

∫ (
∥z′∥2 − ∥zs∥2

)
· min {q(z′|zs), q(zs|z′) · exp (−rθ(z′, zs))} dz′

≤ 1
2 ∥zs∥2 + 1

2

∫
∥z′∥2 · q(z′|zs)dz′,

(33)

where the second equation follows from Eq. 27, the forth equation follows from Eq. 25 and the fifth equation follows from
Eq. 26 and Eq. 24. Note that q(z′|zs) is a Gaussian-type distribution whose mean and variance are zs − τ · sθ(zs) and 2τ
respectively. It means ∫

∥z′∥2 · q(z′|zs)dz′ = ∥zs − τ · sθ(zs)∥2 + 2τd. (34)

Suppose z∗ is the global optimum of the function g due to Lemma C.1, we have

∥zs − τ · sθ(zs)∥2 = ∥zs∥2 − 2τ · z⊤s sθ(zs) + τ2 · ∥sθ(zs)∥2

= ∥zs∥2 − 2τ · z⊤s ∇g(zs) + 2τ · z⊤s (sθ(zs) − ∇g(zs)) + τ2 · ∥sθ(zs) − ∇g(zs) + ∇g(zs)∥2

≤ ∥zs∥2 − 2τ ·

(
L ∥zs∥2

2 − ∥∇g(0)∥2

2L

)
+ τ2 · ∥zs∥2 + ∥sθ(zs) − ∇g(zs)∥2

+ 2τ2 · ∥∇g(zs)∥2 + 2τ2 · ∥sθ(zs) − ∇g(zs)∥2

=
(
1 − Lτ + τ2) · ∥zs∥2 + τ · ∥∇g(0)∥2

/L+ (1 + 2τ2)ϵ2score + 2τ2 · ∥∇g(zs)∥2

≤
(
1 − Lτ + (1 + 36L2) · τ2) · ∥zs∥2 + τ · ∥∇g(0)∥2

/L+ 4τ2 · ∥∇g(0)∥2 + (1 + 2τ2)ϵ2score,

(35)

where the first inequality follows from the combination of L-strong convexity of g and Lemma E.3 , the second inequality
follows from the 3L-smoothness of g The strong convexity and the smoothness of g follow from Lemma C.1.

Combining Eq. 33, Eq. 34 and Eq. 35, we have

E
[
∥zs+1∥2

∣∣∣zs

]
≤
(

1 − Lτ

2 + 1 + 36L2

2 · τ2
)

· ∥zs∥2

+
( τ

2L + 2τ2
)

· ∥∇g(0)∥2 + (1 + 2τ2)ϵ2score
2 + τd.

By requiring ϵscore ≤ τ ≤ L/(2 + 72L2) < 1, we have

E
[
∥zs+1∥2

∣∣∣zs

]
≤
(

1 − Lτ

4

)
· ∥zs∥2 + τ

L
· ∥∇g(0)∥2 + (2 + d)τ.

Suppose a radio R satisfies

R ≥ 8 ·
√

∥∇g(0)∥2

L2 + d

L
. (36)
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Then, if ∥zs∥ ≥ R/2 ≥ 4
√

∥∇g(0)∥2/L2 + d/L, it has

∥zs∥2 ≥ 16 ·
(

∥∇g(0)∥2

L2 + d

L

)
≥ 8∥∇g(0)∥2

L2 + 8 · (2 + d)
L

⇔ Lτ ∥zs∥2

8 ≥ τ

L
· ∥∇g(0)∥2 + (2 + d)τ

⇔ E
[
∥zs+1∥2

∣∣∣zs

]
≤
(

1 − Lτ

8

)
· ∥zs∥2

.

To prove ∥zs∥ ≤ R for all s ≤ S, we only need to consider zs satisfying ∥zs∥ ≥ 4
√

∥∇g(0)∥2/L2 + d/L, otherwise
∥zs∥ ≤ R/2 ≤ R naturally holds. Then, by the concavity of the function log(·), for any ∥zs∥ ≥ R/2, we have

E
[
log(∥zs+1∥2)|zs

]
≤ logE

[
∥zs+1∥2|zs

]
≤ log(1 − Lτ

4 ) + log(∥zs∥2) ≤ log(∥zs∥2) − Lτ

4 . (37)

Consider the random variable

z̃s := zs − τ · sθ(zs) +
√

2τ · ξ where ξ ∼ N (0, I)

obtained by the transition kernel Eq. 23, Note that ∥ξ∥ is the square root of a χ(d) random variable, which is subgaussian
and satisfies

P
[
∥ξ∥ ≥

√
d+

√
2t
]

≤ e−t2

for any t ≥ 0. Under these conditions, requiring

τ ≤ (3LR+G+ ϵscore)−2 · d where G := ∥∇g(0)∥ , (38)

we have
P
[
∥zs+1∥ − ∥zs∥ ≥ 3

√
τd+ 2

√
τt
]

≤ P
[
∥z̃s∥ − ∥zs∥ ≥ 3

√
τd+ 2

√
τt
]

≤ P
[
τ ∥sθ(zs)∥ +

√
2τ ∥ξ∥ ≥ 3

√
τd+ 2

√
τt
]

≤ P
[√

2τ∥ξ∥ ≥
√

2τd+ 2
√
τt
]

≤ e−t2
.

(39)

In Eq. 39, the first inequality follows from the definition of transition kernel Tzs
shown in Eq. 27 and the second inequality

follows from
∥z̃s∥ − ∥zs∥ ≤ τ ∥sθ(zs)∥ +

√
2τ ∥ξ∥ .

According to the fact

τ ∥sθ(zs)∥ ≤τ ∥∇g(zs)∥ + τϵscore ≤ τ · (∥∇g(zs) − ∇g(0)∥ + ∥∇g(0)∥ + ϵscore)

≤τ · (3L · ∥zs∥ + ∥∇g(0)∥ + ϵscore) ≤
√
τd

(40)

where the second inequality follows from the smoothness of g, and the last inequality follows from Eq. 38 and ∥zs∥ ≤ R,
we have

3
√
τd+ 2

√
τt− τ∥sθ(zs)∥ ≥

√
2τd+ 2

√
τt,

which implies the last inequality of Eq. 39 for all t ≥ 0. Furthermore, suppose ∥zs∥ ≥ R/2, it follows that

log(∥zs+1∥2) − log(∥zs∥2) = 2 log(∥zs+1∥/∥zs∥) ≤ ∥zs+1∥/∥zs∥ − 1 ≤ 2∥zs+1∥ − 2∥zs∥
R

.

Therefore, we have log(∥zs+1∥2) − log(∥zs∥2) is also a sub-Gaussian random variable and satisfies

P
[
log(∥zs+1∥2) − log(∥zs∥2) ≥ 6R−1

√
τd+ 4R−1t

√
τ
]

≤ exp(−t2). (41)

We consider any subsequence among {zk}S
k=1, with all iterates, except the first one, staying outside the region B(0, R/2).

Denote such subsequence by {ys}S′

s=0 where ∥y0∥ ≤ R/2 and S′ ≤ S. Then, we know ys and ys+1 satisfy Eq. 37 and
Eq. 41 for all s ≥ 1. Under these conditions, by requiring ∥z0∥ ≤ R/2 with a probability at least 1 − ϵ/16, we only need to
prove all points in {ys}S′

s=0 will stay inside the region B(0, R) with probability at least 1 − ϵ/16.
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Then, set Es to be the event that
Es = {∥ys′∥ ≤ R,∀s′ ≤ s} ,

which satisfies Es−1 ⊆ Es. Besides, suppose the filtration Fs = {y0,y1, . . . ,ys}, the sequence{
1(Es−1) ·

(
log(∥ys∥2 + Lsτ/4)

)}
s=1,2,...,S

is a super-martingale, and the martingale difference has a subgaussian tail, i.e., for any t ≥ 0,

P
[
log(∥ys+1∥2) + L(s+ 1)τ

4 − log(∥ys∥2) − Lsτ

4 ≥ 7R−1
√
τd+ 4R−1t

√
τd

]
≤ P

[
log(∥ys+1∥2) + L(s+ 1)τ

4 − log(∥ys∥2) − Lsτ

4 ≥ 6R−1
√
τd+ 4R−1t

√
τ + Lτ

4

]
= P

[
log(∥zs+1∥2) − log(∥zs∥2) ≥ 6R−1

√
τd+ 4R−1t

√
τ
]

≤ exp(−t2),

where the first inequality is established when

Lτ

4 ≤
√
τd

R
⇔ τ ≤ 16d

L2R2 and d ≥ 1. (42)

Under these conditions, suppose

u = 6
√
τd

R
+ 4t

√
τd

R
⇔ t = uR

4
√
τd

− 3
2 ,

it implies

t2 ≥ R2u2

64τd − 1

which follows from the fact (a− b)2 ≥ a2/4 − b2/3 for all a, b ∈ R. Then, for any u ≥ 0, we have

P
[
log(∥ys+1∥2) + L(s+ 1)τ

4 − log(∥ys∥2) − Lsτ

4 ≥ u

]
≤ exp

(
−R2u2

64τd + 1
)

≤ 3 exp
(

−R2u2

64τd

)
,

which implies that the martingale difference is subgaussian. Then by Theorem 2 in (Shamir, 2011), for any s, we have

log(∥ys∥2) + Lsτ

4 ≤ log(∥y0∥2) + 74
R

·
√
sτd log(1/ϵ′)

with the probability at least 1 − ϵ′ conditioned on Es−1. Taking the union bound over all s = 1, 2, . . . , S′ (S′ ≤ S) and set
ϵ = 16ϵ′S′, we have with probability at least 1 − ϵ/16, for all s = 1, 2, . . . , S′, it holds

log(∥ys∥2) ≤2 log(R/2) + 74
R

·
√
sτd log(16S/ϵ) − Lsτ

4

≤2 log(R/2) + 742 · d log(16S/ϵ)
R2L

.

By requiring

R ≥ 63 ·
√
d

L
log 16S

ϵ
⇒ 742 · d log(16S/ϵ)

R2L
≤ 2 log 2, (43)

we have log(∥ys∥2) ≤ log(R2), which is equivalent to ∥ys∥ ≤ R. Combining with the fact that with probability at least
1 − ϵ/16 the initial point y0 stays inside B(0, R/2), we can conclude that with probability at least 1 − ϵ/8 all iterates stay
inside the region B(0, R).
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The difference between zs+1 and zs is smaller than r. In this paragraph, we aim to prove ∥zs+1 − zs∥ ≤ r for all
s ≤ S. Similar to the previous techniques, we consider

z̃s := zs − τ · sθ(zs) +
√

2τ · ξ where ξ ∼ N (0, I).

According to the transition kernel Eq. 27, it has

P [∥zs+1 − zs∥ ≥ r] ≤P [∥z̃s − zs∥ ≥ r] ≤ P
[
τ∥sθ(zs)∥ +

√
2τ∥ξ∥ ≥ r

]
=P
[
∥ξ∥ ≥ r − τ∥sθ(zs)∥√

2τ

]
≤ P

[
∥ξ∥ ≥ r −

√
τd∥√

2τ

]
(44)

where the second inequality follows from the triangle inequality, and the last inequality follows from Eq. 40 when the choice
of τ satisfies Eq. 38. Under these conditions, by choosing

r ≥ (
√

2 + 1) ·
√
τd+ 2

√
τ log(8S/ϵ) ⇔ r −

√
τd√

2τ
≥

√
d+

√
2 ·
√

log(8S/ϵ),

Eq. 44 becomes

P [∥zs+1 − zs∥ ≥ r] ≤ P

[
∥ξ∥ ≥ r −

√
τd∥√

2τ

]
≤ P

[
∥ξ∥ ≥

√
d+

√
2 ·
√

log(8S/ϵ)
]

≤ ϵ

8S ,

which means
P [∥zs+1 − zs∥ ≤ r] ≥ 1 − ϵ

8S .

Taking union bound over all iterates, we know all particles satisfy the local condition, i.e., ∥zs+1 − zs∥ ≤ r with the
probability at least 1 − ϵ/8. Hence, the proof is completed.

C.2. Control the error from the approximation of score and energy

Lemma C.3. Under Assumption [A1]–[A2], we set

η = 1
2 log 2L+ 1

2L and G := ∥∇g(0)∥ .

For any ϵ ∈ (0, 1), we set

R ≥ max
{

8 ·
√

∥∇g(0)∥2

L2 + d

L
, 63 ·

√
d

L
log 16S

ϵ

}
, r = 3 ·

√
τd log 8S

ϵ
.

Suppose it has

δ

16
:= 3ϵscore

2 ·
√
τd log 8S

ϵ
+ τϵ2score

4 + τ(3LR+G)ϵscore

2 ≤ 1
32 and ϵenergy ≤ 1

10 ,

we have

(1 − δ − 5ϵenergy) · T̃∗,z(Ω′z) ≤ T̃z(Ω′z) ≤ (1 + δ + 5ϵenergy) · T̃∗,z(Ω′z).

for any set A ⊆ B(0, R) and point z ∈ B(0, R).

Proof. Note that the Markov process defined by T̃z(·) and T̃∗,z(·) are 1/2-lazy. We prove the lemma by considering two
cases: z ̸∈ A and z ∈ A.
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When z ̸∈ A, we have

T̃z(A) =
∫
A
ãz(z′)T̃ ′z(dz′) = 1

2

∫
A
ãz(z′)Q̃′z(dz′)

= 1
2

∫
A∩Ωz

ãz(z′)Q̃z(dz′) = 1
2

∫
A∩Ωz

ãz(z′)q̃(z′|z)dz′.

Similarly, we have

T̃∗,z(A) = 1
2

∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′.

In this condition, we consider

2T̃z(A) − 2T̃∗,z(A) = −
∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′ +
∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′

−
∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′ +
∫
A∩Ωz

ãz(z′)q̃(z′|z)dz′,

which means
T̃z(A) − T̃∗,z(A)

T̃∗,z(A)
=
∫
A∩Ωz

ã∗,z(z′) · (q̃(z′|z) − q̃∗(z′|z)) dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′︸ ︷︷ ︸
Term 1

+
∫
A∩Ωz

(ãz(z′) − ã∗,z(z′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′︸ ︷︷ ︸
Term 2

.

(45)

First, we try to control Term 1, which can be achieved by investigating q̃(z′|z)/q̃∗(z′|z) as follows.

q̃(z′|z)
q̃∗(z′|z) = exp

(
−∥z′ − (z − τ · sθ(z))∥2

4τ + ∥z′ − (z − τ · ∇g(z))∥2

4τ

)
,

In this condition, we have

q̃(z′|z)
q̃∗(z′|z) = exp

(
(4τ)−1 ·

(
− ∥z′ − z∥2 − 2τ · (z′ − z)⊤ sθ(z) − τ2 · ∥sθ(z)∥2

+ ∥z′ − z∥2 + 2τ · (z′ − z)⊤∇g(z) + τ2 · ∥∇g(z)∥2
))

= exp
(

1
2(z′ − z)⊤ (−sθ(z) + ∇g(z)) + τ

4

(
− ∥sθ(z)∥2 + ∥∇g(z)∥2

))
.

(46)

It means∣∣∣∣ln q̃(z′|z)
q̃∗(z′|z)

∣∣∣∣ =
∣∣∣∣12(z′ − z)⊤ (−sθ(z) + ∇g(z)) + τ

4

(
− ∥sθ(z)∥2 + ∥∇g(z)∥2

)∣∣∣∣
≤1

2 ∥z′ − z∥ · ∥sθ(z) − ∇g(z)∥ + τ

4 · [∥sθ(z) + ∇g(z)∥ · ∥sθ(z) − ∇g(z)∥]

≤1
2 ∥z′ − z∥ · ∥sθ(z) − ∇g(z)∥ + τ

4 · ∥sθ(z) − ∇g(z)∥2 + τ

2 · ∥∇g(z)∥ · ∥sθ(z) − ∇g(z)∥

≤rϵscore

2 + τϵ2scroe
4 + τ(3LR+G)ϵscore

2
where the last inequality follows from the fact z′ ∈ B(z, r) ∩ B(0, R)/{z}, z ∈ B(0, R) and

∥∇g(z)∥ = ∥∇g(z) − ∇g(0) + ∇g(0)∥ ≤ 3L · ∥z∥ +G ≤ 3LR+G.

According to the definition of R and r shown in Lemma C.2, we choose

r := 3 ·
√
τ ·
√
d log 8S

ϵ
≥ (

√
2 + 1) ·

√
τd+ 2

√
τ log 8S

ϵ
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Under this condition, we require

δ

16
:= 3ϵscore

2 ·
√
τd log 8S

ϵ
+ τϵ2score

4 + τ(3LR+G)ϵscore

2 ≤ 1
32 , (47)

then we have

ln
(

1 − δ

8

)
≤ ln q̃(z′|z)

q̃∗(z′|z) ≤ ln
(

1 + δ

8

)
⇔ 1 − δ

8 <
q̃(z′|z)
q̃∗(z′|z) ≤ 1 + δ

8 ,

and

−δ

8 ≤ min
z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z) − 1 ≤ Term 1 ≤ max

z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z) − 1 ≤ δ

8 . (48)

with the definition of Term 1 shown in Eq. 45.

Then, we try to control Term 2 of Eq. 45 and have∫
A∩Ωz

(ãz(z′) − ã∗,z(z′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′
=
∫
A∩Ωz

(ãz(z′) − ã∗,z(z′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′
·
∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′
. (49)

According to Eq. 48, it has

1 − δ

8 ≤ min
z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z) ≤

∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃∗(z′|z)dz′
≤ max

z′∈A∩Ωz

q̃(z′|z)
q̃∗(z′|z) ≤ 1 + δ

8 , (50)

then we can upper and lower bounding Term 2 by investigating ãz(z′)/ã∗,z(z′) as follows

ã∗,z(z′) = min
{

1, exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z)

}
,

ãz(z′) = min
{

1, exp (−rθ(z′, z)) · q̃(z|z′)
q̃(z′|z)

}
.

In this condition, for any 0 < δ ≤ 1, we first consider two cases. When

ã∗,z(z′) = 1 ≤ exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z) and ãz(z′) = exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z) ≤ 1,

we have
exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z)

exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z)︸ ︷︷ ︸

Term 2.1

≤ ãz(z′)
ã∗,z(z′) = exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z) ≤ 1. (51)

Besides, when

ã∗,z(z′) = exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z) ≤ 1 and ãz(z′) = 1 ≤ exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z) ,

we have

1 ≤ ãz(z′)
ã∗,z(z′) = 1

exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z)

≤
exp (−rθ(z′, z)) · q̃(z|z′)

q̃(z′|z)

exp (−(g(z′) − g(z))) · q̃∗(z|z′)
q̃∗(z′|z)︸ ︷︷ ︸

Term 2.1

. (52)

Then, we start to consider finding the range of ln(Term 2.1) as follows

|ln (Term 2.1)| =
∣∣∣∣(−rθ(z′, z) + (g(z′) − g(z))) + ln q̃∗(z

′|z)
q̃(z′|z) + ln q̃(z|z′)

q̃∗(z|z′)

∣∣∣∣
≤ϵenergy +

∣∣∣∣ln q̃∗(z′|z)
q̃(z′|z)

∣∣∣∣+
∣∣∣∣ln q̃(z|z′)

q̃∗(z|z′)

∣∣∣∣ ≤ ϵenergy + δ

16 +
∣∣∣∣ln q̃(z|z′)

q̃∗(z|z′)

∣∣∣∣ , (53)
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where the last inequality follows from Eq. 47. Besides, similar to Eq. 46, we have

q̃(z|z′)
q̃∗(z|z′) = exp

(
(4τ)−1 ·

(
− ∥z − z′∥2 − 2τ · (z − z′)⊤sθ(z′) − τ2 · ∥sθ(z′)∥2

+ ∥z − z′∥2 + 2τ · (z − z′)⊤∇g(z′) + τ2 · ∥∇g(z′)∥2
))

,

which means∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ =
∣∣∣∣12(z − z′)⊤(−sθ(z′) + ∇g(z′)) + τ

4

(
− ∥sθ(z′)∥2 + ∥∇g(z′)∥2

)∣∣∣∣
≤1

2 ∥z − z′∥ · ∥sθ(z′) − ∇g(z′)∥ + τ

4 · ∥sθ(z′) + ∇g(z′)∥ · ∥sθ(z′) − ∇g(z′)∥

≤1
2 ∥z − z′∥ · ∥sθ(z′) − ∇g(z′)∥ + τ

4 · ∥sθ(z′) − ∇g(z′)∥2 + τ

2 ∥∇g(z′)∥ · ∥sθ(z′) − ∇g(z′)∥

≤rϵscore

2 + τϵ2score
4 + τ(3LR+G)ϵscore

2 ,

where the last inequality follows from the fact z′ ∈ B(z, r) ∩ B(0, R)/{z} and

∥∇g(z′)∥ = ∥∇g(z′) − ∇g(0) + ∇g(0)∥ ≤ 3L · ∥z′∥ +G ≤ 3LR+G.

Combining this result with Eq. 47, we have∣∣∣∣ln q̃(z|z′)
q̃∗(z|z′)

∣∣∣∣ ≤ δ

16 ⇔ δ

16 = 3ϵscore

2 ·
√
τd log 8S

ϵ
+ τϵ2score

4 + τ(3LR+G)ϵscore

2 .

Plugging this result into Eq. 53, it has

|ln (Term 2.1)| ≤ δ

8 + ϵenergy.

By requiring ϵenergy ≤ 0.1, we have

ln
(

1 − δ

4 − 2ϵenergy

)
≤ ln (Term 2.1) ≤ ln

(
1 + δ

4 + 2ϵenergy

)
⇔ 1 − δ

4 − 2ϵenergy ≤ Term 2.1 ≤ 1 + δ

4 + 2ϵenergy.

Combining this result with Eq. 51 and Eq. 52, we have

1 − δ

4 − 2ϵenergy ≤ az(z′)
a∗,z(z′) ≤ 1 + δ

4 + 2ϵenergy,

which implies ∫
A∩Ωz

(ãz(z′) − ã∗,z(z′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′
≥ min

z′∈A

ãz(z′)
ã∗,z(z′) − 1 ≥ −δ

4 − 2ϵenergy∫
A∩Ωz

(ãz(z′) − ã∗,z(z′)) q̃(z′|z)dz′∫
A∩Ωz

ã∗,z(z′)q̃(z′|z)dz′
≤ max

z′∈A

ãz(z′)
ã∗,z(z′) − 1 ≤ δ

4 + 2ϵenergy.

(54)

Plugging Eq. 54 and Eq. 50 into Eq. 49, we have

−δ

3 − 5ϵenergy

2 ≤
(

−δ

4 − 2ϵenergy

)
·
(

1 + δ

8

)
≤ Term 2 ≤

(
δ

4 + 2ϵenergy

)
·
(

1 + δ

8

)
≤ δ

3 + 5ϵenergy

2 . (55)

In this condition, combining Eq. 55, Eq. 48 with Eq. 45, we have

− δ + 5ϵenergy

2 ≤ T̃z(A) − T̃∗,z(A)
T̃∗,z(A)

≤ δ + 5ϵenergy

2

⇔
(

1 − δ + 5ϵenergy

2

)
· T̃∗,z(A) ≤ T̃z(A) ≤

(
1 + δ + 5ϵenergy

2

)
· T̃∗,z(A).

(56)

Hence, we complete the proof for z ̸∈ A.
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When z ∈ A, suppose there exist some r′ satisfying

Ω′z := B(z, r′) ⊆ A.

We can split A into A − Ω′z and Ω′z . Note that by our results in the first case, we have(
1 − δ + 5ϵenergy

2

)
· T̃∗,z(A − Ω′z) ≤ T̃z(A − Ω′z) ≤

(
1 + δ + 5ϵenergy

2

)
· T̃∗,z(A − Ω′z).

Then for the set Ω′z , we have∣∣∣∣ T̃z(Ω′z) − T̃∗,z(Ω′z)
T̃∗,z(Ω′z)

∣∣∣∣ =

∣∣∣∣∣
(
1 − T̃z(Ω − Ω′z)

)
−
(
1 − T̃∗,z(Ω − Ω′z)

)
T̃∗,z(Ω′z)

∣∣∣∣∣
=
∣∣∣∣ T̃∗,z(Ω − Ω′z) − T̃z(Ω − Ω′z)

T̃∗,z(Ω′z)

∣∣∣∣ ≤
∣∣∣∣ T̃∗,z(Ω − Ω′z) − T̃z(Ω − Ω′z)

T̃∗,z(Ω − Ω′z)

∣∣∣∣ ·
∣∣∣∣ T̃∗,z(Ω − Ω′z)

T̃∗,z(Ω′z)

∣∣∣∣
≤ δ + 5ϵenergy

2 · 2 = δ + 5ϵenergy,

where the last inequality follows from Eq. 56 and the property of 1/2 lazy, i.e.,

T̃∗,z(Ω − Ω′z) ≤ 1 and T̃∗,z(Ω′z) ≥ 1
2 .

In this condition, we have

(1 − δ − 5ϵenergy) · T̃∗,z(Ω′z) ≤ T̃z(Ω′z) ≤ (1 + δ + 5ϵenergy) · T̃∗,z(Ω′z).

Hence, we complete the proof for z ∈ A.

Corollary C.4. Under the same conditions as shown in Lemma C.3, if we require

ϵenergy ≤ δ/5,

then we have
(1 − 2δ) · T̃∗,z(A) ≤ T̃z(A) ≤ (1 + 2δ) · T̃∗,z(A),

for any set A ⊆ B(0, R) and point z ∈ B(0, R).

C.3. Control the error from Inner MALA to its stationary

In this section, we denote the ideally projected implementation of Alg. 2 whose Markov process, transition kernel, and
particles’ underlying distributions are denoted as {z̃∗,s}S

s=0, Eq. 32, and µ̃∗,s respectively. According to (Zou et al., 2021),
we know the stationary distribution of the time-reversible process {z̃∗,s}S

s=0 is

µ̃∗(dz) =


e−g(z)∫

Ω e
−g(z′)dz′

dz x ∈ Ω;

0 otherwise.
(57)

Here, we denote Ω = B(0, R) and
Ωz = B(0, R) ∩ B(z, r).

In the following analysis, we default

η = 1
2 log 2L+ 1

2L .

Under this condition, the smoothness of g is 3L and the strong convexity constant is L.

we aim to build the connection between the underlying distribution of the output particles obtained by projected Alg 2, i.e.,
µ̃S , and the stationary distribution µ̃∗ though the process {z̃∗,s}S

s=0. Since the ideally projected implementation of Alg. 2 is
similar to standard MALA except for the projection, we prove its convergence through its conductance properties, which
can be deduced by the Cheeger isoperimetric inequality of µ̃∗.

Under these conditions, we organize this subsection in the following three steps:
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1. Find the Cheeger isoperimetric inequality of µ̃∗.

2. Find the conductance properties of T̃∗.

3. Build the connection between µ̃S and µ̃∗ through the process {z̃∗,s}S
s=0.

C.3.1. THE CHEEGER ISOPERIMETRIC INEQUALITY OF µ̃∗

Definition C.5 (Definition 2.5.9 in (Chewi, 2024)). A probability measure µ defined on a Polish space (X ,dis) satisfies a
Cheeger isoperimetric inequality with constant ρ > 0 if for all Borel set A ⊆ X , it has

lim inf
ϵ→0

µ(Aϵ) − µ(A)
ϵ

≥ 1
ρ
µ(A)µ(Ac).

Lemma C.6 (Theorem 2.5.14 in (Chewi, 2024)). Let µ ∈ P1(X ) and let Ch > 0. The following are equivalent.

1. µ satisfies a Cheeger isoperimetric inequality with constant Ch.

2. For all Lipschitz f : X → R, it holds that

Eµ |f − Eµf | ≤ 2ρ · Eµ ∥∇f∥ (58)

Remark C.7. For a general non-log-concave distribution, a tight bound on the Cheeger constant can hardly be provided.
However, considering the Cheeger isoperimetric inequality is stronger than the Poincaré inequality, (Buser, 1982) lower
bound the Cheeger constant ρ with Ω(d1/2cP ) where cP is the Poincaré constant of µ̃∗. The lower bound of cP can
be generally obtained by the Bakry-Emery criterion and achieve exp(−Õ(d)). While for target distributions with better
properties, ρ can usually be much better. When the target distribution is a mixture of strongly log-concave distributions,
the lower bound of ρ can achieve 1/poly(d) by (Lee et al., 2018). For log-concave distributions, (Lee & Vempala, 2017)
proved that ρ = Ω(1/(Tr(Σ2))1/4), where Σ is the covariance matrix of the distribution µ̃∗. When the target distribution is
m-strongly log-concave, based on (Dwivedi et al., 2019), ρ can even achieve Ω(

√
L). In the following, we will prove that

the Cheeger constant can be independent of x0.

Lemma C.8. Suppose µ∗ and µ̃∗ are defined as Eq. 21 and Eq. 57, respectively, where R in µ̃∗ is chosen as that in
Lemma C.2. For any ϵ ∈ (0, 1), we have

1
2 ≤

∫
Ω µ̃∗(dz)∫
Rd µ∗(dz)

≤ 1.

Proof. Suppose µ∗ ∝ exp(−g) and µ̃∗ are the original and truncated target distributions of the inner loops. Following from
Lemma C.15, it has

TV (µ∗, µ̃∗) ≤ ϵ

4
when µ̃∗ is deduced by the R shown in Lemma C.2. Under these conditions, supposing Ω = B(0, R), then we have

TV (µ̃∗, µ) =
∫
Rd

|µ∗(dz) − µ̃∗(dz)| =
∫

Ω
|µ∗(dz) − µ̃∗(dz)| +

∫
Rd−Ω

µ∗(dz)

=
∫

Ω

∣∣∣∣ exp (−g(z))∫
Rd exp (−g(z′)) dz′

− exp (−g(z))∫
Ω exp (−g(z′)) dz′

∣∣∣∣dz +
∫
Rd−Ω

exp (−g(z))∫
Rd exp (−g(z′)) dz′

dz.

(59)

Suppose

Z =
∫
Rd

exp (−g(z)) dz and ZΩ =
∫

Ω
exp (−g(z)) dz,

then the first term of RHS of Eq. 59 satisfies∫
Ω

∣∣∣∣ exp (−g(z))∫
Rd exp (−g(z′)) dz′

− exp (−g(z))∫
Ω exp (−g(z′)) dz′

∣∣∣∣ dz

=
(

1∫
Ω exp (−g(z′)) dz′

− 1∫
Rd exp (−g(z′)) dz′

)
·
∫

Ω
exp (−g(z′)) dz′ = 1 − ZΩ

Z
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and the second term satisfies∫
Rd−Ω

exp (−g(z))∫
Rd exp (−g(z′)) dz′

dz =
∫
Rd exp (−g(z′)) dz′ −

∫
Ω exp (−g(z′)) dz′∫

Rd exp (−g(z′)) dz′
= 1 − ZΩ

Z
.

Combining all these things, we have

2 ·
(

1 − ZΩ

Z

)
≤ ϵ

4 ⇒ 1
2 ≤ ZΩ

Z
≤ 1

where we suppose ϵ ≤ 1 without loss of generality. Hence, the proof is completed.

Lemma C.9. Suppose µ∗, µ̃∗ and ϵ are under the same settings as those in Lemma C.8, the variance of µ̃∗ can be upper
bounded by 2d/L.

Proof. According to the fact that µ∗ is a L-strongly log-concave distribution defined on Rd with the mean vm, which
satisfies ∫

Rd

µ(z) ∥z − vm∥2 dz ≤ d

L

following from Lemma E.8. Suppose

Ω = B(0, R), Z =
∫
Rd

exp(−g(z))dz, ZΩ =
∫

Ω
exp(−g(z))dz

where R shown in Lemma C.2, then the variance bound can be reformulated as∫
Ω

exp(−g(z))
Z

∥z − vm∥2 dz +
∫
Rd−Ω

exp(−g(z))
Z

∥z − vm∥2 dz ≤ d

L
,

which implies ∫
Ω

exp(−g(z))
ZΩ

∥z − vm∥2 dz ≤ Z

ZΩ
· d
L

≤ 2d
L
. (60)

Note that the last inequality follows from Lemma C.8. Besides, suppose the mean of µ̃∗ is vm̃, then we have∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm∥2 dz =
∫

Ω

exp(−g(z))
ZΩ

· ∥z − vm̃ + vm̃ − vm∥2 dz

=
∫

Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz + 2 ·
∫

Ω

exp(−g(z))
ZΩ

· ⟨z − vm̃,vm̃ − vm⟩ dz

+
∫

Ω

exp(−g(z))
ZΩ

· ∥vm − vm̃∥2 dz

=
∫

Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz +
∫

Ω

exp(−g(z))
ZΩ

· ∥vm − vm̃∥2 dz

(61)

Combining Eq. 60 and Eq. 61, the variance of µ̃∗ satisfies∫
Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz ≤ 2d
L
.

Hence, the proof is completed.

Corollary C.10. For each truncated target distribution defined as Eq. 57, their Cheeger constant can be lower bounded by
ρ = Ω(

√
L/d).

Proof. It can be easily found that µ̃∗ is log-concave distribution, which means their Cheeger constant can be upper bounded
by ρ = Ω(1/(Tr(Σ))1/2), where Σ is the covariance matrix of the distribution µ̃∗. Under these conditions, we have

Tr (Σ) =
∫

Ω

exp(−g(z))
ZΩ

· ∥z − vm̃∥2 dz ≤ 2d
L
,

where the last inequality follows from Lemma C.9. Hence, ρ = Ω(
√
L/d) and the proof is completed.
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C.3.2. THE CONDUCTANCE PROPERTIES OF T̃∗

We prove the conductance properties of T̃∗,z with the following lemma.
Lemma C.11 (Lemma 13 in (Lee & Vempala, 2018)). Let T̃∗,z be a be a time-reversible Markov chain on Ω with stationary
distribution µ̃∗. Fix any ∆ > 0, suppose for any z, z′ ∈ Ω with ∥z − z′∥ ≤ ∆ we have TV

(
T̃∗,z, T̃∗,z′

)
≤ 0.99, then the

conductance of T̃∗,z satisfies ϕ ≥ Cρ∆ for some absolute constant C, where ρ is the Cheeger constant of µ̃∗.

In order to apply Lemma C.11, we have known the Cheeger constant of µ̃∗ is ρ. We only need to verify the corresponding
condition, i.e., proving that as long as ∥z − z′∥ ≤ ∆, we have TV

(
T̃∗,z, T̃∗,z′

)
≤ 0.99 for some ∆. Recalling Eq. 32, we

have

T̃∗,z(dẑ) =T̃ ′∗,z(dẑ) · ã∗,z(ẑ) +
(

1 −
∫

Ω
ã∗,z(z̃)T̃ ′∗,z(dz̃)

)
· δz(dẑ)

=
(

1
2δz(dẑ) + 1

2 · Q̃′∗,z(dẑ)
)

· ã∗,z(ẑ) +
[
1 −

∫
ã∗,z(z̃) ·

(
1
2δz(dz̃) + 1

2 Q̃
′
∗,z(dz̃)

)]
· δz(dẑ)

=
(

1
2δz(dẑ) + 1

2 · Q̃′∗,z(dẑ)
)

· ã∗,z(ẑ) +
(

1 − 1
2 ã∗,z(z) − 1

2

∫
ã∗,z(z̃) · Q̃′∗,z(dz̃)

)
· δz(dẑ)

=
(

1 − 1
2

∫
ã∗,z(z̃) · Q̃′∗,z(dz̃)

)
· δz(dẑ) + 1

2 · Q̃′∗,z(dẑ) · ã∗,z(ẑ)

=
(

1 − 1
2

∫
Ωz

ã∗,z(z̃)Q̃∗,z(dz̃)
)

+ 1
2 · Q̃∗,z(dẑ) · ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] ,

(62)

where the second inequality follows from Eq. 30 and the last inequality follows from Eq. 29. Then the rest will be proving
the upper bound of TV

(
T̃∗,z, T̃∗,z′

)
, and we state another two useful lemmas as follows.

Lemma C.12 (Lemma B.6 in (Zou et al., 2021)). For any two points z, z′ ∈ Rd, it holds that

TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
≤ (1 + 3Lτ) ∥z − z′∥√

2τ

Proof. This lemma can be easily obtained by plugging the smoothness of g, i.e., 3L, into Lemma B.6 in (Zou et al.,
2021).

Corollary C.13 (Variant of Lemma 6.5 in (Zou et al., 2021)). Under Assumption [A1]–[A2], we set

η = 1
2 log 2L+ 1

2L and G := ∥∇g(0)∥ .

If we set

τ ≤ 1
16 · (3LR+G+ ϵscore)2 and r = 3 ·

√
τd log 8S

ϵ

there exist absolute constants c0, such that ϕ ≥ c0ρ
√
τ where ρ is the Cheeger constant of the distribution µ̃∗.

Proof. By the definition of total variation distance, there exists a set A ⊆ Ω satisfying

TV
(
T̃∗,z(·), T̃∗,z′(·)

)
=
∣∣T̃∗,z(A) − T̃∗,z′(A)

∣∣ .
Due to the closed form of T̃∗,z shown in Eq. 62, we have

T̃∗,z(A) =
(

1 − 1
2

∫
z̃∈Ωz

ã∗,z(z̃)Q̃∗,z(dz̃)
)

+ 1
2

∫
ẑ∈A

ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] Q̃∗,z(dẑ)

Under this condition, we have∣∣T̃∗,z(A) − T̃∗,z′(A)
∣∣ ≤ max

ẑ

(
1 − 1

2

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)
)

︸ ︷︷ ︸
Term 1

+ 1
2

∣∣∣∣∫
ẑ∈A

ã∗,z(ẑ) · 1 [ẑ ∈ Ωz] Q̃∗,z(dẑ) − ã∗,z′(ẑ) · 1 [ẑ ∈ Ωz′ ] Q̃∗,z′(dẑ)
∣∣∣∣︸ ︷︷ ︸

Term 2

.
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Upper bound Term 1. We first consider to lower bound ã∗,ẑ(z̃) in the following. According to Eq. 31, we have

ã∗,ẑ(z̃) ≥ exp
(

−g(z̃) − ∥ẑ − z̃ + τ∇g(z̃)∥2

4τ + g(ẑ) + ∥z̃ − ẑ + τ∇g(ẑ)∥2

4τ

)
,

which means
4 ln ã∗,ẑ(z̃) ≥ τ ·

(
∥∇g(ẑ)∥2 − ∥∇g(z̃)∥2

)
︸ ︷︷ ︸

Term 1.1

−2 · (g(z̃) − g(ẑ) − ⟨∇g(ẑ), z̃ − ẑ⟩)︸ ︷︷ ︸
Term 1.2

+2 · (g(ẑ) − g(z̃) − ⟨∇g(z̃), ẑ − z̃⟩)︸ ︷︷ ︸
Term 1.3

.

Since Term 1.2 and Term 1.3 are grouped to more easily apply the strong convexity and smoothness of g (Lemma C.1), it
has

Term 1.2 ≥ −3L ∥ẑ − z̃∥2 and Term 1.3 ≥ L ∥ẑ − z̃∥2 ≥ 0.
Besides, by requiring τ ≤ 1/3L, we have

Term 1.1 =τ · ⟨∇g(ẑ) − ∇g(z̃),∇g(ẑ) + ∇g(z̃)⟩
≥ − τ · ∥∇g(ẑ) − ∇g(z̃)∥ · ∥∇g(ẑ) + ∇g(z̃)∥
≥ − 3Lτ ∥ẑ − z̃∥ · (2 ∥∇g(ẑ)∥ + 3L ∥ẑ − z̃∥) ≥ −3Lτ2 ∥∇g(ẑ)∥2 − 6L ∥ẑ − z̃∥2

.

Therefore,

4 ln ã∗,ẑ(z̃) ≥ − 3Lτ2 ∥∇g(ẑ)∥2 − 9L ∥ẑ − z̃∥2 = −3Lτ2 ∥∇g(ẑ)∥2 − 9L
∥∥∥τ · ∇g(ẑ) +

√
2τ · ξ

∥∥∥2

≥ − 21Lτ2 ∥∇g(ẑ)∥2 − 36Lτ ∥ξ∥2
,

and
ln ã∗,ẑ(z̃) ≥ −6Lτ2 ∥∇g(ẑ)∥2 − 9Lτ ∥ξ∥2 ≥ −6Lτ2 · (3LR+ ∥∇g(0)∥)2 − 9Lτ∥ξ∥2

where the last inequality follows from

∥∇g(ẑ)∥ ≤ ∥∇g(ẑ) − ∇g(0)∥ + ∥∇g(0)∥ ≤ 3LR+ ∥∇g(0)∥ .

Under these conditions, we have

Term 1 ≤1 − 1
2 · exp

(
−6Lτ2 (3LR+ ∥∇g(0)∥)2

)
· min

∫
Ωẑ

exp
(
−9Lτ∥ξ∥2) · q̃∗,ẑ(z̃)dz̃

=1 − 1
2 · exp

(
−6Lτ2 (3LR+ ∥∇g(0)∥)2

)
· Eξ∼N (0,I)

[
exp

(
−9Lτ∥ξ∥2)]

≤1 − 0.4 · exp
(

−6Lτ2 (3LR+ ∥∇g(0)∥)2
)

· exp (−18Lτd) ,

(63)

where the last inequality follows from the Markov inequality shown in the following

Eξ∼N (0,I)
[
exp

(
−9Lτ∥ξ∥2)] ≥ exp (−18Lτd) · Pξ∼N (0,I)

[
exp

(
−9Lτ∥ξ∥2) ≥ exp (−18Lτd)

]
= exp (−18Lτd) · Pξ∼N (0,I)

[
∥ξ∥2 ≤ 2d

]
≥ exp (−18Lτd) · (1 − exp(−d/2)) .

Then, by choosing

τ ≤ 1
16

√
L · (3LR+ ∥∇g(0)∥)

, (64)

it has 6Lτ2 (3LR+ ∥∇g(0)∥)2 ≤ 1/40. Besides by choosing

τ ≤ 1
L2R2 ≤ 1

40 · 18L ·
(√

d+
√

ln 16S
ϵ

)2 ≤ 1
40 · 18L · d

, (65)

35



Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference

where the last inequality follows from the range of R shown in Lemma C.2, it has 18Ldτ ≤ 1/40. Under these conditions,
considering Eq. 63, we have

Term 1 ≤ 1 − 0.5 · min
ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃) ≤ 1 − 0.4 · e−1/20. (66)

Then, combining the step size choices of Eq. 64, Eq. 65, and Lemma C.2, since the requirement

τ ≤ 1
16

√
L · (3LR+ ∥∇g(0)∥)

, τ ≤ 1
L2R2 and τ ≤ d

(3LR+ ∥∇g(0)∥ + ϵscore)2

can be achieved by
τ ≤ 16−1 · (3LR+ ∥∇g(0)∥ + ϵscore)−2, (67)

the range of τ can be determined.

Upper bound Term 2. In This part, we use similar techniques as those shown in Lemma 6.5 of (Zou et al., 2021).
According to the triangle inequality, we have

2 · Term 2 ≤
∫

ẑ∈A
(1 − ã∗,z(ẑ)) q̃(ẑ|z)1 [ẑ ∈ Ωz] dẑ +

∫
ẑ∈A

(1 − ã∗,z′(ẑ)) q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ] dẑ

+
∣∣∣∣∫

ẑ∈A
(q̃(ẑ|z)1 [ẑ ∈ Ωz] − q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ]) dẑ

∣∣∣∣
≤2 ·

(
1 − min

ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)
)

+
∣∣∣∣∫

ẑ∈A
(q̃(ẑ|z)1 [ẑ ∈ Ωz] − q̃(ẑ|z′)1 [ẑ ∈ Ωz′ ]) dẑ

∣∣∣∣︸ ︷︷ ︸
Term 2.1

.

(68)

Then, we upper bound Term 2.1 as follows

Term 2.1 ≤
∣∣∣∣∫

ẑ∈A
1 [ẑ ∈ Ωz′ ] ·

(
q̃(ẑ|z) − q̃(ẑ|z′)

)∣∣∣∣+
∣∣∣∣∫

ẑ∈A
(1 [ẑ ∈ Ωz] − 1 [ẑ ∈ Ωz′ ]) · q̃(ẑ|z)

∣∣∣∣
≤TV

(
Q̃∗,z(·), Q̃∗,z′(·)

)
+ max

{∫
ẑ∈Ωz′−Ωz

q̃(ẑ|z)dẑ,

∫
ẑ∈Ωz−Ωz′

q̃(ẑ|z′)dẑ

}

≤TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
+ max

{∫
ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ,

∫
ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ

}
According to the definition, q̃∗,z(·) is Gaussian distribution with mean z − τ∇g(z) and covariance matrix 2τI , thus we
have ∫

ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ ≤ Pẑ∼χ2
d

[
ẑ ≥ 1

2 (r − τ ∥∇g(z)∥)2
/τ

]
∫

ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ ≤ Pẑ∼χ2
d

[
ẑ ≥ 1

2 (r − τ ∥∇g(z)∥ − ∥z − z′∥)2
/τ

]
.

Then, we start to lower bound
r − τ ∥∇g(z)∥ − ∥z − z′∥ .

Then, we require

∥z − z′∥ ≤ 0.1r and τ ≤ d

35 · (3LR+G)2 (69)

where the latter condition can be easily covered by the choice in Eq. 67 when d ≥ 3 without loss of generality. Under this
condition, we have

τ ≤ (0.17)2 · d

(3LR+G)2 ⇔
√
τ ≤ 0.17

√
d

3LR+G
. (70)
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Since we have
∥∇g(z)∥ = ∥∇g(z) − ∇g(0) + ∇g(0)∥ ≤ 3L · ∥z∥ +G ≤ 3LR+G,

by the smoothness, it has
√
τ ≤ 0.17

√
d

∥∇g(z)∥ ⇔ τ ∥∇g(z)∥ ≤ 0.17
√
τd (71)

Plugging Eq. 71 and Eq. 70 into Eq. 69, we have

r − τ ∥∇g(z)∥ − ∥z − z′∥ ≥ 0.9r − 0.17
√
τd ≥

√
6.4τd

where the last inequality follows from the choice of r shown in Lemma C.3, i.e.,

r = 3 ·
√
τd log 8S

ϵ
≥ 3 ·

√
τd.

Under these conditions, we have

max
{∫

ẑ∈Rd−Ωz

q̃(ẑ|z)dẑ,

∫
ẑ∈Rd−Ωz′

q̃(ẑ|z′)dẑ

}
≤ Pẑ∼χ2

d
(∥z∥ ≥ 3.2d) ≤ 0.1.

Then combine the above results and apply Lemma C.12, assume τ ≤ 1/(3L), we have

Term 2.1 ≤ 0.1 + TV
(
Q̃∗,z(·), Q̃∗,z′(·)

)
≤ 0.1 +

√
2/τ · ∥z − z′∥

Plugging the above into Eq. 68, we have

Term 2 ≤
(

1 − min
ẑ∈Ω,z̃∈Ωẑ

∫
Ωẑ

ã∗,ẑ(z̃)Q̃∗,ẑ(dz̃)
)

+ 1
2 ·

(
0.1 +

√
2
τ

· ∥z − z′∥

)
≤
(

1 − 0.8 · e−1/20
)

+ 0.05 + (2τ)−1/2 · ∥z − z′∥,

where the second inequality follows from Eq. 66.

After upper bounding Term 1 and Term 2, we have

TV
(
T̃∗,z(·), T̃∗,z′(·)

)
≤1 − 0.4 · e−1/20 +

(
1 − 0.8 · e−1/20

)
+ 0.05 + (2τ)−1/2 · ∥z − z′∥

≤0.91 + (2τ)−1/2 · ∥z − z′∥ ≤ 0.99

where the last inequality can be established by requiring ∥z − z′∥ ≤
√

2τ . Combining Lemma C.11, the conductance of µ̃∗
satisfies

ϕ ≥ c0 · ρ
√

2τ .
Hence, the proof is completed.

The connection between µ̃S and µ̃∗. With the conductance of truncated target distribution, we are able to find the
convergence of the projected implementation of Alg. 2. Besides, the gap between the truncated target µ̃∗ and the true target
µ∗ can be upper bounded by controlling R while such an R will be dominated by the range of R shown in Lemma C.2. In
this section, we will omit several details since many of them have been proven in (Zou et al., 2021).
Lemma C.14 (Lemma 6.4 in (Zou et al., 2021)). Let µ̃S be distributions of the outputs of the projected implementation of
Alg. 2. Under Assumption [A1]–[A2], if the transition kernel T̃z(·) is δ-close to T̃∗,z with δ ≤ min

{
1 −

√
2/2, ϕ/16

}
(ϕ

denotes the conductance of µ̃∗), then for any λ-warm start initial distribution with respect to µ̃∗, it holds that

TV (µ̃S , µ̃∗) ≤ λ ·
(
1 − ϕ2/8

)S + 16δ/ϕ.

Lemma C.15 (Lemma 6.6 in (Zou et al., 2021)). For any ϵ ∈ (0, 1), set R to make it satisfy

µ (B(0, R)) ≥ 1 − ϵ

12 ,

and µ̃∗ be the truncated target distribution of µ∗. Then the total variation distance between µ∗ and µ̃∗ can be upper bounded
by TV (µ̃∗, µ∗) ≤ ϵ/4.

37



Reverse Transition Kernel: A Flexible Framework to Accelerate Diffusion Inference

C.4. Main Theorems of InnerMALA implementation

Lemma C.16. Under Assumption [A1]–[A2], we can upper bound G = ∥∇g(0)∥ as

∥∇g(0)∥ ≤ L ·
√

2(d+m2
2) + 3L · ∥x0∥ .

Furthermore, we can reformulate R as

R = 63 ·
√

(d+m2
2 + ∥x0∥2) · log 16S

ϵ

to make it satisfy the requirement shown in Lemma C.3. Then, the range of inner step sizes, i.e., τ , will satisfy

τ ≤ Cτ ·
(
L2 (d+m2

2 + ∥x0∥2) · log 16S
ϵ

)−1
,

where the absolute constant Cτ = 2−4 · 3−8 · 7−2.

Proof. To make the bound more explicit, we control R and G in our previous analysis. For G = ∥∇g(0)∥, according to
Eq. 21, we have

∇g(z) = ∇f(K−k−1)η(z) + e−2ηz − e−ηx0

(1 − e−2η) ,

which means

∥∇g(0)∥ ≤
∥∥∇f(K−k−1)η(0)

∥∥+
∥∥∥∥ e−ηx0

1 − e−2η

∥∥∥∥
≤
∥∥∇f(K−k−1)η(0)

∥∥+
√

2L
2L+ 1 · (2L+ 1) · ∥x0∥ ≤

∥∥∇f(K−k−1)η(0)
∥∥+ (2L+ 1) · ∥x0∥ .

Besides, we should note f(K−k−1)η is the smooth (Assumption [A1]) energy function of p(K−k−1)η denoting the underlying
distribution of time (K − k − 1)η in the forward OU process. Then, we have∥∥∇f(K−k−1)η(0)

∥∥2 =Ep(K−k−1)η

[∥∥∇f(K−k−1)η(0)
∥∥2
]

≤2Ep(K−k−1)η

[∥∥∇f(K−k−1)η(x)
∥∥2
]

+ 2Ep(K−k−1)η

[∥∥∇f(K−k−1)η(x) − ∇f(K−k−1)η(0)
∥∥2
]

≤2Ld+ 2L2Ep(K−k−1)η

[
∥x∥2

]
≤ 2Ld+ 2L2 max

{
d,m2

2
}

≤ 2L2(d+m2
2)

(72)
where the first inequality follows from Lemma E.6, and the third inequality follows from Lemma E.7. Under these conditions,
we have

∥∇g(0)∥ ≤ L ·
√

2(d+m2
2) + 3L · ∥x0∥ . (73)

Then, for R defined as

R ≥ max
{

8 ·
√

∥∇g(0)∥2

L2 + d

L
, 63 ·

√
d

L
log 16S

ϵ

}
,

we can choose R to be the upper bound of RHS. Considering

8 ·
√

∥∇g(0)∥2

L2 + d

L
≤ 8 ·

√
4L2(d+m2

2) + 18L2∥x0∥2

L2 + d ≤ 63 ·
√

(d+m2
2 + ∥x0∥2),

then we choose

R = 63 ·
√

(d+m2
2 + ∥x0∥2) · log 16S

ϵ
.

After determining R, the choice of τ can be relaxed to

τ ≤ Cτ ·
(
L2 (d+m2

2 + ∥x0∥2) · log 16S
ϵ

)−1
,
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where the absolute constant Cτ = 2−4 · 3−8 · 7−2, since we have

(3LR+G+ ϵscore)2 ≤ 9L2R2 + 4G2

≤ 9L2 · 632 ·
(
d+m2

2 + ∥x0∥2) · log 16S
ϵ

+ 4
(
4L2 ·

(
d+m2

2
)

+ 18L2∥x0∥2)
≤ 9 · 632 · L2 (d+m2

2 + ∥x0∥2) · log 16S
ϵ
.

Hence, the proof is completed.

Theorem C.17. Under Assumption [A1]–[A2], for any ϵ ∈ (0, 1), let µ̃∗(z) ∝ exp(−g(z))1[z ∈ B(0, R)] be the truncated
target distribution in B(0, R) with

R = 63 ·
√

(d+m2
2 + ∥x0∥2) · log 16S

ϵ
= Õ

(
(d+m2

2 + ∥x0∥2)1/2
)
,

r in Alg. 2 satisfies

r = 3 ·
√
τd log 8S

ϵ
= Õ(τ1/2d1/2)

and ρ be the Cheeger constant of µ̃∗. Suppose µ̃0({∥x∥ ≥ R/2}) ≤ ϵ/16, the step size satisfy

τ ≤ Cτ ·
(
L2 (d+m2

2 + ∥x0∥2) · log 16S
ϵ

)−1
= Õ(L−2 · (d+m2

2 + ∥x0∥2)−1),

the score and energy estimation errors satisfy

ϵscore ≤ c0ρ

32 · 36 ·
√
d log 8S

ϵ

= O(ρd−1/2) and ϵenergy ≤ c0ρ
√

2τ
32 · 5 = O(ρτ1/2),

then for any λ-warm start with respect to µ∗ the output of both standard and projected implementation of Alg. 2 satisfies

TV (µS , µ∗) = ϵ

2 + λ

(
1 − c2

0ρ
2

4 · τ
)S

+ Õ(d1/2ρ−1ϵscore) + O(ρ−1τ−1/2ϵenergy)

Proof. We characterize the condition on the step size τ . Combining Lemma C.2 and Corollary C.13, it requires the range of
τ to satisfy

τ ≤ 16−1 · (3LR+ ∥∇g(0)∥ + ϵscore)−2.

Under this condition, we have

τ ≤
d log 8S

ϵ

(3LR+G)2 , τ ≤
d log 8S

ϵ

ϵ2score
, and τ ≤

(
722 · ϵ2score · d log 8S

ϵ

)−1

which implies

(3LR+G)ϵscore · τ ≤ ϵscore
√
τ ·
√
d log 8S

ϵ
and ϵ2score · τ ≤ ϵscore

√
τ ·
√
d log 8S

ϵ
.

Then, we have

δ =16 ·

[
3ϵscore

2 ·
√
τd log 8S

ϵ
+ (3LR+G)ϵscore · τ

2 + ϵ2score · τ
4

]

≤16 ·

[
3ϵscore

2 ·
√
τd log 8S

ϵ
+ ϵscore

2 ·
√
τd log 8S

ϵ
+ ϵscore

4 ·
√
τd log 8S

ϵ

]

=36ϵscore ·
√
τd log 8S

ϵ
≤ 1

2
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which matches the requirement of Lemma C.3. Under this condition, if we require

ϵscore ≤ c0ρ

32 · 36 ·
√
d log 8S

ϵ

= O(ρd−1/2) and ϵenergy ≤ c0ρ
√

2τ
32 · 5 = O(ρτ1/2),

it makes

δ + 5ϵenergy ≤ 36ϵscore ·
√
τd log 8S

ϵ
+ 5ϵenergy ≤ c0ρ

√
2τ

16 ≤ ϕ

16
and satisfies the requirements shown in Lemma C.14.

Then, we are able to put the results of these lemmas together to establish the convergence of Alg. 2. Note that if µ0 is
a λ-warm start to µ∗, it must be a λ-warm start to µ̃∗ since µ̃∗(A) ≥ µ∗(A) for all A ∈ Ω. Combining Lemma C.2,
Lemma C.14 and Lemma C.15, we have

TV (µS , µ∗) ≤TV (µS , µ̃S) + TV (µ̃S , µ̃∗) + TV (µ̃∗, µ∗)

≤ ϵ

4 +
(
λ ·
(

1 − ϕ2

8

)S

+ 16(δ + 5ϵenergy)
ϕ

)
+ ϵ

4

≤ ϵ

2 + λ

(
1 − c2

0ρ
2

4 · τ
)S

+ 408ϵscore ·

√
d log 8S

ϵ

c0ρ
+ 57ϵenergy

c0ρ
√
τ

= ϵ

2 + λ

(
1 − c2

0ρ
2

4 · τ
)S

+ Õ(d1/2ρ−1ϵscore) + O(ρ−1τ−1/2ϵenergy).

After combining this result with the choice of parameters shown in Lemma C.16, the proof is completed.

Lemma C.18. Under the same assumptions and hyperparameter settings made in Theorem C.17, we use Gaussian-type
initialization

µ0(dz)
dz

∝ exp
(

−L∥z∥2 − ∥x0 − e−ηz∥2

2(1 − e−2η)

)
.

If we set the iteration number as
S = Õ

(
Lρ−2 ·

(
d+m2

2
)
τ−1) ,

the standard and projected implementation of Alg. 2 can achieve

TV (µS , µ∗) ≤ 3ϵ
4 + Õ(d1/2ρ−1ϵscore) + O(ρ−1τ−1/2ϵenergy).

Proof. We reformulate the target distribution µ∗ and the initial distribution µ0 as follows

µ∗(dz)
dz

∝ exp
[

−
(
f(K−k−1)η(z) + 3L∥z∥2

2

)
−

(
∥x0 − e−ηz∥2

2(1 − e−2η) − 3L∥z∥2

2

)]
:= exp (−ϕ(z) − ψ(z)) ,

µ0(dz)
z

∝ exp
[

−L∥z∥2 − 3L∥z∥2

2 −

(
∥x0 − e−ηz∥2

2(1 − e−2η) − 3L∥z∥2

2

)]
= exp

[
−5L∥z∥2

2 − ψ(z)
]
.

Under this condition, we have

µ0(dz)
µ∗(dz) ≤

∫
Rd exp (−ϕ(z′) − ψ(z′)) dz′∫

Rd exp (−5L/2 · ∥z′∥2 − ψ(z′)) dz′
· exp

(
ϕ(z) − 5L∥z∥2

2

)
(74)

Due to Assumption [A1], we have

LI

2 ⪯ ∇2f(K−k−1)η(z′) + 3L
2 = ∇2ϕ(z′) ⪯ 5LI

2 ,
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which means

ϕ(z) ≤ ϕ(z∗) + 5L
4 · ∥z − z∗∥2 ≤ ϕ(z∗) + 5L∥z∥2

2 + 5L∥z∗∥2

2
and

exp
(
ϕ(z) − 5L∥z∥2

2

)
≤ exp

(
ϕ(z∗) + 5L∥z∗∥2

2

)
. (75)

Since the function ϕ(z) is strongly log-concave, it satisfies

∇ϕ(z) · z ≥ L∥z∥2

4 − ∥∇ϕ(0)∥
L

and ϕ(z) ≥ L∥z∥2

16 + ϕ(z∗) − ∥∇ϕ(0)∥2

2L
due to Lemma E.3 and Lemma E.4. Under these conditions, we have∫

exp [−ϕ(z′) − ψ(z′)] dz′ ≤ exp
(

−ϕ(z∗) + ∥∇ϕ(0)∥2

2L

)
·
∫

exp
[
−L∥z′∥2

16 − ψ(z′)
]

dz′

= exp
(

−ϕ(z∗) + ∥∇ϕ(0)∥2

2L

)
·
∫

exp
[

−23L∥z′∥2

16 − ∥x0 − e−ηz′∥2

2(1 − e−2η)

]
dz′

(76)

Besides, we have ∫
exp

[
−5L∥z′∥2

2 − ψ(z′)
]

dz′ =
∫

exp
[

−L∥z′∥2 − ∥x0 − e−ηz′∥2

2(1 − e−2η)

]
dz′,

which implies ∫
exp

[
−5L∥z′∥2

2 − ψ(z′)
]

dz′ ·
∫

exp
[
−7L∥z′∥2

16

]
dz′

≥
∫

exp
[

−23L∥z′∥2

16 − ∥x0 − e−ηz′∥2

2(1 − e−2η)

]
dz′

(77)

Plugging Eq. 75, Eq. 76 and Eq. 77 into Eq. 74, we have

µ0(dz)
µ̃∗(dz) ≤ exp

(
5L∥z∗∥2

2 + ∥∇ϕ(0)∥2

2L

)
·
∫

exp
[
−7L∥z′∥2

16

]
dz′. (78)

Due to the strong convexity of ϕ, it has

∥z∗∥2 ≤ 4∥∇ϕ(0) − ∇ϕ(z∗)∥2

L2 = 4∥∇ϕ(0)∥2

L2

and
∥∇ϕ(0)∥2 =

∥∥∇f(K−k−1)η(0)
∥∥2 ≤ 2L2(d+m2

2)
where the inequality follows from Eq. 72. Combining with the fact∫

exp
[
−7L∥z′∥2

16

]
dz′ =

(
16π
7L

)d/2
,

Eq. 78 can be relaxed to

λ ≤ max
z

µ0(dz)
µ̃∗(dz) ≤ exp

(
22L · (d+m2

2)
)

·
(

16π
L

)d/2
= exp

(
O(L(d+m2

2))
)

which is independent on ∥x0∥. Then, In order to ensure the convergence of the total variation distance is smaller than ϵ, it
suffices to choose τ and S such that

λ

(
1 − c2

0ρ
2

4 · τ
)S

≤ ϵ

4 ⇔ S = O
(

log(λ/ϵ)
ρ2τ

)
= Õ

(
Lρ−2 ·

(
d+m2

2
)
τ−1) ,

where the last two inequalities follow from Theorem C.17. Hence, the proof is completed.
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Theorem C.19. Under Assumption [A1]–[A2], for Alg. 1, we choose

η = 1
2 log 2L+ 1

2L and K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and implement Step 3 of Alg. 1 with projected Alg. 2. For the k-th run of Alg. 2, we use Gaussian-type initialization

µ0(dz)
dz

∝ exp
(

−L∥z∥2 − ∥x̂k − e−ηz∥2

2(1 − e−2η)

)
.

If we set the hyperparameters as shown in Lemma C.18, it can achieve

TV (p̂Kη, p∗) ≤ ϵ+ Õ(Ld1/2ρ−1ϵscore) + O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

with a gradient complexity as follows
Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2
)2
Z2
)

for any τ̂ ∈ (0, 1) where Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1).

Proof. According to Lemma B.3, we know that under the choice

η = 1
2 ln 2L+ 1

2L ,

it requires to run Alg. 2 for K times where

K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
.

For each run of Alg. 2, we require the total variation error to achieve

TV
(
p̂(k+1)η|kη(·|x̂), p←(k+1)η|kη(·|x̂)

)
≤ ϵ

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

+ Õ(d1/2ρ−1ϵscore) + O(ρ−1τ
−1/2
k ϵenergy).

Combining with Lemma C.18, we consider a step size

τk =Cτ ·

(
L2 (d+m2

2 + ∥x̂k∥2) · log
48LS log (1+L2)d+∥∇f∗(0)∥2

ϵ2

ϵ

)−1

· τ̂

=Õ(L−2 · (d+m2
2 + ∥x̂k∥2)−1 · τ̂)

where τ ′ ∈ (0, 1), to solve the k-th inner sampling subproblem. Then, the maximum iteration number will be

S = Õ
(
L3ρ−2τ̂−1 ·

(
d+m2

2
)2 · ∥x̂k∥2

)
.

This means that with the total gradient complexity

K · S = Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2
)2
Z2
)

where Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1), we can obtain

TV (p̂Kη, p∗) ≤ϵ+ Õ(Kd1/2ρ−1ϵscore) + O(KL(d+m2
2 + Z2)1/2τ̂−1/2ρ−1ϵenergy)

=ϵ+ Õ(Ld1/2ρ−1ϵscore) + O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy).

Hence, the proof is completed.
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Lemma C.20. Suppose we implement Alg. 2 with its projected version, we have

Z2 ≤ Õ
(
L3(d+m2

2)2ρ−2) .
where Z denotes the maximal l2 norm of particles appearing in outer loops (Alg. 1)

Proof. Suppose we implement Alg. 2 with its projected version, where each update will be projected to a ball with a ratio r
shown in Lemma C.2. Under these conditions, we have

∥x̂K∥2 =

∥∥∥∥∥x̂0 +
K∑

i=1
(x̂i − x̂i−1)

∥∥∥∥∥
2

≤ (K + 1) ∥x̂0∥2 + (K + 1) ·
K∑

i=1
∥x̂i − x̂i−1∥2

For each i ∈ {1, 2, . . .K}, we have

∥x̂i − x̂i−1∥2 = ∥zS − z0∥2 ≤ (S + 1) ·
S∑

j=1
∥zj − zj−1∥2 ≤ 2S · r2.

Follows from Lemma C.18, it has

S · r2 = O
(

log(λ/ϵ)
ρ2τ

)
· Õ (τd) = Õ

(
d log(λ/ϵ)

ρ2

)
= Õ

(
L(d+m2

2)2ρ−2) .
Then, we have

Z2 ≤ O(K2) · Õ
(
L(d+m2

2)2ρ−2) = Õ
(
L3(d+m2

2)2ρ−2) ,
Hence, the proof is completed.

C.5. Control the error from Energy Estimation

Corollary C.21. Suppose the diffusion model sθ satisfies

∥ŝθ(x, t) + ∇ log pt(x)∥∞ ≤ ρϵ

Ld1/2 ,

and another parameterized model l̂θ̂(x, t) is used to estimate the log-likelihood of pt(x) satisfying∥∥∥l̂θ′(x, t) + log pt(x)
∥∥∥
∞

≤ ρϵ

L2 · (d1/2 +m2 + Z)
.

If we implement Alg. 1 with the projected version of Alg. 2, it has

TV (p̂Kη, p∗) ≤ Õ(ϵ)

with the following gradient complexity
Õ
(
L4ρ−2 ·

(
d+m2

2
)2
Z2
)
.

Proof. Since we have highly accurate scores and energy estimation, we can construct sθ and rθ′ (shown in Eq. 22) for the
k-th inner loop as follows

sθ(z) = ŝθ(z, (K − k − 1)η) + e−2ηz − e−ηx̂k

1 − e−2η

rθ′(z, z′) = l̂θ′(z, (K − k − 1)η) + ∥x̂k − e−η · z∥2

2(1 − e−2η)

−

(
l̂θ′(z′, (K − k − 1)η) + ∥x̂k − e−η · z′∥2

2(1 − e−2η)

)
.
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Under these conditions, we have

ϵenergy ≤ ρϵ

L2 · (d1/2 +m2 + Z)
and ϵscore ≤ ρϵ

Ld1/2 .

Plugging these results into Theorem C.19 and setting τ̂ = 1/2, we have

TV (p̂Kη, p∗) ≤ Õ(ϵ)

with the following gradient complexity
Õ
(
L4ρ−2 ·

(
d+m2

2
)2
Z2
)
.

Corollary C.22. Suppose the score estimation is extremely small, i.e.,

∥ŝθ(x, t) + ∇ log pt(x)∥∞ ≪ ρϵ

Ld1/2 ,

and the log-likelihood function of pt has a bounded 3-order derivative, e.g.,∥∥∥∇(3)f(z)
∥∥∥ ≤ L,

we have a non-parametric estimation for log-likelihood to make we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2
)2
Z3 · ϵ

)
.

gradient calls.

Proof. Combining the Alg. 2 and the definition of ϵenergy shown in Lemma C.4, we actually require to control

ϵenergy := (g(z̃s) − g(zs)) − rθ(z̃s, zs)

for any s ∈ [0, S − 1]. Then, we start to construct rθ(z̃s, zs). Since we have

g(z̃s) − g(zs) = f(K−k−1)η(z̃s) + ∥x0 − z̃s · e−η∥2

2(1 − e−2η) − f(K−k−1)η(zs) − ∥x0 − zs · e−η∥2

2(1 − e−2η) ,

we should only estimate the difference of the energy function f(K−k−1)η which will be presented as f for abbreviation.
Besides, we define the following function

h(t) = f ((z̃s − zs) · t+ zs) ,

which means

h(1)(t) := dh(t)
dt = ∇f ((z̃s − zs) · t+ zs) · (z̃s − zs)

h(2)(t) := d2h(t)
(dt)2 = (z̃s − zs)⊤∇2f ((z̃s − zs) · t+ zs) (z̃s − zs)

Under the high-order smoothness condition, i.e., ∥∥∇3f(z)
∥∥ ≤ L

where ∥ · ∥ denotes the nuclear norm, then we have

|h(1) − h(0)| ≤
2∑

i=1

h(i)(0)
i! + L · ∥z̃s − zs∥3

3! ≤
2∑

i=1

h(i)(0)
i! + Lr3

3! .

It means we need to approximate h(i) with high accuracy.
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For i = 1, the ground truth h(1)(0) is

h(1)(0) = dh(t)
dt = ∇f (zs) · (z̃s − zs)

we can approximate it numerically as
h̃(1)(0) := sθ(zs) · (z̃s − zs)

since we have score approximation. Then it has

δ(1)(0) = h(1)(0) − h̃(1)(0) ≤ ∥∇f(zs) − sθ(zs)∥ · ∥z̃s − zs∥ ≤ ϵscore · r. (79)

Then, for i = 2, we obtain the ground truth h(2)(0) by

h(1)(t) − h(1)(0) =
∫ t

0
h(2)(τ)dτ = th(2)(0) +

∫ t

0
h(2)(τ) − h(2)(0)dτ,

which means

h(2)(0) = h(1)(t) − h(1)(0)
t

+ 1
t

·
∫ t

0
h(2)(τ) − h(2)(0)dτ.

If we use the differential to approximate h(2)(0), i.e.,

h̃(2)(0) := h̃(1)(t) − h̃(1)(0)
t

,

we find the error term will be

δ(2)(0) =
∣∣∣h(2)(0) − h̃(2)(0)

∣∣∣ =
∣∣∣∣2δ(1)

t
+ 1
t

·
∫ t

0
h(2)(τ) − h(2)(0)dτ

∣∣∣∣ . (80)

If we use smoothness to relax the integration term, we have∣∣∣h(2)(τ) − h(2)(0)
∣∣∣ ≤

∥∥∇2f ((z̃s − zs) · τ + zs) − ∇2f(zs)
∥∥ · ∥z̃s − zs∥2 ≤ Lτ · ∥z̃s − zs∥3

,

which means
1
t

·
∫ t

0
h(2)(τ) − h(2)(0)dτ ≤ L ∥z̃s − zs∥3

t
·
∫ t

0
τdτ ≤ tLr3

2 . (81)

Combining Eq. 79, Eq. 80 and Eq. 81, we have

δ(2)(0) ≤ 2ϵscorer

t
+ Lr3t

2 ,

which means the final energy estimation error will be∣∣∣∣h(1) − h(0) −
(
h̃(1)(0) + h̃(1)(t) − h̃(1)(0)

2t

)∣∣∣∣
≤ δ(1)(0)

1 + δ(2)(0)
2 + Lr3

3! = ϵscore · r︸ ︷︷ ︸
Term 1

+ 1
2 ·
(

2ϵscorer

t
+ Lr3t

2

)
︸ ︷︷ ︸

Term 2

+Lr3

6 .
(82)

Considering ϵscore is extremely small (compared with the output performance error tolerance ϵ), we can choose t depending
on ϵscore, e.g., t = √

ϵscore, to make Term 1 and Term 2 in Eq. 82 diminish. Under this condition, the term Lr3/6 will
dominate RHS of Eq. 82. Besides, we have

r = 3 ·
√
τd log 8S

ϵ
= Õ(τ1/2d1/2),
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then we have
ϵenergy = O(Lr3) = O(Ld3/2τ3/2) = Õ

(
L−2d3/2 (d+m2

2 + ∥x̂k∥2)−3/2
τ̂3/2

)
where the last equation follows from the choice of τ shown in Theorem C.17. Then, plugging this result into Theorem C.19
and considering ϵscore ≪ ϵ, we have

TV (p̂Kη, p∗) ≤ϵ+ Õ(Ld1/2ρ−1ϵscore) + O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

≤Õ(ϵ) + Õ
(
τ̂(d1/2 +m2 + Z)ρ−1

)
with a gradient complexity as follows

Õ
(
L4ρ−2τ̂−1 ·

(
d+m2

2
)2
Z2
)
.

Then, by choosing
τ = ϵρ

d1/2 +m2 + Z
,

we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2
)2
Z3 · ϵ

)
.

Hence, the proof is completed.

Remark C.23. If we consider more high-order smooth, i.e.,∥∥∥∇(u)f(z)
∥∥∥ ≤ L,

with similar techniques shown in Corollary C.22, we can have the following bound, i.e.,

ϵenergy = O(Lru)

when ϵscore is extremely small. Under this condition, since it has

r = 3 ·
√
τd log 8S

ϵ
= Õ(τ1/2d1/2),

we have

ϵenergy = O(Lru) = O(Ldu/2τu/2) = Õ
(
L−u+1du/2 (d+m2

2 + ∥x̂k∥2)−u/2
τ̂u/2

)
= Õ(L−u+1τ̂u/2).

Then, plugging this result into Theorem C.19 and considering ϵscore ≪ ϵ, we have

TV (p̂Kη, p∗) ≤ϵ+ Õ(Ld1/2ρ−1ϵscore) + O(τ̂−1/2 · L2(d1/2 +m2 + Z)ρ−1ϵenergy)

=Õ(ϵ) + Õ
(
τ̂ (u−1)/2L−u+3(d1/2 +m2 + Z)ρ−1

)
=Õ(ϵ) + Õ

(
τ̂ (u−1)/2(d1/2 +m2 + Z)ρ−1

)
where we suppose L ≥ 1 in the last equation without loss of generality. Then, by supposing

τ̂ = ϵ2/(u−1)ρ

d1/2 +m2 + Z

we have TV (p̂Kη, p∗) ≤ Õ(ϵ) with

Õ
(
L4ρ−3 ·

(
d+m2

2
)2
Z3 · ϵ−2/(u−1) · 2u

)
where the last 2u appears since the estimation of high-order derivatives requires an exponentially increasing call of score
estimations.
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D. Implement RTK inference with ULD
In this section, we consider introducing a ULD to sample from p←k+1|k(z|x0). To simplify the notation, we set

g(z) := f(K−k−1)η(z) + ∥x0 − z · e−η∥2

2(1 − e−2η) (83)

and consider k and x0 to be fixed. Besides, we set

p←(z|x0) := p←k+1|k(z|x0) ∝ exp(−g(z))

According to Corollary B.5 and Corollary B.3, when we choose

η = 1
2 log 2L+ 1

2L ,

the log density g will be L-strongly log-concave and 3L-smooth.

For the underdamped Langevin dynamics, we utilize a form similar to that shown in (Zhang et al., 2023), i.e.,

dẑt = v̂tdt
dv̂t = −γv̂tdt− sθ(ẑsτ )dt+

√
2γdBt

(84)

with a little abuse of notation for t ∈ [sτ, (s+ 1)τ). We denote the underlying distribution of (ẑt, v̂t) as π̂t, and the exact
continuous SDE

dzt = vtdt
dvt = −γvtdt− ∇g(zt)dt+

√
2γdBt

has the underlying distribution (zt,vt) ∼ πt. The stationary distribution of the continuous version is defined as

π←(z,v|x0) ∝ exp
(

−g(z) − ∥v∥2

2

)

where the z-marginal of π←(·|x0) is p←(·|x0) which is the desired target distribution of inner loops. Therefore, by taking a
small step size for the discretization and a large number of iterations, ULD will yield an approximate sample from p←(·|x0).
Besides, in the analysis of ULD, we usually consider an alternate system of coordinates

(ϕ, ψ) := M(z,v) := (z, z + 2
γ

v),

their distributions of the continuous time iterates πMt and the target in these alternate coordinates πM, respectively. Besides,
we need to define log-Sobolev inequality as follows

Definition D.1 (Log-Sobolev Inequality). The target distribution p∗ satisfies the following inequality

Ep∗

[
g2 log g2]− Ep∗ [g2] logEp∗ [g2] ≤ 2CLSIEp∗ ∥∇g∥2

with a constant CLSI for all smooth function g : Rd → R satisfying Ep∗ [g2] < ∞.

Remark D.2. Log-Sobolev inequality is a milder condition than strong log-concavity. Suppose p satisfies m-strongly
log-concavity, it satisfies 1/m LSI, which is proved in Lemma E.9.

Definition D.3 (Poincaré Inequality). The target distribution p satisfies the following inequality

Ex∼p

[
∥g(x) − Ex∼p[g(x)]∥2

]
≤ CPIEp ∥∇g∥2

with a constant CPI for all smooth function g : Rd → R satisfying Ep∗ [g2] < ∞.

In the following, we mainly follow the idea of proof shown in (Zhang et al., 2023), which provides the convergence of KL
divergence for ULD, to control the error from the sampling subproblems.
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Lemma D.4 (Proposition 14 in (Zhang et al., 2023)). Let πMt denote the law of the continuous-time underdamped Langevin
diffusion with γ = c

√
3L for c ≥

√
2 in the (ϕ, ψ) coordinates. Suppose the initial distribution π0 has a log-Sobolev (LSI)

constant (in the altered coordinates) CLSI(πM0 ), then {πMt } satisfies LSI with a constant that can be uniformly upper
bounded by

CLSI(πMt ) ≤ exp
(

−
√

2L
3 · t

)
· CLSI(πM0 ) + 2

L
.

Lemma D.5 (Adapted from Proposition 1 of (Ma et al., 2021)). Consider the following Lyapunov functional

F(π′, π←) := KL
(
π′
∥∥π←)+ Eπ′

[∥∥∥∥M1/2∇ log π′

π←

∥∥∥∥2
]
, where M =

[
1

12L
1√
6L

1√
6L

4

]
⊗ Id.

For targets π← ∝ exp(−g) which are 3L-smooth and satisfy LSI with constant 1/L, let γ = 2
√

6L. Then the law πt of
ULD satisfies

∂tF(πt, π
←) ≤ −

√
L

10
√

6
· F(πt, π

←).

Lemma D.6 (Variant of Lemma 4.8 in (Altschuler & Chewi, 2023)). Let π̂t denote the law of SDE. 84 and πt denote the
law of the continuous time underdamped Langevin diffusion with the same initialization, i.e., π̂0 = π0. If γ ≍

√
L and the

step size τ satisfies

τ = Õ
(
L−3/2d−1/2T−1/2

)
then we have

χ2(π̂T ∥πT ) ≲ L3/2dτ2T + ϵ2scoreL
−1/2T

Proof. The main difference of this discretization analysis is whether the score ∇ log pt can be exactly obtained or only be
approximated by sθ. Therefore, in this proof, we will omit various steps the same as those shown in (Altschuler & Chewi,
2023).

We consider the following difference

GT := 1√
2γ

S−1∑
s=0

∫ (s+1)τ

sτ

⟨∇g(zt) − sθ(zsτ ),dBt⟩

− 1
4γ

S−1∑
s=0

∫ (s+1)τ

sτ

∥∇g(zt) − sθ(zsτ )∥2 dt.

From Girsanov’s theorem, we obtain immediately using Itô’s formula

EπT

[(
dπ̂T

dπT

)2
]

− 1 =E [exp (2GT )] − 1 = 1
2γEπT

S−1∑
s=0

[∫ (s+1)τ

sτ

exp(2Gt) ∥∇g(zt) − sθ(zsτ )∥2

]

≤ 1
γ

·
S−1∑
s=0

∫ (s+1)τ

sτ

√
E [exp(4Gt)] · E

[
∥∇g(zt) − sθ(zsτ )∥4

]
dt

≤ 4
γ

S−1∑
s=0

·
∫ (s+1)τ

sτ

√
E [exp(4Gt)] · E

[
∥∇g(zt) − ∇g(zsτ )∥4

]
dt

+ 4ϵ2score
γ

S−1∑
s=0

∫ (s+1)τ

sτ

√
E [exp(4Gt)]dt
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According to Corollary 20 of (Zhang et al., 2023), we have

E [exp(4Gt)] ≤

√√√√E

[
exp

(
16
γ

S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr) − sθ(zsτ )∥2 dr
)]

≤

√√√√E exp
[

32
γ

·
S−1∑
s=0

(∫ (s+1)τ∧t

sτ

∥∇g(zr) − ∇g(zsτ )∥2 dr +
∫ (s+1)τ∧t

sτ

ϵ2scoredr
)]

= exp
(

16tϵ2score
γ

)
·

√√√√E exp
[

32
γ

·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr) − ∇g(zsτ )∥2 dr
]

≤3 ·

√√√√E exp
[

32
γ

·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr) − ∇g(zsτ )∥2 dr
]
,

(85)

where the last inequality can be established by requiring

ϵscore = O
(
γ1/2T−1/2

)
⇒ 16tϵ2score

γ
≤ 1

since exp(u) ≤ 1 + 2u for any u ∈ [0, 1].

With similar techniques utilized in Lemma 4.8 of (Altschuler & Chewi, 2023), we know that if

γ ≍
√

3L, τ ≲
γ1/2

6L · d1/3T 1/2(logS)1/2 , and T ≳

√
3L
L

=
√

3
L
,

it holds that

E exp
[

32
γ

·
S−1∑
s=0

∫ (s+1)τ∧t

sτ

∥∇g(zr) − ∇g(zsτ )∥2 dr
]

≤ exp
(

O
(
L3/2dτ2T logS

))
.

Furthermore, for
τ ≲ L−3/2d−1/2T−1/2(logS)−1/2,

it has
sup

t∈[0,T ]
E [exp(4Gt)] ≲ 1.

Then, still with similar techniques utilized in Lemma 4.8 of (Altschuler & Chewi, 2023), we have√
E
[
∥∇g(zt) − ∇g(zsτ )∥4

]
≤ (3L)2

√
E
[
∥zt − zsτ ∥4

]
≲ L2dτ2.

In summary, we have

EπT

[(
dπ̂T

dπT

)2
]

− 1 ≲
L2dτ2T

γ
+ ϵ2scoreT

γ
,

and the proof is completed.

Corollary D.7. Under the same assumptions and hyperparameter settings made in Lemma D.6. If the step size τ and the
score estimation error ϵscore satisfies

τ = Θ̃
( ϵ

L3/4d1/2T 1/2

)
and ϵscore = O

(
T−1/2ϵ

)
Then we have χ2(π̂T ∥πT ) ≲ ϵ2.
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Proof. We can easily obtain this result by plugging the choice of τ and ϵ into Lemma D.6. Noted that we suppose L ≥ 1
without loss of generality.

Theorem D.8 (Variant of Theorem 6 in (Zhang et al., 2023)). Under Assumption [A1]–[A2], for any ϵ ∈ (0, 1), we require
Gaussian-type initialization and high-accurate score estimation, i.e.,

π̂0 = N (0, e2η − 1) ⊗ N (0, I) and ϵscore = Õ(ϵ).

If we set the step size and the iteration number as

τ = Θ̃
(
ϵd−1/2L−1/2 ·

(
log
[
L(d+m2

2 + ∥x0∥2)
ϵ2

])−1/2)

S = Θ̃
(
ϵ−1d1/2 ·

(
log
[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2)
.

the marginal distribution of output particles p̂T will satisfy KL
(
p̂T

∥∥p←(·|x0)
)

≤ O(ϵ2).

Proof. Consider the underlying distribution of the twisted coordinates (ϕ, ψ) for SDE. 84, the decomposition of the KL
using Cauchy–Schwarz:

KL
(
π̂MT

∥∥πM) =
∫

log π̂
M
T

πM
dπ̂MT = KL

(
π̂MT

∥∥πMT )+
∫

log π
M
T

πM
dπ̂MT

=KL
(
π̂MT

∥∥πMT )+ KL
(
πMT

∥∥πM)+
∫

log π
M
T

πM
d(π̂MT − πMT )

=KL
(
π̂MT

∥∥πMT )+ KL
(
πMT

∥∥πM)+

√
χ2
(
π̂MT ∥πMT

)
× varπM

T

(
log π

M
T

πM

)
.

(86)

Using LSI of the iterations via Lemma D.4, we have

varπM
T

(
log π

M
T

πM

)
≤ CLSI(πMT ) · EπM

T

[∥∥∥∥∇ log π
M
T

πM

∥∥∥∥2]
≲

1
L

· EπM
T

[∥∥∥∥∇ log π
M
T

πM

∥∥∥∥2]
.

Then, we start to upper bound the relative Fisher information. Since πM = M#π
←(·|x0), then

πM(ϕ, ψ) ∝ π←(M−1(ϕ, ψ)|x0).

Therefore, we have
∇ log πM = (M−1)⊤∇ log π←(·|x0) ◦ M−1,

and similarly for ∇ log πMT . This yields the expression

EπM
T

[∥∥∥∥∇ log π
M
T

πM

∥∥∥∥2]
= EπT

[∥∥∥(M−1)⊤∇ log πT

π←

∥∥∥2
]
. (87)

According to the definition of M, we have

M−1(M−1)⊤ =
[

1 −γ/2
−γ/2 γ2/2

]
.

For any c0 > 0 and

M :=
[

1
12L

1√
6L

1√
6L

4

]
⊗ Id,

we have

LM − c0M−1(M−1)⊤ =
[

1/4 − c0
√

3L(1/
√

2 + c0
√

2)√
3L(1/

√
2 + c0

√
2) 3L(4 − c0)

]
.
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The determinant is

3L ·

[(
1
4 − c0

)
· (4 − c0) −

(
1√
2

+ c0
√

2
)2
]
> 0

for c0 > 0 sufficiently small, which means that

M−1(M−1)⊤ ⪯ c−1
0 LM.

Therefore, Eq. 87 becomes

EπM
T

[∥∥∥∥∇ log π
M
T

πM

∥∥∥∥2]
≲ 3L · EπT

[∥∥∥M1/2∇ log πT

π←

∥∥∥2
]
.

According to Lemma D.5, the decay of the Fisher information requires us to set

T ≳ L−1/2 · log
[
ϵ−2 ·

(
KL
(
π0
∥∥π←)+ Eπ0

(∥∥∥M1/2∇ log π0

π←

∥∥∥2
))]

, (88)

which yields KL
(
πMT

∥∥πM) ≤ ϵ2. Besides, we can easily have

Eπ0

(∥∥∥M1/2∇ log π0

π←

∥∥∥2
)

≲
1

3L · FI (π0∥π←) = 1
3L · Eπ0

(∥∥∥∇ log π0

π←

∥∥∥2
)
.

According to the definition of LSI, we also have

KL
(
π0
∥∥π←) ≤ CLSI

2 · FI (π0∥π←) = 1
2L · Eπ0

(∥∥∥∇ log π0

π←

∥∥∥2
)
.

Recall as well that this requires γ ≍
√

3L in SDE. 84. For the remaining KL
(
π̂MT

∥∥πMT ) and χ2 (π̂MT ∥πMT
)

in Eq. 86, we
invoke Lemma D.6 with the value T = Sτ specified and desired accuracy ϵ, , which consequently yields

τ = Θ̃
( ϵ

L3/4d1/2T 1/2

)
and S = Θ̃

(
T 3/2L3/4d1/2

ϵ

)
. (89)

Under this condition, we start to consider the initialization error. Suppose we have π0 = N (0, e2η − 1) ⊗ N (0, I), which
implies

FI (π0∥π←) ≲Eπ0

[∥∥∥∥∇f(K−k−1)η(z) − ∇f(K−k−1)η(0) + ∇f(K−k−1)η(0) − e−ηx0

1 − e−2η

∥∥∥∥2
]

≤3L2Eπ0 [∥z∥2] + 3
∥∥∇f(K−k−1)η(0)

∥∥2 + 3e−2η

(1 − e−2η)2 · ∥x0∥2

=3L2 ·
(
e2η − 1

)
+ 3

∥∥∇f(K−k−1)η(0)
∥∥2 + 3e−2η

(1 − e−2η)2 · ∥x0∥2

Following the η setting, i.e.,

η = 1
2 log 2L+ 1

2L ⇔ e2η = 2L+ 1
2L ,

which yields
FI (π0∥π←) ≲L+

∥∥∇f(K−k−1)η(0)
∥∥2 + L2∥x0∥2

≲L+ L2(d+m2
2) + L2∥x0∥2

(90)

where the inequality follows from Eq. 72. Therefore, combining Eq. 90, Eq. 89 and Eq. 88, we have

T 1/2 ≳ L−1/4 ·
(

log
[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2

≳ L1/4 ·

log

Eπ0

(∥∥∇ log π0
π←

∥∥2
)

Lϵ2

1/2

,
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which implies

τ = Θ̃
(
ϵd−1/2L−1/2 ·

(
log
[
L(d+m2

2 + ∥x0∥2)
ϵ2

])−1/2)

S = Θ̃
(
ϵ−1d1/2 ·

(
log
[
L(d+m2

2 + ∥x0∥2)
ϵ2

])1/2)
.

In this condition, the score estimation error is required to be

ϵscore = O
(
γ1/2T−1/2 · ϵ

)
= Õ

(
ϵ/

√
L
)
.

Hence, the proof is completed.

Theorem D.9. Under Assumption [A1]–[A2], for Alg. 1, we choose

η = 1
2 log 2L+ 1

2L and K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

and implement Step 3 of Alg. 1 with projected Alg. 3. For the k-th run of Alg. 3, we require Gaussian-type initialization and
high-accurate score estimation, i.e.,

π̂0 = N (0, e2η − 1) ⊗ N (0, I) and ϵscore = Õ(ϵ).

If we set the hyperparameters as shown in Lemma D.8, it can achieve TV (p̂Kη, p∗) ≲ ϵ with an Õ
(
L2d1/2ϵ−1) gradient

complexity.

Proof. According to Corollary B.5, we know that under the choice

η = 1
2 ln 2L+ 1

2L ,

it requires to run Alg. 3 for K times where

K = 4L · log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2
.

For each run of Alg. 3, we require the KL divergence error to achieve

KL
(
p̂(k+1)η|kη(·|x̂)

∥∥p←(k+1)η|kη(·|x̂)
)

≤ ϵ2

4L ·

[
log (1 + L2)d+ ∥∇f∗(0)∥2

ϵ2

]−1

.

Combining with Theorem D.8, we consider a step size

τk =Õ
(
L−1d−1/2ϵ · (log

[
L2 · (d+m2

2 + ∥x̂k∥2)
]
)−1/2

)
then the iteration number will be

Sk = Õ
(
L1/2d1/2ϵ−1 · (log

[
L2 · (d+m2

2 + ∥x̂k∥2)
]
)1/2

)
.

For an expectation perspective, we have

Ep̂kη

[
log(L2∥x̂k∥2)

]
≤ log

[
Ep̂kη

(∥x̂k∥2)
]

= Õ(L)

where the last inequality follows from Lemma B.7. This means that with the total gradient complexity

K · S = Õ
(
L2d1/2ϵ−1

)
Hence, the proof is completed.
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E. Auxiliary Lemmas
Lemma E.1 (Theorem 4 in (Vempala & Wibisono, 2019)). Suppose p ∝ exp(−f) defined on Rd satisfies LSI with constant
µ > 0. Along the Langevin dynamics, i.e.,

dxt = −∇f(x)dt+
√

2dBt,

where xt ∼ pt, then it has
KL
(
pt

∥∥p) ≤ exp (−2µt) · KL
(
p0
∥∥p) .

Lemma E.2. Suppose p ∝ exp(−f) defined on Rd satisfies LSI with constant µ > 0 where f is L-smooth, i.e.,

∥∇f(x′) − ∇f(x)∥ ≤ L ∥x′ − x∥ .

If p0 is the standard Gaussian distribution defined on Rd, then we have

KL
(
p0
∥∥p) ≤ (1 + 2L2)d+ 2 ∥∇f(0)∥2

µ
.

Proof. According to the definition of LSI, we have

KL
(
p0
∥∥p) ≤ 1

2µ

∫
p0(x)

∥∥∥∥∇ log p0(x)
p(x)

∥∥∥∥2
dx = 1

2µ

∫
p0(x) ∥−x + ∇f(x)∥2 dx

≤µ−1 ·
[∫

p0(x)∥x∥2dx +
∫
p0(x)∥∇f(x) − ∇f(0) + ∇f(0)∥2dx

]
≤µ−1 ·

[
(1 + 2L2)

∫
p0(x)∥x∥2dx + 2 ∥∇f(0)∥2

]
=(1 + 2L2)d+ 2 ∥∇f(0)∥2

µ

where the third inequality follows from the L-smoothness of f∗ and the last equation establishes since Ep0 [∥x∥2] = d is for
the standard Gaussian distribution p0 in Rd.

Lemma E.3 (Variant of Lemma B.1 in (Zou et al., 2021)). Suppose f : Rd → R is a m-strongly convex function and
satisfies L-smooth. Then, we have

∇f(x) · x ≥ m ∥x∥2

2 − ∥∇f(0)∥2

2m
where x∗ is the global optimum of the function f .

Proof. According to the definition of strongly convex, the function f satisfies

f(0) − f(x) ≥ ∇f(x) · (0 − x) + m

2 · ∥x∥2 ⇔ ∇f(x) · x ≥ f(x) − f(0) + m

2 · ∥x∥2
.

Besides, we have

f(x) − f(0) ≥ ∇f(0) · x + m

2 · ∥x∥2 ≥ m

2 · ∥x∥2 − m

2 · ∥x∥2 − ∥∇f(0)∥2

2m = −∥∇f(0)∥2

2m .

Combining the above two inequalities, the proof is completed.

Lemma E.4 (Lemma A.1 in (Zou et al., 2021)). Suppose a function f satisfy

∇f(x) · x ≥ m∥x∥2

2 − ∥∇f(0)∥
2m ,

then we have

f(x) ≥ m

8 ∥x∥2 + f(x∗) − ∥∇f(0)∥2

4m .
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Lemma E.5 (Lemma 1 in (Huang et al., 2023)). Consider the Ornstein-Uhlenbeck forward process

dxt = −xtdt+
√

2dBt,

and denote the underlying distribution of the particle xt as pt. Then, the score function can be rewritten as

∇x ln pt(x) = Ex0∼qt(·|x)
e−tx0 − x

(1 − e−2t) ,

qt(x0|x) ∝ exp
(

−f∗(x0) − ∥x − e−tx0∥2

2 (1 − e−2t)

)
.

(91)

Lemma E.6 (Lemma 11 in (Vempala & Wibisono, 2019)). Assume p ∝ exp(−f) and the energy function f is L-smooth.
Then

Ex∼p

[
∥∇f(x)∥2

]
≤ Ld

Lemma E.7 (Lemma 10 in (Chen et al., 2023b)). Suppose that Assumption [A1]–[A2] hold. Let {xt}t∈[0,T ] denote the
forward process, i.e., Eq. 1, for all t ≥ 0,

E
[
∥x∥2

]
≤ max

{
d,m2

2
}
.

Lemma E.8. Suppose q is a distribution which satisfies LSI with constant µ, then its variance satisfies∫
q(x) ∥x − Eq̃ [x]∥2 dx ≤ d

µ
.

Proof. It is known that LSI implies Poincaré inequality with the same constant, i.e., µ, which means if for all smooth
function g : Rd → R,

varq (g(x)) ≤ 1
µ
Eq

[
∥∇g(x)∥2

]
.

In this condition, we suppose b = Eq[x], and have the following equation∫
q(x) ∥x − Eq [x]∥2 dx =

∫
q(x) ∥x − b∥2 dx

=
∫ d∑

i=1
q(x) (xi − bi)2 dx =

d∑
i=1

∫
q(x) (⟨x, ei⟩ − ⟨b, ei⟩)2 dx

=
d∑

i=1

∫
q(x) (⟨x, ei⟩ − Eq [⟨x, ei⟩])2 dx =

d∑
i=1

varq (gi(x))

where gi(x) is defined as gi(x) := ⟨x, ei⟩ and ei is a one-hot vector ( the i-th element of ei is 1 others are 0). Combining
this equation and Poincaré inequality, for each i, we have

varq (gi(x)) ≤ 1
µ
Eq

[
∥ei∥2

]
= 1
µ
.

Hence, the proof is completed.

Lemma E.9 (Variant of Lemma 10 in (Cheng & Bartlett, 2018)). Suppose − log p∗ is m-strongly convex function, for any
distribution with density function p, we have

KL
(
p
∥∥p∗) ≤ 1

2m

∫
p(x)

∥∥∥∥∇ log p(x)
p∗(x)

∥∥∥∥2
dx.

By choosing p(x) = g2(x)p∗(x)/Ep∗

[
g2(x)

]
for the test function g : Rd → R and Ep∗

[
g2(x)

]
< ∞, we have

Ep∗

[
g2 log g2]− Ep∗

[
g2] logEp∗

[
g2] ≤ 2

m
Ep∗

[
∥∇g∥2

]
,

which implies p∗ satisfies 1/m-log-Sobolev inequality.
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