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ABSTRACT

Matrix factorization is a simple and natural test-bed to investigate the implicit
regularization of gradient descent. Gunasekar et al. (2017) conjectured that Gradi-
ent Flow with infinitesimal initialization converges to the solution that minimizes
the nuclear norm, but a series of recent papers argued that the language of norm
minimization is not sufficient to give a full characterization for the implicit reg-
ularization. In this work, we provide theoretical and empirical evidence that for
depth-2 matrix factorization, gradient flow with infinitesimal initialization is math-
ematically equivalent to a simple heuristic rank minimization algorithm, Greedy
Low-Rank Learning, under some reasonable assumptions. This generalizes the
rank minimization view from previous works to a much broader setting and enables
us to construct counter-examples to refute the conjecture from Gunasekar et al.
(2017). We also extend the results to the case where depth > 3, and we show
that the benefit of being deeper is that the above convergence has a much weaker
dependence over initialization magnitude so that this rank minimization is more
likely to take effect for initialization with practical scale.

1 INTRODUCTION

There are usually far more learnable parameters in deep neural nets than the number of training
data, but still deep learning works well on real-world tasks. Even with explicit regularization, the
model complexity of state-of-the-art neural nets is so large that they can fit randomly labeled data
easily (Zhang et al., 2017). Towards explaining the mystery of generalization, we must understand
what kind of implicit regularization does Gradient Descent (GD) impose during training. Ideally, we
are hoping for a nice mathematical characterization of how GD constrains the set of functions that
can be expressed by a trained neural net.

As a direct analysis for deep neural nets could be quite hard, a line of works turned to study the implicit
regularization on simpler problems to get inspirations, for example, low-rank matrix factorization,
a fundamental problem in machine learning and information process. Given a set of observations
about an unknown matrix W* € R%*4 of rank r* < d, one needs to find a low-rank solution W
that is compatible with the given observations. Examples include matrix sensing, matrix completion,
phase retrieval, robust principal component analysis, just to name a few (see Chi et al. 2019 for a
survey). When W™ is symmetric and positive semidefinite, one way to solve all these problems
is to parameterize W as W = UU " for U € R?" and optimize L(U) := 1 f(UU "), where
f(+) is some empirical risk function depending on the observations, and r is the rank constraint. In
theory, if the rank constraint is too loose, the solutions do not have to be low-rank and we may fail
to recover W*. However, even in the case where the rank is unconstrained (i.e., r = d), GD with
small initialization can still get good performance in practice. This empirical observation reveals
that the implicit regularization of GD exists even in this simple matrix factorization problem, but
its mechanism is still on debate. Gunasekar et al. (2017) proved that Gradient Flow (GD with
infinitesimal step size, a.k.a., GF) with infinitesimal initialization finds the minimum nuclear norm
solution in a special case of matrix sensing, and further conjectured this holds in general.

Conjecture 1.1 (Gunasekar et al. 2017, informal). With sufficiently small initialization, GF converges
to the minimum nuclear norm solution of matrix sensing.

* Alphabet ordering.
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Subsequently, Arora et al. (2019a) challenged this view by arguing that a simple mathematical norm
may not be a sufficient language for characterizing implicit regularization. One example illustrated in
Arora et al. (2019a) is regarding matrix sensing with a single observation. They showed that GD with
small initialization enhances the growth of large singular values of the solution and attenuates that of
smaller ones. This enhancement/attenuation effect encourages low-rank, and it is further intensified
with depth in deep matrix factorization (i.e., GD optimizes f(U; ---Uy) for L > 2). However,
these are not captured by the nuclear norm alone. Gidel et al. (2019); Gissin et al. (2020) further
exploited this idea and showed in the special case of full-observation matrix sensing that GF learns
solutions with gradually increasing rank. Razin and Cohen (2020) showed in a simple class of matrix
completion problems that GF decreases the rank along the trajectory while any norm grows towards
infinity. More aggressively, they conjectured that the implicit regularization can be explained by rank
minimization rather than norm minimization.

Our Contributions. In this paper, we move one further step towards resolving the implicit
regularization in the matrix factorization problem. Our theoretical results show that GD performs
rank minimization via a greedy process in a broader setting. Specifically, we provide theoretical
evidence that GF with infinitesimal initialization is in general mathematically equivalent to another
algorithm called Greedy Low-Rank Learning (GLRL). At a high level, GLRL is a greedy algorithm
that performs rank-constrained optimization and relaxes the rank constraint by 1 whenever it fails
to reach a global minimizer of f(-) with the current rank constraint. As a by-product, we refute
Conjecture 1.1 by demonstrating an counterexample (Example 5.9).

We also extend our results to deep matrix factorization Section 6, where we prove that the trajectory
of GF with infinitesimal identity initialization converges to a deep version of GLRL, at least in the
early stage of the optimization. We also use this result to confirm the intuition achieved on toy models
(Gissin et al., 2020), that benefits of depth in matrix factorization is to encourage rank minimization
even for initialization with a relatively larger scale, and thus it is more likely to happen in practice.
This shows that describing the implicit regularization using GLRL is more expressive than using the
language of norm minimization. We validate all our results with experiments in Appendix E.

2 RELATED WORKS

Norm Minimization. The view of norm minimization, or the closely related view of margin
maximization, has been explored in different settings. Besides the nuclear norm minimization for
matrix factorization (Gunasekar et al., 2017) discussed in the introduction, previous works have
also studied the norm minimization/margin maximization for linear regression (Wilson et al., 2017;
Soudry et al., 2018a;b; Nacson et al., 2019b;c; Ji and Telgarsky, 2019b), deep linear neural nets (Ji
and Telgarsky, 2019a; Gunasekar et al., 2018), homogeneous neural nets (Nacson et al., 2019a; Lyu
and Li, 2020), ultra-wide neural nets (Jacot et al., 2018; Arora et al., 2019b; Chizat and Bach, 2020).

Small Initialization and Rank Minimization. The initialization scale can greatly influence the
implicit regularization. A sufficiently large initialization can make the training dynamics fall into
the lazy training regime defined by Chizat et al. (2019) and diminish test accuracy. Using small
initialization is particularly important to bias gradient descent to low-rank solutions for matrix
factorization, as empirically observed by Gunasekar et al. (2017). Arora et al. (2019a); Gidel
et al. (2019); Gissin et al. (2020); Razin and Cohen (2020) studied how gradient flow with small
initialization encourages low-rank in simple settings, as discussed in the introduction. Li et al.
(2018) proved recovery guarantees for gradient flow solving matrix sensing under Restricted Isometry
Property (RIP), but the proof cannot be generalized easily to the case without RIP. Belabbas (2020)
made attempts to prove that gradient flow is approximately rank-1 in the very early phase of training,
but it does not exclude the possibility that the approximation error explodes later and gradient flow is
not converging to low-rank solutions. Compared to these works, the current paper studies how GF
encourages low-rank in a much broader setting.

3  BACKGROUND
Notations. For two matrices A, B, we define (A, B) := Tr(AB") as their inner product. We use
|Allg, ||All, and ||A]|, to denote the Frobenius norm, nuclear norm and the largest singular value of

A respectively. For a matrix A € R4*?, we use A\1(A), ..., \s(A) to denote the eigenvalues of A
in decreasing order (if they are all reals). We define S, as the set of symmetric d x d matrices and
S;L C Sy as the set of positive semidefinite (PSD) matrices. We write A - Bor B < Aiff A— B

is PSD. We use S;T, SI <, to denote the set of d x d PSD matrices with rank = r, < r respectively.
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Matrix Factorization. Matrix factorization problem asks one to optimize L(U, V) := 3 f(UV' ")

among U,V € R¥", where f : R?*¢ — R is a convex function and in this paper we assume f is
C3-smooth. A notable example is matrix sensing. There is an unknown rank-r* matrix W* € R?x4
with r* < d. Given m measurements X1, ..., X,, € R%? one can observe y; := (X, W)
through each measurement. The goal of matrix sensing is to reconstruct W* via minimizing

W) =337 (W, X;) — y;)*. Matrix completion is a notable special case of matrix sensing
in which every measurement has the form X; = epie(—; , where {ey,- - , ey} stands for the standard

i

basis (i.e., exactly one entry is observed through each measurement).

Note that matrix factorization in the general case can be reduced to this symmetric case: let U’ =
(Y] e R¥xr f/([AB])=1f(B)+ 3f(C), then f(UV ) = f/(U'U'T). So in this paper we
focus on the symmetric case as in previous works (Gunasekar et al., 2017), i.e., finding a low-rank
solution for the convex optimization problem: minw o f(W). For this, we parameterize W as

W =UU" for U € R¥" and optimize L(U) := % f(UU"). We assume WLOG throughout

this paper that f(W) = f(W"); otherwise, we can set f'(W) = % (f(W)+ f(W ")) so that
/(W) = f(WT) while L(U) = Lf(UUT) is unaffected. This assumption makes V f(W)

2
symmetric for every symmetric W.

Gradient Flow. In this paper, we analyze Gradient Flow (GF) for symmetric matrix factorization,
defined as the solution of the following ODE for U (t) € R**":

dU
o = VEWO) = —-VfUUU. (1)
Let W(t) = U(t)U(t)" € R?*4. Then the following end-to-end dynamics holds for W (t):
dw
—— =-WVf(W) - VW)W = g(W). (2)

dt
We use ¢(Wy, t) to denote the matrix W (t) in (2) when W (0) = W = 0. Throughout this paper,
we assume ¢( Wy, t) exists for all t € R, W = 0. It is easy to prove that U is a stationary point of
L(-) (e, VLU)=0)iff W =UU " is acritical point of (2) (i.e., g(W) = 0); see Lemma C.1
for a proof. If W' is a minimizer of f(-) in S:{, then W is a critical point of (2), but the reverse may
not be true, e.g., g(0) = 0, but 0 is not necessarily a minimizer.

In this paper, we particularly focus on the overparameterized case, where r = d, to understand the
implicit regularization of GF when there is no rank constraint for the matrix W'.

4  WARMUP EXAMPLES

First, we illustrate how GD performs greedy learning using two warmup examples.

Linearization Around the Origin. In general, for a loss function £L(U) = 1 f(UUT), we can
always apply Taylor expansion f(W) =~ f(0) + (W, V f(0)) around the origin to approximate
it with a linear function. This motivates us to study the linear case: f(W) := fo — (W, Q) for
some symmetric matrix Q. In this case, the matrix U follows the ODE, % = QU, which can
be understood as a continuous version of the classical power iteration method for solving the top
eigenvector. Let Q := Z?Il piv;v, be the eigendecomposition of Q, where 111 > pig > -+ > jig

and vy, ..., v4 are orthogonal to each other. Then we can write the solution as:
d
= tQ pr—y Mit : T
U(t) =e"*U(0) (E . & > U(0). 3)

When 117 > pi2, the ratio between e#t! and e#i? for i # 1 increases exponentially fast. As t — oo,
U (t) and W (t) become approximately rank-1 as long as v, U (0) # 0, i.e.,

tli}rn e MU (t) = viv, U(0), tlim e 2MIW (1) = (v] W(0)v;)viv] . 4)
oo — 00

The analysis for the simple linear case reveals that GD encourages low-rank through a process similar
to power iteration. However, f(W) is non-linear in general, and the linear approximation is close to
f(W) only if W is very small. With sufficiently small initialization, we can imagine that GD still
resembles the above power iteration in the early phase of the optimization. But what if W (t) grows
to be so large that the linear approximation is far from the actual f(W)?

Full-observation Matrix Sensing. To understand the dynamics of GD when the linearization fails,

we now consider a well-studied special case (Gissin et al., 2020): L(U) = $f(UUT), f(W) =

1||W — W*||2 for some unknown PSD matrix W*. GF in this case can be written as:
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dU dw
— =(W*-UU"U — 5

Let W* := 2?21 piviv, be the eigendecomposition of W*. Our previous analysis shows that the
dynamics is approximately % = W™*U in the early phase and thus encourages low-rank.

= (W' - W)W + W(W* —W).

To get a sense for the later phases, we simplify the setting by specifying U (0) = +/al for a small
number . We can write W (0) and W* as diagonal matrices W (0) = diag(a, a, - -+ , o), W* =
diag(p1, 4o, - - -, pra) with respect to the basis vy,...,vq. It is easy to see that W (t) is always
a diagonal matrix, since the time derivatives of non-diagonal coordinates stay 0 during training.
Let W (t) = diag(o1(t), 02(t), -+ ,04(t)), then o;(t) satisfies the dynamical equation <o;(t) =

20;(t)(p; — oi(t)), and thus o;(t) = W This shows that every o;(t) increases from «

to p; over time. As o — 0, every o;(t) has a sharp transition from near 0 to near y; at time roughly
(ﬁ + 0(1)) log £, which can be seen from the following limit:

. , ap; 0 c€(—5,0),
lim o ( L4 ¢)log(1 ) =1 - 20
Q%U (QIM + C) Og( /a) ali)l?(l) a+ (Nz _ a)a1+2cp,i i cc (0’ —|—OO)
This means for every g € (zllu, 2;&“) fori = 1,....,d —1(orq € (2%”,—&-00) for i = d),
limg 0 Wi(qlog(1/a)) = diag(u, p2, - - -, p4i,0,0,- -+, 0). Therefore, when the initialization is

sufficiently small, GF learns each component of W* one by one, according to the relative order
of eigenvalues. At a high level, this shows a greedy nature of GD: GD starts learning with simple
models; whenever it underfits, it increases the model complexity (which is rank in our case). This is
also called sequential learning or incremental learning (Gidel et al., 2019; Gissin et al., 2020).

However, it is unclear how and why this sequential learning/incremental learning can occur in general.
Through the first warmup example, we may understand why GD learns a rank-1 matrix in the early
phase, but does GD always learn solutions with rank 2, 3,4, ... sequentially? If true, what is the
mechanism behind this? The current paper answers the questions by providing both theoretical and
empirical evidence that the greedy learning behavior does occur in general with a similar reason as
for the first warmup example.

5 GREEDY LOW-RANK LEARNING (GLRL)

In this section, we present a trajectory-based analysis for the implicit bias of GF on matrix factoriza-
tion. Our main result is that GF with infinitesimal initialization is generically the same as that of a
simple greedy algorithm, Greedy Low-Rank Learning (GLRL, Algorithm 1). See Appendix A for a
comparison with existing greedy algorithms for rank-constrained optimization.

The GLRL algorithm consists of several phases,

numbered from 1. In phase r, GLRL increases
the rank constraint to  and optimizes L(U,.) :=
1f(U,U) among U, € R¥" via GD un-
til it reaches a stationary point U,.(oc0), i.e.,
VL(U,(x)) = 0. At convergence, W, :=
U, (c0)U," (c0) is a critical point of (2), and we
call it the r-th critical point of GLRL. If W, is
further a minimizer of f(-)in S}, or equivalently,
AM(=Vf(W,)) < 0 (see Lemma C.2), GLRL
returns W,.; otherwise GLRL enters phase r + 1.

To set the initial point of GD in phase r, GLRL
appends a small column vector &, € R? to the
resulting stationary point U,._1 (c0) from the last
phase, i.e., U,.(0) < [U,_1(<) 6&,] € R¥*" (in
the case of r = 1, U (0) « [61] € R¥*1). In this
way, U,.(0)U,’ (0) = W,._; + 4,4, is perturbed
away from the (r — 1)-th critical point. In GLRL,

Algorithm 1: Greedy Low-Rank Learning

parameter :step size 77 > 0; small € > 0
7+ 0, Wy < 0 € R4 and
UO(OO) S Rd%0
while A\, (—V f(W,))) > 0do
r—r+1
U, < unit top eigenvector of
_Vf(erl)
U,(0) < [U,_1(00) /eu,] € R¥X"
fort =0,1,...do
L Un(t+1) < Up(t) = nVL(U(1))
| W, < U,(00)U, () “
return W,

“In practice, we approximate the infinite time limit
by running sufficiently many steps.

we set 4, = \/eu,., where u, is the top eigenvector of —V f(W,.) with unit norm ||u,|2 = 1, and
€ > 0 is a parameter controlling the magnitude of perturbation (preferably very small). Note that it is
guaranteed that A; (—V f(W,._1)) > 0; otherwise W,._1 is a minimizer of the convex function f(-)
in S} and GLRL exits before phase 7.
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Trajectory of GLRL. We define the (limiting) trajectory of GLRL by taking the learning rate
n — 0. The goal is to show that the trajectory of GLRL is close to that of GF with infinitesimal
initialization. Recall that ¢(Wj, t) stands for the solution W () in (2) when W (0) = W

Definition 5.1 (Trajectory of GLRL). Let W . := 0 be the Oth critical point of GLRL. For every
r > 1, if the (r — 1)-th critical point W,_1 . exists and is not a minimizer of f(-) in S}, we define
WS (t) == ¢(Wr_1,c + eurcu, ,t), where u, . is a top eigenvector of V f(W,_1 ) with unit
norm, ||, ||z = 1. We define W, . := limy_, oo W% (t) to be the r-th critical point of GLRL if
the limit exists.

Throughout this paper, we always focus on the case where the top eigenvalue of every V f (W ,._; )
is unique. In this case, the trajectory of GLRL is unique for every e > 0, since the normalized top
eigenvectors can only be +u, ., and both of them lead to the same er(t).

5.1 THE LIMITING TRAJECTORY: A GENERAL THEOREM FOR DYNAMICAL SYSTEM

To prove the equivalence between GF and GLRL, we first introduce our high-level idea by analyzing
the behavior of a more general dynamical system around its critical point, say 0. A specific example

is (2) if we set 0 to be the vectorization of W.

4o _ g(0), where g(0)=0. (6)

We use ¢(60y,t) to denote the value of 6(¢) in the case of 8(0) = 6y. We assume that g(8) is
C%-smooth with J(0) being the Jacobian matrix and ¢(8y,t) exists for all 8 and t. For ease of
presentation, in the main text we assume J(0) is diagonalizable over R and defer the same result for
the general case into Appendix G.3. Let J(0) = V DV ~! be the eigendecomposition, where V is
an invertible matrix and D = diag(fi1, .. ., fiq) is the diagonal matrix consisting of the eigenvalues
fn > fig > -+ > fig. Let V = (y,...,99) and V™! = (@y,...,%q)", then @;, v; are left and
right eigenvectors associated with fi; and @, ©; = J;;. We can rewrite the eigendecomposition as
J(0) = Zle fi;0;@; . We also assume the top eigenvalue fi; is positive and unique. Note fi; > 0
means the critical point & = 0 is unstable, and in matrix factorization it means O is a strict saddle
point of L( - ). The key observation is that if the initialization is infinitesimal, the trajectory is almost
uniquely determined. To be more precise, we need the following definition:

Definition 5.2. For any 8, € R% and u € R?, we say that {04 }ae(0,1) converges to 6 with positive

alignment with w if lim 6, = 6, and lim inf <M u> > 0.

a—0 a—0 Hea 790“2
A special case is that the direction of 8,, — 8, converges, i.e., 8 := lim,_g ﬁ exists. In this
case, {6, } has positive alignment with either u or —u except for a zero-measure subset of 8. This
means any convergent sequence generically falls into either of these two categories.

The following theorem shows that if the initial point 8, converges to 0 with positive align-
ment with u; as o — 0, the trajectory starting with 8, converges to a unique trajectory
z(t) = ¢(avy,t + i log 1). By symmetry, there is another unique trajectory for sequences
{0, } with positive alignment to —@1, which is 2/ (¢) := ¢(—avq,t + i log 1). This is somewhat
surprising: different initial points should lead to very different trajectories, but our analysis shows
that generically there are only two limiting trajectories for infinitesimal initialization. We will soon
see how this theorem helps in our analysis for matrix factorization in Sections 5.2 and 5.3.
Theorem 5.3. Let z,(t) := ¢(a0q,t+ i log L) for every o > 0, then z(t) := lima_,0 24 (t) exists
and is also a solution of (6), i.e., z(t) = ¢(z(0),t). If , converges to 0 with positive alignment with
wy as o — 0, then Vt € R, there is a constant C' > 0 such that )
3
o (30t 2 tor gty ) — =00, < €187 )

for every sufficiently small o, where v := [i1 — ji5 > 0 is the eigenvalue gap.

Proof sketch. The main idea is to linearize the dynamics near origin as we have done for the
first warmup example. For sufficiently small 8, by Taylor expansion of g(@), the dynamics

is approximately % ~ J(0)8, which can be understood as a continuous version of power it-
eration. If the linear approximation is exact, then 8(t) = e'’(99(0). For large enough tg,



Published as a conference paper at ICLR 2021

toJ(0) _ T

e S efitoga] = efrtog @] + O(ef2'0). Therefore, as long as the initial point
6(0) has a positive inner product with @, 6(ty) should be very close to ev; for some € > 0, and the
rest of the trajectory after ¢ should be close to the trajectory starting from ev;. However, here is a
tradeoff: we should choose t, to be large enough so that the power iteration takes effect; but if ¢
is so large that the norm of 8(t) reaches a constant scale, then the linearization fails unavoidably.
Nevertheless, if the initialization scale is sufficiently small, we show via a careful error analysis that
there is always a suitable choice of ¢y such that 8(t) is well approximated by e, and the difference
between 0(to + t) and ¢(ed1,t) is bounded as well. We defer the details to Appendix G. O

5.2 EQUIVALENCE BETWEEN GD AND GLRL: RANK-ONE CASE

Now we establish the equivalence between GF and GLRL in the first phase. The main idea is to apply
Theorem 5.3 on (2). For this, we need the following lemma on the eigenvalues and eigenvectors.
Lemma 5.4. Let g(W) := —WYV f(W) — Vf(W)W and J(W) be its Jacobian. Then J(0) is
symmetric and thus diagonalizable. Let —V f(0) = Z?Zl ,uiul[i]uf[i] be the eigendecomposition of
the symmetric matrix —V f(0), where 11 > o > -+ > pg. Then J(0) has the form:

d d
JO)[A] =D (i + 1) <A> U1[i}u1T[j]> W), ®)
i=1 j=1
where J(0)[A] stands for the resulting matrix produced by left-multiplying J(0) to the vectorization
of A. For every pair of 1 < i < j <d, u; + p; is an eigenvalue of J(0) and ul[i]u]—[j] + ul[j]u]—[i]
is a corresponding eigenvector. All the other eigenvalues are (.

We simplify the notation by letting w1 := w[;). A direct corollary of Lemma 5.4 is that uju] is the
top eigenvector of J(0). According to Theorem 5.3, now there are only two types of trajectories,
which correspond to infinitesimal initialization W, — 0 with positive alignment with w;u;
or —uju; . As the initialization must be PSD, W, — 0 cannot have positive alignment with
—u u1T For the former case, Theorem 5.6 below states that, for every fixed time ¢, the GF solution
$(Wa, T(W,) + t) after shifting by a time offset T'(W,) := 5~ log((Wa, uiuj ) ') converges
to the GLRL solution W% (t) as W,, — 0. The only assumption for this result is that 0 is not a
minimizer of f(-)in' S (which is equivalent to A\; (—=V £(0)) > 0) and —V f(0) has an eigenvalue
gap. In the full observation case, this assumption is satisfied easily if the ground-truth matrix has a
unique top eigenvalue. The proof for Theorem 5.6 is deferred to Appendix I.1.

Assumption 5.5. 11 > max{uso, 0}, where uq := A\ (—=V f(0)), 2 := A2(—=V f(0)).

Theorem 5.6. Under Assumption 5.5, the following limit W (t) exists and is a solution of (2).
WE(t) := lim W (2—;1 log L + t) = lim ¢ <eu1uf, 37 log ¢+ t) . )

Let {W,} C Sj be PSD matrices converging to 0 with positive alignment with uju{ as o — 0,

that is, lim,_.o W, = 0 and 3oy, g > 0 such that <Wa7 u1u1'—> > q||Wal|p for all o < a. Then
Vt € R, there is a constant C' > 0 such that

¢ (W(u ﬁ IOgﬁ + t) - ch;(t)

Wa,uru

5
< CWag™™ (10)
F
Sor every sufficiently small o, where 7 := 21 — (p1 + p2) = 1 — po.

It is worth to note that W% (t) has rank < 1 for any ¢ € R, since every W7, (t) has rank < 1 and
the set S;“’ <1 1s closed. This matches with the first warmup example: GD does start learning with
rank-1 solutions. Interestingly, in the case where the limit W := lim;_, . . W% (¢) happens to be a
minimizer of f(-)in S;, GLRL should exit with the rank-1 solution W after the first phase, and
the following theorem shows that this is also the solution found by GF.

Assumption 5.7. f(W) is locally analytic at each point.

Theorem 5.8. Under Assumptions 5.5 and 5.7, if |W ()| is bounded for all t > 0, then the
limit W1 = limy—, 4 oo W3 (t) exists. Further, if W1 is a minimizer of f(-) in' S}, then for PSD
matrices {W,} C Sj converging to 0 with positive alignment with wyu{ as o — 0, it holds that
limg 0 limy s 4 oo @(Wy, t) = Wi.
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Assumption 5.7 is a natural assumption, since f( - ) in most cases of matrix factorization is a quadratic
or polynomial function (e.g., matrix sensing, matrix completion). In general, it is unlikely for a
gradient-based optimization process to get stuck at saddle points (Lee et al., 2017; Panageas et al.,
2019). Thus, we should expect to see in general that GLRL finds the rank-1 solution if the problem
is feasible with rank-1 matrices. This means at least for this subclass of problems, the implicit
regularization of GD is rather unrelated to norm minimization. Below is a concrete example:

Example 5.9 (Counter-example of Conjecture 1.1, Gunasekar et al. 2017). Theorem 5.8 enables us
to construct counterexamples of the implicit nuclear norm regularization conjecture in (Gunasekar
et al., 2017). The idea is to construct a loss £ : R%*? — R where every rank-1 stationary point
of L(U) attains the global minimum but none of them is minimizing the nuclear norm. Below we
give a concrete matrix completion problem that meets the above requirement. Let M be a partially
observed matrix to be recovered, where the entries in = {(1, 3), (1,4), (2, 3),(3,1),(3,2), (4,1)}
are observed and the others (marked with “?”) are unobserved. The optimization problem is defined
formally by L(U) = 5 f(UUT), f(W) = 5 3 jyea(Wi; — Mij)*.

2 2
?7 7?2 1 R R 1 1 R 1 R 1 R
? ? R ? 1 R R 1 R R? R R?
M=\ g 72 92| Mom=1|1 p g 1| Max=|] p | R
R 7 7 7 R 1 1 R R R’ R R?

Here R > 1 is a large constant, e.g., R = 100. The minimum nuclear norm solution is the rank-2
matrix Morm, which has || Mo« = 4R (which is 400 when R = 100). M, .,k is a rank-1
solution with much larger nuclear norm, || Myorm ||« = 2R? 42 (which is 20002 when R = 100). We
can verify that f( -) satisfies Assumptions 5.5 and 5.7 and W (t) converges to the rank-1 solution
M, a1k Therefore, GF with infinitesimal initialization converges to M, rather than M, ,,,, which
refutes the conjecture in (Gunasekar et al., 2017). See Appendix D for a formal statement.

5.3 EQUIVALENCE BETWEEN GD AND GLRL: GENERAL CASE

Theorem 5.6 shows that for any fixed time ¢, the trajectory of GLRL in the first phase approx-
imates GF with infinitesimal initialization, i.e., W& () = lim, o ‘//I\/},(t) where V/Va(t) =
O(Wa, 5, log((Wa, wiu{ ) ™") +t). However, W% (00) # lim o W, (c0) does not hold in
general, unless the prerequisite in Theorem 5.8 is satisfied, i.e., unless W1 = W% (c0) is a minimizer
of f(-)in SZ{. This is because of the well-known result that GD converges to local minimizers (Lee

et al., 2016; 2017). We adapt Theorem 2 of Lee et al. (2017) to the setting of GF (Theorem I.5) and
obtain the following result (Theorem 5.10); see Appendix 1.4 for the proof.

Theorem 5.10. Let f : RY%? — R be a convex C?-smooth function. (1). All stationary points of
L: R - R L(U) = f(UU") are either strict saddles or global minimizers; (2). For any
random initialization, GF (1) converges to strict saddles of L(U) with probability 0.

Therefore, for convex f( - ) such as matrix sensing and completion, suppose f( - ) has no rank-1 PSD
minimizer, then no matter how small o is, W, (c0) (if exists) is a minimizer of f( - ) with a higher
rank and thus away from the rank-1 matrix W . In other words, W& (¢) only describes the limiting
trajectory of GF in the first phase, i.e., when GF goes from near 0 to near W . After a sufficiently
long time (depending on o), GF escapes the critical point W1, but this is not described by W& ().

To understand how GF escapes W 1, a priori, we need to know how GF approaches W ;. Using
a similar argument for Theorem 5.3, Theorem 5.11 shows that generically GF only escapes in the
direction of vyv, , where v is the (unique) top eigenvector of —V f(W), and thus the limiting
trajectory exactly matches with that of GLRL in the second phase until GF gets close to another
critical point Wo € S} _,. If W is still not a minimizer of f(-) in S} (but it is a local minimizer
in S; <, generically), then GF escapes W5 and the above process repeats until Wk is a minimizer
in S;r for some K. Here by “generically” we hide some technical assumptions and we elaborate
on them in Appendix J. See Figure 1 and Figure 2 for experimental verification of the equivalence
between GD and GLRL. We end this section with the following characterization of GF:

Theorem 5.11 (Theorem 1.2, informal). Let W be a critical point of (2) satisfying that W is a
local minimizer of f(-) in S;}:ST for some v > 1 but not a minimizer in S. Let —V f(W) =
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Figure 1: The trajectory of depth-2 GD, Wgp (¢), converges to the trajectory of GLRL, Wi rL(t), as the initialization scale goes to 0.
We plot dist(t) = ming/ ¢4 ||[Wap (t) — Wikt () || for different initialization scale || W (0) ||, where 7T is a discrete subset of R that
d-covers the entire trajectory of GLRL: max; min,/ ¢+ HWGLRL(t) — WGLRL(t')”F < § for 6 ~ 0.00042. For each ||W (0)||r, we

run 20 random seeds and plot them separately. The ground truth W* € R20%20 s 5 randomly generated rank-3 matrix with ||[W*||p = 20.

30% entries are observed. See more in Appendix E.1.

2?21 uivivg— be the eigendecomposition of —VJ(W) If 1 > po and if there exists time T, € R
for every « so that $(W,,T,,) converges to W with positive alignment with the top principal

component viv, as o — 0, then for every fixed t, lim_¢ qS(Wa, To+5— 2#1 log W +t)
o Ta), V1]

exists and is equal to WS (t) := lim._,o ¢(W + eviv/ , 2 log +1).

Characterization of the trajectory of GF. Generically, the trajectory of GF with small initialization
can be split into K phases by K + 1 critical points of (2), {W,.}K_, (W = 0), where in phase 7 GF
escapes from W ,._; in the direction of the top principal component of —V f(W,._;) and gets close
to W ,.. Each W, is a local minimizer of f(-) in Sd7<r, but none of them is a minimizer of f(-) in

Si except W . The smaller the initialization is, the longer GF stays around each W ,.. Moreover,
{W,»} ¢, corresponds to {W,. .} in Definition 5.1 with infinitesimal € > 0.

6 BENEFITS OF DEPTH: A VIEW FROM GLRL

In this section, we consider matrix factorization problems with depth L > 3. Our goal is to
understand the effect of the depth-L parametrization W = U, U, - - - U, on the implicit bias — how
does depth encourage GF to find low rank solutions? We take the standard assumption in existing
analysis for the end-to-end dynamics that the weight matrices have a balanced initialization, i.e.
U, (0)U;(0) = U;41(0)U;1 1(0), V1 < i < L — 1. Arora et al. (2018) showed that if {U;}~; is
balanced at initialization, then we have the following end-to-end dynamics. Similar to the depth-2

case, we use ¢(W(0), ) to denote W( ), where
¥ _Z CWW T EV W)W T W) (11)

The lemma below is the foundatlon of our analysis for the deep case, which greatly simplifies (11).
Due to the space limit, we defer its derivations and applications into Appendix K.

Lemma 6.1. For M (t) := W (t)%/L, we have L = —V f(ML/2)ML/2 — M2V f(ME/2),

Our main result, Theorem 6.2, gives a characterization of the limiting trajectory for deep matrix
factorization with infinitesimal identity initialization. Here W (¢) := lim,_,o W () is the trajectory
of deep GLRL, where WS(t) := ¢(ae e/, % + ) (see Algorithm 2). The dynamics for
general initialization is more complicated. Please see discussions in Appendix L.

Theorem 6.2. Let P = £, L > 3. Suppose |V f(0)||, = A\ (=V £(0)) > max{\2(—V f(0)),0},"

for every fixedt € R, Hqﬁ (aI, % + t) — W(t)HF = O(aP<P+1) ), (12)
and forany 2 < k < d,
for every fixedt € R, g (qu (ozI, % + t)) = O(a). (13)

So how does depth encourage GF to find low-rank solutions? When the ground truth is low-rank,
say rank-k, our experiments (Figure 2) suggest that GF with small initialization finds solutions with
smaller k-low-rankness compared to the depth-2 case, thus achieving better generalization. At first
glance, this is contradictory to what Theorem 6.2 suggests, i.e., the convergence rate of deep GLRL
at a constant time gets slower as the depth increases. However, it turns out the uniform upper bound
for the distance between GF and GLRL is not the ideal metric for the eventual k-low-rankness of
learned solution. Below we will illustrate why the r-low-rankness of GF within each phase r is a
better metric and how they are different.

Definition 6.3 (r-low-rankness). For matrix M € R%*? we define the r-low-rankness of M as

ELHI 0?(M), where o;(M) is the i-th largest singular value of M.

'We believe assumption ||V £(0)||, = A\1(—V f(0)) could be removed with a more refined analysis.
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Figure 2: GD passes by the same set of critical points as GLRL when the initialization scale is small, and gets much closer to the critical
points when L > 3. Depth-2 GD requires a much smaller initialization scale to maintain small low-rankness. Here the ground truth matrix
W™ € R29%20 j5 of rank 3 as stated in Appendix E.1. In this case, GLRL has 3 phases and 4 critical points {W,~}f’,=0, where Wy = 0
and W3 = W™, For each depth L and initialization scale || W (0)||r, we plot the distance between the current step of GD and the closest
critical point of GLRL, ||Wgp(t) — W .||, the norm of full gradient, IV, £(U1.L)||F and the (r + 1)-low-rankness of Wgp ()
with r := arg ming<; <3 IWep (t) — Wi ||p.

Suppose f( - ) admits a unique minimizer Wy in S(J{J, and we run GF from «I for both depth-2 and

depth-L cases. Intuitively, the 1-low-rankness of the depth-2 solution is Q(oﬂ*”?/ #1)_ which can be
seen from the second warmup example in Section 4. For the depth-L solution, though it may diverge
from the trajectory of deep GLRL more than the depth-2 solution does, its 1-low-rankness is only
O(«), as shown in Theorem 6.4. The key idea is to show that there is a basin in the manifold of
rank-1 matrices around W such that any GF starting within the basin converges to Wj. Based on
this, we can prove that starting from any matrix O(«a)-close to the basin, GF converges to a solution
O(a)-close to Wy. See Appendix M for more details.

Theorem 6.4. In the same settings as Theorem 6.2, if W (00) exists and is a minimizer of f(- ) in
S;Lq, under regularity assumption M.1, we have inf;cg H(;S (al,t) — W (o) HF = O(a).

Interpretation for the advantage of depth with multiple phases. For depth-2 GLRL, the low-
rankness is raised to some power less then 1 per phase (depending on the eigengap). For deep GLRL,
we show the low-rankness is only multiplied by some constant for the first phase and speculate it to
be true for later phases. This conjecture is supported by our experiments; see Figure 2. Interestingly,
our theory and experiments (Figure 5) suggest that while being deep is good for generalization,
being much deeper may not be much better: once L > 3, increasing the depth does not improve
the order of low-rankness significantly. While this theoretical result is only for identity initialization,
Theorem F.1 and Corollary F.2 further show that the dynamics of GF (11) with any initialization
pointwise converges as L — oo, under a suitable time rescaling. See Figure 6 for experimental
verification.

7 CONCLUSION AND FUTURE DIRECTIONS

In this work, we connect gradient descent to Greedy Low-Rank Learning (GLRL) to explain the
success of using gradient descent to find low-rank solutions in the matrix factorization problem. This
enables us to construct counterexamples to the implicit nuclear norm conjecture in (Gunasekar et al.,
2017). Taking the view of GLRL can also help us understand the benefits of depth.
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A COMPARISON TO EXISTING GREEDY ALGORITHMS FOR
RANK-CONSTRAINED OPTIMIZATION

The most related one to GLRL (Algorithm 1) is probably Rank-1 Matrix Pursuit (R1MP) proposed by
Wang et al. (2014) for matrix completion, which was later generalized to general convex loss in (Yao
and Kwok, 2016). R1MP maintains a set of rank-1 matrices as the basis, and in phase r, RIMP adds
the same u,u, as defined in Algorithm 1 into its basis and solve ming f(>°;_; a;u;u; ) for rank-r
estimation. The main difference between R1IMP and GLRL is that the optimization in each phase
of RIMP is performed on the coefficients a, while the entire U, evolves with GD in each phase of
GLRL. In Figure 3, we provide empirical evidence that GLRL generalizes better than RIMP when
ground truth is low-rank, although GLRL may have a higher computational cost depending on 7, €.

Similar to RIMP, Greedy Efficient Component Optimization (GECO, Shalev-Shwartz and Singer
2010) also chooses the r-th component of its basis as the top eigenvector of —V f(W,.), while
it solves ming f(>2,<; j<, Bijusu] ) for the rank-r estimation. Khanna et al. (2017) provided
convergence guarantee for GECO assuming strong convexity. Haeffele and Vidal (2019) proposed a
local-descent meta algorithm, of which GLRL can be viewed as a specific realization.

B DEEP GLRL ALGORITHM

Algorithm 2: Deep Greedy Low-Rank Learning (Deep GLRL)

parameter :step size n > 0; small € > 0

e eVl LUy, UL) = f(Wy---W).

Wy + 0 € R4 and Uy 1(00), . .., Uy 1.(00) € R¥*? are empty matrices
while \, (—V f (W,)) > 0 do

r—r+1

let w,. be a top (unit) eigenvector of —V f (W,._1)

U,1(0) « [Ur—1,1(00) €u,] € R&"

U, x(0) « {Url(’)k(oo) 2} eR™>¥ forall2<k<L-1
UnL(O) — UTE}J’T(OO):| c Rrxd

fort =0,1,...do

L UT»i(t + 1) «— Ur,i(t) - anzE (Ur,l(t)v o aUr,L(t))s V1 <1< L.
| WT — Unl(oo) s UT7L(OO)
return W,

C PRELIMINARY LEMMAS

Lemma C.1. For Uy € R¥™" and Wy := UOUJ , the following statements are equivalent:
(1). Uy is a stationary point of LU) = L f(UUT);
(2). Vf(Wo)W, = 0;
(3). Wy := UOUOT is a critical point of (2).

Proof. (2) = (3) is trivial. We only prove (1) = (2), (3) = (1).

Proof for (1) = (2). If Uy is a stationary point, then 0 = VL(Uy) = V f(W)Uj. So
Vf(Wo)Wo = (Vf(Wo)Un) Uy = 0.

Proof for (3) = (1). If Wy is a critical point, then

0= (g(Wo), Vf(Wy)) = =2 Te(V f(Wo)WoV f(Wy)) = —2||V f(Wo)Uol[z,
which implies VL(Up) = 0. O
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Lemma C.2. For a stationary point Uy € R¥" of L(U) = Lf(UU") where f(-) is convex,

Wy := UoU,) attains the global minimum of f(-)in S} :={W : W = 0} iff V.f (W) = 0.

Proof. Since f(W) is a convex function and S:{ is convex, we know that Wy is a global minimizer
of f(W)inS] iff
(VF(Wy), W — W) >0, YW = 0. (14)

Note that (V f(Wy), Wy) = Tr(V f(Wy)Wy). By Lemma C.1, (V f(Wy), Wy) = 0. Combining
this with (14), we know that W}, is a global minimizer iff

(V(W,),W)>0, VYW = 0. (15)

It is easy to check that this condition is equivalent to V f(Wg) = 0. O

D PROOFS FOR COUNTER-EXAMPLE

Conjecture D.1 (Formal Statement, Gunasekar et al. 2017). Suppose f : R¥*4 _ R is a quadratic
function and min f(W) = 0. Then for any Wiy, = 0if W1 = lim lim ¢(aWinit, t) exists
wixo a—0t—4oc0

and f(W;) =0, then |W ]|, = Ihin W]« s.t. f(W)=0.

Propsition D.2 (Formal Statement for Example 5.9). For constant R > 1, let

7 7 1 R R 1 1 R 1 R 1 R
{7 ? R 7 |1 R R 7RR2RR2
M= 1 R 7 7 » Miorm = 1 R R 1 , and Mrani = 1 R 1 R
R 7?7 7 7 R 1 1 R R 2 R 2
and
1 1
L) =S fUUT), fW)=5 > (Wi~ My)*
(i,7)EQ
where Q = {(1, 3),(1,4),(2,3),(3,1),(3,2), (4, 1)}
Then for any Wiy = 0, s.t. u{ Winiiug > 0,
ill)rb f—lg-&-moo ¢(amnita t) = Mrank-
Moreover, we have
||MrankH* =2R?*+2>4R = ||Mnorm||* = min ”WH*
W0, f(W)=0

Proof. We define W% (t), W (t) in the same way as in Definition 5.1, Theorem 5.6.

er(t) = ¢ (ewrug ),

WE(t) := lim W, (5 log L +1).
e—0 ’ M1 €

Below we will show

1. Assumption 5.7 and Assumption 5.5 are satisfied.

2. HWlG(t)HF bounded for ¢t > 0;
3. limt_>+oo ch’(t) = Mrank;

4. Mnonn = arg minWt07f(W)=O ||WH* .

14
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Thus Since M., is a global minimizer of f( - ), applying Theorem 5.8 finishes the proof.
Proof for Item 1. Let M, := V f(0), then

0 0 1 R
o0 R O
Mo=11 R 0 o
R 0 0 0

Let A := [}, B], then we have \; (A) = LV 3, (A) = 1oVIERE (thus A (A) > [M\a(A)] >

0 > A2(A). As aresult, A\; (A) = ||Al|,. Let v; € R? be the top eigenvector of A. We claim
that u; = [p'] € R? is the top eigenvector of V f(0). First by definition it is easy to check that

(0
Moyu; = \;(A)u,. Further noticing that Mg = [‘% 2 } we know A\?(Mp) € {A2(A),\3(A)}
for all eigenvalues \;(My). That is, A; (M) = )\1( ), A2(Mp) = —X2(A), A\3(Mp) = A2(A),
and \y(Mjp) = —A1(A). Thus Assumption 5.5 is satisfied. Also note that f is quadratic, thus
analytic, i.e., Assumption 5.7 is also satisfied.
Proof for Item 2. Let (z(t),y(t)) € R? be the gradient flow of g(z,y) = 1 (22 —1)?+ (zy— R)?
starting from (z¢(0), y.(0)) = \/ev;.

il Gl w(t)?)x(t) — 2y(t)(z(t)y(t) — R)

(16)

Then it is easy to verify that W, (0) = W% (0) and W,(¢) satisfies (2). Thus by the existence and
uniqueness theorem, we have W, (t) = Wf’e(t) for all ¢. Taking the limit e — 0, we know that
W (t) can also be written in the following form:

()
we = Y0 e v =) v,
()

Y

8

and (z(t), yc(t)) € R? is a gradient flow of g(z,y) = 3(2* — 1)* + (zy — R)*.
Since g(x(t), y(t)) is non-increasing overtime, and lim g(z(=t),y(=t)) = g(z(—00),y(—00)) =

9(0,0) = R? 4 0.5, we know |z(t)y(t)| < 3R for allt So whenever 32 (t) — 22(t) > 9R2, we have
22(t) < 91“(1) < Wiz(t) < 1. In this case, w = 222(t)(z%(t) — 1) < 0. Combining
this with y(—00)? — x(—00)? = 0 < 9R?, we have y?(t) — 22(t) < 9R? for all ¢, which also
implies that y(t) is bounded. Noticing that 9R? > g(z(t),y(t)) > (z%(t) — 1), we know z%(t) is
also bounded. Therefore, W (t) is bounded.

Proof for Item 3. Note that ((c0),y(c0)) is a stationary point of g(z,y). It is clear that g(z, y)
only has 3 stationary points — (0,0), (1, R) and (—1, —R). Thus W can only be 0 or Mank.
However, since for all ¢, f(W(t)) < f(0), W1 = lim;_, . W (t) cannot be 0. So W1 must be
Mrank~

Proof for Item 4. Let m;; be (i, j)th element of M. Suppose M > 0, we have

bl

(€1 —es) 'M(ey —es) >0 = myy +mayg > mig +my = 2R
(€2 —e3) M (ea — e3) > 0 == mag + maz > mag +maa = 2R

15
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Depth (L) Simulation method
2 Constant LR, = 10~3 for 10° iterations
3 Adaptive LR, 7 = 2 x 107° and ¢ = 10~ * for 10° iterations
4 Adaptive LR, 7 = 3 x 10~ % and ¢ = 10~ for 10° iterations

Table 1: Choice of hyperparameters for simulating gradient flow. For L = 2, gradient descent escapes
saddles in O(log %) time, where ¢ is the distance between the initialization and the saddle.

Thus 4R = miny o, ¢(w)—o | W]|,, where the equality is only attained at ms; = R,i = 1,2,3,4.

Otherwise, either [mn M4 {mm m23] will have negative eigenvalues. Contradiction to
mq1 Myq Mgz M33
that M > 0.
1 -1 0 0
Below we will show the rest unknown off-diagonal entries mustbe 1. Let V. = (0 0 1 0],
0 0 01
then
0 mi3 —M23 Mig — M24
M=0= VMV =0= |ms3 —ms R R =0,
M4y — Ma2 R R
which implies mi13 = M23, M14 = M2y4.
10 0 O
With the same argument for V.= |0 1 0 0 |, we have mi3 = my4, mag = may. Also
0 01 -1

note M is symmetric and mq3 = 1, thus m;; = m;; = 1, Vi = 1,2,5 = 3,4. Thus M, o;m =
arg minyy o r(w)=o ||W ., which is unique.

E EXPERIMENTS

E.1 GENERAL SETUP

The code is written in Julia (Bezanson et al., 2012) and PyTorch (Paszke et al., 2019).

The ground-truth matrix W, is low-rank by construction: we sample a random orthogonal matrix
U, a diagonal matrix S with Frobenius norm ||S||, = 1 and set W, = USU . Each measurement
X in X1,...,X,, is generated by sampling two one-hot vectors u and v uniformly and setting

X = %u'u—r + %vu—r.

In Figures 1, 2, 3 to 5 and 7, the ground truth matrix W, has shape 20 x 20 and rank 3, where
IW*g = 20, Mi(W*) = 1741, \p(W*) = 885, A3(W*) = 4.31 and \(—Vf(0)) =
6.23, A2(—V f(0)) = 5.41. p = 0.3 is used for generating measurements, except p = 0.25 in
Figure 3, i.e., each pair of entries of W’ and W, is observed with probability p.

Gradient Descent. Let € > 0 be the Frobenius norm of the target random initialization. For the
depth-2 case, we sample 2 orthogonal matrices V7, V5 and a diagonal matrix D with Frobenius
norm €, and we set U = VlDl/ 2VQT; for the depth-L case with L > 3, we sample L orthogonal
matrices V1, ...,V and a diagonal matrix D with Frobenius norm €, and we set U; := V,DY/L ViL
(V41 = V). In this way, we can guarantee that the end-to-end matrix W = U - - - U, is symmetric
and the initialization is balanced for L > 3.

We discretize the time to simulate gradient flow. When L > 2, gradient flow stays around saddle
points for most of the time, therefore we use full-batch GD with adaptive learning rate 7, inspired by
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RMSprop (Tieleman and Hinton, 2012), for faster convergence:

i1 = v+ (1— @) VLG5,
iy = —

)
Vi1
1—at+l +e

0,11 =06, — 7, VL(O,),

where o = 0.99, 7 is the (unadjusted) learning rate. The choices of hyperparameters are summarized
in Table 1. The continuous time for 8; is measured as Zz;é ;.

GLRL. In Figures 1, 2, 3 and 4, the GLRL’s trajectory is obtained by running Algorithm 1 with
e = 1077 and p = 103. The stopping criterion is that if the loop has been iterated for 107 times.

E.2 EXPERIMENTAL EQUIVALENCE BETWEEN GLRL AND GRADIENT DESCENT

Here we provide experimental evidence supporting our theoretical claims about the equivalence
between GLRL and GF for both cases, L = 2 and L > 3.

In Figure 1, we show the distance from every point on GF (simulated by GD) from random initializa-
tion is close to the trajectory of GLRL. In Figure 2, we first run GLRL and obtain the critical points
{W,}3_, passed by GLRL. We also define the distance of a matrix W' to the critical points to be
ming<,<3 [|[W — W, [|p.

E.3 How WELL DOES GLRL WORK?

We compare GLRL with gradient descent (with not-so-small initialization), nuclear norm minimiza-
tion and RIMP (Wang et al., 2014). We use CVXPY (Diamond and Boyd, 2016; Agrawal et al.,
2018) for finding the nuclear norm solution. The results are shown in Figure 3. GLRL can fully
recover the ground truth, while others have difficulty doing so.

d =20, [W(0)]f = 102

10047 T —— GLRL, L=2
! GD,L=2
3 nuclear norm
1] o SRR EEEEK RlMP (rank 3)
10 3
" L l R1MP (rank 10)
K [ ]
] :
10724 i :
............ R P A
i
1
1073 = ; i

00 05 10 15 20 25
Continuous Time led

Figure 3: GD with small initialization outperforms R1MP and minimal nuclear norm solution on
synthetic data with low-rank ground truth. Solid (dotted) curves correspond to test (training) loss.
Here the loss f(W) := = |W — W*||% and f(0) = 1. We run 10 random seeds for GD and plot
them separately (most of them overlap).

E.4 HOW DOES INITIALIZATION AFFECT THE CONVERGENCE RATE TO THE RANK-1 GLRL
TRAJECTORY?

We use the general setting in Appendix E.1. In these experiments, we use the constant learning rate
107° for 4 x 107 iterations. The reference matrix W is obtained by running the first stage of GLRL
with ||[W(0)||p = 107*® and we pick one matrix in the trajectory with || Wi/ about 0.6.

For every € = 10%,i € {—1,—2, -3, —4, —5}, we run both gradient descent and the first phase of
GLRL with ||[W(0)||p = e. For gradient descent, we use random initialization so || W (0)|| is full
rank w.p. 1. The distance of a trajectory to Wi is defined as min,>g || W (t) — We||. In practice,

17



Published as a conference paper at ICLR 2021

as we discretized time to simulate gradient flow, we check every ¢ during simulation to compute the
distance. As a result, the estimation might be inaccurate when a trajectory is really close to Wig.

The result is shown at Figure 4. We observe that GLRL trajectories are closer to the reference
matrix Wis by magnitudes. Thus the take home message here is that GLRL is in general a more
computational efficient method to simulate the trajectory of GF (GD) with infinitesimal initialization,
as one can start GLRL with a much larger initialization, while still maintaining high precision.

10°

= 1072
g
| x rank 1l
T 10744 rank d
E
C_ x
EN 106
€210 % % x
x
1073 1074 1073 1072 107t

IWep(0) ||

Figure 4: Using evyv{ (denoted by “rank 1) as initialization makes GD much closer to GLRL
compared to using random initialization (denoted by “rank d”), where v, is the top eigenvector of
—V f(0). We take a fixed reference matrix on the trajectory of GLRL with constant norm and plot
the distance of GD with each initialization to it respectively..

25
0.0
=25
=5.0
=75
-10.0

logio test loss

=125

-15.0

=175

0 2 4 6 [ 1 2
Continuous Time led Continuous Time led Continuous Time led Continuous Time le5

Figure 5: Deep matrix factorization encourages GF to find low rank solutions at a much practical
initialization scale, e.g. 1073, Here the ground truth is rank-3. For each setting, we run 5 different
random seeds. The solid curves are the mean and the shaded area indicates one standard deviation.
We observe that performance of GD is quite robust to its initialization. Note that for L > 2, the
shaded area with initialization scale 10~ is large, as the sudden decrement of loss occurs at quite
different continuous times for different random seeds in this case.

E.5 BENEFIT OF DEPTH: POLYNOMIAL VS EXPONENTIAL DEPENDENCE ON INITIALIZATION

To verify the our theory in Section 6, we run gradient descent with different depth and initialization.
The results are shown in Figure 5. We can see that as the initialization becomes smaller, the final
solution gets closer to the ground truth. However, a depth-2 model requires exponentially small
initialization, while deeper models require polynomial small initialization, though it takes much
longer to converge.

F THE MARGINAL VALUE OF BEING DEEPER

Theorem F.1 shows that the end-to-end dynamics (17) converges point-wise while L — oo if the
product of learning rate and depth, L, is fixed as constant. Interestingly, (17) also allows us to
simulate the dynamics of W (¢) for all depths L while the computation time is independent of L.
In Figure 6, we compare the effect of depth while fixing the initialization and L. We can see that
deeper models converge faster. The difference between L = 1,2, and 4 is large, while difference
among L > 16 is marginal.
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Towards infinite depth

0 250 500 750 1000
Normalized Continuous Time

Figure 6: The marginal value of being deeper. The trajectory of GD converges when depth goes to
infinity. Solid (dotted) curves correspond to test (train) loss. The z-axis stands for the normalized
continuous time ¢ (multiplied by L).

Theorem F.1. Suppose W = USVT is the SVD decomposition of W, where > =
diag(o1,...,04). The dynamics of L-layer linear net is the following, o denotes the entry-wise
multiplication:

dw ~ -

= =-LU ((UTVf( W ) K<L>) VT, 17)
where Ki(f) = a?_Q/L K(,?) = 722 Lo fori # j.

Proof. We start from (11):

AW e pa
5 = L WWHIVFW)(W W)
=0
o (L-1-1) ~
==Y USTU'VHW)VE 1%
=0
L1 1 2(L—1-1)
N ., sy -
= LU |L7'Y ST (U'VFH(W)V)Z 1%
=0
Note that 3 is diagonal, so
SEOTVIW)V)E T = (O TVHW)V)o HO,
(l) 20 2(L—-1-1)
whereH = O'LUJ L Therefore,
Lil ~ ~ ~ o~ 2(L—1-1)
LN STOTVIW)V)ET T = Z U'ViW)V)o HD
=0 =0

=(UTVIW)V)o K,
where K(2) = L1 "1V H(O Hence,

dw ~
= -L0 [(UTVf( W) o KW} V.
The entries of K (%) can be directly calculated by
I—1 2-2/L .
20 2(L—1-0) g; 3 =7,
Kz(?) L_le'iL O'j L = 0'1.270;‘»’ . .
1=0 Lo}/ " —Lo?/ "7 i#

O

o2—o2?
Corollary F.2. As L — oo, KW@ converges to K*, where K;i = O'Z-Q, Kz‘*,j =i a%_EwQ fori # j.
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Experiment details. We follow the general setting in Appendix E.1. The ground truth W* is
different but is generated in the same manner and has the same shape of 20 x 20 and p = 0.3 is used

for observation generation. We directly apply (17), in which we compute V' and U through SVD, to
simulate the trajectory together with a constant learning rate of ? for depth L. W (0) is sampled
from 1073 x N(0, I,7).

G PROOFS FOR DYNAMICAL SYSTEM

In this section, we prove Theorem 5.3 in Section 5.1. In Appendix G.1, we show how to reduce
Theorem 5.3 to the case where J(0) is exactly a diagonal matrix, then we prove this diagonal case
in Appendix G.2. Finally, in Appendix G.3, we discuss how to extend it to the case where J(0) is
non-diagonalizable.

G.1 REDUCTION TO THE DIAGONAL CASE

Theorem G.1. If J(0) = diag(fi1, .. ., fiq) is diagonal, then the statement in Theorem 5.3 holds.

Proof for Theorem 5.3. We show how to prove Theorem 5.3 based on Theorem G.1. Let % =g(0)
be the dynamical system in Theorem 5.3. Let J(0) = V DV ! be the eigendecomposition, where
V is an invertible matrix and D = diag(fi1, - - -, fiq). Now we define the following new dynamics
by changing the basis:

0(t) = V1o(t).
Then di(tt) = () for (@) := V~1g(V8), and the associated Jacobian matrix is J(8) :=

V-1J(VO)V, and thus J(0) = diag(fiy, . . . , fia)-

Now we apply Theorem G.1 to 8(t). Then Za(t) = V ~12,(t) converges to the limit £(t) :=
lin% Zq/(t). This shows that the limit z(t) = V' 2(¢) exists in Theorem 5.3. We can also verify that
a—r

z(t) is a solution of (6).

Given d,, converging to 0 with positive alignment with @, as « — 0, we can define 5a = V‘léa,
then d,, converges to 0 with positive alignment with e, where e; is the first vector in the standard

basis and is also the top eigenvector of J(0). Therefore, for every ¢ € (—o0, 4+-00), there is a constant
C > 0 such that

- 1 1 PR .
V1ig (Ja,t+~lo ~>—2t < C||8a|i (18)
H g gy ) —2(0)| <Ol
for every sufficiently small o. As V are invertible, this directly implies (7). O
G.2 PROOF FOR THE DIAGONAL CASE
Now we only need to prove Theorem G.1. Let eq, .. ., e4 be the standard basis. Then u; = v1 = €3

in this diagonal case. We only use e; to stand for w; and ¥, in the rest of our analysis.
Let R > 0. Since g(8) is C2-smooth, there exists 3 > 0 such that

[7(8) = J(0 + h)ll2 < Bhll2 (19)
for all |8||2, ||@ + ||z < R. Then the following can be proved by integration:

1
g(0+h)— g(6) = ( | e+ §h>d§) h, 0)
0
lg(6 + h) — g(8) — J(0)h]||2 < B||h|3. Q1)
By (21), we also have

lg(8) — J(0)6]> = [g(8) — g(0) — J(0)8]|> < 3]|615. (22)
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Let k := (/fi1. We assume WLOG that R < 1/k. Let F(z) = logz — log(l + kx). Itis
easy to see that F'(x) = T}wﬁ and F'(z) is an increasing function with range (—oo,log(1/k)).
We use F~'(y) to denote the inverse function of F(z). Define To(r) := o (F(r) — F(a)) =

1 r 14+kKkr
A (logg — log 1+m).

Our proof only relies on the following properties of J(0) (besides that ji1, e; are the top eigenvalue
and eigenvector of J(0)):

Lemma G.2. For J(0) := diag(fi1,. .., fiq), we have
1. Forany h € R, hTJ(0)h < [i;

2. Foranyt >0, ||etJ(0) — e[“teleﬂ|2 = efiat,
Proof. For Item 1, hTJ(0)h = S0 fi;h? < ju||h||3. For Item 2, |[e!/(® —eftere] ||, =
Hdiag(O, ef2t ., ef"d"‘)H2 = efi2t, O
Lemma G.3. For 0(t) = ¢(0,t) with |02 < a and t < T, (r),

1+k
16t)]z < 7

a-e‘“t <.

Proof. By (22) and Lemma G.2, we have
1d||6(t)|13 _
L IO _ (o1, g(001)) < (001), 7(0)0(0)) + BIOW) I < n100)13 + B0 3
This implies U202 < 7, (16(1)[|2 + [|6(t)]3). Since F'(z) =

LR6(1)]1) < fn.

So F(||6(t)]2) < F(«) + fit. By definition of T, (r), we then know that ||@(¢)|2 < r for all
t < Tu(r). So

log [[0(t)[|2 < F([|0(t)]l2) +log(1 + wr) < F(a) + fut +log(1 + xr).
Expending F'(«) proves the lemma. O
Lemma G.4. For 0(t) = ¢(0o,t) with ||0p]2 < a and t < T, (r), we have
0(t) = 790, + O(r?).

= + T We further have

Proof Let O(t) = ¢'7(©)9,. Then we have

) =
Lo~ 0113 < (9(0(1)) ~ T(0)6(1),01) — (1))
— <g(9(t))—J(0)0 b(t)) + (6 (£) " T(0)(6(t) - 6(t))
ot

< llg(0(t)) — J(0)0(1)]l2 - ||9( ) - )Hz + u1||9( ) = 0t)13,
where the last inequality is due to Lemma G.2. By (22) and Lemma G.3, we have

lg(0(1)) — 7(©)0(1)]2 < BlO()|3 < 5 (1 + wr a)

2dt

1+ ko

2 X
So we have £ [|0(t) — 0(t)||» < B (%i,’:; ) -e2it 1 110(t) — 6(t)||2. By Gronwall’s inequality,

R 1 2
10(t) —O(t)]]2 < / B ( il a) 2T (=)
0

1+ ko

Evaluating the integral gives
X 1 2oL et 1 1 2\
10) = 6(t)ll> < B +ta) et 2 < (T emt) <,
1+ ko 1 1+ ka
which proves the lemma. ]
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Lemma G.5. Let 0(t) = ¢(0g,t),0(t) = ¢(0y, t). If max{||6o]|2, |6ol2} < . then fort < To(r),
16() = B(1)]|2 < e™1+77|[0 — B2

Proof. Fort < T,(r), by (20),
o)~ 0013 = (9(0(1) ~ 9(6(1)).0:) — 6(1))
= (8(t) —6(t)" (/O J(Bg(t))d§> (6(t) — 6(1)),

where 6¢(t) == ge(t)+(1—g)é() By Lemma G.3, max{||8(t)[|2, [0(t) ]2} < L ar - e for

all t < T, (7). So ||0¢(t)||2 < LTy - ef1t, Combining these with (19) and Lemma G.2, we have
13 1+ka g

2dt

THO()h = hT IO+ 1T (I0:(0) - TOM < (jn + 5+ 1 el

for all b € RZ. Thus, (|0(t) — 6(t)]2 < (,11 R C eﬂlt) 18(t) — B(t)|2. This implies

1+ra
t 1 N
O A
[10(0) —6(0)ll2 — Jo o
14+ rr -
<7 . i1t
<pt+ kK 1T+ o™
< figt + k.
Therefore, [|8(t) — 0(t)]|2 < e™1+57(|8(0) — B(0)]|- -

Lemma G.6. For everyt € (—o0,+00), z(t) exists and z,(t) converges to z(t) in the following

rate:
12a(t) = 2(t)[l, = O(e),
where O hides constants depending on g(0) and t.

Proof. We prove the lemma in the cases of ¢t € (—oo, F((R)/fi1] and t > F(R)/[i1 respectively.

Case 1. Fix t € (—oo,F(R)/fi1]. Let & be the unique number such that 1 ‘o = a (e,
F(a) = loga). Let o be an arbitrary number less than a. Let to := ﬂil £. Then
to = i (F(a) —loga') < T,/ (&). By Lemma G.4, we have

6 (oler,to) — aerll, = 6 (aer, to) = e ©ales | = 0(a?).
2
Letr := F~(iut) < R. Thent—|— logf Ta(r)ifa <r.

By Lemma G.3, ||¢ (¢/eq, to) |, < &. Also, ||aer]2 =

1+m < &. By Lemma G.5,

1 1 1 1
za(t) — zar (t)||5 = H¢ (o/e1,t+ — log /) —¢ (ae1,t+ — log )
fi1 a fi1 ally

1 1 1
:H¢< ael,to t+~log> ¢(ae1,t+ log — )
(0%

< O( 6/L1(t+ 1 log 1)—0—)—@7“)

<o(%)

For « small enough, we have & = O(a), so for any o’ € (0, «),

12a(t) = za (£)[l; = O(a).
This implies that {z,(¢)} satisfies Cauchy’s criterion for every ¢, and thus the limit z(¢) exists for
t < F(R)/i1. The convergence rate can be deduced by taking limits for &’ — 0 on both sides.

2
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Case2. Fort= F(R)/fi1 + 7 with 7 > 0, ¢(0, 7) is locally Lipschitz with respect to 8. So

1Za(t) = 2o ()l = |¢(2a(F(R)/ 1), T) = ¢(2ar (F(R)/ 1), T)ll,
= O([za(F(R)/ 1) = zar (F(R) /1))
= 0(a),
which proves the lemma for t > F(R)/fi1. O

Proof for Theorem G.1. The existence of z(t) := limgy—y0 2 (t) = limg—0 ¢ (ael, t+ 4 log )

has already been proved in Lemma G.6, where we show ||z, (t) — z(t)||, = O(«).

By the continuity of ¢( -, t) for every ¢ € R, we have
1 1 1 1
z(t) = lim ¢ (aﬁl,t+ — log > =¢ (lim ) <a61, — log ) ,t) = ¢ (2(0),t).
a—0 1 [e% a—0 1 o

Now it is only left to prove (7). WLOG we can assume that ||d,, ||2 is decreasing and § < [|64 ]2 < «
(otherwise we can do reparameterization). Then our goal becomes proving

18a(t) = 2(B)lly = O (a7 ). 23)

where 0,,(t) := ¢ (60” t+ ﬁ% log ﬁ) We prove (23) in the cases of t € (—o0, F'(R)/fi1] and
t > F(R)/ iy respectively.

Case 1. Fixt € (—oo,(F(R) +logq)/fi1]. Let &y = Q. Let oy = ef(@1) = Tinar- Let
to := 7-(F(a1) —loga) < Ty, ||, (1) Attime to, by Lemma G.2 we have
etoJ(O) . eﬂltoeleIH — elizto — e,ﬂ(F(on) loga) (Oél) m ) (24)
2 et

Let q, := <%, €1>o By Definition 5.2, there exists ¢ > 0 such that ¢, > ¢ for all sufficiently small
«. Then we have

¢ (dasto) — a1gaerlly = H¢<6mt0) _ etoJ(O)éaH n H (etoJ(O) _ eﬁltoelelr) 5.
2 2

Ag
1\ 7
= 0(@) + (%)™ [18all.
— O(d% + a‘f?/ﬁlal—ﬂz/ﬂl)
= 0(a}).
Let r := F~(fiyt + log q%) < R. Thent + 4~ log
¢ (dasto)lly < @1. Also, largaer|l2 < ar =
1
<¢ (6047 tO) t + =

0.(t) — zq, V)], < lo
16a(t) = 2, (1), o

=0 (a% . eﬁl (H—% log alfIa )J'%T)
= O(Ctl).
Combining this with the convergence rate for z,, (t), we have

10 (t) = 2(@)]l; < 110a(t) = Za, (D)l; + (120, () = (D), = Oan).

Case2. Fort = (F(R)+logq)/fi1 + 7 with T > 0, ¢(0, 7) is locally Lipschitz with respect to 6.
So

alq = Ts(r) if & < r. By Lemma G.3,
< @;. By Lemma G.5,

1 1
) —¢(041Qa61,t+~10g )
H1 a14a / ||o

1+mx

10a(t) — 2(t)[ly = (0 ((F(R) +logq)/fi1), 7) — ¢(2((F(R) +logq) /i), 7)ll,
= O(||0a((F(R) +logq)/fn) — z((F(R) +logq) /)|,
= O(al),
which proves (23) for ¢ > (F(R) + log q)/fi1. O
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G.3 EXTENSION TO NON-DIAGONALIZABLE CASE

The proof in Appendix G.2 can be generalized to the case where J(0). Now we state the theorem
formally and sketch the proof idea. We use the notations g(8), ¢(6o, ), J(6) as in Section 5.1, but
we do not assume that J(0) is diagonalizable. Instead, we use fi1, fiz, - .., fig € C to denote the
eigenvalues of J(0), repeated according to algebraic multiplicity. We sort the eigenvalues in the
descending order of the real part of each eigenvalue, i.e., R(fi1) > R(f2) > -+ > R(jiq), where
R(z) stands for the real part of a complex number z € C. We call the eigenvalue with the largest real
part the top eigenvalue.

Theorem G.7. Assume that @ = 0 is a critical point and the following regularity conditions hold:
1. g(8) is C?-smooth;
2. ¢(0o,t) exists for all 0y and t;
3. The top eigenvalue of J(0) is unique and is a positive real number, i.e.,
g1 > max{R(fiz),0}.
Let 1,1, be the left and right eigenvectors associated with iy, satisfying ] ©1 = 1. Let z,(t) :

ooy, t+ ;1171 log 1) for every a > 0, then V't € R, z(t) := lirno zo(t) exists and z(t) = ¢(z(0), ).
a—

If 8, converges to 0 with positive alignment with u, as a — 0, then for any t € R and for any € > 0,

there is a constant C' > O such that for every sufficiently small o,

5

AR (25)

6 (80t + 108 gty ) = 2(0)], < €104
where 7 := i1 — R(fi2) is the eigenvalue gap.

Proof Sketch. Define the following two types of matrices. For r» > 1,a, € R, we define

a o0
a 9
) a O
Jafé = . . e R,
a 0
a
Forr > 1,a,b, € R, we define
C o1
C oI
(r) ¢ oI 2r X 2r
Jops = N eR ,
C oI
C

where C' = [‘g ;b] € R?%2,

By linear algebra, the real matrix J(0) can be written in the real Jordan normal form, i.e., J(0) =
Vdiag(Jp), ..., Jpm))V !, where V' € R4 is an invertible matrix, and each J;j is a real Jordan
block. Recall that there are two types of real Jordan blocks, J, (571) or J érb)l The former one is
associated with a real eigenvalue a, and the latter one is associated with a pair of complex eigenvalues
a £ bi. The sum of sizes of all Jordan blocks corresponding to a real eigenvalue a is its algebraic
multiplicity. The sum of sizes of all Jordan blocks corresponding to a pair of complex eigenvalues
a £ bi is two times the algebraic multiplicity of a + bi or a — bi (note that a + bi have the same
multiplicity).

It is easy to see that Jéfg = DJéTl)D_1 for D = diag(6”,6""!,...,8) € R™" and Jgg,a =
DJ(E’T&ID—l for D = diag(6",6",6" "%, 6" %,...,6,8) € R?*2" This means for every § > 0
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there exists Vs such that J(0) = V(;J(;f/{l, where J; := diag(Jspy, - - Jspm)s Jsp) = érg
if Jjj) = Jé "), or Js) = srgé if Jjj) = Jérb)l Since the top eigenvalue of J(0) is positive

and unique, fi; corresponds to only one block [fi;] € RY*1. WLOG we let J; = [fi1], and thus
sy = [fa]-

We only need to select a parameter 6 > 0 and prove the theorem in the case of J(0) = J since we
can change the basis in a similar way as we have done in Appendix G.1. By scrutinizing the proof for
Theorem G.1, we can find that we only need to reprove Lemma G.2. However, Lemma G.2 may not
be correct since J(0) is not diagonal anymore. Instead, we prove the following:

1. If§ € (0,7), then " Jsh < ji1||h||3 for all h € R,

2. Forany jij € (R(ji2), fin). if 6 € (0, /i — R(fiz)). then ||e!Ts — efrtese] ||, < eft for
allt > 0.

Proof for Item 1. Let K be the set of pairs (k1, ko) such that ky # ko and the entry of J;s at the
k1-th row and the k2-th column is non-zero. Then we have

Js+ J7
KT Jsh=h' 54; 5 p= Z&e W+ S e

k=1 (k1,k2)EK
d 2
h h?
S
k=1 (kl,kg)elc

Note that (fix) < R(fi2) for k > 2. Also note that there is no pair in K has k; = 1 or k; = 1, and
for every k > 2 there are at most two pairs in K has k1 = k or k2 = k. Combining all these together
gives

d
b Jsh < juhf + (R(ji2) +6) > hi < jun|[hlf3,
k=2

which proves Item 1.

Proof for Item 2. Since J; is block diagonal, we only need to prove that ||e*/slil|| < ezt for
every j > 2. If J(;[j] = J(Tg = al + §IN, where N is the nilpotent matrix, then

a

etdots) — patI+6tN _ jatI J6tN _ ,at 6tN

)
where the second equality uses the fact that I and IN are commutable. So we have

”etJ,; ”2 < eatHe(StI\I”2 _ eat€§t||NH2 < e(a+6)t.

If Jsp) = Jgg = D + §N?, where D = diag(C,C,...,C) and N is the nilpotent matrix, then

etJ(;['

2 2
I — otDH3tN? _ tD 6tN

b
where the second equality uses the fact that D and N2 are commutable. Note that ¢!¢ =

at |:COS(bt) — sin(bt) tD ||2 tC ||

__ pat
sin(bt) cos(bt) 2 = e*. So we have

, which implies ||e =le

2 2
Het.L; ”2 < ”etD”2 . ||e6tN ” _ eateétHN |2 < 6(a+6)t.

Since § € (0, iy — R(fi2)), we know that @ + 0 < ji5, which completes the proof.

Proof for a fixed §. Since Item 1 continues to hold for § € (0,7), Lemmas G.3 to G.6 also hold.
This proves that z(t) exists and satisfies (6).

It remains to prove (25) for any € > 0. Let 4" € (0, ) be a number such that - ;Y > ujw — €. Fix

iy =1 — 7,8 = iy — RN(f12). By Item 2, we have He”‘i —eftere] H < e“zt for all t > 0. By
scrutinizing the proof for Theorem G.1, we can find that the only place we use Item 2 in Lemma G.2
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is in (24). For proving (25), we can repeat the proof while replacing all the occurrences of iz by [i5.
Then we know that for every ¢ € R, there is a constant C' > 0 such that

(9726 (3ust + o iy ) — 957260, < - 195781 B

for every sufficiently small . By definition of 7/, ﬁ > ﬁ — €. Since 6, — 0as a — 0, we

have ||V 13,2 < 1 for sufficiently small «. Then we have

6 (8ast+ 108 g5y ) = 20| < NValla - || V5726 (8ast 4 2 tog g5ty ) = Vi 200,

< | Vsllz- C - [[V5 ' éa II“””

5

< CValla- IV E - 6 P

Absorbing || Vs||o - | V5 t||4* " into C proves (25). O

H EIGENVALUES OF JACOBIANS AND HESSIANS

In this section we analyze the eigenvalues of the Jacobian J (W) at critical points of (2).

For notation simplicity, we write sz(A) := A + AT to denote the symmetric matrix produced by
adding up A and its transpose, and write ac{ A, B} = AB + B A to denote the anticommutator of
two matrices A, B. Then g(W') can be written as g(W) := —ac{V f(W), W}.

Let Uy € R?" be a stationary point of the function £ : R¥*" — R, L(U) = :f(UU "), ie.,
VL(Uy) = Vf(UgUy YUy = 0. By Lemma C.1, this implies

V(Wo)Wo =0 (26)
for Wy .= UOUOT , and thus Wy, is a critical point of (2).

For a real-valued or vector-valued function F(8), we use DF(0)[8], D?F(6)[81, 82] to denote the
first- and second-order directional derivatives of F'( - ) at 6.

Let X be a linear space, which can be R%*? or R4*". For a function F' : X — X, we use DF(6) to
denote the directional derivative of F' at 8, represented by the linear operator

DF(6)[A]: X X, A o+ DF(6)[A] = lim L T1A) = F(0)

t—0 t
We also write DF(0)[A1, As] := (DF(0)[A4], As).
For a function F' : X — R, we use D?F(6) = ( F(8)) to denote the second directional derivative
of Fat@,ie., D?F(0)[A] = D(VF(0))[A], D?F(0)[A1, As] = D(VF(0))[A1, Ag).

Define J(W) := Dg(W). By simple calculus, we can compute the formula for J(Wp):

J(Wo)[A] = —ac{V (W), A} — ac{D*f(W,)[A], Wy},
J(Wo)[A1, As] = — (Vf(Wp),s2(A14A7)) — D f(Wy)[Ay,s2(Wo A, )],

where A, A, Ay € R4,

We can also compute the formula for DL (Uy):
D*L(Uy)[A] = Vf(Wo)A + D? f(Wo)[s2(AU, U,
D*L(Up)[A1, As] = ((Vf Wo),sz(A1A;)) + D? f(Wy)[sz(A1 Uy ), s2(AU] )])

where A, A1, Ay € RIX7,
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H.1 EIGENVALUES AT THE ORIGIN

The eigenvalues of J(0) is given in Lemma 5.4. Now we provide the proof.

Proof for Lemma 5.4. For W, = 0, we have
J(0)[A] = =Vf(0)A - AVf(0)
J(0)[A1, Az] = —(Vf(0),52(A14;))
It is easy to see from the second equation that J(0) is symmetric.
Let —V f(0) = 2?21 ,uq;ul[i]uf[i] be the eigendecomposition of the symmetric matrix —V f(0).

Then we have

JO)A] =D u; (ul[i]uir[i]A + Aul[i]u;—[i])

<
Il M&
-

|
AM&
M=~

@
I
-
.
I
-

T T T T
i (ul[i]ul[i]Aul[j]ul[j] + ul[j]ul[j]Aul[ilul[i])

I
KM&
Mg

&
Il
-

.
Il
-

(i =+ g )us g ]'Uq[l]AUl[g]ul[]]

Il
.M&
Mg

@
Il

-
.
I

—

(i + 113) (A wrgguyy ) waguf,

which proves (8).

For A = ul[z]ul[ 1T ulmul[] we have

J(O)[A] = (i + pj)wapguy + (i + py)waguy = (i + ) A.

So ul[l]ul[ + ul[j]ule is an eigenvector of J(0) associated with eigenvalue y1; + ;. Note that

J]
{u1p ul[ R ]ulm i,j € [d]} spans all the symmetric matrices, so these are all the eigenvectors

in the space of symmetric matrices.

For every antisymmetric matrix A (i.e., A = —AT), we have
J(0)[A] = J(0)[AT] = J(0)[-A].
So J(0)[A] = 0 and every antisymmetric matrix is an eigenvector associated with eigenvalue 0.

Since every matrix can be expressed as the sum of a symmetric matrix and an antisymmetric matrix,
we have found all the eigenvalues. O

H.2 EIGENVALUES AT SECOND-ORDER STATIONARY POINTS

Now we study the eigenvalues of J(W}) when Uy is a second-order stationary point of £( - ), i.e.,
VL(Uy) =0,D2L(Uy)[A, A] > 0 for all A € RY*". We further assume that Uy is full-rank, i.e.,
rank(Uyp) = r. This condition is meet if W := UpU{ is a local minimizer of f(-) in S} but not a
minimizer in S} .

Lemma H.1. For r < d, if Uy € RY*" is a second-order stationary point of L(-), then either
rank(Uy) = rank(Wy) = r, or Wy is a minimizer of f(-) in S, where Wy = UgUy .

Proof. Assume to the contrary that Uy has rank < r and Wy is a minimizer of f(-) in Sjl'. The
former one implies that there exists a unit vector ¢ € R” such that Uypq = 0, and the latter one
implies that there exists v € R? such that v "V f(Wj)v < 0 by Lemma C.2.
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Let A = vq'. Then we have
D*L(Uy)[A, A] = (Vf(Wy),vv') + %DQf(“/o)[SZ(U(UOQ)T)aSZ(”(UO(I)T)]
= (Vf(Wy),vv ')+ %sz(WO)[O, 0]

= <Vf(W0), va> .
So D2L(Uy)[A, A] < 0, which leads to a contradiction. O

By (26), the symmetric matrices —V f(Wy) and W, commute, so they can be simultaneously
diagonalizable. Since (26) also implies that they have different column spans, we can have the
following diagonalization:

d
—Vf(Wy) = va 'vl , W, = Z uiviviT. 27

1=d—r+1

First we prove the following lemma on the eigenvalues and eigenvectors of the linear operator
—D2£(U0)Z

Lemma H.2. For every A € R¥*4 if

UAT + AU, =0 (28)
then A is an eigenvector of the linear operator —D?L(Uy)[-] : R — R¥*" associated with
eigenvalue 0. Moreover, the solutions of (28) spans a linear space of dimension %

Proof. Suppose UgA"T + AU, = 0. Then we have UyAT = —AU,, and thus AT =
—~U, AU, , where U, is the pseudoinverse of the full-rank matrix Uy. This implies that there is a
matrix R € R"™*", such that A = Uy R. Then we have
~D*L(Uy)[A] = ~VF(Wo)UoR — D*f(Wy)[UoAT + AUJ [Ug
— (Vf(W,)Us) R — D? f(W)[0]U,
=0.
Replacing A with U R in (28) gives Ug(R+ RT)U, = 0, which is equivalentto R = —R" since

r(r

U, is full-rank. Since the dimension of r X r antisymmetric matrices is D the span spanned by

the solutions of (28) also has dimension T(%l) O

Definition H.3 (Eigendecomposition of —D?L(Uy)). Let

—D2L( pr

be the eigendecomposition of the symmetric linear operator —D2L(Up)[ -] : R*" — R4*" where
&1,...,&q € Rare eigenvalues, E;, ..., E,.4 € R4X" are eigenvectors satisfying (E,, E,) = 0.

We enforce &, to be 0 and E,, to be a solution of (28) for every rd — @ <p<rd

Lemma Hd. Let A € RP*P be a matrix. If {wy,...,0x} is a set of linearly independent
left eigenvectors associated with eigenvalues 5\1, ceey i and {01,...,Pp_K} is a set of linearly
independent right eigenvectors associated with eigenvalues 5\1, e Ap_x, and (t;,9;) = 0 forall
1<i<K,1<j<D-—K, then 5\1, . ,5\K75\1, . ,S\D,K are all the eigenvalues of A.

Proof. LetU := (t1,...,0x)" € REXP and V := (¥y,...,0p_k) € RP*(P~K) Then both

U and V are full-rank. Let UJr =UT(OUT)"L, Vvt =(VTV) VT be the pseudoinverses of
Uand V.
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Now we define .
P .= {f/UJF}, Q:=[U"t V].
Then we have o v
Q=710 vy
Note that UU+ = I, UV =0, VU = (VTV)"{(OV)(UUT)"' =0,V*V = Ip_k.
So PQ = Ip, or equivalently Q = P~!. Then we have

_ diag(A1, ..., A\k) *
P AP = s - .
|: 0 diag()‘la"'a)\D—K) ’
where * can be any K x (D — K ) matrix. Since P~ AP is upper-triangular, we know that P~ AP
has eigenvalues A1, ..., Ax, A1,...,Ap_k, and so does A. O

Theorem H.5. The eigenvalues of J(Wy) can be fully classified into the following 3 types:

1. p; + pj is an eigenvalue for every 1 < i < j < d —r, and U” = ’Uq;'va + ’vj'vZ-T is an
associated left eigenvector.

2. &, is an eigenvalue for every 1 < p < rd — @ and f/}) = EPUOT + UOE; is an
associated right eigenvector.

3. 0is an eigenvalue, and any antisymmetric matrix is an associated right eigenvector, which

) . . d(d—1
spans a linear space of dimension %

Proof of Theorem H.5. We first prove each item respectively, and then prove that these are all the
eigenvalues of J(W)).

Proof for Item 1. For Uij = viva + vjv; , it is easy to check:

aC{—Vf(Wo), IA]”} = ()\z + )\j)UZ‘j
Woﬁij =0
So we have
J(Wo)[A, Uil = (N + ) <A»Uz‘j> = D*f(Wo)[A, 0] = (A + ;) <A, Uij>,
which shows that U; ; 1s a left eigenvector associated with eigenvalue A; + A;.

Proof for Item 2. By definition of eigenvector, we have —D2L(Uy)[E,)] = &, E,, so
& By = -V (Wo)E, — D*[(Wo)[UsE,, + E,Uy |Uo.
Right-multiplying both sides by U, , we get
&EU) =~V (Wo)EUy — D f(Wo)[V,] Wy
= —VI(Wo)(B,Uy +UoE,) — D*[(Wo)[V,]Wy
= =V (Wo)V,, - D*f(W)[V,]Wo,

where the second equality uses the fact that V f (W)U, = 0 since Uy is a critical point. Taking
both sides into sz(-) gives

&V, = —s2(Vf(Wo)V,) — sz(D? f(Wo) [V, ]Wo)

= J(Wo)[V;],

which proves that Vp is a right eigenvector associated with eigenvalue &,.
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Proof for Item 3. Since V f(W) is symmetric, g(W ) is also symmetric. Forany A = —AT,

J(Wo)[A] = J(Wo)[AT] = T (Wo)[-Al.

So J(Wy)[A] = 0 and A is an eigenvector associated with eigenvalue 0.

No other eigenvalues. Let S, be the space of symmetric matrices and A, be the space of anti-
symmetric matrices. It is easy to see that Sy and A4 are orthogonal to each other, and S; and A,
are invariant subspaces of J(Wy)[A]. Let b : Sy — Sgq, A — J(Wy)[A] be the linear operator
J(Wy)[A] restricted on symmetric matrices. We only need to prove that h is diagonalizable.

It is easy to see that {Uu} are linearly independent to each other and thus spans a subspace of Sy

(d=r)

with dimension #. We can also prove that {f/;,} spans a subspace of S; with dimension

rd — w by contradiction. Assume to the contrary that there exists scalars o, for 1 < p < rd —

r(r —1)/2, not all zero, such that Z;iflr(rfl)/g a,V, = 0. Then Z;i;T<T71)/2 a, B, is a solution
of (28). However, this suggests that Z;i_lr(r_l)/z o Eyp, lies in the span of {E,}rq—r(r—1)/2<p<rds
which contradicts to the linear independence of { E }1<p<rd.

Note that

(d—r)(d—r+1) N (rd_ r(r—1)> _dld+1) — dim(Sy).

2 2 2
Also note that <Uij, Vp> =20/ E,U, v; +2v] E,U{ v; = 0. By Lemma H.4, Items 1 and 2 give
all the eigenvalues of h, and thus Items 1, 2, 3 give all the eigenvalues of J (W)). O

I PROOFS FOR THE DEPTH-2 CASE

1.1 PROOF FOR THEOREM 5.6

Proof for Theorem 5.6. Since W (t) is always symmetric, it suffices to study the dynamics of the
lower triangle of W (¢). For any symmetric matrix W € Sy, let vec,p (W) € R*“=" be the vector

consisting of the @ entries of W in the lower triangle, permuted according to some fixed order.

Let g(W) be the function defined in (2), which always maps symmetric matrices to symmetric
d(d+1) d(d+1)

matrices. Let g : R~ 2  — R~z  be the function such that g(vecy(W)) = vecrr(g(W)) for
any W € S4. For W (t) evolving with (2), we view vecpr (W (t)) as a dynamical system.

%veCLT(W(t)) = g(vecr (W (1))).

By Lemma 5.4, the spaces of symmetric matrices S; and antisymmetric matrices A, are invariant

subspaces of J(0), and {(pz + 15, ul[i]u]—[j] + ul[j]u]—[i])}1<i<j<d is the set of all the eigenvalues
and eigenvectors in the invariant subspace Sy. Thus, ji; := 24, and iy := pq + po are the largest
and second largest eigenvalues of the Jacobian of g(-) at vecpr(W) = 0, and 4 = 91 = uju;
are the corresponding left and right eigenvectors of the top eigenvalue. Then it is easy to translate
Theorem 5.3 to Theorem 5.6. O

I.2  PROOF FOR THEOREM 5.8
The proof for Theorem 5.8 relies on the following Lemma on the gradient flow around a local
minimizer:
Lemma L1. If 0 is a local minimizer of L(0) and for all |@ — 0|5 < 7, 0 satisfies Eojasiewicz
inequality: -

IVLO), > ¢ (£(6) - £(6))"
for some . € [1/2,1), then the gradient flow 0(t) = $(0q,t) converges to a point O, near 8 if 0y is
close enough to 0, and the distance can be bounded by ||0, — 0||2 = O(||0y — é|\g(1_”)).
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Proof. Foreveryt > 0,if |0(t) — 0|2 <,

d

S (L0(1) — £0))' " = (1 - p) (£(6(1)) — £(8)) " <v,c, C£>

N — de
— (1) (£00) - £@) - 1VElL - |
de
<—(1-pe|Z
< (1= pe|l— )
Therefore, [|8(t) — 8o|l> < [ ||42 2|, dt < e L£(00)' = 0(||60 — 62", If we choose

I\H(t)—éllz small enough’ then [|0(t) — 0> < H ( )—90||2+H90—9II2 = 0(/|6o—0]5" ) < r,
and thus fo o || H2 dt is convergent and finite. This implies that 0, := lim;_, ; -, 6(t) exists and
16— Bl = O(160 - 81207 O

Proof for Theorem 5.8. Since W (t) € S _, satisfies (2), there exists u(t) € R? such that

u(t)u(t)” = WE(t) and u(t) satisfies (1), i.e., 3 = —VL(u), where £ : R? - R,u —
1 f(uuT). If WE(t) does not diverge to infinity, then so does w(t). This implies that there is a limit

point @ of the set {u(t) : ¢t > 0}.

LetU := {u: L(u) > L(w)}. Since L(u(t)) is non-increasing, we have u(t) € U for all ¢. Note
that w is a local minimizer of £(-) in Y. By analyticity of f(-), Lojasiewicz inequality holds
for £(-) around u (Lojasiewicz, 1965). Applying Lemma 1.1 for £ restricted on U, we know
that if w(to) is sufficiently close to u, the remaining length of the trajectory of w(t) (t > to) is
finite and thus lim;_, ; o w(t) exists. As @ is a limit point, this limit can only be w. Therefore,

Wi = limy_, oo WE(t) = uu | exists.

If W is a minimizer of f(-), U = (,0,---,0) € R%*? is also a minimizer of £ : R¥*¢ —
R,U — 3 f(UUT). By analyticity of f(-), Lojasiewicz inequality holds for £(-) around U. For
every € > 0, we can always find a time ¢. such that ||u(t.) — @||2 < €/2. On the other hand,
by Theorem 5.6, there exists a number . such that for every a < a,

1 1
|6(Wa, T(W,) + ) = WE(t)||, < ¢/2, where T(W):= 5 108 WoaaT)

Combining these together we have ||¢(W,, T(Wa) +to) — Wi, <€

It is easy to construct a factorization ¢(W,, T (W) + t) := U(MU(IE such that ||Ua75 - ﬁH2 =
O(e), e.g., we can find an arbitrary factorization and then right-multiply an orthogonal matrix so that
the row vector with the largest norm aligns with the direction of w. Applying Lemma I.1, we know
that gradient flow starting with U,, . converges to a point that is only O(2(1=1) far from . So we
have

= 0(62(17“)).
2
Taking e — 0 complete the proof. O

dim_ ¢(Wo, T(W) +1) - W,

1.3 PROOF FOR THEOREM 5.11

Theorem 1.2. Let W be a critical point of (2) satisfying that W is a local minimizer of f( - ) in qu
for some r > 1 but not a minimizerin S§. Let —V f(W) = ijl piviv, be the eigendecomposition
of =V f(W). If 1 > iz, the following limit exists and is a solution of (2).

WE(t) = lim ¢ <W + eviv] 10 1 + t)
€E—>

For {W,} C S;‘, if there exists time T, € R for every o so that (Z)(Wa, T,) converges to W with
positive alignment with the top principal component viv, as o — 0, then ¥t € R,

log + t) =WS().

1
lim ¢ (WQ,TQ +—
a—0 2/J/1

<¢(Wo¢a Ta)v ’Ulfvir>
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Moreover, there exists a constant C' > 0 such that

i
< Cllp(Wa, To) |l

2 -

1
¢ (WonTa + IOg

1
W) oreT) + t) —WE(t)

for every sufficiently small o, where 4 := 21 — max{u; + p2,0}.
Proof. Following Appendix L.1, we view vec, (W (t)) as a dynamical system.

 veewr(W (1)) = g(vecrr(W (1),

Let W = UU;r be a factorization of W, where U € R%*". Since W is a local minimizer of
f(+)inS} .., U is also a local minimizer of £ : R¥™*" — R,U ~ £ f(UU ). Since W is not a

minimizer of f(-)in S}, by Lemma H.1, U is full-rank. By Theorem H.5, J(W) has eigenvalues
Wi + 15,&p, 0. By a similar argument as in Appendix I.1, the Jacobian of g at vecrr (W (t)) has
eigenvalues f1; + 5, &p.

Since U is a local minimizer, &, < 0 for all p. If 11 > po, then 244 is the unique largest eigenvalue,
and Theorem H.5 shows that vecp(vq 'ulT ) is a left eigenvector associated with 21;. The eigenvalue

gap 7 1= 2u; — max{ug + po,max{€, : 1 <p <rd-— @}} > 2pu1 — max{ug + pa,0}.

Also note that (¢(W,,T,) — W,v1v] ) = (¢(W,,T,),v1v] ) because (W, viv{ ) = 0 by
(27). If $(W,,T,) converges to W as a — 0, then it has positive alignment with vlfvlT iff

©
liminf,_o ‘<¢(Wa,Ta)m1v1 )

m > (. Then it is easy to translate Theorem 5.3 to Theorem [.2. [

1.4 GRADIENT FLOW ONLY FINDS MINIMIZERS (PROOF FOR THEOREM 5.10)

The proof for Theorem 5.10 is based on the following two theorems from the literature.

Theorem 1.3 (Theorem 3.1 in Du and Lee 2018). Let f : R?9 — R be a C? convex function. Then
L:R>k 5 R LWU) = f(UUT),k > d satisfies that (1). Every local minimizer of L is also a
global minimizer; (2). All saddles are strict. Here saddles denote those stationary points whose
hessian are not positive semi-definite (thus including local maximizers). >

Theorem 1.4 (Theorem 2 in Lee et al. 2017). Let g be a C* mapping from X — X and det(Dg(x)) #
Oforall x € X. Then the set of initial points that converge to an unstable fixed point has measure zero,
1 ({zo : limyg o0 ¥ (o) € A%Y) = 0, where A% = {x : g(x) = @, max; |\ (Dg(x))| > 1}.

Theorem 1.5 (GF only finds minimizers, a continuous analog of Theorem 1.4). Let f : R — R? be
a Ct-smooth function, and ¢ : R? x R — R? be the solution of the following differential equation,

do(z, t)
dt

Then the set of initial points that converge to a unstable critical point has measure zero,

M({fﬂo slimy o0 (0, 1) EL{}‘}) = 0, where U; = {z : f(z) = 0,\i(Df(z)) > 0} and
D f is the Jacobian matrix of f.

= f(o(z, 1)), o(x,0)=x, VrecR%tecR.

Proof of Theorem 1.5. By Theorem 1 in Section 2.3, Perko (2013), we know ¢(-, -) is C1-smooth for
both z,t. We let g(x) = ¢(x, 1), then we know g~*(x) = ¢(z, —1) and both g, g~ are C-smooth.
Note that Dg~!(x) is the inverse matrix of Dg(x). So both of the two matrices are invertible. Thus
we can apply Theorem 1.4 and we know 11 ({0 : limg 00 g¥(0) € Aj}) = 0.

Note that if lim; s ¢(x,t) exists, then limy,_, o0 g¥(x) = lim; o ¢(x, ). It remains to show that
Uz C Ag. For f(zo) = 0, we have ¢(xo,t) = xo and thus g(zo) = xo. Now it suffices to prove

*Though the original theorem is proven for convex functions of form Y7, ¢(z;UU " , y;), where £(-, -)
is C? convex for its first variable. By scrutinizing their proof, we can see the assumption can be relaxed to f is
C? convex.
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that A1 (Dg(xo)) > 1. For every ¢ € [0, 1], by Corollary of Theorem 1 in Section 2.3, Perko (2013),
we have %Dqﬁ(aa7 t) = Df(¢(x,t))Do(x, t), V, t. Thus,

2 D6(z0,1) = D (9lzo, ) Délo, ) = Df (z0) Do, ).

Solving this ODE gives Dg(x) = D¢(x, 1) = ePf(#0) Dp(x, 0) = ePf(#0), where the last equality
is due to D¢(x,0) = I, Va. Combining this with Ay (D f(x¢)) > 0, we have A1 (Dg(zo)) > 1.

Thus we have U; = {zo : f(zo) = 0, \i(Df(x)) > 0} C A7, which implies that {z( :
lim; o0 @(0,t) €U} C {x0 : limy 00 g¥(x0) € Ay} O

Theorem 5.10. Let f : R4%? — R be a convex C*-smooth function. (1). All stationary points of
L:R> - R LU) = $f(UUT) are either strict saddles or global minimizers; (2). For any
random initialization, GF (1) converges to strict saddles of L(U) with probability 0.

Proof of Theorem 5.10. For (1), by Theorem 1.3, we immediately know all the stationary points of
L( -) are either global minimizers or strict saddles. (2) is just a direct consequence of Theorem L.5 by
setting f in the above proof to —V L. O

J EQUIVALENCE BETWEEN GF AND GLRL

In this section we elaborate on the theoretical evidence that GF and GLRL are equivalent generically,
including the case where GLRL does not end in the first phase. The word “generically” used when
we want to assume one of the following regularity conditions:

1. We want to assume that GF converges to a local minimizer (i.e., GF does not get stuck on
saddle points);

2. We want to assume that the top eigenvalue A (—V f(W)) is unique for a critical point W
of (2) that is not a minimizer of f(-)inS7;

3. We want to assume that a convergent sequence of PSD matrices W,, — W has positive
alignment with vv " for some fixed vector v with (W, ’U’UT> = 0, i.e., for a convergent

sequence of PSD matrices W, — W, it holds for sure that lim inf <M, v’uT> =
a—0 \|[[Woe—W]r

.
lim inf (Wawv )

—“———2L >0, and we further assume that the inequality is strict generically.
a—0 [[Wa=W]r

Theorem 1.2 uncovers how GF with infinitesimal initialization generically behaves. Let W :=
0. For every r > 1, if W,_; is a local minimizer in S __, but not a minimizer in S}/, then
A (=Vf(W,._1)) > 0 by Lemma C.2. Generically, the top eigenvalue \;(—V f(W,_1)) should
be unique, i.e., \; (—Vf(W,_1)) > Ao(=V f(W,_1)). This enables us to apply Theorem 1.2 and
deduce that the limiting trajectory

— 1 1
WE(t) = lim ¢ ( W,_1 + eu,u, — log — —l—t)
()= timo (W, e

exists, where w,. is the top eigenvector of —V f(W,_1). This WS(-) is exactly the trajectory of
GLRL in phase r as € — 0.

Note that W, (- ) corresponds to a trajectory of GF minimizing £( - ) in R**", which should generi-
cally converge to a local minimizer of £( -) in R?*". This means the limit W, := limy_, 4 o WSE(t)
should generically be a local minimizer of f(-) in S; <, If W is further a minimizer in Sj, then

A (=Vf(W,)) < 0and GLRL exits with W .; otherwise GLRL enters phase r + 1.

If GF aligns well with GLRL in the beginning of phase r (defined below), then by Theorem 1.2,
as a — 0, the minimum distance from GF to W% (¢) converges to 0 for every t € R. Therefore,

GF can get arbitrarily close to the r-th critical point W, of GLRL, i.e., there exists a suitable
choice 7" so that lim,, o H(W,, T,Ef)) = W,. Note that (W, u,u) = 0 by (27) and thus
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< SWa TS W, uT> ~ liminf ($(Wo, T) ] )
6(Wa T8) =W [lg” "7 a0 [|$(Wa,T8)) =W ,||r
exist a suitable choice of Tc(f) so that (W, To(f)) not only converges to W, but also has positive
alignment with w,.w,', that is, GF should generically align well with GLRL in the beginning of phase
7+ 1.

Definition J.1. We say that GF aligns well with GLRL in the beginning of phase r if there exists

T
T

lim inf > 0. Generically, there should
a—0

Téf) for every > 0 such that p(W,, Tc(f)) converges to W, with positive alignment with w,.u
asa — 0.

If the initialization satisfies that W, converges to 0 with positive alignment with w;u{ as a — 0,

then GF aligns well with GLRL in the beginning of phase 1, which can be seen by taking To(él) =0.
Now assume that GF aligns well with GLRL in the beginning of phase r — 1, then the above argument
shows that GF should generically align well with GLRL in the beginning of phase r, if GLRL does
not exit in phase  — 1. In the other case, we can use a similar argument as in Theorem 5.8 to show
that GF converges to a solution near the minimizer W,. of f(-) as ¢t — 0o, and the distance between
the solution and W, converges to 0 as o« — 0. By this induction we prove that GF with infinitesimal
initialization is equivalent to GLRL generically.

K PROOFS FOR DEEP MATRIX FACTORIZATION

K.1 PRELIMINARY LEMMAS

Lemma K.1. [f W (0) = 0, then W (t) = 0 and rank(W (t)) = rank(W (0)) for all t.

Proof. Note that we can always find a set of balanced U;(t), such that Uy (¢) ... UL(t) = W (t),
dy = d3 = --- = d, = rank(W (t)) and write the dynamics of W (t) in the space of {U; } = ;. Thus
it is clear that for all ¢/, rank(W (') < rank(W (t)). We can apply the same argument for ¢’ and
we know rank(W (t)) < rank(W (¢')). Thus rank(W (¢)) is constant over time, and we denote it
by k. Since eigenvalues are continuous matrix functions, and V¢, \;(W (t)), i € [k] # 0. Thus they
cannot change their signs and it must hold that W (¢) > 0. O

Lemma K.2. Va,b, P € R, ifa >b>0,P > 1, then “ =" < paP~1.

Proof. Let f(x) = P(1 — ) — (1 — 2F). Since f'(z) = —P + Pz¥~! < Oforallz € [0,1),
f(z) > £(0) = 0. Then substituting z by £ completes the proof. O

Recall we use DF (IN)[M] to denote the directional derivative along M of F at N.
Lemma K.3. Let F' : Sji' — S:[,M — MPF, where P >1and P € Q. Then VM, N > 0,
P-1
IDE(N)[M]|lp < PNy [M]lg,
where DF (IN)[M] := lim;_,¢ w is the directional derivative of F' along M.

Proof. Let N =UXU ", where UU " = I and ¥ = diag(oy, -+ ,04). Note that F(UMU ") =
UF(M)U' forany M € S} . Then we have

IDF(N)[M]],, = tim I EE M) = F(N)ly

t—0 t
. |F(=+tUTMU) - F(Z)|,
t—0 t

= |pF(E)U MU, .

Therefore, it suffices to prove the lemma for the case where IV is diagonal, i.e., N = X.
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Assume P = ]%, where p,q € Nand ¢ > p > 0. Define G(N) = N, Then G(X)? = 3. Taking
directional derivative on both sides along direction M, we have

zp:G(E)i‘lDG(E)[M]G(E)p‘l =M,
i=1

So we have
ﬂlw
k—1 p—k *

2:1 o; " 0; g
Let H(G) = GY. With the same argument, we know

[DG(%)[M]]i; =

9=k

DH(GE) My =my Y 0,7 0,7
k=1

Note that H(G (X)) = F(X). By chain rule, we have
DF(%)[M] = DH(G(%))[DG(%)[M]].
That is,

k—1 g—k
q T
[DF(2)[M]Ji; = my; =r=t% %

p P
k=19 O

When o; = o, clearly [DF(X)[M]];; = my; - % 0,7 = Pmyol "', Otherwise, we assume

WLOG that o; > 0, we multiply o; — o to both numerator and denominator and we have

of —of P-1
IDF(Z)[M])i;| = [mis| ———% < |ma| Poy” ™" < [mag| Pl
i J
where the first inequality is by Lemma K.2. Thus we conclude the proof. O

Lemma K.4. Forany A, B =0and P R, P > 1,
P-1 P—-1
|A” = B”||. < P A~ Bl max {4l ", |1BI] '}

Proof. Since both sides are continuous in P and Q is dense in R, it suffices to prove the lemma
for P € Q. Let p := max {||A|,,|B|,} and F(M) = MF. Define N : [0,1] — ST, N(t) =
(1 —1t)A +tB, we have

1. [N ()|l < p, since ||-||, is convex.

2. |DF(N(#))[B — Al|lp < P|N(@)|l5~" |B — Allz by Lemma K.3.

Therefore,
1
dF(N(t))
IPW) - FNO)e < [ |
0 F
1
= [ IDF@N )15 - Al o
t=
< P|A-Bllpp",
which completes the proof. O

For a locally Lipschitz function f( - ), the Clarke subdifferential (Clarke, 1975; 1990; Clarke et al.,
2008) of f at any point « is the following convex set
0°f(z)
oz
where co denotes the convex hull.

:= co {klim Vf(xy) : T — @, f is differentiable at :ck} ,
— 00

Clarke subdifferential generalize the standard notion of gradients in the sense that, when f is smooth,
%;m) = {Vf(x)}. Clarke subdifferential satisfies the chain rule:
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Theorem K.5 (Theorem 2.3.10, Clarke 1990). Let F : RF — R? be a differentiable function and
g : R — R Lipschitz around F(z). Then f = g o F is Lipschitz around x and one has
0°f(w) _ 0°9(F(x)) _dF(x)
ox OF dz

Let Ay, : Sqg — R, M — A, (M) be the m-th largest eigenvalue of a symmetric matrix M. The
following theorem gives the Clarke’s subdifferentials of the eigenvalue:

Theorem K.6 (Theorem 5.3, Hiriart-Urruty and Lewis 1999). The Clarke subdifferential of the
eigenvalue function \,, is given below, where co denotes the convex hull:
8° A (M)

— T. = =
Y cofvv’ : Mv = A\ (M)v, |Jv|, = 1}.

K.2 PROOF OF LEMMA 6.1

The equation to be proved is:
dM

o = VI (MEP)MEZ - MRV (M), (29)

Since W (t) > 0 by Lemma K.1, (11) can be rewritten as the following:

i:_zwLw W)W?2 27 (30)

Proof for Lemma 6.1. Suppose W (t) is a symmetric solution of (11). By Lemma K.1, we know
W (t) also satisfies (30). Now we let R(t) be the solution of the following ODE with R(0) :=

(W (0))Z . Note we don’t define R(t) by (W (£))~.

iR L-1 o ‘
= > (-1)R'Vf(R")R" . (31)
=0

The calculation below shows that R () also satisfies (30).

L—-1L-1

dRL L—1— L 2L—2—
—_Z R =3 (-1)'RVVf(RY) R

7=0 =0
2L-2 %

_ Z Z(il)j Rivf(RL)R2T727i
i=0 \j=0
L1 v
=D (RY)TV[(R)(RM)*
i=0
Since R (0) = W (0), by existence and uniqueness theorem, RL(t) = W (¢), Vt € R. So

% = R% + %R = V(MY ME? - M2 (M),

which completes the proof. O

2+2L

K.3 PROOF FOR THEOREM 6.2

Now we turn to prove Theorem 6.2. Let P = L /2. Then (29) can be rewritten as

dM
dt

The following lemma about the growth rate of A\, (M) is used later in the proof.

—(Vf(MP)YMP + MPVf(M")). (32)
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Lemma K.7. Suppose M (t) satisfies (32), we have for any T' > T, and k € [d),

T

Ne(M(T')) — A\(M(T)) < /T 2L (M(£)) [V (M (1)) . (33)
and
1 T
51 (T (M(D) = 3P (M(T))) < / 2|V f(M" (1)) 2dt. (34)
T

Proof. Since A\, (M (t)) is locally Lipschitz in ¢, by Rademacher’s theorem, we know A, (M (¢)) is
differentiable almost everywhere, and the following holds

y
Ae(M(T')) = A\o(M(T)) = / A (M (2)

dt.
. dt

When w exists, we have

D) (g M0 g PNlA)
- v ) (@ -viar ) -6 e 0

Note that |G| < |G|, = 1. So (G, =V f(MPF(t)))| < [[Vf(MPF(t))||l2. We can prove (34)
with a similar argument. O

To prove Theorem 6.2, it suffices to consider the case that M (0) = &I where & := o'/”. WLOG
we can assume —V f(0) = diag(p1, - . ., itq) by choosing a suitable standard basis. By assumption
in Theorem 6.2, we have yi; > max{2,0} and p; = ||V f(0)||,. We use ¢, (Mo, t) to denote the
solution of M (t) when M (0) = M.

Let R > 0. Since f( - ) is C3-smooth, there exists 3 > 0 such that
V(W) = V(Wa)l[p < B|W1 — Wa,
for all Wy, Wy with | W1, , |Wa|l, < R.

&= (P—1)
Let x = f/p1. We assume WLOG that R < ﬁ. Let Fa(z) == [ _ron) %.
-P
Then Fi(z) = (Pl;?;”l: = +I: ;Pl)x 7. We will use this function to bound norm growth. Let
1 a= P _(P—1)r—r—(P—D .
ga,c(t) = P APz (P-T)% Define T4 (r) = 50 (P—T) . It is easy to
verify that ga . (Ta(r)) = r~L.
Lemma K.8. Forany x € [&, R] we have
(d_(P_l) - x_(P_l)) — Fa(z) € [0,6(P — 1)z].
Proof. On the one hand, we have
a—(P-1) 1
= (P=1) _ = (P=1) _ po(p) = 11— = _\dz>0.
@ .’E a(x) /w—(P—l) ( 1+ KZP/(PD) z =
On the other hand,
a—(P—1) G- (P-1 1
A—(P=1) _ . —(P=1) _ () — R g« .
& T Fa(x) /:F(Pil) ~P/(P=T) +K;dz < /-@/zi(pl) ZP/(P_l)dz
1 &= (P—1)
=r(P -1 —
( ) APy
< k(P - 1)z,
which completes the proof. O
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Lemma K.9. Ler My be a PSD matrix with | My||2 < 1. For M (t) := ¢, (&M, t) andt < Tx(c),
IM(#)]l2 = A(M(t)) < ga,e(t) 7T

Proof. Since |Vf(M7T)|l2 < [[VF(0)|2+BIM||5 < p1+ B(A\(M))F, by Lemma K.7, we have

M(M(1)) < M (M(0)) + / 2 + MM (7))P) (M (M (7)) Pdr

) t dr
:a+2M1(P*1)/O FL(\(M(T))

So
Fa(M(M(t))) <2u (P —1)t.

If | M (t)||2 < &, then || M (t)]|2 < gd7c(t)ﬁ. If |M(¢)||2 > @&, then by Lemma K.8,
Fa(||M(#)l|2) < 2m (P~ 1)Ta(e) = &~ ™Y — k(P —1)c — P70 < Fy(e),
so ||[M(t)||2 < cforallt < Ts(c). Applying Lemma K.8 again, we have
a= P M (@)Y < POIM(#)])2) + K(P = 1)e < 2 (P = 1)t + 5(P = 1),

which implies || M (£)||2 < ga.c(t) 7 by definition. O

Consider the following ODE:
dM e~
e =- (Vi) M” + MV [(0)).
We use q@m(ﬁo, t) to denote the solution of ﬁ(t) when ﬁ(o) = M. For diagonal matrix Mo,
M (t) is also diagonal for any ¢, and it is easy to show that

1
P—1

M ——r T Mye;
el M(t)e; = <(5¥e;rMoez‘)(Pl)2Mi(P1)t> e; Moe; # 0,

0 eiT]\//.?oeq; =0.

(35)

Remark K.10. Unlike depth-2 case, the closed form solution, M (t) is only tractable for diagonal
initialization, i.e., (35) (note that the identity matrix is diagonal). And this is the main barrier for
extending our two-phase analysis to the case of general initialization when L > 3. In Appendix L, we
give a more detailed discussion on this barrier.

The following lemma shows that the trajectory of M (t) is close to M (t).
Lemma K.11. Let My be a diagonal PSD matrix with | My||2 < 1. For M (t) := ¢, (&My,t)
and M (t) := ¢ (&M, t), we have

|M (Ta(r)) = M(Ta(r))|lr = O+

Proof. We bound the difference D := M — M between M and M.
aD
dt

—2 Hw(o) (MP . 1\71P) + (V(MP) = Vf(0)) MPHF

F
<2 (IVFO) o M7 — M|+ [V F(MT) = VF(0)[¢| M |2)
< 2 (i Pmax{ | MIIT " |MISTHID] e + 8115 )

where the last step is by Lemma K.4. This implies that

Dl < [ |5

t 2P
dr < / 2 (Nlpgam(ﬂ [D(7)|lp + 69@)T(7—)ﬁ) dr.
F 0
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So

which proves the bound. O
Lemma K.12. Let M (t) = ¢, (A Mo, t), M(t) = ¢ (&M, t). If max{||Mo||a, |[Mol|2} < 1.
Fort < Tg(r), we have

r

— P P —
IM@) = M@l < (£) e M(0) = M(O)]r.

Proof. Define D(t) = M (t) — M(t) Then we have
‘ dD

dit

= 2[(vran) (a7 = ma7) + (V") - v aa") 42" )

<2 (IV/(MP)[5|M” = M|l + 8| M7 — M" |5 M"|2)
<2 (1 + BIM|E + BIME ) Pmasc{| M5, | M5~ HDllr,
where the last step is by Lemma K.4. So
Ta(r) P
1Dl < [DOe-exp (2Ppn [ (14 20900077 ) go. ()t
0

P gar(Ta(r)) S
5l o 0) + 2694, (Ta(r)) >

< D) -exp(

r\* P
<IDO)r (£) "

which proves the bound. O

Let MS(t) := épm (aeleir, % + t). Let M (t) := C1;13%M§"’(t)

Lemma K.13. For every t € (—o0,+00), M(t) exists and MS (t) converges to M (t) in the
following rate:

|MS () — M(t)|, = O(a).

—k(P—1)c—c™ P~

Proof. Let c be a sufficiently small constant. Let T := 3 (P=1)

)
Y We prove this lemma in
the cases of t € (—oo,T] and t > T respectively.

Case 1. Fixt € (—oo,T]. Then % +t < Ts(c). Let & be the unique number such that
k(P —1)a+a =D =4~ P-1 Let @ < & be an arbitrarily small number. Let to := Ty (&) =
(&)~ (P=D _g—(P-1)

S (P—1) . By Lemma K.11 and (35), we have

[6m(@ere] o) — derel |, < ||om(@ere] o) = dm(@ere] to)|| < O@G"*).
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By Lemma K.9, ||¢,,(&’e1e] ,t0)||2 < & Then by Lemma K.12, we have
~ c\ P rel ~ ~ ~
[ém(@'ere] to + 1) — plaere] )|, < (a) 2" 0(aP*+) = 0(a) = 0(a).
This implies that { M (t)} satisfies Cauchy’s criterion for every ¢, and thus the limit M (t) exists
for ¢ < T. The convergence rate can be deduced by taking limits for &' — 0 on both sides.

Case2. Fort =T + 7 with 7 > 0, ¢,,(M, 7) is locally Lipschitz with respect to M. So

[ME (1) = MG (Ol = [|ém (ME(T),7) = ¢ (ME(T), 7).

= O(||ME(T) = ME(T)||},)
= O(é‘)’
which proves the lemma for ¢ > T. O
Theorem K.14. For everyt € (—oo, +00), as « — 0, we have:
- M O(a™ 36
s A Yo (D 1) t)— t = VP )
ou (61 5oy +1) = 30| —0(a™) G6)
and for any 2 < k < d,
- 0 37
m |0, ————= +t] ] =0(q).
«(on (a0 g +1) ) —0@ D
Proof. Let M4 (t) := ¢, (ozI , ngl)) t). Again we let c be a sufficiently small constant and
T := —”(Pz—ull)(i;fl)w ’ We prove in the cases of t € (—o0o,T] and t > T respectively.

Case 1. Fixt € (—oo,T]. Let &y := dj Let &y be the unique number such that (P — 1)&; +
—(P-1) _ Af(P71) . —(P-b_g (P h
o = .Letty :=Ta(qn) = 2u1(P ‘57— Then
||q5m al,ty) — érereg HF ’qb (al,ty) — (bm(OJ to) H + H(bm al,ty) —aleleIHF
=0(a; ™ + &)
o(a).

By Lemma K.9, || ¢, (&I, to)HQ < &y. Then by Lemma K.12, we have
||M&(t) - M(grl (t)HF = |’¢m(&17t0 + t) - (]Sm(@leleir,t)HF

< <~C>P62”cp .0(a) = 0(a™h).

851

Combining this with the convergence rate for M &Gl (t) proves the bound (36).
For (37), by Lemma K.7, we have

~ T
NP (M (T)) — AP (Ma(ty)) < / 2P —1)||VF (M

o
< / (P — 1) + B || Ma(8)]|5))dt
<—2(P-1) (ul(t ~T)+ 5

to
1
5 “Ga,c(t)™ >
By Lemma K.11, Ay (M (T)) = || M5 (T)||, = ¢+ O(c" ). For k > 2,

Ae(Ma(T)~ =D > q(a~F~V) —2(P —1) (,Ul(T —T1) + g ~C)

)]l dt

(38)

P—1
&P — —(P—1)

2,U1 (P - 1)

> Q(d*(l’*l)) _ —0(e)

> Q(a~ Py,
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Thus A\, (M4(T)) < O(&).

Case2. Fort =T + 7 with 7 > 0, ¢,,,(M, 7) is locally Lipschitz with respect to M. So
nmme&wfw%mmﬂﬂ—%wﬁ@ ol
= O (|| Ma(T) - 7)) = 0(a™m)
which proves the bound (36).
For (37), again by Lemma K.7, we have
AT (Ma(T) = N7 (M (T + 7))

T+1
<[ AP Vi)
< [P 1 (5 ME0) - M1 0, + 97 (1))
gﬁ% 1D)(0@G@™7) + 8| ME @) |2 )dt
<0()
Thus A\, (M4 (T + 7)) = Q(a~P=Y), that is, \y (M4 (T + 7)) = O(&), Vk > 2. O

Proof of Theorem 6.2. Note that ( (t )) = W (t) and

(o (o1 o)) = (g +)

By Theorem K.14, We have

T,

F

4Py P
< <¢m< I’2u1(P—1)+t)> — (M(t)) )
<P T M 9 M o
< Plom (1. gy 1) - 30 e ([ (a1 57 gy 1) | 17001
= 0(a71)0(1) = O(a ™1,
and for2 < k <d,
a—(1-1/P) . a—(P-1) . p
O

L ESCAPING DIRECTION FOR DEEP MATRIX FACTORIZATION

For deep matrix factorization, recall that we only prove that GF with infinitesimal identity initialization
escapes in the direction of the top eigenvector. The main burden for us to generalize this proof to
general initialization is that we don’t know how to analyze the early phase dynamics of (29), i.e.,
the analytical solution of (39) is difficult to compute, when L > 3. Intuitively, the direction that the

infinitesimal initialization escapes 0 is exactly M := lim,_, o %, where M (t) is the solution
- F
of (39). Showing M = v,v{ is a critical step in our analysis towards convergence to GLRL.
dM

- = —Vf(0)M"? — M2V f(0). (39
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However, unlike the depth-2 case, M can be different from vy v even if v, M (0)v; > 0. We here

give an example for diagonal M (0) and V f(0) at Appendix L.2. Nevertheless, we still conjecture

that except for a zero measure set of M (0), M = v,v], based on the following theoretical and
experimental evidences:

o If v] M(0)v; > 0 and rank(M (0)) = 1, we prove that M = v;v; . (See Theorem L.1)
* For the counter-example, we show experimentally, even with perturbation of only magnitude

107°, M = vyv, . The results are shown at Figure 7. The y-axis indicates (v, u1(t))
where w4 (t) is the top eigenvector of M (t). As ||[W (t)||r becomes larger, u,(t) aligns
better with v, which means the noise helps M escaping from v;. The larger the noise is,
the faster u, (¢) converges to v.

L.1 RANK-ONE CASE

Theorem L.1 (rank-1 initialization escapes along the top eigenvector). When rank(M (0)) = 1,

limy o0 % = vyv/, ifv; M(0)v; > 0.

Proof. Let u(0) be the vector such that M (0) = u(0)u(0) " and u(t) € R% be the solution of
du(t)

dt
It is easy to check that M (t) = u(t)u(t)" is the solution of (39), because

dM  d du " - -
= ST hu == VAOM®) ut)l} "~ MEVA0) [u(t)}

= [[u(®)lly > V(0)u(t).

= - VfO)ML? - ML?Vf(0).
Let 7(t) = [ [lu(s)||5~* ds. Then
du dudt 1 9
—_—=—— = —— 0)u = —Vf(0)u.
- ddr & [ully "V f(0)u = =V [f(0)u

That is, under time rescaling ¢ — 7(t), the trajectory of u(¢) still follows the power iteration,
regardless of the depth L. O

L.2 COUNTER-EXAMPLE FOR ESCAPING DIRECTION

Let Vf(0) = diag(2,0.9,0.8,...,0.1) € R19%10 be diagonal. Let W (0) be also diagonal and
W(0);; ~ Unif[0.9,1.1] - a for i € [10] \ {2}, W(0)2,2 = 16c, where o = 10716 is a small
constant. Let the depth be 4.

Lemma L.2. With V f(0) and W (0) constructed above, vi M (0)v; > 0 and M # v,v; .

Proof. Ttis easy to check that v; = ey, so v1 M (0)v] > 0. Now we prove that M (c0) # v1v] .
As both W (0) and V f(0) are diagonal, W (t) is always diagonal and has dynamics

dM(t);,; )
% = —QVf(O)z’lM(t)il, Vi € [10],
therefore we have closed form of M (t):

M(t); ! = M(0);} =2V f(0);;t, Vie [10].

For i € [10], the time for M (¢); ; going to infinity is (2M(0);;V f(0); ;)~!. By simple calculation,
M (t)2,2 goes to infinity the fastest, thus M = ese] # v1v] . O

We remark that the scales of W (0) and V f(0) do not matter as in gradient flow, as scaling V f(0) is
equivalent to scaling time (by Lemma L.3 below). And for this reason, the x-axis is the chosen as
W)l

WOl

the relative growth rate.
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dynamics ? = — vf(0)M? — M?V1(0)

107!
S
3 1073
s — £=10"*
1075 £=10"3
— £=1077

102 10° 10®8 10! 10 10V
W)
WOl

Figure 7: Dynamics of M = —V f(0) ML/ — ML/2V f(0) plotted, where L = 4, u;(t) is the
top eigenvector of W (¢) and e is the relative magnitude of noise. The initialization we use in this
experiment is Wyoise (0) = W(0)+ % (Z+Z "), where W (0) is what we construct at Appendix L.2,
and Z is a matrix where entries are 1 i.d. samples from the standard Gaussian distribution A/(0, 1).
We run 5 fixed random seeds (the noise matrix) for each €. The trajectory of W is calculated by
simulating gradient flow on M with small timestep and RMSprop (Tieleman and Hinton, 2012) for

faster convergence.

Lemma L.3. Suppose g : R — R is a P-homogeneous function, that is, g(a8) = \Fg(«a) for
any oo > 0, and dedﬁt) = g(0'(t)). Then @' (ar’~1t) is the solution of
de(t)
dt

=g(0(1)),  6(0) = ab'(0). (40)

Proof. Simply plug in 8(t) = a@'(a~1t), then we have

af(af~1 "(aP—1
diit) _ daB (dt t) — O‘Pdg(ép_lt)t) _ OLPQ(OI(Oépilt)) _ g(Oéel(Oépilt)) _ g(O(t)).

O

M PROOF OF LINEAR CONVERGENCE TO MINIMIZER

In this section, we will present the theorems that guarantee the linear convergence to a minimizer
W, of f(-) if the dynamics (41) is initialized sufficiently close to Wy, i.e., |[W(0) — Wy || is
sufficiently small. In Appendix M.3, we will apply this result to prove Theorem 6.4.

2042
L

—:—ZWLVf W)W "1 = g(W). 41)

Throughout this section, we assume rank(Wy) = k and use m := A\p(W)) to denote the k-th
smallest non-zero eigenvalue of W),. The tangent space of manifold of rank-k symmetric matrices at
Wois T = {VW, + WoV T : V € R} Tt can be shown that dim (7)) = k(d — k) + &) —
k(2d—k+1)

.

Let J(W) be the Jacobian of g(W) in (41). For depth-2 case, we have shown that 7 is an invariant
subspace of J(Wj) in Theorem H.5, property 2. This can be generalize to the deep case where
L > 3. Therefore, we can use J(Wp)|1: T — T to denote the linear operator J(Wj) restricted on

7. We also define I1¢° (W) as the projection of W € R4 on T, and [T (W) := W — 1% (W).
Towards showing the main convergence result in the section, we make the following assumption.
Assumption M.1. Suppose J(Wj)|7 diagonalizable and all eigenvalues are negative real numbers.

W) is a minimizer, so it is clear that J (W) |7 has no eigenvalues with positive real parts (otherwise
there is a descending direction of f(-) from W, since the loss f(-) strictly decreases along
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the trajectory of (41)). If further Assumption M.1 holds, then we know J(Wg)|7: T — T can
be diagonalized as J(W)|7[-] = V(SV~!(+)), where 3; = diag(—p1, ..., —fdim(m))s V :

RAm(T) _y T, V(x) = Zdim(ﬂ x;V;, and V; is the eigenvector associated with eigenvalue —pi;.

i=1

As shown in Theorem M.3 below, this assumption implies that if W (0) is rank-k and is sufficiently
close to Wy, then ||W (t) — Wy || < Ce #* for some constant C. For depth-2 case, the above
assumption is equivalent to that £(Uy) is “strongly convex” at Uy, except those 0 eigenvalues due
to symmetry, by property 2 of Theorem H.5). For the case where L > 3, because this dynamics is
not gradient flow, in general it does not correspond to a loss function and strongly convexity does
not make any sense. Nevertheless, in experiments we do observe linear convergence to Wy, so this
assumption is reasonable.

M.1 RANK-k INITIALIZATION

For convenience, we define for all W € S,
_ 2 2 2
Wy = v (e )| Wl = 1 )| W, = g ow))|

The reason for such definition of norms, as we will see later, is that the norm (or the difference) in the
tangent space of the manifold of symmetric rank-r matrices, ||[W — W'|| |, dominates that in the

orthogonal complement of the tangent space, |[W — W'|| ,, when both W, W' get very close to
the W (see a more rigorous statement in Lemma M.2). WLOG, we can assume

[
— <y <l llga s

for some constant /', which may depend on f and Wj. This also implies that || - ||, < |- ||p.
Below we also assume for sufficiently small R, and any W such that |[W — Wy | < R, we have
IVF(W)]|l, < pand ||[J(W)[A]|lg < B||A|lg for any A. In the proof below, we assume such
properties hold as long as we can show the boundedness of W (t) — W,

Lemma M.2. Let max{|W — Wyl | ,[|W' — Wyl } =1, whenr < *F, we have

5r
IW = Wy < 25 |W = W,
As a special case, we have
2
5(|W - W'z,

W — W, <
[ ollp 2 < -

Proof. WLOG we can assume W), is only non-zero in the first £ dimension, i.e., [Wo]ij =0, for all
1>k+1,5 > k+ 1. We further denote W and W' by

A BT A B/T
B C B/ C/ :| )
where A, A’ € R B, B’ ¢ RU@-Fxk ¢ C’' e R@-*x*(d=k) By definition, we have
|A~ Al B~ Bl < [W - W, and [W — W[, = |C — C'|l . Morcover, we
have A\in(A) > m — ||A — WOHF >m— |W — WO”F,l 2 %

v fg ] o]

Since W, W is rank-k, we have C = BA~'BT.C’' = B'’A’"'B'". Thus
W =W,
=[IC -l

- HBA—lBT _ B’A’_lB’TH
F

<|B-B'|r|A'B ¢ + |[BA |p|A — Allg| A" B g + |B'A|e|BT - B' ||

2r 21\ 2 2r
< IW =Wy 2 W =Wy () W - w2
or

m

< W —-Wg
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Theorem M.3 (Linear convergence of rank-k matrices). Suppose that rank(W(0)) = rank(Wy) =
k and

m H1
— < = —
W) - Wally < fimmax{ 5. gzt b

we have ||W (t) — Wyl|,, < Ce " ||W(0) — Wl|,, for some constant C depending on Wy, where
W (t) satisfies (41).

Proof. For convenience, we define W1 (t) := Hd (W(t) Wo), Wa(t) == Hg2 (W(t) —Wp) =
" (W (t)). We also use (-, Yy = (V71 (+)) for short.

AW _ dIW ) - Wl

dt dt
=2 (nf (50) . wio - w)

—9 <Hf2 (g(W(t)), W1<f>>

y-1

-
<2(If" (F(Wo) W (1) - Wol) . WA ()
2 Wle) — Wo) — TWo W () Wollly W (1) — Wall,
= 2(I1f (J(Wo) Wi (1) + W), Wi(8)),
+2|g(W () = Wo) — J(Wo)[W (1) — Wolll, [Wa ()]l
= 2(" (W) Wi () W) |+ 2 [ T(Wo) [ Wa )]y, Wi 1)y
+2|g(W () = Wo) — J(Wo)[W () — Wolll, [Wa ()]l

For the first term <H‘112 (J(Wo)[W1(1)]), Wl(t)>v_l, we know Wi (t) € T, and T is an invariant
space of J(Wj). Recall J(Wp)|7[] =V (XV~! (), we have

2 (N8 (W) WA (), Wi(t)) | = 2(EVH (W), V™ (Wi(0) < 20 WA D),
For the second term 23 ||J (W) [Wa(t)]|l,, [W1(?)]|,,, we have
2[|J(Wo)[Wa ()], < 2[[J(Wo)[Wa(t)][lp < 2[|T(Wo)ll, [[Wa(t)lle = 20 [Wa(t) g -
For the third term 2 ||g(W () — Wy) — J(Wy)[W (t) — Wol||,, Wi (%)]|,,, we have
2[lg(W(t) = Wo) = J(Wo)[W () = Wolll, < 26 [W (1) — Wil
<4B(IWA (DIl + [Wa (1))
< 4B(E? WA (@)1 + [ Wa()]7)-
Thus we have shown the following. Note so far we have not used the assumption that W is rank-k.

2
AWADY < opy [WA @42 1WA Dy (0 IWa0 + 2552 WA + 28 [Wa(t)2)

that is,

dlog [|[Wy(t)|)?
Og”dtl( )”V §_2M1+4ﬁK2 ||W1(t)||v+

1BIWa )} + 20 IWa (Ol

42
AGIN 2

Let T := sup{t > 0 : ||[Wi(t)||, < 7% }. Setting W’ = W, in Lemma M.2, we have for t < T,
r=[W(t) = Wollp, < [[W(t )~ Whll < K [W(1) — Woll, < 2. Thus,
SIW () = Wolle, _ 5K2 W (1) - Wolly _ 5
W2(®)llp = [Wa(B)llp, < - == - Y <y
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Thus, from (42) we can derive that

1 2
L IMON < gy, + K2(208 + 100/m)) WA (D) < 1. @3)

Since 1y < 0, [[Wy(t)]],, decreases for [0,7'). Thus T" must be oo, otherwise ||W1(T)[,, =
lim;_,7— ||[W1(t)||,, < R,. Contradiction.
Therefore, for any ¢ € [0, 00), we have ||[W1 ()|, < ||[W1(0)|],, e~ 2. That s,

e 2 2R
| iwiol e < 2 wiol, < 2
0 H1 M1

Thus from (43), we have

2 o
W Ol = W30l < W30y exp (<t + 598+ 10p/m) [~ (0, a1
0

2

IN

1

Wil exp (st + 2295+ 10p/m)

(WO, e,

which completes the proof. O

M.2 ALMOST RANK-k INITIALIZATION
We use M () to denote the top-k components of W (¢) in SVD, and IN () to denote the rest part,
i.e., W(t) — M (t). One can think M (t) as the main part and IN (¢) as the negligible part.

Below we show that for deep overparametrized matrix factorization, where W (t) satisfies (41), if
the trajectory is initialized at some W (0) in a small neighborhood of the k-th critical point W
of deep GLRL, and W (0) is approximately rank-%, in the sense that IN(0) is very small, then
inf;>o |W (t) — W/, is roughly at the same magnitude of IV (0).

Theorem M.4 (Linear convergence of almost rank-%k matrices, deep case). Suppose W is a critical
point of rank k and Wy satisfies Assumption M.1, there exists constants Cy and r, such that if
Co [IN(0)[lg < [[W1(0)|l, <1, then there exists a time T and constants C, C', such that

(1). |W(t) — Woll, < Ce M2 ||W(0) — Wyl|y, fort < T.
(2). |W(T) —=Wy|lp < C"||N(0)]|p.

Proof. When ||[W(t) — Wyl < 2=n0%0) 1 nrg)|| < AminW0) ‘g we have

)\min(W )
M (1) = Wollg, < [W() = Wolly, + IN (1), < =5
thus by Lemma M.2, we have
[Wa(t)llp, < (1M () = Wollp o + [IN()ll5
5(1M(t) — Wllr.,
< — + [N (¢
)\min(WO) || ( )“F,Q
0|Wi (@, + OINOIE o
o )\min(WO) F.2
LOK? Wi ()]l + 10 [N ()]
< + || IN(t .
)\min(WO) H ( )“F,Q

Thus we can pick constant Cj large enough and r small enough, such that for any ¢t > 0, if
Co [IN(t)|[p < [[W1i(t)|l,, < r, then it holds that:
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¢ The “small terms” in the RHS of (42) satisfies that

4B |[Wa(t) |15 + 20 [|Wal(t)
Wil

ABE> Wi (1), + le < o jwrolly + G2 INOIE <

for some C and C5 independent of ¢.

« The spectral norm 1 |V f(W (t))||, < ||V f(Wp)||, =: pforallt > 0.

e Vr<r TS > 210 2" whereky =1 — 0.5
> (L-2)p “1 Cox’ L = . .

Note these conditions can always be satisfied by some Cj and r because we can first find 3 groups
(Co,r) to satisfy each individual condition, and then take the maximal Cj and minimal r, it’s
easy to check these conditions are still verified. And we let T, , be the earliest time that such
condition, i.e., Co |[IN(t)||p < [|[Wi(t)]|,, < r fails. Thus by (42), for t € [0,T¢,,,), we have

pyt

W)y, = IWi)]ly, < [W1(0)|l,e” = = [[W(0)], e=*+ . Thus (1) holds for any 7" smaller
than T¢, . If T, » = oo, then clearly we can pick a sufficiently large 7', such that (2) holds.
Therefore, below it suffices to consider the case where T, ,- is finite. And we know the condition
that fails must be Co [N (t)[[p < [W1(t)[y, i-e. Co [[N(Teo ) llp = [[Wi(Tey,r)

By (34) in Lemma K.7, we have

ly-

INOIE ™ = INWIE | < (L - 2)pt.

2 1
R[N (0)|l5
(L=2)p

2 _
ki |N()||F . Thatis,

2 _ 2 _
Define T’ := , we know for any ¢ < T”, we have ‘||N(O)||2L "IN <

IN@)|F

IN()|F

P R IN@I»
] _ {0.5 0.5 } — INOL € [1/2,2].

N o[ N o

1—
€|: HL,I—I%L

Now we claim it must hold that 77 > T, ,.. Otherwise, we have
C _ ’ —u ’
70 IN(0)]l < Co IN(T")l[p < Wi (T")]ly, < e "2 Wh(0)]|), < e ™72
2
KL ||IN(0)||F

(L—=2)p

As a result, we have

g 2 2r : : "
Therefore, =T < ™ In TN T, which contradicts to the definition of Cy and r.

2CoVd [N (0)]l, > 2Co [N (0)l| = Co [N (Teor)llg = Wi (Tey o)y
> [ W(0)ly, e Teor/2,

and therefore,
[W1(0)]ly,

T < 2 In
Cor S — N ————
’ 2VdCq | N(0)]|p

Thus by Lemma M.2, we know
W (Tco,r) = Wollg < [W(Tco,r) = Wollg, + W (Teo,r) = Wollg o
< K[[Whi(Teo)lly + 1M (Tey,r) = Wollg o + [N (T llp

< O(IN(0)llg) + O(IN(0)[z) + O(IN (0)]l)
= O(IN(0)[l)-
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M.3 PROOF FOR THEOREM 6.4

Proof for Theorem 6.4. Let Cy,r be the constants predicted by Theorem M.4 w.rt. to W (oo).
We claim that we can pick large enough constant 7', and « sufficiently small, such that for all
a < ay, the initial condition in Theorem M.4 holds, i.e. Cy [N (0)||p < [[W1(0)],, < r, where

- (P=1) N
W(0) := ¢ (aI, e + T).

This is because we can first ensure | W (T) — W (c0) H2 is sufficiently small, i.e., smaller than %.

2
By Theorem 6.2, we know when oo — 0, |[W/(T) — W (0)||,, < K ||W(T) —= W(0)||, = o(1) and

[N (O)[lr = O(e).
By Theorem M.4, we know there is a time 1" (either T, ,- or some sufficiently large number when
Te,,r = 00), such that |[W(T') — Wz = O(||N(0)||g) = O(). O
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