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ABSTRACT

Matrix factorization is a simple and natural test-bed to investigate the implicit
regularization of gradient descent. Gunasekar et al. (2017) conjectured that Gradi-
ent Flow with infinitesimal initialization converges to the solution that minimizes
the nuclear norm, but a series of recent papers argued that the language of norm
minimization is not sufficient to give a full characterization for the implicit reg-
ularization. In this work, we provide theoretical and empirical evidence that for
depth-2 matrix factorization, gradient flow with infinitesimal initialization is math-
ematically equivalent to a simple heuristic rank minimization algorithm, Greedy
Low-Rank Learning, under some reasonable assumptions. This generalizes the
rank minimization view from previous works to a much broader setting and enables
us to construct counter-examples to refute the conjecture from Gunasekar et al.
(2017). We also extend the results to the case where depth ≥ 3, and we show
that the benefit of being deeper is that the above convergence has a much weaker
dependence over initialization magnitude so that this rank minimization is more
likely to take effect for initialization with practical scale.

1 INTRODUCTION

There are usually far more learnable parameters in deep neural nets than the number of training
data, but still deep learning works well on real-world tasks. Even with explicit regularization, the
model complexity of state-of-the-art neural nets is so large that they can fit randomly labeled data
easily (Zhang et al., 2017). Towards explaining the mystery of generalization, we must understand
what kind of implicit regularization does Gradient Descent (GD) impose during training. Ideally, we
are hoping for a nice mathematical characterization of how GD constrains the set of functions that
can be expressed by a trained neural net.

As a direct analysis for deep neural nets could be quite hard, a line of works turned to study the implicit
regularization on simpler problems to get inspirations, for example, low-rank matrix factorization,
a fundamental problem in machine learning and information process. Given a set of observations
about an unknown matrix W ∗ ∈ Rd×d of rank r∗ � d, one needs to find a low-rank solution W
that is compatible with the given observations. Examples include matrix sensing, matrix completion,
phase retrieval, robust principal component analysis, just to name a few (see Chi et al. 2019 for a
survey). When W ∗ is symmetric and positive semidefinite, one way to solve all these problems
is to parameterize W as W = UU> for U ∈ Rd×r and optimize L(U) := 1

2f(UU>), where
f( · ) is some empirical risk function depending on the observations, and r is the rank constraint. In
theory, if the rank constraint is too loose, the solutions do not have to be low-rank and we may fail
to recover W ∗. However, even in the case where the rank is unconstrained (i.e., r = d), GD with
small initialization can still get good performance in practice. This empirical observation reveals
that the implicit regularization of GD exists even in this simple matrix factorization problem, but
its mechanism is still on debate. Gunasekar et al. (2017) proved that Gradient Flow (GD with
infinitesimal step size, a.k.a., GF) with infinitesimal initialization finds the minimum nuclear norm
solution in a special case of matrix sensing, and further conjectured this holds in general.
Conjecture 1.1 (Gunasekar et al. 2017, informal). With sufficiently small initialization, GF converges
to the minimum nuclear norm solution of matrix sensing.
∗Alphabet ordering.
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Subsequently, Arora et al. (2019a) challenged this view by arguing that a simple mathematical norm
may not be a sufficient language for characterizing implicit regularization. One example illustrated in
Arora et al. (2019a) is regarding matrix sensing with a single observation. They showed that GD with
small initialization enhances the growth of large singular values of the solution and attenuates that of
smaller ones. This enhancement/attenuation effect encourages low-rank, and it is further intensified
with depth in deep matrix factorization (i.e., GD optimizes f(U1 · · ·UL) for L ≥ 2). However,
these are not captured by the nuclear norm alone. Gidel et al. (2019); Gissin et al. (2020) further
exploited this idea and showed in the special case of full-observation matrix sensing that GF learns
solutions with gradually increasing rank. Razin and Cohen (2020) showed in a simple class of matrix
completion problems that GF decreases the rank along the trajectory while any norm grows towards
infinity. More aggressively, they conjectured that the implicit regularization can be explained by rank
minimization rather than norm minimization.

Our Contributions. In this paper, we move one further step towards resolving the implicit
regularization in the matrix factorization problem. Our theoretical results show that GD performs
rank minimization via a greedy process in a broader setting. Specifically, we provide theoretical
evidence that GF with infinitesimal initialization is in general mathematically equivalent to another
algorithm called Greedy Low-Rank Learning (GLRL). At a high level, GLRL is a greedy algorithm
that performs rank-constrained optimization and relaxes the rank constraint by 1 whenever it fails
to reach a global minimizer of f( · ) with the current rank constraint. As a by-product, we refute
Conjecture 1.1 by demonstrating an counterexample (Example 5.9).

We also extend our results to deep matrix factorization Section 6, where we prove that the trajectory
of GF with infinitesimal identity initialization converges to a deep version of GLRL, at least in the
early stage of the optimization. We also use this result to confirm the intuition achieved on toy models
(Gissin et al., 2020), that benefits of depth in matrix factorization is to encourage rank minimization
even for initialization with a relatively larger scale, and thus it is more likely to happen in practice.
This shows that describing the implicit regularization using GLRL is more expressive than using the
language of norm minimization. We validate all our results with experiments in Appendix E.

2 RELATED WORKS

Norm Minimization. The view of norm minimization, or the closely related view of margin
maximization, has been explored in different settings. Besides the nuclear norm minimization for
matrix factorization (Gunasekar et al., 2017) discussed in the introduction, previous works have
also studied the norm minimization/margin maximization for linear regression (Wilson et al., 2017;
Soudry et al., 2018a;b; Nacson et al., 2019b;c; Ji and Telgarsky, 2019b), deep linear neural nets (Ji
and Telgarsky, 2019a; Gunasekar et al., 2018), homogeneous neural nets (Nacson et al., 2019a; Lyu
and Li, 2020), ultra-wide neural nets (Jacot et al., 2018; Arora et al., 2019b; Chizat and Bach, 2020).

Small Initialization and Rank Minimization. The initialization scale can greatly influence the
implicit regularization. A sufficiently large initialization can make the training dynamics fall into
the lazy training regime defined by Chizat et al. (2019) and diminish test accuracy. Using small
initialization is particularly important to bias gradient descent to low-rank solutions for matrix
factorization, as empirically observed by Gunasekar et al. (2017). Arora et al. (2019a); Gidel
et al. (2019); Gissin et al. (2020); Razin and Cohen (2020) studied how gradient flow with small
initialization encourages low-rank in simple settings, as discussed in the introduction. Li et al.
(2018) proved recovery guarantees for gradient flow solving matrix sensing under Restricted Isometry
Property (RIP), but the proof cannot be generalized easily to the case without RIP. Belabbas (2020)
made attempts to prove that gradient flow is approximately rank-1 in the very early phase of training,
but it does not exclude the possibility that the approximation error explodes later and gradient flow is
not converging to low-rank solutions. Compared to these works, the current paper studies how GF
encourages low-rank in a much broader setting.

3 BACKGROUND
Notations. For two matricesA,B, we define 〈A,B〉 := Tr(AB>) as their inner product. We use
‖A‖F , ‖A‖∗ and ‖A‖2 to denote the Frobenius norm, nuclear norm and the largest singular value of
A respectively. For a matrixA ∈ Rd×d, we use λ1(A), . . . , λd(A) to denote the eigenvalues ofA
in decreasing order (if they are all reals). We define Sd as the set of symmetric d× d matrices and
S+
d ⊆ Sd as the set of positive semidefinite (PSD) matrices. We writeA � B orB � A iffA−B

is PSD. We use S+
d,r, S

+
d,≤r to denote the set of d× d PSD matrices with rank = r,≤ r respectively.
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Matrix Factorization. Matrix factorization problem asks one to optimize L(U ,V ) := 1
2f(UV >)

among U ,V ∈ Rd×r, where f : Rd×d → R is a convex function and in this paper we assume f is
C3-smooth. A notable example is matrix sensing. There is an unknown rank-r∗ matrixW ∗ ∈ Rd×d
with r∗ � d. Given m measurements X1, . . . ,Xm ∈ Rd×d, one can observe yi := 〈Xi,W

∗〉
through each measurement. The goal of matrix sensing is to reconstruct W ∗ via minimizing
f(W ) := 1

2

∑m
i=1 (〈W ,Xi〉 − yi)2. Matrix completion is a notable special case of matrix sensing

in which every measurement has the formXi = epie
>
qi , where {e1, · · · , ed} stands for the standard

basis (i.e., exactly one entry is observed through each measurement).

Note that matrix factorization in the general case can be reduced to this symmetric case: let U ′ =
[UV ] ∈ R2d×r, f ′ ([A B

C D ]) = 1
2f(B) + 1

2f(C), then f(UV >) = f ′(U ′U ′>). So in this paper we
focus on the symmetric case as in previous works (Gunasekar et al., 2017), i.e., finding a low-rank
solution for the convex optimization problem: minW�0 f(W ). For this, we parameterize W as
W = UU> for U ∈ Rd×r and optimize L(U) := 1

2f(UU>). We assume WLOG throughout
this paper that f(W ) = f(W>); otherwise, we can set f ′(W ) = 1

2

(
f(W ) + f(W>)

)
so that

f ′(W ) = f ′(W>) while L(U) = 1
2f
′(UU>) is unaffected. This assumption makes ∇f(W )

symmetric for every symmetricW .

Gradient Flow. In this paper, we analyze Gradient Flow (GF) for symmetric matrix factorization,
defined as the solution of the following ODE for U(t) ∈ Rd×r:

dU
dt

= −∇L(U) = −∇f(UU>)U . (1)

LetW (t) = U(t)U(t)> ∈ Rd×d. Then the following end-to-end dynamics holds forW (t):
dW
dt

= −W∇f(W )−∇f(W )W =: g(W ). (2)

We use φ(W0, t) to denote the matrixW (t) in (2) whenW (0) = W0 � 0. Throughout this paper,
we assume φ(W0, t) exists for all t ∈ R,W0 � 0. It is easy to prove that U is a stationary point of
L( · ) (i.e., ∇L(U) = 0) iffW = UU> is a critical point of (2) (i.e., g(W ) = 0); see Lemma C.1
for a proof. IfW is a minimizer of f( · ) in S+

d , thenW is a critical point of (2), but the reverse may
not be true, e.g., g(0) = 0, but 0 is not necessarily a minimizer.

In this paper, we particularly focus on the overparameterized case, where r = d, to understand the
implicit regularization of GF when there is no rank constraint for the matrixW .

4 WARMUP EXAMPLES

First, we illustrate how GD performs greedy learning using two warmup examples.

Linearization Around the Origin. In general, for a loss function L(U) = 1
2f(UU>), we can

always apply Taylor expansion f(W ) ≈ f(0) + 〈W ,∇f(0)〉 around the origin to approximate
it with a linear function. This motivates us to study the linear case: f(W ) := f0 − 〈W ,Q〉 for
some symmetric matrix Q. In this case, the matrix U follows the ODE, dU

dt = QU , which can
be understood as a continuous version of the classical power iteration method for solving the top
eigenvector. LetQ :=

∑d
i=1 µiviv

>
i be the eigendecomposition ofQ, where µ1 ≥ µ2 ≥ · · · ≥ µd

and v1, . . . ,vd are orthogonal to each other. Then we can write the solution as:

U(t) = etQU(0) =

(∑d

i=1
eµitviv

>
i

)
U(0). (3)

When µ1 > µ2, the ratio between eµ1t and eµit for i 6= 1 increases exponentially fast. As t→ +∞,
U(t) andW (t) become approximately rank-1 as long as v>i U(0) 6= 0, i.e.,

lim
t→∞

e−µ1tU(t) = v1v
>
1 U(0), lim

t→∞
e−2µ1tW (t) = (v>1 W (0)v1)v1v

>
1 . (4)

The analysis for the simple linear case reveals that GD encourages low-rank through a process similar
to power iteration. However, f(W ) is non-linear in general, and the linear approximation is close to
f(W ) only ifW is very small. With sufficiently small initialization, we can imagine that GD still
resembles the above power iteration in the early phase of the optimization. But what ifW (t) grows
to be so large that the linear approximation is far from the actual f(W )?

Full-observation Matrix Sensing. To understand the dynamics of GD when the linearization fails,
we now consider a well-studied special case (Gissin et al., 2020): L(U) = 1

2f(UU>), f(W ) =
1
2‖W −W ∗‖2F for some unknown PSD matrixW ∗. GF in this case can be written as:
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dU
dt

= (W ∗ −UU>)U ,
dW
dt

= (W ∗ −W )W +W (W ∗ −W ). (5)

LetW ∗ :=
∑d
i=1 µiviv

>
i be the eigendecomposition ofW ∗. Our previous analysis shows that the

dynamics is approximately dU
dt = W ∗U in the early phase and thus encourages low-rank.

To get a sense for the later phases, we simplify the setting by specifying U(0) =
√
αI for a small

number α. We can write W (0) and W ∗ as diagonal matrices W (0) = diag(α, α, · · · , α),W ∗ =
diag(µ1, µ2, · · · , µd) with respect to the basis v1, . . . ,vd. It is easy to see that W (t) is always
a diagonal matrix, since the time derivatives of non-diagonal coordinates stay 0 during training.
Let W (t) = diag(σ1(t), σ2(t), · · · , σd(t)), then σi(t) satisfies the dynamical equation d

dtσi(t) =
2σi(t)(µi − σi(t)), and thus σi(t) = αµi

α+(µi−α)e−2µit
. This shows that every σi(t) increases from α

to µi over time. As α→ 0, every σi(t) has a sharp transition from near 0 to near µi at time roughly
( 1

2µi
+ o(1)) log 1

α , which can be seen from the following limit:

lim
α→0

σi

(
( 1

2µi
+ c) log(1/α)

)
= lim
α→0

αµi
α+ (µi − α)α1+2cµi

=

{
0 c ∈ (− 1

2µi
, 0),

µi c ∈ (0,+∞).

This means for every q ∈ ( 1
2µi

, 1
2µi+1

) for i = 1, . . . , d − 1 (or q ∈ ( 1
2µi

,+∞) for i = d),
limα→0W (q log(1/α)) = diag(µ1, µ2, . . . , µi, 0, 0, · · · , 0). Therefore, when the initialization is
sufficiently small, GF learns each component of W ∗ one by one, according to the relative order
of eigenvalues. At a high level, this shows a greedy nature of GD: GD starts learning with simple
models; whenever it underfits, it increases the model complexity (which is rank in our case). This is
also called sequential learning or incremental learning (Gidel et al., 2019; Gissin et al., 2020).

However, it is unclear how and why this sequential learning/incremental learning can occur in general.
Through the first warmup example, we may understand why GD learns a rank-1 matrix in the early
phase, but does GD always learn solutions with rank 2, 3, 4, . . . sequentially? If true, what is the
mechanism behind this? The current paper answers the questions by providing both theoretical and
empirical evidence that the greedy learning behavior does occur in general with a similar reason as
for the first warmup example.

5 GREEDY LOW-RANK LEARNING (GLRL)

In this section, we present a trajectory-based analysis for the implicit bias of GF on matrix factoriza-
tion. Our main result is that GF with infinitesimal initialization is generically the same as that of a
simple greedy algorithm, Greedy Low-Rank Learning (GLRL, Algorithm 1). See Appendix A for a
comparison with existing greedy algorithms for rank-constrained optimization.

Algorithm 1: Greedy Low-Rank Learning
parameter :step size η > 0; small ε > 0
r ← 0,W0 ← 0 ∈ Rd×d, and
U0(∞) ∈ Rd×0

while λ1(−∇f(Wr)) > 0 do
r ← r + 1
ur ← unit top eigenvector of
−∇f(Wr−1)
Ur(0)← [Ur−1(∞)

√
εur] ∈ Rd×r

for t = 0, 1, . . . do
Ur(t+ 1)← Ur(t)− η∇L(Ur(t))

Wr ← Ur(∞)U>r (∞) a

returnWr

aIn practice, we approximate the infinite time limit
by running sufficiently many steps.

The GLRL algorithm consists of several phases,
numbered from 1. In phase r, GLRL increases
the rank constraint to r and optimizes L(Ur) :=
1
2f(UrU

>
r ) among Ur ∈ Rd×r via GD un-

til it reaches a stationary point Ur(∞), i.e.,
∇L(Ur(∞)) = 0. At convergence, Wr :=
Ur(∞)U>r (∞) is a critical point of (2), and we
call it the r-th critical point of GLRL. If Wr is
further a minimizer of f( · ) in S+

d , or equivalently,
λ1(−∇f(Wr)) ≤ 0 (see Lemma C.2), GLRL
returnsWr; otherwise GLRL enters phase r + 1.

To set the initial point of GD in phase r, GLRL
appends a small column vector δr ∈ Rd to the
resulting stationary point Ur−1(∞) from the last
phase, i.e., Ur(0) ← [Ur−1(∞) δr] ∈ Rd×r (in
the case of r = 1, U1(0)← [δ1] ∈ Rd×1). In this
way, Ur(0)U>r (0) = Wr−1 + δrδ

>
r is perturbed

away from the (r − 1)-th critical point. In GLRL,
we set δr =

√
εur, where ur is the top eigenvector of −∇f(Wr) with unit norm ‖ur‖2 = 1, and

ε > 0 is a parameter controlling the magnitude of perturbation (preferably very small). Note that it is
guaranteed that λ1(−∇f(Wr−1)) > 0; otherwiseWr−1 is a minimizer of the convex function f( · )
in S+

d and GLRL exits before phase r.
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Trajectory of GLRL. We define the (limiting) trajectory of GLRL by taking the learning rate
η → 0. The goal is to show that the trajectory of GLRL is close to that of GF with infinitesimal
initialization. Recall that φ(W0, t) stands for the solutionW (t) in (2) whenW (0) = W0.

Definition 5.1 (Trajectory of GLRL). LetW 0,ε := 0 be the 0th critical point of GLRL. For every
r ≥ 1, if the (r − 1)-th critical pointW r−1,ε exists and is not a minimizer of f( · ) in S+

d , we define
WG

r,ε(t) := φ(W r−1,ε + εur,εu
>
r,ε, t), where ur,ε is a top eigenvector of ∇f(W r−1,ε) with unit

norm, ‖ur,ε‖2 = 1. We define W r,ε := limt→+∞W
G
r,ε(t) to be the r-th critical point of GLRL if

the limit exists.

Throughout this paper, we always focus on the case where the top eigenvalue of every ∇f(W r−1,ε)
is unique. In this case, the trajectory of GLRL is unique for every ε > 0, since the normalized top
eigenvectors can only be ±ur,ε, and both of them lead to the sameWG

r,ε(t).

5.1 THE LIMITING TRAJECTORY: A GENERAL THEOREM FOR DYNAMICAL SYSTEM

To prove the equivalence between GF and GLRL, we first introduce our high-level idea by analyzing
the behavior of a more general dynamical system around its critical point, say 0. A specific example
is (2) if we set θ to be the vectorization ofW .

dθ
dt

= g(θ), where g(0) = 0. (6)

We use φ(θ0, t) to denote the value of θ(t) in the case of θ(0) = θ0. We assume that g(θ) is
C2-smooth with J(θ) being the Jacobian matrix and φ(θ0, t) exists for all θ0 and t. For ease of
presentation, in the main text we assume J(0) is diagonalizable over R and defer the same result for
the general case into Appendix G.3. Let J(0) = Ṽ D̃Ṽ −1 be the eigendecomposition, where Ṽ is
an invertible matrix and D̃ = diag(µ̃1, . . . , µ̃d) is the diagonal matrix consisting of the eigenvalues
µ̃1 ≥ µ̃2 ≥ · · · ≥ µ̃d. Let Ṽ = (ṽ1, . . . , ṽd) and Ṽ −1 = (ũ1, . . . , ũd)

>, then ũi, ṽi are left and
right eigenvectors associated with µ̃i and ũ>i ṽj = δij . We can rewrite the eigendecomposition as
J(0) =

∑d
i=1 µ̃iṽiũ

>
i . We also assume the top eigenvalue µ̃1 is positive and unique. Note µ̃1 > 0

means the critical point θ = 0 is unstable, and in matrix factorization it means 0 is a strict saddle
point of L( · ). The key observation is that if the initialization is infinitesimal, the trajectory is almost
uniquely determined. To be more precise, we need the following definition:
Definition 5.2. For any θ0 ∈ Rd and u ∈ Rd, we say that {θα}α∈(0,1) converges to θ0 with positive

alignment with u if lim
α→0

θα = θ0 and lim inf
α→0

〈
θα−θ0
‖θα−θ0‖2 ,u

〉
> 0.

A special case is that the direction of θα − θ0 converges, i.e., θ̄ := limα→0
θα−θ0
‖θα−θ0‖2 exists. In this

case, {θα} has positive alignment with either u or −u except for a zero-measure subset of θ̄. This
means any convergent sequence generically falls into either of these two categories.

The following theorem shows that if the initial point θα converges to 0 with positive align-
ment with ũ1 as α → 0, the trajectory starting with θα converges to a unique trajectory
z(t) := φ(αṽ1, t + 1

µ̃1
log 1

α ). By symmetry, there is another unique trajectory for sequences
{θα} with positive alignment to −ũ1, which is z′(t) := φ(−αṽ1, t+ 1

µ̃1
log 1

α ). This is somewhat
surprising: different initial points should lead to very different trajectories, but our analysis shows
that generically there are only two limiting trajectories for infinitesimal initialization. We will soon
see how this theorem helps in our analysis for matrix factorization in Sections 5.2 and 5.3.
Theorem 5.3. Let zα(t) := φ(αṽ1, t+

1
µ̃1

log 1
α ) for every α > 0, then z(t) := limα→0 zα(t) exists

and is also a solution of (6), i.e., z(t) = φ(z(0), t). If δα converges to 0 with positive alignment with
ũ1 as α→ 0, then ∀t ∈ R, there is a constant C > 0 such that∥∥∥φ(δα, t+ 1

µ̃1
log 1
〈δα,ũ1〉

)
− z(t)

∥∥∥
2
≤ C · ‖δα‖

γ̃
µ̃1+γ̃

2 , (7)

for every sufficiently small α, where γ̃ := µ̃1 − µ̃2 > 0 is the eigenvalue gap.

Proof sketch. The main idea is to linearize the dynamics near origin as we have done for the
first warmup example. For sufficiently small θ, by Taylor expansion of g(θ), the dynamics
is approximately dθ

dt ≈ J(0)θ, which can be understood as a continuous version of power it-
eration. If the linear approximation is exact, then θ(t) = etJ(0)θ(0). For large enough t0,
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et0J(0) =
∑d
i=1 e

µ̃it0 ṽiũ
>
i = eµ̃1t0 ṽ1ũ

>
1 + O(eµ̃2t0). Therefore, as long as the initial point

θ(0) has a positive inner product with ũ1, θ(t0) should be very close to εṽ1 for some ε > 0, and the
rest of the trajectory after t0 should be close to the trajectory starting from εṽ1. However, here is a
tradeoff: we should choose t0 to be large enough so that the power iteration takes effect; but if t0
is so large that the norm of θ(t0) reaches a constant scale, then the linearization fails unavoidably.
Nevertheless, if the initialization scale is sufficiently small, we show via a careful error analysis that
there is always a suitable choice of t0 such that θ(t0) is well approximated by εṽ1 and the difference
between θ(t0 + t) and φ(εṽ1, t) is bounded as well. We defer the details to Appendix G.

5.2 EQUIVALENCE BETWEEN GD AND GLRL: RANK-ONE CASE

Now we establish the equivalence between GF and GLRL in the first phase. The main idea is to apply
Theorem 5.3 on (2). For this, we need the following lemma on the eigenvalues and eigenvectors.
Lemma 5.4. Let g(W ) := −W∇f(W )−∇f(W )W and J(W ) be its Jacobian. Then J(0) is
symmetric and thus diagonalizable. Let −∇f(0) =

∑d
i=1 µiu1[i]u

>
1[i] be the eigendecomposition of

the symmetric matrix −∇f(0), where µ1 ≥ µ2 ≥ · · · ≥ µd. Then J(0) has the form:

J(0)[∆] =

d∑
i=1

d∑
j=1

(µi + µj)
〈
∆,u1[i]u

>
1[j]

〉
u1[i]u

>
1[j], (8)

where J(0)[∆] stands for the resulting matrix produced by left-multiplying J(0) to the vectorization
of ∆. For every pair of 1 ≤ i ≤ j ≤ d, µi + µj is an eigenvalue of J(0) and u1[i]u

>
1[j] + u1[j]u

>
1[i]

is a corresponding eigenvector. All the other eigenvalues are 0.

We simplify the notation by letting u1 := u1[1]. A direct corollary of Lemma 5.4 is that u1u
>
1 is the

top eigenvector of J(0). According to Theorem 5.3, now there are only two types of trajectories,
which correspond to infinitesimal initialization Wα → 0 with positive alignment with u1u

>
1

or −u1u
>
1 . As the initialization must be PSD, Wα → 0 cannot have positive alignment with

−u1u
>
1 . For the former case, Theorem 5.6 below states that, for every fixed time t, the GF solution

φ(Wα, T (Wα) + t) after shifting by a time offset T (Wα) := 1
2µ1

log(〈Wα,u1u
>
1 〉−1) converges

to the GLRL solution WG
1 (t) as Wα → 0. The only assumption for this result is that 0 is not a

minimizer of f( · ) in S+
d (which is equivalent to λ1(−∇f(0)) > 0) and −∇f(0) has an eigenvalue

gap. In the full observation case, this assumption is satisfied easily if the ground-truth matrix has a
unique top eigenvalue. The proof for Theorem 5.6 is deferred to Appendix I.1.
Assumption 5.5. µ1 > max{µ2, 0}, where µ1 := λ1(−∇f(0)), µ2 := λ2(−∇f(0)).
Theorem 5.6. Under Assumption 5.5, the following limitWG

1 (t) exists and is a solution of (2).

WG
1 (t) := lim

ε→0
WG

1,ε

(
1

2µ1
log 1

ε + t
)

= lim
ε→0

φ
(
εu1u

>
1 ,

1
2µ1

log 1
ε + t

)
. (9)

Let {Wα} ⊆ S+
d be PSD matrices converging to 0 with positive alignment with u1u

>
1 as α → 0,

that is, limα→0Wα = 0 and ∃α0, q > 0 such that
〈
Wα,u1u

>
1

〉
≥ q ‖Wα‖F for all α < α0. Then

∀t ∈ R, there is a constant C > 0 such that∥∥∥∥φ(Wα,
1

2µ1
log 1

〈Wα,u1u>1 〉
+ t

)
−WG

1 (t)

∥∥∥∥
F

≤ C ‖Wα‖
γ̃

2µ1+γ̃

F (10)

for every sufficiently small α, where γ̃ := 2µ1 − (µ1 + µ2) = µ1 − µ2.

It is worth to note that WG
1 (t) has rank ≤ 1 for any t ∈ R, since every WG

1,ε(t) has rank ≤ 1 and
the set S+

d,≤1 is closed. This matches with the first warmup example: GD does start learning with
rank-1 solutions. Interestingly, in the case where the limitW 1 := limt→+∞W

G
1 (t) happens to be a

minimizer of f( · ) in S+
d , GLRL should exit with the rank-1 solutionW 1 after the first phase, and

the following theorem shows that this is also the solution found by GF.
Assumption 5.7. f(W ) is locally analytic at each point.
Theorem 5.8. Under Assumptions 5.5 and 5.7, if ‖WG

1 (t)‖F is bounded for all t ≥ 0, then the
limit W 1 := limt→+∞W

G
1 (t) exists. Further, if W 1 is a minimizer of f( · ) in S+

d , then for PSD
matrices {Wα} ⊆ S+

d converging to 0 with positive alignment with u1u
>
1 as α→ 0, it holds that

limα→0 limt→+∞ φ(Wα, t) = W 1.
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Assumption 5.7 is a natural assumption, since f( · ) in most cases of matrix factorization is a quadratic
or polynomial function (e.g., matrix sensing, matrix completion). In general, it is unlikely for a
gradient-based optimization process to get stuck at saddle points (Lee et al., 2017; Panageas et al.,
2019). Thus, we should expect to see in general that GLRL finds the rank-1 solution if the problem
is feasible with rank-1 matrices. This means at least for this subclass of problems, the implicit
regularization of GD is rather unrelated to norm minimization. Below is a concrete example:

Example 5.9 (Counter-example of Conjecture 1.1, Gunasekar et al. 2017). Theorem 5.8 enables us
to construct counterexamples of the implicit nuclear norm regularization conjecture in (Gunasekar
et al., 2017). The idea is to construct a loss L : Rd×d → R where every rank-1 stationary point
of L(U) attains the global minimum but none of them is minimizing the nuclear norm. Below we
give a concrete matrix completion problem that meets the above requirement. LetM be a partially
observed matrix to be recovered, where the entries in Ω = {(1, 3), (1, 4), (2, 3), (3, 1), (3, 2), (4, 1)}
are observed and the others (marked with “?”) are unobserved. The optimization problem is defined
formally by L(U) = 1

2f(UU>), f(W ) = 1
2

∑
(i,j)∈Ω(Wij −Mij)

2.

M =

 ? ? 1 R
? ? R ?
1 R ? ?
R ? ? ?

 ,Mnorm =

R 1 1 R
1 R R 1
1 R R 1
R 1 1 R

 ,Mrank =

1 R 1 R
R R2 R R2

1 R 1 R
R R2 R R2

 .
Here R > 1 is a large constant, e.g., R = 100. The minimum nuclear norm solution is the rank-2
matrix Mnorm, which has ‖Mnorm‖∗ = 4R (which is 400 when R = 100). Mrank is a rank-1
solution with much larger nuclear norm, ‖Mnorm‖∗ = 2R2 +2 (which is 20002 whenR = 100). We
can verify that f( · ) satisfies Assumptions 5.5 and 5.7 andWG

1 (t) converges to the rank-1 solution
Mrank. Therefore, GF with infinitesimal initialization converges toMrank rather thanMnorm, which
refutes the conjecture in (Gunasekar et al., 2017). See Appendix D for a formal statement.

5.3 EQUIVALENCE BETWEEN GD AND GLRL: GENERAL CASE

Theorem 5.6 shows that for any fixed time t, the trajectory of GLRL in the first phase approx-
imates GF with infinitesimal initialization, i.e., WG

1 (t) = limα→0 Ŵα(t), where Ŵα(t) :=

φ(Wα,
1

2µ1
log(〈Wα,u1u

>
1 〉−1) + t). However, WG

1 (∞) 6= limα→0 Ŵα(∞) does not hold in
general, unless the prerequisite in Theorem 5.8 is satisfied, i.e., unlessW 1 = WG

1 (∞) is a minimizer
of f( · ) in S+

d . This is because of the well-known result that GD converges to local minimizers (Lee
et al., 2016; 2017). We adapt Theorem 2 of Lee et al. (2017) to the setting of GF (Theorem I.5) and
obtain the following result (Theorem 5.10); see Appendix I.4 for the proof.

Theorem 5.10. Let f : Rd×d → R be a convex C2-smooth function. (1). All stationary points of
L : Rd×d → R,L(U) = 1

2f(UU>) are either strict saddles or global minimizers; (2). For any
random initialization, GF (1) converges to strict saddles of L(U) with probability 0.

Therefore, for convex f( · ) such as matrix sensing and completion, suppose f( · ) has no rank-1 PSD
minimizer, then no matter how small α is, Ŵα(∞) (if exists) is a minimizer of f( · ) with a higher
rank and thus away from the rank-1 matrixW 1. In other words,WG

1 (t) only describes the limiting
trajectory of GF in the first phase, i.e., when GF goes from near 0 to nearW 1. After a sufficiently
long time (depending on α), GF escapes the critical pointW 1, but this is not described byWG

1 (t).

To understand how GF escapes W 1, a priori, we need to know how GF approaches W 1. Using
a similar argument for Theorem 5.3, Theorem 5.11 shows that generically GF only escapes in the
direction of v1v

>
1 , where v1 is the (unique) top eigenvector of −∇f(W 1), and thus the limiting

trajectory exactly matches with that of GLRL in the second phase until GF gets close to another
critical pointW 2 ∈ S+

d,≤2. IfW 2 is still not a minimizer of f( · ) in S+
d (but it is a local minimizer

in S+
d,≤2 generically), then GF escapesW 2 and the above process repeats untilWK is a minimizer

in S+
d for some K. Here by “generically” we hide some technical assumptions and we elaborate

on them in Appendix J. See Figure 1 and Figure 2 for experimental verification of the equivalence
between GD and GLRL. We end this section with the following characterization of GF:

Theorem 5.11 (Theorem I.2, informal). Let W be a critical point of (2) satisfying that W is a
local minimizer of f( · ) in S+

d,≤r for some r ≥ 1 but not a minimizer in S+
d . Let −∇f(W ) =

7
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Figure 1: The trajectory of depth-2 GD, WGD(t), converges to the trajectory of GLRL, WGLRL(t), as the initialization scale goes to 0.
We plot dist(t) = mint′∈T ‖WGD(t)−WGLRL(t′)‖F for different initialization scale ‖W (0)‖F, where T is a discrete subset of R that
δ-covers the entire trajectory of GLRL: maxt mint′∈T

∥∥WGLRL(t)−WGLRL(t′)
∥∥
F
≤ δ for δ ≈ 0.00042. For each ‖W (0)‖F, we

run 20 random seeds and plot them separately. The ground truthW ∗ ∈ R20×20 is a randomly generated rank-3 matrix with ‖W ∗‖F = 20.
30% entries are observed. See more in Appendix E.1.∑d

i=1 µiviv
>
i be the eigendecomposition of −∇f(W ). If µ1 > µ2 and if there exists time Tα ∈ R

for every α so that φ(Wα, Tα) converges to W with positive alignment with the top principal
component v1v

>
1 as α→ 0, then for every fixed t, limα→0 φ(Wα, Tα+ 1

2µ1
log 1

〈φ(Wα,Tα),v1v>1 〉
+t)

exists and is equal toWG(t) := limε→0 φ(W + εv1v
>
1 ,

1
2µ1

log 1
ε + t).

Characterization of the trajectory of GF. Generically, the trajectory of GF with small initialization
can be split into K phases by K+ 1 critical points of (2), {W r}Kr=0 (W 0 = 0), where in phase r GF
escapes fromW r−1 in the direction of the top principal component of −∇f(W r−1) and gets close
toW r. EachW r is a local minimizer of f( · ) in S+

d,≤r, but none of them is a minimizer of f( · ) in
S+
d exceptWK . The smaller the initialization is, the longer GF stays around eachW r. Moreover,
{W r}Kr=0 corresponds to {W r,ε}Kr=0 in Definition 5.1 with infinitesimal ε > 0.

6 BENEFITS OF DEPTH: A VIEW FROM GLRL
In this section, we consider matrix factorization problems with depth L ≥ 3. Our goal is to
understand the effect of the depth-L parametrizationW = U1U2 · · ·UL on the implicit bias — how
does depth encourage GF to find low rank solutions? We take the standard assumption in existing
analysis for the end-to-end dynamics that the weight matrices have a balanced initialization, i.e.
U>i (0)Ui(0) = Ui+1(0)U>i+1(0), ∀1 ≤ i ≤ L− 1. Arora et al. (2018) showed that if {Ui}Li=1 is
balanced at initialization, then we have the following end-to-end dynamics. Similar to the depth-2
case, we use φ(W (0), t) to denoteW (t), where

dW
dt

= −
∑L−1

i=0
(WW>)

i
L∇f(W )(W>W )1− i+1

L . (11)

The lemma below is the foundation of our analysis for the deep case, which greatly simplifies (11).
Due to the space limit, we defer its derivations and applications into Appendix K.
Lemma 6.1. ForM(t) := W (t)2/L, we have dM

dt = −∇f(ML/2)ML/2 −ML/2∇f(ML/2).

Our main result, Theorem 6.2, gives a characterization of the limiting trajectory for deep matrix
factorization with infinitesimal identity initialization. HereW (t) := limα→0W

G
α (t) is the trajectory

of deep GLRL, where WG
α (t) := φ(αe1e

>
1 ,

α−(1−1/P )

2µ1(P−1) + t) (see Algorithm 2). The dynamics for
general initialization is more complicated. Please see discussions in Appendix L.
Theorem 6.2. Let P = L

2 , L ≥ 3. Suppose ‖∇f(0)‖2 = λ1(−∇f(0)) > max{λ2(−∇f(0)), 0},1

for every fixed t ∈ R,
∥∥∥φ(αI, α−(1−1/P )

2µ1(P−1) + t
)
−W (t)

∥∥∥
F

= O(α
1

P (P+1) ), (12)
and for any 2 ≤ k ≤ d,

for every fixed t ∈ R, λk

(
φ
(
αI, α

−(1−1/P )

2µ1(P−1) + t
))

= O(α). (13)

So how does depth encourage GF to find low-rank solutions? When the ground truth is low-rank,
say rank-k, our experiments (Figure 2) suggest that GF with small initialization finds solutions with
smaller k-low-rankness compared to the depth-2 case, thus achieving better generalization. At first
glance, this is contradictory to what Theorem 6.2 suggests, i.e., the convergence rate of deep GLRL
at a constant time gets slower as the depth increases. However, it turns out the uniform upper bound
for the distance between GF and GLRL is not the ideal metric for the eventual k-low-rankness of
learned solution. Below we will illustrate why the r-low-rankness of GF within each phase r is a
better metric and how they are different.
Definition 6.3 (r-low-rankness). For matrix M ∈ Rd×d, we define the r-low-rankness of M as√∑d

i=r+1 σ
2
i (M), where σi(M) is the i-th largest singular value ofM .

1We believe assumption ‖∇f(0)‖2 = λ1(−∇f(0)) could be removed with a more refined analysis.
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Figure 2: GD passes by the same set of critical points as GLRL when the initialization scale is small, and gets much closer to the critical
points when L ≥ 3. Depth-2 GD requires a much smaller initialization scale to maintain small low-rankness. Here the ground truth matrix
W ∗ ∈ R20×20 is of rank 3 as stated in Appendix E.1. In this case, GLRL has 3 phases and 4 critical points {W r}3r=0, whereW 0 = 0

andW 3 = W ∗. For each depth L and initialization scale ‖W (0)‖F, we plot the distance between the current step of GD and the closest
critical point of GLRL, ‖WGD(t) −W r‖F, the norm of full gradient, ‖∇U1:L

L(U1:L)‖F and the (r + 1)-low-rankness of WGD(t)

with r := arg min0≤i≤3 ‖WGD(t)−W i‖F.

Suppose f( · ) admits a unique minimizerW0 in S+
d,1, and we run GF from αI for both depth-2 and

depth-L cases. Intuitively, the 1-low-rankness of the depth-2 solution is Ω(α1−µ2/µ1), which can be
seen from the second warmup example in Section 4. For the depth-L solution, though it may diverge
from the trajectory of deep GLRL more than the depth-2 solution does, its 1-low-rankness is only
O(α), as shown in Theorem 6.4. The key idea is to show that there is a basin in the manifold of
rank-1 matrices aroundW0 such that any GF starting within the basin converges toW0. Based on
this, we can prove that starting from any matrix O(α)-close to the basin, GF converges to a solution
O(α)-close toW0. See Appendix M for more details.

Theorem 6.4. In the same settings as Theorem 6.2, if W (∞) exists and is a minimizer of f( · ) in
S+
d,≤1, under regularity assumption M.1, we have inft∈R

∥∥φ (αI, t)−W (∞)
∥∥

F
= O(α).

Interpretation for the advantage of depth with multiple phases. For depth-2 GLRL, the low-
rankness is raised to some power less then 1 per phase (depending on the eigengap). For deep GLRL,
we show the low-rankness is only multiplied by some constant for the first phase and speculate it to
be true for later phases. This conjecture is supported by our experiments; see Figure 2. Interestingly,
our theory and experiments (Figure 5) suggest that while being deep is good for generalization,
being much deeper may not be much better: once L ≥ 3, increasing the depth does not improve
the order of low-rankness significantly. While this theoretical result is only for identity initialization,
Theorem F.1 and Corollary F.2 further show that the dynamics of GF (11) with any initialization
pointwise converges as L → ∞, under a suitable time rescaling. See Figure 6 for experimental
verification.

7 CONCLUSION AND FUTURE DIRECTIONS

In this work, we connect gradient descent to Greedy Low-Rank Learning (GLRL) to explain the
success of using gradient descent to find low-rank solutions in the matrix factorization problem. This
enables us to construct counterexamples to the implicit nuclear norm conjecture in (Gunasekar et al.,
2017). Taking the view of GLRL can also help us understand the benefits of depth.
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A COMPARISON TO EXISTING GREEDY ALGORITHMS FOR
RANK-CONSTRAINED OPTIMIZATION

The most related one to GLRL (Algorithm 1) is probably Rank-1 Matrix Pursuit (R1MP) proposed by
Wang et al. (2014) for matrix completion, which was later generalized to general convex loss in (Yao
and Kwok, 2016). R1MP maintains a set of rank-1 matrices as the basis, and in phase r, R1MP adds
the same uru>r as defined in Algorithm 1 into its basis and solve minα f(

∑r
i=1 αiuiu

>
i ) for rank-r

estimation. The main difference between R1MP and GLRL is that the optimization in each phase
of R1MP is performed on the coefficients α, while the entire Ur evolves with GD in each phase of
GLRL. In Figure 3, we provide empirical evidence that GLRL generalizes better than R1MP when
ground truth is low-rank, although GLRL may have a higher computational cost depending on η, ε.

Similar to R1MP, Greedy Efficient Component Optimization (GECO, Shalev-Shwartz and Singer
2010) also chooses the r-th component of its basis as the top eigenvector of −∇f(Wr), while
it solves minβ f(

∑
1≤i,j≤r βijuiu

>
j ) for the rank-r estimation. Khanna et al. (2017) provided

convergence guarantee for GECO assuming strong convexity. Haeffele and Vidal (2019) proposed a
local-descent meta algorithm, of which GLRL can be viewed as a specific realization.

B DEEP GLRL ALGORITHM

Algorithm 2: Deep Greedy Low-Rank Learning (Deep GLRL)
parameter :step size η > 0; small ε > 0
ε′ ← ε1/L, L (U1, · · · ,UL) := f(W1 · · ·WL).
W0 ← 0 ∈ Rd×d, and U0,1(∞), . . . ,U0,L(∞) ∈ Rd×0 are empty matrices
while λ1(−∇f (Wr)) > 0 do

r ← r + 1
let ur be a top (unit) eigenvector of −∇f (Wr−1)
Ur,1(0)← [Ur−1,1(∞) ε′ur] ∈ Rd×r

Ur,k(0)←
[
Ur−1,k(∞) 0

0 ε′

]
∈ Rr×r for all 2 ≤ k ≤ L− 1

Ur,L(0)←
[
Ur−1,L(∞)

ε′u>r

]
∈ Rr×d

for t = 0, 1, . . . do
Ur,i(t+ 1)← Ur,i(t)− η∇UiL (Ur,1(t), · · · ,Ur,L(t)), ∀1 ≤ i ≤ L.

Wr ← Ur,1(∞) · · ·Ur,L(∞)

returnWr

C PRELIMINARY LEMMAS

Lemma C.1. For U0 ∈ Rd×r andW0 := U0U
>
0 , the following statements are equivalent:

(1). U0 is a stationary point of L(U) = 1
2f(UU>);

(2). ∇f(W0)W0 = 0;

(3). W0 := U0U
>
0 is a critical point of (2).

Proof. (2)⇒ (3) is trivial. We only prove (1)⇒ (2), (3)⇒ (1).

Proof for (1) ⇒ (2). If U0 is a stationary point, then 0 = ∇L(U0) = ∇f(W0)U0. So

∇f(W0)W0 = (∇f(W0)U0)U>0 = 0.

Proof for (3) ⇒ (1). IfW0 is a critical point, then
0 = 〈g(W0),∇f(W0)〉 = −2 Tr(∇f(W0)W0∇f(W0)) = −2‖∇f(W0)U0‖2F,

which implies∇L(U0) = 0.
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Lemma C.2. For a stationary point U0 ∈ Rd×r of L(U) = 1
2f(UU>) where f( · ) is convex,

W0 := U0U
>
0 attains the global minimum of f( · ) in S+

d := {W : W � 0} iff∇f(W0) � 0.

Proof. Since f(W ) is a convex function and S+
d is convex, we know thatW0 is a global minimizer

of f(W ) in S+
d iff

〈∇f(W0),W −W0〉 ≥ 0, ∀W � 0. (14)

Note that 〈∇f(W0),W0〉 = Tr(∇f(W0)W0). By Lemma C.1, 〈∇f(W0),W0〉 = 0. Combining
this with (14), we know thatW0 is a global minimizer iff

〈∇f(W0),W 〉 ≥ 0, ∀W � 0. (15)

It is easy to check that this condition is equivalent to∇f(W0) � 0.

D PROOFS FOR COUNTER-EXAMPLE

Conjecture D.1 (Formal Statement, Gunasekar et al. 2017). Suppose f : Rd×d → R is a quadratic
function and min

W�0
f(W ) = 0. Then for any Winit � 0 if W 1 = lim

α→0
lim

t→+∞
φ(αWinit, t) exists

and f(W 1) = 0, then ‖W 1‖∗ = min
W�0

‖W ‖∗ s.t. f(W ) = 0.

Propsition D.2 (Formal Statement for Example 5.9). For constant R > 1, let

M =

 ? ? 1 R
? ? R ?
1 R ? ?
R ? ? ?

 ,Mnorm =

R 1 1 R
1 R R 1
1 R R 1
R 1 1 R

 , andMrank =

1 R 1 R
R R2 R R2

1 R 1 R
R R2 R R2

 .
and

L(U) =
1

2
f(UU>), f(W ) =

1

2

∑
(i,j)∈Ω

(Wij −Mij)
2

where Ω = {(1, 3), (1, 4), (2, 3), (3, 1), (3, 2), (4, 1)}.
Then for anyWinit � 0, s.t. u>1 Winitu1 > 0,

lim
α→0

lim
t→+∞

φ(αWinit, t) = Mrank.

Moreover, we have

‖Mrank‖∗ = 2R2 + 2 > 4R = ‖Mnorm‖∗ = min
W�0,f(W )=0

‖W ‖∗ .

Proof. We defineWG
1,ε(t),W

G
1 (t) in the same way as in Definition 5.1, Theorem 5.6.

WG
1,ε(t) := φ

(
εu1u

>
1 , t
)
,

WG
1 (t) := lim

ε→0
WG

1,ε(
1

2µ1
log 1

ε + t).

Below we will show

1. Assumption 5.7 and Assumption 5.5 are satisfied.

2.
∥∥WG

1 (t)
∥∥

F
bounded for t ≥ 0;

3. limt→+∞W
G
1 (t) = Mrank;

4. Mnorm = arg minW�0,f(W )=0 ‖W ‖∗ .
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Thus SinceMrank is a global minimizer of f( · ), applying Theorem 5.8 finishes the proof.

Proof for Item 1. LetM0 := ∇f(0), then

M0 =

0 0 1 R
0 0 R 0
1 R 0 0
R 0 0 0

 .
Let A := [ 1 R

R 0 ], then we have λ1(A) = 1+
√

1+R2

2 , λ2(A) = 1−
√

1+R2

2 , thus λ1(A) > |λ2(A)| >
0 > λ2(A). As a result, λ1(A) = ‖A‖2. Let v1 ∈ R2 be the top eigenvector of A. We claim
that u1 = [ v1v1 ] ∈ R4 is the top eigenvector of ∇f(0). First by definition it is easy to check that
M0u1 = λ1(A)u1. Further noticing that M2

0 =
[
A2 0
0 A2

]
, we know λ2

i (M0) ∈ {λ2
1(A), λ2

2(A)}
for all eigenvalues λi(M0). That is, λ1(M0) = λ1(A), λ2(M0) = −λ2(A), λ3(M0) = λ2(A),
and λ4(M0) = −λ1(A). Thus Assumption 5.5 is satisfied. Also note that f is quadratic, thus
analytic, i.e., Assumption 5.7 is also satisfied.

Proof for Item 2. Let (xε(t), yε(t)) ∈ R2 be the gradient flow of g(x, y) = 1
2 (x2−1)2 +(xy−R)2

starting from (xε(0), yε(0)) =
√
εv1.

dx(t)

dt
= (1− x(t)2)x(t)− 2y(t)(x(t)y(t)−R)

dy(t)

dt
= −2x(t)(x(t)y(t)−R)

(16)

LetWε(t) be the following matrix:

Wε(t) :=

xε(t)yε(t)
xε(t)
yε(t)

 [xε(t) yε(t) xε(t) yε(t)] .

Then it is easy to verify thatWε(0) = WG
1,ε(0) andWε(t) satisfies (2). Thus by the existence and

uniqueness theorem, we have Wε(t) = WG
1,ε(t) for all t. Taking the limit ε → 0, we know that

WG
1 (t) can also be written in the following form:

WG
1 (t) =

x(t)
y(t)
x(t)
y(t)

 [x(t) y(t) x(t) y(t)] ,

and (xε(t), yε(t)) ∈ R2 is a gradient flow of g(x, y) = 1
2 (x2 − 1)2 + (xy −R)2.

Since g(x(t), y(t)) is non-increasing overtime, and lim
t→−∞

g(x(−t), y(−t)) = g(x(−∞), y(−∞)) =

g(0, 0) = R2 + 0.5, we know |x(t)y(t)| ≤ 3R for all t. So whenever y2(t)− x2(t) ≥ 9R2, we have
x2(t) ≤ 9R2

y2(t) ≤
9R2

y2(t)−x2(t) ≤ 1. In this case, d(y2(t)−x2(t))
dt = 2x2(t)(x2(t)− 1) ≤ 0. Combining

this with y(−∞)2 − x(−∞)2 = 0 ≤ 9R2, we have y2(t) − x2(t) ≤ 9R2 for all t, which also
implies that y(t) is bounded. Noticing that 9R2 ≥ g(x(t), y(t)) ≥ (x2(t)− 1)2, we know x2(t) is
also bounded. Therefore,WG

1 (t) is bounded.

Proof for Item 3. Note that (x(∞), y(∞)) is a stationary point of g(x, y). It is clear that g(x, y)
only has 3 stationary points — (0, 0), (1, R) and (−1,−R). Thus W 1 can only be 0 or Mrank.
However, since for all t, f(WG

1 (t)) < f(0),W 1 = limt→∞W
G
1 (t) cannot be 0. SoW 1 must be

Mrank.

Proof for Item 4. Let mij be (i, j)th element ofM . SupposeM � 0, we have

(e1 − e4)>M(e1 − e4) ≥ 0 =⇒ m11 +m44 ≥ m14 +m41 = 2R

(e2 − e3)>M(e2 − e3) ≥ 0 =⇒ m22 +m33 ≥ m23 +m32 = 2R
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Depth (L) Simulation method
2 Constant LR, η = 10−3 for 106 iterations
3 Adaptive LR, η = 2× 10−5 and ε = 10−4 for 106 iterations
4 Adaptive LR, η = 3× 10−4 and ε = 10−3 for 106 iterations

Table 1: Choice of hyperparameters for simulating gradient flow. For L = 2, gradient descent escapes
saddles in O(log 1

ε ) time, where ε is the distance between the initialization and the saddle.

Thus 4R = minW�0,f(W )=0 ‖W ‖∗, where the equality is only attained at mii = R, i = 1, 2, 3, 4.

Otherwise, either
[
m11 m14

m41 m44

]
or
[
m22 m23

m32 m33

]
will have negative eigenvalues. Contradiction to

thatM � 0.

Below we will show the rest unknown off-diagonal entries must be 1. Let V =

[
1 −1 0 0
0 0 1 0
0 0 0 1

]
,

then

M � 0 =⇒ VMV > � 0 =⇒

[
0 m13 −m23 m14 −m24

m31 −m32 R R
m41 −m42 R R

]
� 0,

which implies m13 = m23, m14 = m24.

With the same argument for V =

[
1 0 0 0
0 1 0 0
0 0 1 −1

]
, we have m13 = m14, m23 = m24. Also

note M is symmetric and m13 = 1, thus mij = mji = 1, ∀i = 1, 2, j = 3, 4. Thus Mnorm =
arg minW�0,f(W )=0 ‖W ‖∗, which is unique.

E EXPERIMENTS

E.1 GENERAL SETUP

The code is written in Julia (Bezanson et al., 2012) and PyTorch (Paszke et al., 2019).

The ground-truth matrix W∗ is low-rank by construction: we sample a random orthogonal matrix
U , a diagonal matrix S with Frobenius norm ‖S‖F = 1 and setW∗ = USU>. Each measurement
X in X1, . . . ,Xm is generated by sampling two one-hot vectors u and v uniformly and setting
X = 1

2uv
> + 1

2vu
>.

In Figures 1, 2, 3 to 5 and 7, the ground truth matrix W∗ has shape 20 × 20 and rank 3, where
‖W ∗‖F = 20, λ1(W ∗) = 17.41, λ2(W ∗) = 8.85, λ3(W ∗) = 4.31 and λ1(−∇f(0)) =
6.23, λ2(−∇f(0)) = 5.41. p = 0.3 is used for generating measurements, except p = 0.25 in
Figure 3, i.e., each pair of entries ofW ∗

ij andW ∗
ji is observed with probability p.

Gradient Descent. Let ε̃ > 0 be the Frobenius norm of the target random initialization. For the
depth-2 case, we sample 2 orthogonal matrices V1,V2 and a diagonal matrix D with Frobenius
norm ε̃, and we set U = V1D

1/2V >2 ; for the depth-L case with L ≥ 3, we sample L orthogonal
matrices V1, . . . ,VL and a diagonal matrixD with Frobenius norm ε̃, and we setUi := ViD

1/LV >i+1
(VL+1 = V1). In this way, we can guarantee that the end-to-end matrixW = U1 · · ·UL is symmetric
and the initialization is balanced for L ≥ 3.

We discretize the time to simulate gradient flow. When L > 2, gradient flow stays around saddle
points for most of the time, therefore we use full-batch GD with adaptive learning rate η̃t, inspired by
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RMSprop (Tieleman and Hinton, 2012), for faster convergence:

vt+1 = αvt + (1− α) ‖∇L(θt)‖22 ,

η̃t =
η√

vt+1

1−αt+1 + ε
,

θt+1 = θt − η̃t∇L(θt),

where α = 0.99, η is the (unadjusted) learning rate. The choices of hyperparameters are summarized
in Table 1. The continuous time for θt is measured as

∑t−1
i=0 η̃i.

GLRL. In Figures 1, 2, 3 and 4, the GLRL’s trajectory is obtained by running Algorithm 1 with
ε = 10−7 and η = 10−3. The stopping criterion is that if the loop has been iterated for 107 times.

E.2 EXPERIMENTAL EQUIVALENCE BETWEEN GLRL AND GRADIENT DESCENT

Here we provide experimental evidence supporting our theoretical claims about the equivalence
between GLRL and GF for both cases, L = 2 and L ≥ 3.

In Figure 1, we show the distance from every point on GF (simulated by GD) from random initializa-
tion is close to the trajectory of GLRL. In Figure 2, we first run GLRL and obtain the critical points
{W r}3r=0 passed by GLRL. We also define the distance of a matrixW to the critical points to be
min0≤r≤3 ‖W −W r‖F.

E.3 HOW WELL DOES GLRL WORK?

We compare GLRL with gradient descent (with not-so-small initialization), nuclear norm minimiza-
tion and R1MP (Wang et al., 2014). We use CVXPY (Diamond and Boyd, 2016; Agrawal et al.,
2018) for finding the nuclear norm solution. The results are shown in Figure 3. GLRL can fully
recover the ground truth, while others have difficulty doing so.

0.0 0.5 1.0 1.5 2.0 2.5
Continuous Time 1e4

10 3

10 2

10 1

100

lo
ss

d = 20, W(0) F = 10 2
GLRL, L = 2
GD, L = 2
nuclear norm
R1MP (rank 3)
R1MP (rank 10)

Figure 3: GD with small initialization outperforms R1MP and minimal nuclear norm solution on
synthetic data with low-rank ground truth. Solid (dotted) curves correspond to test (training) loss.
Here the loss f(W ) := 1

d2 ‖W −W ∗‖2F and f(0) = 1. We run 10 random seeds for GD and plot
them separately (most of them overlap).

E.4 HOW DOES INITIALIZATION AFFECT THE CONVERGENCE RATE TO THE RANK-1 GLRL
TRAJECTORY?

We use the general setting in Appendix E.1. In these experiments, we use the constant learning rate
10−5 for 4× 107 iterations. The reference matrixWref is obtained by running the first stage of GLRL
with ‖W (0)‖F = 10−48 and we pick one matrix in the trajectory with ‖Wref‖F about 0.6.

For every ε = 10i, i ∈ {−1,−2,−3,−4,−5}, we run both gradient descent and the first phase of
GLRL with ‖W (0)‖F = ε. For gradient descent, we use random initialization so ‖W (0)‖F is full
rank w.p. 1. The distance of a trajectory toWref is defined as mint≥0 ‖W (t)−Wref‖F. In practice,
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as we discretized time to simulate gradient flow, we check every t during simulation to compute the
distance. As a result, the estimation might be inaccurate when a trajectory is really close toWref.

The result is shown at Figure 4. We observe that GLRL trajectories are closer to the reference
matrix Wref by magnitudes. Thus the take home message here is that GLRL is in general a more
computational efficient method to simulate the trajectory of GF (GD) with infinitesimal initialization,
as one can start GLRL with a much larger initialization, while still maintaining high precision.

10 5 10 4 10 3 10 2 10 1

WGD(0) F

10 6

10 4

10 2

100

m
in

t
0

W
re

f
W

GD
(t)

rank 1
rank d

Figure 4: Using εv1v
>
1 (denoted by “rank 1”) as initialization makes GD much closer to GLRL

compared to using random initialization (denoted by “rank d”), where v1 is the top eigenvector of
−∇f(0). We take a fixed reference matrix on the trajectory of GLRL with constant norm and plot
the distance of GD with each initialization to it respectively..
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Figure 5: Deep matrix factorization encourages GF to find low rank solutions at a much practical
initialization scale, e.g. 10−3. Here the ground truth is rank-3. For each setting, we run 5 different
random seeds. The solid curves are the mean and the shaded area indicates one standard deviation.
We observe that performance of GD is quite robust to its initialization. Note that for L > 2, the
shaded area with initialization scale 10−7 is large, as the sudden decrement of loss occurs at quite
different continuous times for different random seeds in this case.

E.5 BENEFIT OF DEPTH: POLYNOMIAL VS EXPONENTIAL DEPENDENCE ON INITIALIZATION

To verify the our theory in Section 6, we run gradient descent with different depth and initialization.
The results are shown in Figure 5. We can see that as the initialization becomes smaller, the final
solution gets closer to the ground truth. However, a depth-2 model requires exponentially small
initialization, while deeper models require polynomial small initialization, though it takes much
longer to converge.

F THE MARGINAL VALUE OF BEING DEEPER

Theorem F.1 shows that the end-to-end dynamics (17) converges point-wise while L → ∞ if the
product of learning rate and depth, ηL, is fixed as constant. Interestingly, (17) also allows us to
simulate the dynamics of W (t) for all depths L while the computation time is independent of L.
In Figure 6, we compare the effect of depth while fixing the initialization and ηL. We can see that
deeper models converge faster. The difference between L = 1, 2, and 4 is large, while difference
among L ≥ 16 is marginal.
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Figure 6: The marginal value of being deeper. The trajectory of GD converges when depth goes to
infinity. Solid (dotted) curves correspond to test (train) loss. The x-axis stands for the normalized
continuous time t (multiplied by L).

Theorem F.1. Suppose W = ŨΣ̃Ṽ > is the SVD decomposition of W , where Σ̃ =
diag(σ1, . . . , σd). The dynamics of L-layer linear net is the following, ◦ denotes the entry-wise
multiplication:

dW
dt

= −LŨ
((
Ũ>∇f(W )Ṽ

)
◦K(L)

)
Ṽ >, (17)

where K(L)
i,i = σ

2−2/L
i , K(L)

i,j =
σ2
i−σ

2
j

Lσ
2/L
i −Lσ2/L

j

for i 6= j.

Proof. We start from (11):

dW
dt

= −
L−1∑
l=0

(WW>)
l
L∇f(W )(W>W )

L−1−l
L

= −
L−1∑
l=0

ŨΣ̃
2l
L Ũ>∇f(W )Ṽ Σ̃

2(L−1−l)
L Ṽ

= −LŨ

[
L−1

L−1∑
l=0

Σ̃
2l
L (Ũ>∇f(W )Ṽ )Σ̃

2(L−1−l)
L

]
Ṽ .

Note that Σ̃ is diagonal, so

Σ̃
2l
L (Ũ>∇f(W )Ṽ )Σ̃

2(L−1−l)
L = (Ũ>∇f(W )Ṽ ) ◦H(l),

whereH(l)
i,j = σ

2l
L
i σ

2(L−1−l)
L

j . Therefore,

L−1
L−1∑
l=0

Σ̃
2l
L (Ũ>∇f(W )Ṽ )Σ̃

2(L−1−l)
L = L−1

L−1∑
l=0

(Ũ>∇f(W )Ṽ ) ◦H(l)

= (Ũ>∇f(W )Ṽ ) ◦K(L),

whereK(L) = L−1
∑L−1
l=0 H

(l). Hence,

dW
dt

= −LŨ
[
(Ũ>∇f(W )Ṽ ) ◦K(L)

]
Ṽ .

The entries ofK(L) can be directly calculated by

K
(L)
i,j = L−1

L−1∑
l=0

σ
2l
L
i σ

2(L−1−l)
L

j =

σ
2−2/L
i , i = j,
σ2
i−σ

2
j

Lσ
2/L
i −Lσ2/L

j

, i 6= j.

Corollary F.2. As L→∞,K(L) converges toK∗, where K∗i,i = σ2
i , K∗i,j =

σ2
i−σ

2
j

lnσ2
i−lnσ2

j
for i 6= j.
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Experiment details. We follow the general setting in Appendix E.1. The ground truth W ∗ is
different but is generated in the same manner and has the same shape of 20× 20 and p = 0.3 is used
for observation generation. We directly apply (17), in which we compute Ṽ and Ũ through SVD, to
simulate the trajectory together with a constant learning rate of 10−3

L for depth L. W (0) is sampled
from 10−3 ×N (0, Id).

G PROOFS FOR DYNAMICAL SYSTEM

In this section, we prove Theorem 5.3 in Section 5.1. In Appendix G.1, we show how to reduce
Theorem 5.3 to the case where J(0) is exactly a diagonal matrix, then we prove this diagonal case
in Appendix G.2. Finally, in Appendix G.3, we discuss how to extend it to the case where J(0) is
non-diagonalizable.

G.1 REDUCTION TO THE DIAGONAL CASE

Theorem G.1. If J(0) = diag(µ̃1, . . . , µ̃d) is diagonal, then the statement in Theorem 5.3 holds.

Proof for Theorem 5.3. We show how to prove Theorem 5.3 based on Theorem G.1. Let dθ
dt = g(θ)

be the dynamical system in Theorem 5.3. Let J(0) = Ṽ D̃Ṽ −1 be the eigendecomposition, where
Ṽ is an invertible matrix and D̃ = diag(µ̃1, . . . , µ̃d). Now we define the following new dynamics
by changing the basis:

θ̂(t) = Ṽ −1θ(t).

Then dθ̂(t)
dt = ĝ(θ̂) for ĝ(θ̂) := Ṽ −1g(Ṽ θ̂), and the associated Jacobian matrix is Ĵ(θ̂) :=

Ṽ −1J(Ṽ θ̂)Ṽ , and thus Ĵ(0) = diag(µ̃1, . . . , µ̃d).

Now we apply Theorem G.1 to θ̂(t). Then ẑα(t) := Ṽ −1zα(t) converges to the limit ẑ(t) :=

lim
α→0

ẑα(t). This shows that the limit z(t) = Ṽ ẑ(t) exists in Theorem 5.3. We can also verify that

z(t) is a solution of (6).

Given δα converging to 0 with positive alignment with ũ1 as α→ 0, we can define δ̂α := Ṽ −1δα,
then δ̂α converges to 0 with positive alignment with e1, where e1 is the first vector in the standard
basis and is also the top eigenvector of Ĵ(0). Therefore, for every t ∈ (−∞,+∞), there is a constant
C > 0 such that ∥∥∥∥Ṽ −1φ

(
δα, t+

1

µ̃1
log

1

〈δα, ũ1〉

)
− ẑ(t)

∥∥∥∥
2

≤ C · ‖δ̂α‖
γ̃

µ̃1+γ̃

2 (18)

for every sufficiently small α. As Ṽ are invertible, this directly implies (7).

G.2 PROOF FOR THE DIAGONAL CASE

Now we only need to prove Theorem G.1. Let e1, . . . , ed be the standard basis. Then ũ1 = ṽ1 = e1

in this diagonal case. We only use e1 to stand for ũ1 and ṽ1 in the rest of our analysis.

Let R > 0. Since g(θ) is C2-smooth, there exists β > 0 such that

‖J(θ)− J(θ + h)‖2 ≤ β‖h‖2 (19)

for all ‖θ‖2, ‖θ + h‖2 ≤ R. Then the following can be proved by integration:

g(θ + h)− g(θ) =

(∫ 1

0

J(θ + ξh)dξ
)
h, (20)

‖g(θ + h)− g(θ)− J(θ)h‖2 ≤ β‖h‖22. (21)

By (21), we also have

‖g(θ)− J(0)θ‖2 = ‖g(θ)− g(0)− J(0)θ‖2 ≤ β‖θ‖22. (22)
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Let κ := β/µ̃1. We assume WLOG that R ≤ 1/κ. Let F (x) = log x − log(1 + κx). It is
easy to see that F ′(x) = 1

x+κx2 and F (x) is an increasing function with range (−∞, log(1/κ)).
We use F−1(y) to denote the inverse function of F (x). Define Tα(r) := 1

µ̃1
(F (r)− F (α)) =

1
µ̃1

(
log r

α − log 1+κr
1+κα

)
.

Our proof only relies on the following properties of J(0) (besides that µ̃1, e1 are the top eigenvalue
and eigenvector of J(0)):
Lemma G.2. For J(0) := diag(µ̃1, . . . , µ̃d), we have

1. For any h ∈ Rd, h>J(0)h ≤ µ̃1‖h‖22;

2. For any t ≥ 0,
∥∥etJ(0) − eµ̃1te1e

>
1

∥∥
2

= eµ̃2t.

Proof. For Item 1, h>J(0)h =
∑d
i=1 µ̃ih

2
i ≤ µ̃1‖h‖22. For Item 2,

∥∥etJ(0) − eµ̃1te1e
>
1

∥∥
2

=∥∥diag(0, eµ̃2t, . . . , eµ̃dt)
∥∥

2
= eµ̃2t.

Lemma G.3. For θ(t) = φ(θ0, t) with ‖θ0‖2 ≤ α and t ≤ Tα(r),

‖θ(t)‖2 ≤
1 + κr

1 + κα
α · eµ̃1t ≤ r.

Proof. By (22) and Lemma G.2, we have
1

2

d‖θ(t)‖22
dt

= 〈θ(t), g(θ(t))〉 ≤ 〈θ(t),J(0)θ(t)〉+ β‖θ(t)‖32 ≤ µ̃1‖θ(t)‖22 + β‖θ(t)‖32.

This implies d‖θ(t)‖2
dt ≤ µ̃1(‖θ(t)‖2 + κ‖θ(t)‖22). Since F ′(x) = 1

x+κx2 , we further have

d
dt
F (‖θ(t)‖2) ≤ µ̃1.

So F (‖θ(t)‖2) ≤ F (α) + µ̃1t. By definition of Tα(r), we then know that ‖θ(t)‖2 ≤ r for all
t ≤ Tα(r). So

log ‖θ(t)‖2 ≤ F (‖θ(t)‖2) + log(1 + κr) ≤ F (α) + µ̃1t+ log(1 + κr).

Expending F (α) proves the lemma.

Lemma G.4. For θ(t) = φ(θ0, t) with ‖θ0‖2 ≤ α and t ≤ Tα(r), we have

θ(t) = etJ(0)θ0 +O(r2).

Proof. Let θ̂(t) = etJ(0)θ0. Then we have
1

2

d
dt
‖θ(t)− θ̂(t)‖22 ≤

〈
g(θ(t))− J(0)θ̂(t),θ(t)− θ̂(t)

〉
=
〈
g(θ(t))− J(0)θ(t),θ(t)− θ̂(t)

〉
+ (θ(t)− θ̂(t))>J(0)(θ(t)− θ̂(t))

≤ ‖g(θ(t))− J(0)θ(t)‖2 · ‖θ(t)− θ̂(t)‖2 + µ̃1‖θ(t)− θ̂(t)‖22,
where the last inequality is due to Lemma G.2. By (22) and Lemma G.3, we have

‖g(θ(t))− J(0)θ(t)‖2 ≤ β‖θ(t)‖22 ≤ β
(

1 + κr

1 + κα
α

)2

· e2µ̃1t.

So we have d
dt‖θ(t)− θ̂(t)‖2 ≤ β

(
1+κr
1+καα

)2

· e2µ̃1t + µ̃1‖θ(t)− θ̂(t)‖2. By Grönwall’s inequality,

‖θ(t)− θ̂(t)‖2 ≤
∫ t

0

β

(
1 + κr

1 + κα
α

)2

· e2µ̃1τeµ̃1(t−τ)dτ.

Evaluating the integral gives

‖θ(t)− θ̂(t)‖2 ≤ β
(

1 + κr

1 + κα
α

)2

eµ̃1t · e
µ̃1t − 1

µ̃1
≤ κ

(
1 + κr

1 + κα
α · eµ̃1t

)2

≤ κr2,

which proves the lemma.
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Lemma G.5. Let θ(t) = φ(θ0, t), θ̂(t) = φ(θ̂0, t). If max{‖θ0‖2, ‖θ̂0‖2} ≤ α, then for t ≤ Tα(r),

‖θ(t)− θ̂(t)‖2 ≤ eµ̃1t+κr‖θ0 − θ̂0‖2.

Proof. For t ≤ Tα(r), by (20),

1

2

d
dt
‖θ(t)− θ̂(t)‖22 =

〈
g(θ(t))− g(θ̂(t)),θ(t)− θ̂(t)

〉
= (θ(t)− θ̂(t))>

(∫ 1

0

J(θξ(t))dξ
)

(θ(t)− θ̂(t)),

where θξ(t) := ξθ(t) + (1− ξ)θ̂(t). By Lemma G.3, max{‖θ(t)‖2, ‖θ̂(t)‖2} ≤ 1+κr
1+καα · e

µ̃1t for
all t ≤ Tα(r). So ‖θξ(t)‖2 ≤ 1+κr

1+καα · e
µ̃1t. Combining these with (19) and Lemma G.2, we have

h>J(θξ(t))h = h>J(0)h+ h>(J(θξ(t))− J(0))h ≤
(
µ̃1 + β · 1 + κr

1 + κα
α · eµ̃1t

)
‖h‖22,

for all h ∈ Rd. Thus, d
dt‖θ(t)− θ̂(t)‖2 ≤

(
µ̃1 + β · 1+κr

1+καα · e
µ̃1t
)
‖θ(t)− θ̂(t)‖2. This implies

log
‖θ(t)− θ̂(t)‖2
‖θ(0)− θ̂(0)‖2

≤
∫ t

0

(
µ̃1 + β · 1 + κr

1 + κα
α · eµ̃1τ

)
dτ

≤ µ̃1t+ κ · 1 + κr

1 + κα
αeµ̃1t

≤ µ̃1t+ κr.

Therefore, ‖θ(t)− θ̂(t)‖2 ≤ eµ̃1t+κr‖θ(0)− θ̂(0)‖2.

Lemma G.6. For every t ∈ (−∞,+∞), z(t) exists and zα(t) converges to z(t) in the following
rate:

‖zα(t)− z(t)‖2 = O(α),

where O hides constants depending on g(θ) and t.

Proof. We prove the lemma in the cases of t ∈ (−∞, F (R)/µ̃1] and t > F (R)/µ̃1 respectively.

Case 1. Fix t ∈ (−∞, F (R)/µ̃1]. Let α̃ be the unique number such that α̃
1+κα̃ = α (i.e.,

F (α̃) = logα). Let α′ be an arbitrary number less than α. Let t0 := 1
µ̃1

log α
α′ . Then

t0 = 1
µ̃1

(F (α̃)− logα′) ≤ Tα′(α̃). By Lemma G.4, we have

‖φ (α′e1, t0)− αe1‖2 =
∥∥∥φ (α′e1, t0)− et0J(0)α′e1

∥∥∥
2

= O(α̃2).

Let r := F−1(µ̃1t) ≤ R. Then t+ 1
µ̃1

log 1
α = Tα̃(r) if α̃ < r.

By Lemma G.3, ‖φ (α′e1, t0)‖2 ≤ α̃. Also, ‖αe1‖2 = α̃
1+κα̃ ≤ α̃. By Lemma G.5,

‖zα(t)− zα′(t)‖2 =

∥∥∥∥φ(α′e1, t+
1

µ̃1
log

1

α′

)
− φ

(
αe1, t+

1

µ̃1
log

1

α

)∥∥∥∥
2

=

∥∥∥∥φ(φ(α′e1, t0), t+
1

µ̃1
log

1

α

)
− φ

(
αe1, t+

1

µ̃1
log

1

α

)∥∥∥∥
2

≤ O(α̃2 · eµ̃1(t+ 1
µ̃1

log 1
α )+κr)

≤ O
(
α̃2

α

)
.

For α small enough, we have α̃ = O(α), so for any α′ ∈ (0, α),

‖zα(t)− zα′(t)‖2 = O(α).

This implies that {zα(t)} satisfies Cauchy’s criterion for every t, and thus the limit z(t) exists for
t ≤ F (R)/µ̃1. The convergence rate can be deduced by taking limits for α′ → 0 on both sides.
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Case 2. For t = F (R)/µ̃1 + τ with τ > 0, φ(θ, τ) is locally Lipschitz with respect to θ. So

‖zα(t)− zα′(t)‖2 = ‖φ(zα(F (R)/µ̃1), τ)− φ(zα′(F (R)/µ̃1), τ)‖2
= O(‖zα(F (R)/µ̃1)− zα′(F (R)/µ̃1)‖2)

= O(α),

which proves the lemma for t > F (R)/µ̃1.

Proof for Theorem G.1. The existence of z(t) := limα→0 zα(t) = limα→0 φ
(
αe1, t+ 1

µ̃1
log 1

α

)
has already been proved in Lemma G.6, where we show ‖zα(t)− z(t)‖2 = O(α).

By the continuity of φ( · , t) for every t ∈ R, we have

z(t) = lim
α→0

φ

(
αṽ1, t+

1

µ̃1
log

1

α

)
= φ

(
lim
α→0

φ

(
αṽ1,

1

µ̃1
log

1

α

)
, t

)
= φ (z(0), t) .

Now it is only left to prove (7). WLOG we can assume that ‖δα‖2 is decreasing and α
2 ≤ ‖δα‖2 ≤ α

(otherwise we can do reparameterization). Then our goal becomes proving

‖θα(t)− z(t)‖2 = O
(
α

γ̃
µ̃1+γ̃

)
. (23)

where θα(t) := φ
(
δα, t+ 1

µ̃1
log 1
〈δα,e1〉

)
. We prove (23) in the cases of t ∈ (−∞, F (R)/µ̃1] and

t > F (R)/µ̃1 respectively.

Case 1. Fix t ∈ (−∞, (F (R) + log q)/µ̃1]. Let α̃1 = α
γ̃

µ̃1+γ̃ . Let α1 := eF (α̃1) = α̃1

1+κα̃1
. Let

t0 := 1
µ̃1

(F (α̃1)− logα) ≤ T‖δα‖2(α̃1). At time t0, by Lemma G.2 we have∥∥∥et0J(0) − eµ̃1t0e1e
>
1

∥∥∥
2

= eµ̃2t0 = e
µ̃2
µ̃1

(F (α̃1)−logα) =
(α1

α

) µ̃2
µ̃1
. (24)

Let qα :=
〈
δα
α , e1

〉
. By Definition 5.2, there exists q > 0 such that qα ≥ q for all sufficiently small

α. Then we have

‖φ (δα, t0)− α1qαe1‖2 =
∥∥∥φ (δα, t0)− et0J(0)δα

∥∥∥
2

+
∥∥∥(et0J(0) − eµ̃1t0e1e

>
1

)
δα

∥∥∥
2

= O(α̃2
1) +

(α1

α

) µ̃2
µ̃1 ‖δα‖2

= O(α̃2
1 + α

µ̃2/µ̃1

1 α1−µ̃2/µ̃1)

= O(α2
1).

Let r := F−1(µ̃1t + log 1
qα

) ≤ R. Then t + 1
µ̃1

log 1
α1qα

= Tα̃(r) if α̃ < r. By Lemma G.3,
‖φ (δα, t0)‖2 ≤ α̃1. Also, ‖α1qαe1‖2 ≤ α1 = α̃1

1+κα̃1
≤ α̃1. By Lemma G.5,

‖θα(t)− zα1
(t)‖2 ≤

∥∥∥∥φ(φ (δα, t0) , t+
1

µ̃1
log

1

α1qα

)
− φ

(
α1qαe1, t+

1

µ̃1
log

1

α1qα

)∥∥∥∥
2

= O

(
α2

1 · e
µ̃1

(
t+ 1

µ̃1
log 1

α1qα

)
+κr
)

= O(α1).

Combining this with the convergence rate for zα1(t), we have

‖θα(t)− z(t)‖2 ≤ ‖θα(t)− zα1(t)‖2 + ‖zα1(t)− z(t)‖2 = O(α1).

Case 2. For t = (F (R) + log q)/µ̃1 + τ with τ > 0, φ(θ, τ) is locally Lipschitz with respect to θ.
So

‖θα(t)− z(t)‖2 = ‖φ(θα((F (R) + log q)/µ̃1), τ)− φ(z((F (R) + log q)/µ̃1), τ)‖2
= O(‖θα((F (R) + log q)/µ̃1)− z((F (R) + log q)/µ̃1)‖2)

= O(α1),

which proves (23) for t > (F (R) + log q)/µ̃1.
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G.3 EXTENSION TO NON-DIAGONALIZABLE CASE

The proof in Appendix G.2 can be generalized to the case where J(0). Now we state the theorem
formally and sketch the proof idea. We use the notations g(θ), φ(θ0, t),J(θ) as in Section 5.1, but
we do not assume that J(0) is diagonalizable. Instead, we use µ̃1, µ̃2, . . . , µ̃d ∈ C to denote the
eigenvalues of J(0), repeated according to algebraic multiplicity. We sort the eigenvalues in the
descending order of the real part of each eigenvalue, i.e., <(µ̃1) ≥ <(µ̃2) ≥ · · · ≥ <(µ̃d), where
<(z) stands for the real part of a complex number z ∈ C. We call the eigenvalue with the largest real
part the top eigenvalue.
Theorem G.7. Assume that θ = 0 is a critical point and the following regularity conditions hold:

1. g(θ) is C2-smooth;

2. φ(θ0, t) exists for all θ0 and t;

3. The top eigenvalue of J(0) is unique and is a positive real number, i.e.,

µ̃1 > max{<(µ̃2), 0}.

Let ṽ1, ũ1 be the left and right eigenvectors associated with µ̃1, satisfying ũ>1 ṽ1 = 1. Let zα(t) :=
φ(αṽ1, t+ 1

µ̃1
log 1

α ) for every α > 0, then ∀t ∈ R, z(t) := lim
α→0

zα(t) exists and z(t) = φ(z(0), t).

If δα converges to 0 with positive alignment with ũ1 as α→ 0, then for any t ∈ R and for any ε > 0,
there is a constant C > 0 such that for every sufficiently small α,∥∥∥φ(δα, t+ 1

µ̃1
log 1
〈δα,ũ1〉

)
− z(t)

∥∥∥
2
≤ C · ‖δα‖

γ̃
µ̃1+γ̃−ε
2 , (25)

where γ̃ := µ̃1 −<(µ̃2) is the eigenvalue gap.

Proof Sketch. Define the following two types of matrices. For r ≥ 1, a, δ ∈ R, we define

J
(r)
a,δ :=



a δ
a δ

a δ
. . . . . .

a δ
a

 ∈ Rr×r.

For r ≥ 1, a, b, δ ∈ R, we define

J
(r)
a,b,δ :=



C δI
C δI

C δI
. . . . . .

C δI
C

 ∈ R2r×2r,

where C =
[
a −b
b a

]
∈ R2×2.

By linear algebra, the real matrix J(0) can be written in the real Jordan normal form, i.e., J(0) =

Ṽ diag(J[1], . . . ,J[m])Ṽ
−1, where Ṽ ∈ Rd×d is an invertible matrix, and each J[j] is a real Jordan

block. Recall that there are two types of real Jordan blocks, J (r)
a,1 or J (r)

a,b,1. The former one is
associated with a real eigenvalue a, and the latter one is associated with a pair of complex eigenvalues
a ± bi. The sum of sizes of all Jordan blocks corresponding to a real eigenvalue a is its algebraic
multiplicity. The sum of sizes of all Jordan blocks corresponding to a pair of complex eigenvalues
a ± bi is two times the algebraic multiplicity of a + bi or a − bi (note that a ± bi have the same
multiplicity).

It is easy to see that J (r)
a,δ = DJ

(r)
a,1D

−1 for D = diag(δr, δr−1, . . . , δ) ∈ Rr×r and J (r)
a,b,δ =

DJ
(r)
a,b,1D

−1 for D = diag(δr, δr, δr−1, δr−1, . . . , δ, δ) ∈ R2r×2r. This means for every δ > 0
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there exists Ṽδ such that J(0) = ṼδJδṼ
−1
δ , where Jδ := diag(Jδ[1], . . . ,Jδ[m]), Jδ[j] := J

(r)
a,δ

if J[j] := J
(r)
a,1 , or Jδ[j] := J

(r)
a,b,δ if J[j] := J

(r)
a,b,1. Since the top eigenvalue of J(0) is positive

and unique, µ̃1 corresponds to only one block [µ̃1] ∈ R1×1. WLOG we let J1 = [µ̃1], and thus
Jδ[1] = [µ̃1].

We only need to select a parameter δ > 0 and prove the theorem in the case of J(0) = Jδ since we
can change the basis in a similar way as we have done in Appendix G.1. By scrutinizing the proof for
Theorem G.1, we can find that we only need to reprove Lemma G.2. However, Lemma G.2 may not
be correct since J(0) is not diagonal anymore. Instead, we prove the following:

1. If δ ∈ (0, γ̃), then h>Jδh ≤ µ̃1‖h‖22 for all h ∈ Rd;

2. For any µ̃′2 ∈ (<(µ̃2), µ̃1), if δ ∈ (0, µ̃′2 − <(µ̃2)), then
∥∥etJδ − eµ̃1te1e

>
1

∥∥
2
≤ eµ̃

′
2t for

all t ≥ 0.

Proof for Item 1. Let K be the set of pairs (k1, k2) such that k1 6= k2 and the entry of Jδ at the
k1-th row and the k2-th column is non-zero. Then we have

h>Jδh = h>
Jδ + J>δ

2
h =

d∑
k=1

<(µ̃k)h2
k +

∑
(k1,k2)∈K

hk1hk2δ

≤
d∑
k=1

<(µ̃k)h2
k +

∑
(k1,k2)∈K

h2
k1

+ h2
k2

2
δ.

Note that <(µ̃k) ≤ <(µ̃2) for k ≥ 2. Also note that there is no pair in K has k1 = 1 or k2 = 1, and
for every k ≥ 2 there are at most two pairs in K has k1 = k or k2 = k. Combining all these together
gives

h>Jδh ≤ µ̃1h
2
1 + (<(µ̃2) + δ)

d∑
k=2

h2
k ≤ µ̃1‖h‖22,

which proves Item 1.

Proof for Item 2. Since Jδ is block diagonal, we only need to prove that ‖etJδ[j]‖2 ≤ eµ̃
′
2t for

every j ≥ 2. If Jδ[j] = J
(r)
a,δ = aI + δN , whereN is the nilpotent matrix, then

etJδ[j] = eatI+δtN = eatIeδtN = eateδtN ,

where the second equality uses the fact that I andN are commutable. So we have

‖etJδ[j]‖2 ≤ eat‖eδtN‖2 = eateδt‖N‖2 ≤ e(a+δ)t.

If Jδ[j] = J
(r)
a,δ = D + δN2, whereD = diag(C,C, . . . ,C) andN is the nilpotent matrix, then

etJδ[j] = etD+δtN2

= etDeδtN
2

,

where the second equality uses the fact that D and N2 are commutable. Note that etC =

eat
[

cos(bt) − sin(bt)
sin(bt) cos(bt)

]
, which implies ‖etD‖2 = ‖etC‖2 = eat. So we have

‖etJδ[j]‖2 ≤ ‖etD‖2 · ‖eδtN
2

‖2 = eateδt‖N
2‖2 ≤ e(a+δ)t.

Since δ ∈ (0, µ̃′2 −<(µ̃2)), we know that a+ δ < µ̃′2, which completes the proof.

Proof for a fixed δ. Since Item 1 continues to hold for δ ∈ (0, γ̃), Lemmas G.3 to G.6 also hold.
This proves that z(t) exists and satisfies (6).

It remains to prove (25) for any ε > 0. Let γ̃′ ∈ (0, γ̃) be a number such that γ̃′

µ̃1+γ̃′ ≥
γ̃

µ̃1+γ̃ − ε. Fix

µ̃′2 = µ̃1 − γ̃′, δ = µ̃′2 −<(µ̃2). By Item 2, we have
∥∥etJδ − eµ̃1te1e

>
1

∥∥
2
≤ eµ̃′2t for all t ≥ 0. By

scrutinizing the proof for Theorem G.1, we can find that the only place we use Item 2 in Lemma G.2
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is in (24). For proving (25), we can repeat the proof while replacing all the occurrences of µ̃2 by µ̃′2.
Then we know that for every t ∈ R, there is a constant C > 0 such that∥∥∥Ṽ −1

δ φ
(
δα, t+ 1

µ̃1
log 1
〈δα,ũ1〉

)
− Ṽ −1

δ z(t)
∥∥∥

2
≤ C · ‖Ṽ −1

δ δα‖
γ̃′

µ̃1+γ̃′

2 ,

for every sufficiently small α. By definition of γ̃′, γ̃′

µ̃1+γ̃′ ≥
γ̃

µ̃1+γ̃ − ε. Since δα → 0 as α→ 0, we
have ‖Ṽ −1

δ δα‖2 < 1 for sufficiently small α. Then we have∥∥∥φ(δα, t+ 1
µ̃1

log 1
〈δα,ũ1〉

)
− z(t)

∥∥∥
2
≤ ‖Ṽδ‖2 ·

∥∥∥Ṽ −1
δ φ

(
δα, t+ 1

µ̃1
log 1
〈δα,ũ1〉

)
− Ṽ −1

δ z(t)
∥∥∥

2

≤ ‖Ṽδ‖2 · C · ‖Ṽ −1
δ δα‖

γ̃′
µ̃1+γ̃′

2

≤ C · ‖Ṽδ‖2 · ‖Ṽ −1
δ ‖

γ̃′
µ̃1+γ̃′

2 · ‖δα‖
γ̃

µ̃1+γ̃−ε
2 .

Absorbing ‖Ṽδ‖2 · ‖Ṽ −1
δ ‖

γ̃′
µ̃1+γ̃′

2 into C proves (25).

H EIGENVALUES OF JACOBIANS AND HESSIANS

In this section we analyze the eigenvalues of the Jacobian J(W ) at critical points of (2).

For notation simplicity, we write sz(A) := A+A> to denote the symmetric matrix produced by
adding upA and its transpose, and write ac{A,B} = AB +BA to denote the anticommutator of
two matricesA,B. Then g(W ) can be written as g(W ) := −ac{∇f(W ),W }.
Let U0 ∈ Rd×r be a stationary point of the function L : Rd×r → R,L(U) = 1

2f(UU>), i.e.,
∇L(U0) = ∇f(U0U

>
0 )U0 = 0. By Lemma C.1, this implies

∇f(W0)W0 = 0 (26)

forW0 := U0U
>
0 , and thusW0 is a critical point of (2).

For a real-valued or vector-valued function F (θ), we use DF (θ)[δ], D2F (θ)[δ1, δ2] to denote the
first- and second-order directional derivatives of F ( · ) at θ.

Let X be a linear space, which can be Rd×d or Rd×r. For a function F : X → X , we use DF (θ) to
denote the directional derivative of F at θ, represented by the linear operator

DF (θ)[∆] : X → X ,∆ 7→ DF (θ)[∆] = lim
t→0

F (θ + t∆)− F (θ)

t
.

We also write DF (θ)[∆1,∆2] := 〈DF (θ)[∆1],∆2〉.
For a function F : X → R, we useD2F (θ) = D(∇F (θ)) to denote the second directional derivative
of F at θ, i.e., D2F (θ)[∆] = D(∇F (θ))[∆], D2F (θ)[∆1,∆2] = D(∇F (θ))[∆1,∆2].

Define J(W ) := Dg(W ). By simple calculus, we can compute the formula for J(W0):

J(W0)[∆] = −ac{∇f(W0),∆} − ac{D2f(W0)[∆],W0},
J(W0)[∆1,∆2] = −

〈
∇f(W0), sz(∆1∆

>
2 )
〉
−D2f(W0)[∆1, sz(W0∆

>
2 )],

where ∆,∆1,∆2 ∈ Rd×d.

We can also compute the formula for D2L(U0):

D2L(U0)[∆] = ∇f(W0)∆ +D2f(W0)[sz(∆U>0 )]U0,

D2L(U0)[∆1,∆2] =
1

2

(〈
∇f(W0), sz(∆1∆

>
2 )
〉

+D2f(W0)[sz(∆1U
>
0 ), sz(∆2U

>
0 )]
)
,

where ∆,∆1,∆2 ∈ Rd×r.

26



Published as a conference paper at ICLR 2021

H.1 EIGENVALUES AT THE ORIGIN

The eigenvalues of J(0) is given in Lemma 5.4. Now we provide the proof.

Proof for Lemma 5.4. ForW0 = 0, we have

J(0)[∆] = −∇f(0)∆−∆∇f(0)

J(0)[∆1,∆2] = −
〈
∇f(0), sz(∆1∆

>
2 )
〉

It is easy to see from the second equation that J(0) is symmetric.

Let −∇f(0) =
∑d
i=1 µiu1[i]u

>
1[i] be the eigendecomposition of the symmetric matrix −∇f(0).

Then we have

J(0)[∆] =

d∑
i=1

µi

(
u1[i]u

>
1[i]∆ + ∆u1[i]u

>
1[i]

)
=

d∑
i=1

d∑
j=1

µi

(
u1[i]u

>
1[i]∆u1[j]u

>
1[j] + u1[j]u

>
1[j]∆u1[i]u

>
1[i]

)

=

d∑
i=1

d∑
j=1

(µi + µj)u1[i]u
>
1[i]∆u1[j]u

>
1[j]

=

d∑
i=1

d∑
j=1

(µi + µj)
〈
∆,u1[i]u

>
1[j]

〉
u1[i]u

>
1[j],

which proves (8).

For ∆ = u1[i]u
>
1[j] + u1[j]u

>
1[i], we have

J(0)[∆] = (µi + µj)u1[i]u
>
1[j] + (µi + µj)u1[j]u

>
1[i] = (µi + µj)∆.

So u1[i]u
>
1[j] + u1[j]u

>
1[i] is an eigenvector of J(0) associated with eigenvalue µi + µj . Note that

{u1[i]u
>
1[j] +u1[j]u

>
1[i] : i, j ∈ [d]} spans all the symmetric matrices, so these are all the eigenvectors

in the space of symmetric matrices.

For every antisymmetric matrix ∆ (i.e., ∆ = −∆>), we have

J(0)[∆] = J(0)[∆>] = J(0)[−∆].

So J(0)[∆] = 0 and every antisymmetric matrix is an eigenvector associated with eigenvalue 0.

Since every matrix can be expressed as the sum of a symmetric matrix and an antisymmetric matrix,
we have found all the eigenvalues.

H.2 EIGENVALUES AT SECOND-ORDER STATIONARY POINTS

Now we study the eigenvalues of J(W0) when U0 is a second-order stationary point of L( · ), i.e.,
∇L(U0) = 0, D2L(U0)[∆,∆] ≥ 0 for all ∆ ∈ Rd×r. We further assume that U0 is full-rank, i.e.,
rank(U0) = r. This condition is meet ifW0 := U0U

T
0 is a local minimizer of f( · ) in S+

d but not a
minimizer in S+

d .

Lemma H.1. For r ≤ d, if U0 ∈ Rd×r is a second-order stationary point of L( · ), then either
rank(U0) = rank(W0) = r, orW0 is a minimizer of f( · ) in S+

d , whereW0 = U0U
>
0 .

Proof. Assume to the contrary that U0 has rank < r and W0 is a minimizer of f( · ) in S+
d . The

former one implies that there exists a unit vector q ∈ Rr such that U0q = 0, and the latter one
implies that there exists v ∈ Rd such that v>∇f(W0)v < 0 by Lemma C.2.
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Let ∆ = vq>. Then we have

D2L(U0)[∆,∆] =
〈
∇f(W0),vv>

〉
+

1

2
D2f(W0)[sz(v(U0q)>), sz(v(U0q)>)]

=
〈
∇f(W0),vv>

〉
+

1

2
D2f(W0)[0,0]

=
〈
∇f(W0),vv>

〉
.

So D2L(U0)[∆,∆] < 0, which leads to a contradiction.

By (26), the symmetric matrices −∇f(W0) and W0 commute, so they can be simultaneously
diagonalizable. Since (26) also implies that they have different column spans, we can have the
following diagonalization:

−∇f(W0) =

d−r∑
i=1

µiviv
>
i , W0 =

d∑
i=d−r+1

µiviv
>
i . (27)

First we prove the following lemma on the eigenvalues and eigenvectors of the linear operator
−D2L(U0):

Lemma H.2. For every ∆ ∈ Rd×d, if

U0∆
> + ∆U>0 = 0 (28)

then ∆ is an eigenvector of the linear operator −D2L(U0)[ · ] : Rd×r → Rd×r associated with
eigenvalue 0. Moreover, the solutions of (28) spans a linear space of dimension r(r−1)

2 .

Proof. Suppose U0∆
> + ∆U>0 = 0. Then we have U0∆

> = −∆U>0 , and thus ∆> =
−U+

0 ∆U>0 , where U+
0 is the pseudoinverse of the full-rank matrix U0. This implies that there is a

matrixR ∈ Rr×r, such that ∆ = U0R. Then we have

−D2L(U0)[∆] = −∇f(W0)U0R−D2f(W0)[U0∆
> + ∆U>0 ]U0

= − (∇f(W0)U0)R−D2f(W0)[0]U0

= 0.

Replacing ∆ withU0R in (28) givesU0(R+R>)U>0 = 0, which is equivalent toR = −R> since
U0 is full-rank. Since the dimension of r × r antisymmetric matrices is r(r−1)

2 , the span spanned by
the solutions of (28) also has dimension r(r−1)

2 .

Definition H.3 (Eigendecomposition of −D2L(U0)). Let

−D2L(U0)[∆] =

rd∑
p=1

ξp 〈Ep,∆〉Ep

be the eigendecomposition of the symmetric linear operator −D2L(U0)[ · ] : Rd×r → Rd×r, where
ξ1, . . . , ξrd ∈ R are eigenvalues, E1, . . . ,Erd ∈ Rd×r are eigenvectors satisfying 〈Ep,Eq〉 = δpq.
We enforce ξp to be 0 and Ep to be a solution of (28) for every rd− r(r−1)

2 < p ≤ rd.

Lemma H.4. Let A ∈ RD×D be a matrix. If {û1, . . . , ûK} is a set of linearly independent
left eigenvectors associated with eigenvalues λ̂1, . . . , λ̂K and {ṽ1, . . . , ṽD−K} is a set of linearly
independent right eigenvectors associated with eigenvalues λ̃1, . . . , λ̃D−K , and 〈ûi, ṽj〉 = 0 for all
1 ≤ i ≤ K, 1 ≤ j ≤ D −K, then λ̂1, . . . , λ̂K , λ̃1, . . . , λ̃D−K are all the eigenvalues ofA.

Proof. Let Û := (û1, . . . , ûK)> ∈ RK×D and Ṽ := (ṽ1, . . . , ṽD−K) ∈ RD×(D−K). Then both
Û and Ṽ are full-rank. Let Û+ = Û>(ÛÛ>)−1, Ṽ + = (Ṽ >Ṽ )−1Ṽ > be the pseudoinverses of
Û and Ṽ .
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Now we define

P :=

[
Û

Ṽ +

]
, Q :=

[
Û+ Ṽ

]
.

Then we have

PQ =

[
ÛÛ+ Û Ṽ

Ṽ +Û+ Ṽ +Ṽ

]
.

Note that ÛÛ+ = IK , Û Ṽ = 0, Ṽ +Û+ = (Ṽ >Ṽ )−1(Û Ṽ )>(ÛÛ>)−1 = 0, Ṽ +Ṽ = ID−K .
So PQ = ID, or equivalentlyQ = P−1. Then we have

P−1AP =

[
diag(λ̂1, . . . , λ̂K) ∗

0 diag(λ̃1, . . . , λ̃D−K)

]
,

where ∗ can be any K× (D−K) matrix. Since P−1AP is upper-triangular, we know that P−1AP

has eigenvalues λ̂1, . . . , λ̂K , λ̃1, . . . , λ̃D−K , and so doesA.

Theorem H.5. The eigenvalues of J(W0) can be fully classified into the following 3 types:

1. µi + µj is an eigenvalue for every 1 ≤ i ≤ j ≤ d − r, and Ûij := viv
>
j + vjv

>
i is an

associated left eigenvector.

2. ξp is an eigenvalue for every 1 ≤ p ≤ rd − r(r−1)
2 , and Ṽp := EpU

>
0 + U0E

>
p is an

associated right eigenvector.

3. 0 is an eigenvalue, and any antisymmetric matrix is an associated right eigenvector, which
spans a linear space of dimension d(d−1)

2 .

Proof of Theorem H.5. We first prove each item respectively, and then prove that these are all the
eigenvalues of J(W0).

Proof for Item 1. For Ûij = viv
>
j + vjv

>
i , it is easy to check:

ac{−∇f(W0), Ûij} = (λi + λj)Ûij

ÛijW0 = 0

W0Ûij = 0

So we have

J(W0)[∆, Ûij ] = (λi + λj)
〈
∆, Ûij

〉
−D2f(W0)[∆,0] = (λi + λj)

〈
∆, Ûij

〉
,

which shows that Ûij is a left eigenvector associated with eigenvalue λi + λj .

Proof for Item 2. By definition of eigenvector, we have −D2L(U0)[Ep] = ξpEp, so

ξpEp = −∇f(W0)Ep −D2f(W0)[U0E
>
p +EpU

>
0 ]U0.

Right-multiplying both sides by U>0 , we get

ξpEpU
>
0 = −∇f(W0)EpU

>
0 −D2f(W0)[Ṽp]W0

= −∇f(W0)(EpU
>
0 +U0E

>
p )−D2f(W0)[Ṽp]W0

= −∇f(W0)Ṽp −D2f(W0)[Ṽp]W0,

where the second equality uses the fact that ∇f(W0)U0 = 0 since U0 is a critical point. Taking
both sides into sz(·) gives

ξpṼp = −sz(∇f(W0)Ṽp)− sz(D2f(W0)[Ṽp]W0)

= J(W0)[Ṽp],

which proves that Ṽp is a right eigenvector associated with eigenvalue ξp.
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Proof for Item 3. Since ∇f(W ) is symmetric, g(W ) is also symmetric. For any ∆ = −∆>,

J(W0)[∆] = J(W0)[∆>] = J(W0)[−∆].

So J(W0)[∆] = 0 and ∆ is an eigenvector associated with eigenvalue 0.

No other eigenvalues. Let Sd be the space of symmetric matrices and Ad be the space of anti-
symmetric matrices. It is easy to see that Sd and Ad are orthogonal to each other, and Sd and Ad
are invariant subspaces of J(W0)[∆]. Let h : Sd → Sd,∆ 7→ J(W0)[∆] be the linear operator
J(W0)[∆] restricted on symmetric matrices. We only need to prove that h is diagonalizable.

It is easy to see that {Ûij} are linearly independent to each other and thus spans a subspace of Sd
with dimension (d−r)(d−r+1)

2 . We can also prove that {Ṽp} spans a subspace of Sd with dimension
rd− r(r−1)

2 by contradiction. Assume to the contrary that there exists scalars αp for 1 ≤ p ≤ rd−
r(r− 1)/2, not all zero, such that

∑rd−r(r−1)/2
p=1 αpṼp = 0. Then

∑rd−r(r−1)/2
p=1 αpEp is a solution

of (28). However, this suggests that
∑rd−r(r−1)/2
p=1 αpEp lies in the span of {Ep}rd−r(r−1)/2<p≤rd,

which contradicts to the linear independence of {Ep}1≤p≤rd.

Note that
(d− r)(d− r + 1)

2
+

(
rd− r(r − 1)

2

)
=
d(d+ 1)

2
= dim(Sd).

Also note that
〈
Ûij , Ṽp

〉
= 2v>i EpU

>
0 vj + 2v>j EpU

>
0 vi = 0. By Lemma H.4, Items 1 and 2 give

all the eigenvalues of h, and thus Items 1, 2, 3 give all the eigenvalues of J(W0).

I PROOFS FOR THE DEPTH-2 CASE

I.1 PROOF FOR THEOREM 5.6

Proof for Theorem 5.6. Since W (t) is always symmetric, it suffices to study the dynamics of the
lower triangle ofW (t). For any symmetric matrixW ∈ Sd, let vecLT(W ) ∈ R

d(d+1)
2 be the vector

consisting of the d(d+1)
2 entries ofW in the lower triangle, permuted according to some fixed order.

Let g(W ) be the function defined in (2), which always maps symmetric matrices to symmetric
matrices. Let g̃ : R

d(d+1)
2 → R

d(d+1)
2 be the function such that g̃(vecLT(W )) = vecLT(g(W )) for

anyW ∈ Sd. ForW (t) evolving with (2), we view vecLT(W (t)) as a dynamical system.

d
dt

vecLT(W (t)) = g̃(vecLT(W (t))).

By Lemma 5.4, the spaces of symmetric matrices Sd and antisymmetric matrices Ad are invariant
subspaces of J(0), and

{
(µi + µj ,u1[i]u

>
1[j] + u1[j]u

>
1[i])
}

1≤i≤j≤d
is the set of all the eigenvalues

and eigenvectors in the invariant subspace Sd. Thus, µ̃1 := 2µ1 and µ̃2 := µ1 + µ2 are the largest
and second largest eigenvalues of the Jacobian of g̃(·) at vecLT(W ) = 0, and ũ1 = ṽ1 = u1u

>
1

are the corresponding left and right eigenvectors of the top eigenvalue. Then it is easy to translate
Theorem 5.3 to Theorem 5.6.

I.2 PROOF FOR THEOREM 5.8

The proof for Theorem 5.8 relies on the following Lemma on the gradient flow around a local
minimizer:

Lemma I.1. If θ̄ is a local minimizer of L(θ) and for all ‖θ − θ̄‖2 ≤ r, θ satisfies Łojasiewicz
inequality:

‖∇L(θ)‖2 ≥ c
(
L(θ)− L(θ̄)

)µ
for some µ ∈ [1/2, 1), then the gradient flow θ(t) = φ(θ0, t) converges to a point θ∞ near θ̄ if θ0 is
close enough to θ̄, and the distance can be bounded by ‖θ∞ − θ̄‖2 = O(‖θ0 − θ̄‖2(1−µ)

2 ).
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Proof. For every t ≥ 0, if ‖θ(t)− θ̄‖2 ≤ r,
d
dt
(
L(θ(t))− L(θ̄)

)1−µ
= (1− µ)

(
L(θ(t))− L(θ̄)

)−µ ·〈∇L, dθ
dt

〉
= −(1− µ)

(
L(θ(t))− L(θ̄)

)−µ · ‖∇L‖2 · ∥∥∥∥dθdt
∥∥∥∥

2

≤ −(1− µ)c

∥∥∥∥dθdt
∥∥∥∥

2

.

Therefore, ‖θ(t) − θ0‖2 ≤
∫ t

0

∥∥ dθ
dt

∥∥
2

dt ≤ 1
(1−µ)cL(θ0)1−µ = O(‖θ0 − θ̄‖2(1−µ)

2 ). If we choose

‖θ(t)− θ̄‖2 small enough, then ‖θ(t)− θ̄‖2 ≤ ‖θ(t)−θ0‖2 +‖θ0− θ̄‖2 = O(‖θ0− θ̄‖2(1−µ)
2 ) < r,

and thus
∫ +∞

0

∥∥dθ
dt

∥∥
2

dt is convergent and finite. This implies that θ∞ := limt→+∞ θ(t) exists and

‖θ∞ − θ̄‖2 = O(‖θ0 − θ̄‖2(1−µ)
2 ).

Proof for Theorem 5.8. Since WG
1 (t) ∈ S+

d,≤1 satisfies (2), there exists u(t) ∈ Rd such that
u(t)u(t)> = WG

1 (t) and u(t) satisfies (1), i.e., du
dt = −∇L(u), where L : Rd → R,u 7→

1
2f(uu>). IfWG

1 (t) does not diverge to infinity, then so does u(t). This implies that there is a limit
point ū of the set {u(t) : t ≥ 0}.
Let U := {u : L(u) ≥ L(ū)}. Since L(u(t)) is non-increasing, we have u(t) ∈ U for all t. Note
that ū is a local minimizer of L( · ) in U . By analyticity of f( · ), Łojasiewicz inequality holds
for L( · ) around ū (Łojasiewicz, 1965). Applying Lemma I.1 for L restricted on U , we know
that if u(t0) is sufficiently close to ū, the remaining length of the trajectory of u(t) (t ≥ t0) is
finite and thus limt→+∞ u(t) exists. As ū is a limit point, this limit can only be ū. Therefore,
W 1 := limt→+∞W

G
1 (t) = ūū> exists.

If W 1 is a minimizer of f( · ), U = (ū,0, · · · ,0) ∈ Rd×d is also a minimizer of L : Rd×d →
R,U 7→ 1

2f(UU>). By analyticity of f( · ), Łojasiewicz inequality holds for L( · ) around U . For
every ε > 0, we can always find a time tε such that ‖u(tε) − ū‖2 ≤ ε/2. On the other hand,
by Theorem 5.6, there exists a number αε such that for every α < αε,∥∥φ(Wα, T (Wα) + tε)−WG

1 (tε)
∥∥

2
≤ ε/2, where T (W ) :=

1

2µ1
log

1〈
W ,u1u>1

〉 .
Combining these together we have

∥∥φ(Wα, T (Wα) + tε)−W 1

∥∥
2
≤ ε.

It is easy to construct a factorization φ(Wα, T (Wα) + tε) := Uα,εU
>
α,ε such that

∥∥Uα,ε −U∥∥2
=

O(ε), e.g., we can find an arbitrary factorization and then right-multiply an orthogonal matrix so that
the row vector with the largest norm aligns with the direction of ū. Applying Lemma I.1, we know
that gradient flow starting with Uα,ε converges to a point that is only O(ε2(1−µ)) far from ū. So we
have ∥∥∥∥ lim

t→+∞
φ(Wα, T (Wα) + t)−W 1

∥∥∥∥
2

= O(ε2(1−µ)).

Taking ε→ 0 complete the proof.

I.3 PROOF FOR THEOREM 5.11

Theorem I.2. LetW be a critical point of (2) satisfying thatW is a local minimizer of f( · ) in S+
d,≤r

for some r ≥ 1 but not a minimizer in S+
d . Let−∇f(W ) =

∑d
i=1 µiviv

>
i be the eigendecomposition

of −∇f(W ). If µ1 > µ2, the following limit exists and is a solution of (2).

WG(t) := lim
ε→0

φ

(
W + εv1v

>
1 ,

1

2µ1
log

1

ε
+ t

)
.

For {Wα} ⊆ S+
d , if there exists time Tα ∈ R for every α so that φ(Wα, Tα) converges to W with

positive alignment with the top principal component v1v
>
1 as α→ 0, then ∀t ∈ R,

lim
α→0

φ

(
Wα, Tα +

1

2µ1
log

1〈
φ(Wα, Tα),v1v>1

〉 + t

)
= WG(t).
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Moreover, there exists a constant C > 0 such that∥∥∥∥∥φ
(
Wα, Tα +

1

2µ1
log

1〈
φ(Wα, Tα),v1v>1

〉 + t

)
−WG(t)

∥∥∥∥∥
F

≤ C ‖φ(Wα, Tα)‖
γ̃

2µ1+γ̃

F

for every sufficiently small α, where γ̃ := 2µ1 −max{µ1 + µ2, 0}.

Proof. Following Appendix I.1, we view vecLT(W (t)) as a dynamical system.

d
dt

vecLT(W (t)) = g̃(vecLT(W (t))).

Let W = UU
>

be a factorization of W , where U ∈ Rd×r. Since W is a local minimizer of
f( · ) in S+

d,≤r, U is also a local minimizer of L : Rd×r → R,U 7→ 1
2f(UU>). Since W is not a

minimizer of f( · ) in S+
d , by Lemma H.1, U is full-rank. By Theorem H.5, J(W ) has eigenvalues

µi + µj , ξp, 0. By a similar argument as in Appendix I.1, the Jacobian of g̃ at vecLT(W (t)) has
eigenvalues µi + µj , ξp.

Since U is a local minimizer, ξp ≤ 0 for all p. If µ1 > µ2, then 2µ1 is the unique largest eigenvalue,
and Theorem H.5 shows that vecLT(v1v

>
1 ) is a left eigenvector associated with 2µ1. The eigenvalue

gap γ̃ := 2µ1 −max{µ1 + µ2,max{ξp : 1 ≤ p ≤ rd− r(r−1)
2 }} ≥ 2µ1 −max{µ1 + µ2, 0}.

Also note that
〈
φ(Wα, Tα)−W ,v1v

>
1

〉
=
〈
φ(Wα, Tα),v1v

>
1

〉
because

〈
W ,v1v

>
1

〉
= 0 by

(27). If φ(Wα, Tα) converges to W as α → 0, then it has positive alignment with v1v
>
1 iff

lim infα→0
〈φ(Wα,Tα),v1v

>
1 〉

‖φ(Wα,Tα)−W‖
F

> 0. Then it is easy to translate Theorem 5.3 to Theorem I.2.

I.4 GRADIENT FLOW ONLY FINDS MINIMIZERS (PROOF FOR THEOREM 5.10)

The proof for Theorem 5.10 is based on the following two theorems from the literature.
Theorem I.3 (Theorem 3.1 in Du and Lee 2018). Let f : Rd×d → R be a C2 convex function. Then
L : Rd×k → R, L(U) = f(UU>), k ≥ d satisfies that (1). Every local minimizer of L is also a
global minimizer; (2). All saddles are strict. Here saddles denote those stationary points whose
hessian are not positive semi-definite (thus including local maximizers). 2

Theorem I.4 (Theorem 2 in Lee et al. 2017). Let g be a C1 mapping fromX → X and det(Dg(x)) 6=
0 for all x ∈ X . Then the set of initial points that converge to an unstable fixed point has measure zero,
µ
(
{x0 : limk→∞ g

k(x0) ∈ A∗g}
)

= 0, where A∗g = {x : g(x) = x,maxi |λi(Dg(x))| > 1}.

Theorem I.5 (GF only finds minimizers, a continuous analog of Theorem I.4). Let f : Rd → Rd be
a C1-smooth function, and φ : Rd × R→ Rd be the solution of the following differential equation,

dφ(x, t)

dt
= f(φ(x, t)), φ(x, 0) = x, ∀x ∈ Rd, t ∈ R.

Then the set of initial points that converge to a unstable critical point has measure zero,
µ
({
x0 : limt→∞ φ(x0, t) ∈ U∗f

})
= 0, where U∗f = {x : f(x) = 0, λ1(Df(x)) > 0} and

Df is the Jacobian matrix of f .

Proof of Theorem I.5. By Theorem 1 in Section 2.3, Perko (2013), we know φ(·, ·) is C1-smooth for
both x, t. We let g(x) = φ(x, 1), then we know g−1(x) = φ(x,−1) and both g, g−1 are C1-smooth.
Note that Dg−1(x) is the inverse matrix of Dg(x). So both of the two matrices are invertible. Thus
we can apply Theorem I.4 and we know µ

(
{x0 : limk→∞ g

k(x0) ∈ A∗g}
)

= 0.

Note that if limt→∞ φ(x, t) exists, then limk→∞ g
k(x) = limt→∞ φ(x, t). It remains to show that

U∗f ⊆ A∗g. For f(x0) = 0, we have φ(x0, t) = x0 and thus g(x0) = x0. Now it suffices to prove

2Though the original theorem is proven for convex functions of form
∑n

i=1 `(xiUU>x>i , yi), where `(·, ·)
is C2 convex for its first variable. By scrutinizing their proof, we can see the assumption can be relaxed to f is
C2 convex.

32



Published as a conference paper at ICLR 2021

that λ1(Dg(x0)) > 1. For every t ∈ [0, 1], by Corollary of Theorem 1 in Section 2.3, Perko (2013),
we have ∂

∂tDφ(x, t) = Df(φ(x, t))Dφ(x, t), ∀x, t. Thus,

∂

∂t
Dφ(x0, t) = Df(φ(x0, t))Dφ(x0, t) = Df(x0)Dφ(x0, t).

Solving this ODE givesDg(x0) = Dφ(x, 1) = eDf(x0)Dφ(x, 0) = eDf(x0), where the last equality
is due to Dφ(x, 0) ≡ I, ∀x. Combining this with λ1(Df(x0)) > 0, we have λ1(Dg(x0)) > 1.

Thus we have U∗f := {x0 : f(x0) = 0, λ1(Df(x0)) > 0} ⊆ A∗g, which implies that {x0 :

limt→∞ φ(x0, t) ∈ U∗} ⊆ {x0 : limk→∞ g
k(x0) ∈ A∗g}

Theorem 5.10. Let f : Rd×d → R be a convex C2-smooth function. (1). All stationary points of
L : Rd×d → R,L(U) = 1

2f(UU>) are either strict saddles or global minimizers; (2). For any
random initialization, GF (1) converges to strict saddles of L(U) with probability 0.

Proof of Theorem 5.10. For (1), by Theorem I.3, we immediately know all the stationary points of
L( · ) are either global minimizers or strict saddles. (2) is just a direct consequence of Theorem I.5 by
setting f in the above proof to −∇L.

J EQUIVALENCE BETWEEN GF AND GLRL

In this section we elaborate on the theoretical evidence that GF and GLRL are equivalent generically,
including the case where GLRL does not end in the first phase. The word “generically” used when
we want to assume one of the following regularity conditions:

1. We want to assume that GF converges to a local minimizer (i.e., GF does not get stuck on
saddle points);

2. We want to assume that the top eigenvalue λ1(−∇f(W )) is unique for a critical pointW
of (2) that is not a minimizer of f( · ) in S+

d ;

3. We want to assume that a convergent sequence of PSD matrices Wα →W has positive
alignment with vv> for some fixed vector v with 〈W ,vv>〉 = 0, i.e., for a convergent
sequence of PSD matricesWα →W , it holds for sure that lim inf

α→0

〈
Wα−W
‖Wα−W ‖F

,vv>
〉

=

lim inf
α→0

〈Wα,vv
>〉

‖Wα−W ‖F
≥ 0, and we further assume that the inequality is strict generically.

Theorem I.2 uncovers how GF with infinitesimal initialization generically behaves. Let W 0 :=
0. For every r ≥ 1, if W r−1 is a local minimizer in S+

d,≤r−1 but not a minimizer in S+
d , then

λ1(−∇f(W r−1)) > 0 by Lemma C.2. Generically, the top eigenvalue λ1(−∇f(W r−1)) should
be unique, i.e., λ1(−∇f(W r−1)) > λ2(−∇f(W r−1)). This enables us to apply Theorem I.2 and
deduce that the limiting trajectory

WG
r (t) := lim

ε→0
φ

(
W r−1 + εuru

>
r ,

1

2λ1(−∇f(W r−1))
log

1

ε
+ t

)
exists, where ur is the top eigenvector of −∇f(W r−1). This WG

r ( · ) is exactly the trajectory of
GLRL in phase r as ε→ 0.

Note thatWG
r ( · ) corresponds to a trajectory of GF minimizing L( · ) in Rd×r, which should generi-

cally converge to a local minimizer of L( · ) in Rd×r. This means the limitW r := limt→+∞W
G
r (t)

should generically be a local minimizer of f( · ) in S+
d,≤r. IfW r is further a minimizer in S+

d , then
λ1(−∇f(W r)) ≤ 0 and GLRL exits withW r; otherwise GLRL enters phase r + 1.

If GF aligns well with GLRL in the beginning of phase r (defined below), then by Theorem I.2,
as α → 0, the minimum distance from GF to WG

r (t) converges to 0 for every t ∈ R. Therefore,
GF can get arbitrarily close to the r-th critical point W r of GLRL, i.e., there exists a suitable
choice T (r)

α so that limα→0 φ(Wα, T
(r)
α ) = W r. Note that

〈
W r,uru

>
r

〉
= 0 by (27) and thus
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lim inf
α→0

〈
φ(Wα,T

(r)
α )−W r

‖φ(Wα,T
(r)
α )−W r‖F

,uru
>
r

〉
= lim inf

α→0

〈φ(Wα,T
(r)
α ),uru

>
r 〉

‖φ(Wα,T
(r)
α )−W r‖F

≥ 0. Generically, there should

exist a suitable choice of T (r)
α so that φ(Wα, T

(r)
α ) not only converges toW r but also has positive

alignment with uru>r , that is, GF should generically align well with GLRL in the beginning of phase
r + 1.

Definition J.1. We say that GF aligns well with GLRL in the beginning of phase r if there exists
T

(r)
α for every α > 0 such that φ(Wα, T

(r)
α ) converges toW r−1 with positive alignment with uru>r

as α→ 0.

If the initialization satisfies thatWα converges to 0 with positive alignment with u1u
>
1 as α→ 0,

then GF aligns well with GLRL in the beginning of phase 1, which can be seen by taking T (1)
α = 0.

Now assume that GF aligns well with GLRL in the beginning of phase r−1, then the above argument
shows that GF should generically align well with GLRL in the beginning of phase r, if GLRL does
not exit in phase r − 1. In the other case, we can use a similar argument as in Theorem 5.8 to show
that GF converges to a solution near the minimizerW r of f( · ) as t→∞, and the distance between
the solution and W r converges to 0 as α→ 0. By this induction we prove that GF with infinitesimal
initialization is equivalent to GLRL generically.

K PROOFS FOR DEEP MATRIX FACTORIZATION

K.1 PRELIMINARY LEMMAS

Lemma K.1. IfW (0) � 0, thenW (t) � 0 and rank(W (t)) = rank(W (0)) for all t.

Proof. Note that we can always find a set of balanced Ui(t), such that U1(t) . . .UL(t) = W (t),
d2 = d3 = · · · = dL = rank(W (t)) and write the dynamics ofW (t) in the space of {Ui}Li=1. Thus
it is clear that for all t′, rank(W (t′)) ≤ rank(W (t)). We can apply the same argument for t′ and
we know rank(W (t)) ≤ rank(W (t′)). Thus rank(W (t)) is constant over time, and we denote it
by k. Since eigenvalues are continuous matrix functions, and ∀t, λi(W (t)), i ∈ [k] 6= 0. Thus they
cannot change their signs and it must hold thatW (t) � 0.

Lemma K.2. ∀a, b, P ∈ R, if a > b ≥ 0, P ≥ 1, then aP−bP
a−b ≤ Pa

P−1.

Proof. Let f(x) = P (1 − x) − (1 − xP ). Since f ′(x) = −P + PxP−1 < 0 for all x ∈ [0, 1),
f(x) ≥ f(0) = 0. Then substituting x by b

a completes the proof.

Recall we use DF (N)[M ] to denote the directional derivative alongM of F atN .

Lemma K.3. Let F : S+
d → S+

d ,M 7→MP , where P ≥ 1 and P ∈ Q. Then ∀M ,N � 0,

‖DF (N)[M ]‖F ≤ P ‖N‖
P−1
2 ‖M‖F ,

where DF (N)[M ] := limt→0
F (N+tM)−F (N)

t is the directional derivative of F alongM .

Proof. LetN = UΣU>, whereUU> = I and Σ = diag(σ1, · · · , σd). Note that F (UMU>) =
UF (M)U> for anyM ∈ S+

d . Then we have

‖DF (N)[M ]‖F = lim
t→0

‖F (N + tM)− F (N)‖F
t

= lim
t→0

∥∥F (Σ + tU>MU)− F (Σ)
∥∥

F

t

=
∥∥DF (Σ)[U>MU ]

∥∥
F
.

Therefore, it suffices to prove the lemma for the case whereN is diagonal, i.e.,N = Σ.
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Assume P = q
p , where p, q ∈ N and q ≥ p > 0. DefineG(N) = N

1
p . ThenG(Σ)p = Σ. Taking

directional derivative on both sides along directionM , we have
p∑
i=1

G(Σ)i−1DG(Σ)[M ]G(Σ)p−1 = M ,

So we have
[DG(Σ)[M ]]ij =

mij∑p
k=1 σ

k−1
p

i σ
p−k
p

j

.

LetH(G) = Gq . With the same argument, we know

[DH(G(Σ))[M ]]ij = mij

q∑
k=1

σ
k−1
p

i σ
q−k
p

j .

Note thatH(G(Σ)) = F (Σ). By chain rule, we have
DF (Σ)[M ] = DH(G(Σ))[DG(Σ)[M ]].

That is,

[DF (Σ)[M ]]ij = mij

∑q
k=1 σ

k−1
p

i σ
q−k
p

j∑p
k=1 σ

k−1
p

i σ
p−k
p

j

.

When σi = σj , clearly [DF (Σ)[M ]]ij = mij · qp · σ
q−p
p

i = Pmijσ
P−1
i . Otherwise, we assume

WLOG that σi > σj , we multiply σi − σj to both numerator and denominator and we have

|[DF (Σ)[M ]]ij | = |mij |
σPi − σPj
σi − σj

≤ |mij |PσP−1
i ≤ |mij |P ‖Σ‖P−1

2 .

where the first inequality is by Lemma K.2. Thus we conclude the proof.

Lemma K.4. For anyA,B � 0 and P ∈ R, P ≥ 1,∥∥AP −BP
∥∥

F
≤ P ‖A−B‖F max

{
‖A‖P−1

2 , ‖B‖P−1
2

}
.

Proof. Since both sides are continuous in P and Q is dense in R, it suffices to prove the lemma
for P ∈ Q. Let ρ := max {‖A‖2 , ‖B‖2} and F (M) = MP . Define N : [0, 1] → S+

d , N(t) =
(1− t)A+ tB, we have

1. ‖N(t)‖2 ≤ ρ, since ‖·‖2 is convex.

2. ‖DF (N(t))[B −A]‖F ≤ P ‖N(t)‖P−1
2 ‖B −A‖F by Lemma K.3.

Therefore,

‖F (N(1))− F (N(0))‖F ≤
∫ 1

0

∥∥∥∥dF (N(t))

dt

∥∥∥∥
F

dt

=

∫ 1

t=0

‖DF (N(t))[B −A]‖F dt

≤ P ‖A−B‖F ρ
P−1,

which completes the proof.

For a locally Lipschitz function f( · ), the Clarke subdifferential (Clarke, 1975; 1990; Clarke et al.,
2008) of f at any point x is the following convex set

∂◦f(x)

∂x
:= co

{
lim
k→∞

∇f(xk) : xk → x, f is differentiable at xk

}
,

where co denotes the convex hull.

Clarke subdifferential generalize the standard notion of gradients in the sense that, when f is smooth,
∂◦f(x)
∂x = {∇f(x)}. Clarke subdifferential satisfies the chain rule:
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Theorem K.5 (Theorem 2.3.10, Clarke 1990). Let F : Rk → Rd be a differentiable function and
g : Rd → R Lipschitz around F (x). Then f = g ◦ F is Lipschitz around x and one has

∂◦f(x)

∂x
⊆ ∂◦g(F (x))

∂F
◦ dF (x)

dx
.

Let λm : Sd → R,M 7→ λm(M) be the m-th largest eigenvalue of a symmetric matrix M . The
following theorem gives the Clarke’s subdifferentials of the eigenvalue:
Theorem K.6 (Theorem 5.3, Hiriart-Urruty and Lewis 1999). The Clarke subdifferential of the
eigenvalue function λm is given below, where co denotes the convex hull:

∂◦λm(M)

∂M
= co{vv> : Mv = λm(M)v, ‖v‖2 = 1}.

K.2 PROOF OF LEMMA 6.1

The equation to be proved is:

dM
dt

= −∇f(ML/2)ML/2 −ML/2∇f(ML/2). (29)

SinceW (t) � 0 by Lemma K.1, (11) can be rewritten as the following:

dW
dt

= −
L−1∑
i=0

W
2i
L∇f(W )W 2− 2i+2

L . (30)

Proof for Lemma 6.1. Suppose W (t) is a symmetric solution of (11). By Lemma K.1, we know
W (t) also satisfies (30). Now we let R(t) be the solution of the following ODE with R(0) :=

(W (0))
1
L . Note we don’t defineR(t) by (W (t))

1
L .

dR
dt

= −
L−1∑
i=0

(−1)iRi∇f(RL)RL−1−i. (31)

The calculation below shows thatRL(t) also satisfies (30).

dRL

dt
=

L−1∑
j=0

Rj dR
dt
RL−1−j =

L−1∑
j=0

L−1∑
i=0

(−1)iRi+j∇f(RL)R2L−2−i−j

=

2L−2∑
i=0

 i∑
j=0

(−1)j

Ri∇f(RL)R2T−2−i

=

L−1∑
i=0

(RL)
2i
L∇f(RL)(RL)2− 2+2i

L .

SinceRL(0) = W (0), by existence and uniqueness theorem,RL(t) = W (t), ∀t ∈ R. So

dM
dt

= R
dR
dt

+
dR
dt
R = −∇f(ML/2)ML/2 −ML/2∇f(ML/2),

which completes the proof.

K.3 PROOF FOR THEOREM 6.2

Now we turn to prove Theorem 6.2. Let P = L/2. Then (29) can be rewritten as

dM

dt
= −

(
∇f(MP )MP +MP∇f(MP )

)
. (32)

The following lemma about the growth rate of λk(M) is used later in the proof.
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Lemma K.7. SupposeM(t) satisfies (32), we have for any T ′ > T , and k ∈ [d],

λk(M(T ′))− λk(M(T )) ≤
∫ T ′

T

2λk(M(t))P ‖∇f(MP (t))‖2dt. (33)

and
1

P − 1

(
λ1−P
k (M(T ))− λ1−P

k (M(T ′))
)
≤
∫ T ′

T

2‖∇f(MP (t))‖2dt. (34)

Proof. Since λk(M(t)) is locally Lipschitz in t, by Rademacher’s theorem, we know λk(M(t)) is
differentiable almost everywhere, and the following holds

λk(M(T ′))− λk(M(T )) =

∫ T ′

T

dλk(M(t))

dt
dt.

When dλk(M(t))
dt exists, we have

dλk(M(t))

dt
∈
{〈
G,

dM(t)

dt

〉
: G ∈ ∂◦λk(M)

∂M

}
=

{
2λk(MP (t))

〈
G,−∇f(MP (t))

〉
: G ∈ ∂◦λk(M)

∂M

}
Note that ‖G‖F ≤ ‖G‖∗ = 1. So

∣∣〈G,−∇f(MP (t))
〉∣∣ ≤ ‖∇f(MP (t))‖2. We can prove (34)

with a similar argument.

To prove Theorem 6.2, it suffices to consider the case thatM(0) = α̂I where α̂ := α1/P . WLOG
we can assume −∇f(0) = diag(µ1, . . . , µd) by choosing a suitable standard basis. By assumption
in Theorem 6.2, we have µ1 > max{µ2, 0} and µ1 = ‖∇f(0)‖2. We use φm(M0, t) to denote the
solution ofM(t) whenM(0) = M0.

Let R > 0. Since f( · ) is C3-smooth, there exists β > 0 such that

‖∇f(W1)−∇f(W2)‖F ≤ β ‖W1 −W2‖2
for allW1,W2 with ‖W1‖2 , ‖W2‖2 ≤ R.

Let κ = β/µ1. We assume WLOG that R ≤ 1
κ(P−1) . Let Fα̂(x) :=

∫ α̂−(P−1)

x−(P−1)
dz

1+κz−P/(P−1) .

Then F ′α̂(x) = (P−1)x−P

1+κxP
= P−1

(1+κxP )xP
. We will use this function to bound norm growth. Let

gα̂,c(t) = 1
α̂−(P−1)−κ(P−1)c−2µ1(P−1)t

. Define Tα̂(r) = α̂−(P−1)−κ(P−1)r−r−(P−1)

2µ1(P−1) . It is easy to
verify that gα̂,r(Tα̂(r)) = rP−1.
Lemma K.8. For any x ∈ [α̂, R] we have(

α̂−(P−1) − x−(P−1)
)
− Fα̂(x) ∈ [0, κ(P − 1)x].

Proof. On the one hand, we have

α̂−(P−1) − x−(P−1) − Fα̂(x) =

∫ α̂−(P−1)

x−(P−1)

(
1− 1

1 + κz−P/(P−1)

)
dz ≥ 0.

On the other hand,

α̂−(P−1) − x−(P−1) − Fα̂(x) =

∫ α̂−(P−1)

x−(P−1)

κ

zP/(P−1) + κ
dz ≤ κ

∫ α̂−(P−1)

x−(P−1)

1

zP/(P−1)
dz

= κ(P − 1) · −1

z1/(P−1)

∣∣∣∣α̂−(P−1)

x−(P−1)

≤ κ(P − 1)x,

which completes the proof.
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Lemma K.9. LetM0 be a PSD matrix with ‖M0‖2 ≤ 1. ForM(t) := φm(α̂M0, t) and t ≤ Tα̂(c),

‖M(t)‖2 = λ1(M(t)) ≤ gα̂,c(t)
1

P−1 .

Proof. Since ‖∇f(MP )‖2 ≤ ‖∇f(0)‖2 +β‖M‖P2 ≤ µ1 +β(λ1(M))P , by Lemma K.7, we have

λ1(M(t)) ≤ λ1(M(0)) +

∫ t

0

2(µ1 + β(λ1(M(τ)))P )(λ1(M(τ)))P dτ

= α̂+ 2µ1(P − 1)

∫ t

0

dτ

F ′α̂(λ1(M(τ))

So
Fα̂(λ1(M(t))) ≤ 2µ1(P − 1)t.

If ‖M(t)‖2 < α̂, then ‖M(t)‖2 ≤ gα̂,c(t)
1

P−1 . If ‖M(t)‖2 ≥ α̂, then by Lemma K.8,

Fα̂(‖M(t)‖2) ≤ 2µ1(P − 1)Tα̂(c) = α̂−(P−1) − κ(P − 1)c− c−(P−1) ≤ Fα̂(c),

so ‖M(t)‖2 ≤ c for all t ≤ Tα̂(c). Applying Lemma K.8 again, we have

α̂−(P−1) − ‖M(t)‖−(P−1)
2 ≤ F (‖M(t)‖2) + κ(P − 1)c ≤ 2µ1(P − 1)t+ κ(P − 1)c,

which implies ‖M(t)‖2 ≤ gα̂,c(t)
1

P−1 by definition.

Consider the following ODE:

dM̂

dt
= −

(
∇f(0)M̂P + M̂P∇f(0)

)
.

We use φ̂m(M̂0, t) to denote the solution of M̂(t) when M̂(0) = M̂0. For diagonal matrix M̂0,
M̂(t) is also diagonal for any t, and it is easy to show that

e>i M̂(t)ei =


(

1

(α̂e>i M̂0ei)
−(P−1)−2µi(P−1)t

) 1
P−1

e>i M̂0ei 6= 0,

0 e>i M̂0ei = 0.

(35)

Remark K.10. Unlike depth-2 case, the closed form solution, M̂(t) is only tractable for diagonal
initialization, i.e., (35) (note that the identity matrix is diagonal). And this is the main barrier for
extending our two-phase analysis to the case of general initialization when L ≥ 3. In Appendix L, we
give a more detailed discussion on this barrier.

The following lemma shows that the trajectory ofM(t) is close to M̂(t).
Lemma K.11. Let M0 be a diagonal PSD matrix with ‖M0‖2 ≤ 1. For M(t) := φm(α̂M0, t)

and M̂(t) := φ̂m(α̂M0, t), we have

‖M(Tα̂(r))− M̂(Tα̂(r))‖F = O(rP+1).

Proof. We bound the differenceD := M − M̂ betweenM and M̂ .∥∥∥∥dD
dt

∥∥∥∥
F

= 2
∥∥∥∇f(0)

(
MP − M̂P

)
+
(
∇f(MP )−∇f(0)

)
MP

∥∥∥
F

≤ 2
(
‖∇f(0)‖2‖MP − M̂P ‖F + ‖∇f(MP )−∇f(0)‖F‖MP ‖2

)
≤ 2

(
µ1P max{‖M‖P−1

2 , ‖M̂‖P−1
2 }‖D‖F + β ‖M‖2P2

)
,

where the last step is by Lemma K.4. This implies that

‖D(t)‖F ≤
∫ t

τ=0

∥∥∥∥dD(τ)

dτ

∥∥∥∥
F

dτ ≤
∫ t

0

2
(
µ1Pgα̂,r(τ) ‖D(τ)‖F + βgα̂,r(τ)

2P
P−1

)
dτ.
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So

‖D(Tα̂(r))‖F ≤
∫ Tα̂(r)

0

2βgα̂,r(t)
2P
P−1 exp

(
2µ1P

∫ Tα̂(r)

t

gα̂,r(τ)dτ

)
dt

=

∫ Tα̂(r)

0

2βgα̂,r(t)
2P
P−1 exp

(
P

P − 1
ln
gα̂,r(Tα̂(r))

gα̂,r(t)

)
dt

=

∫ Tα̂(r)

0

2βgα̂,r(t)
P
P−1 gα̂,r(Tα̂(r))

P
P−1 dt

= 2β · 1

2µ1
gα̂,r(Tα̂(r))

1
P−1 · gα̂,r(Tα̂(r))

P
P−1

= κgα̂,r(Tα̂(r))
P+1
P−1

= κrP+1.

which proves the bound.

Lemma K.12. Let M(t) = φm(α̂M0, t),M̃(t) = φm(α̂M̃0, t). If max{‖M0‖2, ‖M̃0‖2} ≤ 1.
For t ≤ Tα̂(r), we have

‖M(t)− M̃(t)‖F ≤
( r
α̂

)P
e2κrP ‖M(0)− M̃(0)‖F.

Proof. DefineD(t) = M(t)− M̃(t). Then we have∥∥∥∥dD
dt

∥∥∥∥
F

= 2
∥∥∥(∇f(MP )

(
MP − M̃P

)
+
(
∇f(MP )−∇f(M̃P )

)
M̃P

)∥∥∥
F

≤ 2
(
‖∇f(MP )‖2‖MP − M̃P ‖F + β‖MP − M̃P ‖F‖M̃P ‖2

)
≤ 2

(
µ1 + β‖M̃‖P2 + β‖M‖P2

)
P max{‖M‖P−1

2 , ‖M̃‖P−1
2 }‖D‖F,

where the last step is by Lemma K.4. So

‖D(Tα̂(r))‖F ≤ ‖D(0)‖F · exp

(
2Pµ1

∫ Tα̂(r)

0

(
1 + 2κgα̂,r(t)

P
P−1

)
gα̂,r(t)dt

)

≤ ‖D(0)‖F · exp

(
P

P − 1
ln
gα̂,r(Tα̂(r))

gα̂,r(0)
+ 2κgα̂,r(Tα̂(r))

P
P−1

)
≤ ‖D(0)‖F

( r
α̂

)P
e2κrP ,

which proves the bound.

LetMG
α (t) := φm

(
αe1e

>
1 ,

α̂−(P−1)

2µ1(P−1) + t
)

. LetM(t) := lim
α→0

MG
α (t).

Lemma K.13. For every t ∈ (−∞,+∞), M(t) exists and MG
α̂ (t) converges to M(t) in the

following rate: ∥∥MG
α̂ (t)−M(t)

∥∥
F

= O(α̂).

Proof. Let c be a sufficiently small constant. Let T̄ := −κ(P−1)c−c−(P−1)

2µ1(P−1) . We prove this lemma in
the cases of t ∈ (−∞, T̄ ] and t > T̄ respectively.

Case 1. Fix t ∈ (−∞, T̄ ]. Then α̂−(P−1)

2µ1(P−1) + t ≤ Tα̂(c). Let α̃ be the unique number such that

κ(P − 1)α̃+ α̃−(P−1) = α̂−(P−1). Let α̂′ < α̂ be an arbitrarily small number. Let t0 := Tα̂′(α̃) =
(α̂′)−(P−1)−α̂−(P−1)

2µ1(P−1) . By Lemma K.11 and (35), we have∥∥φm(α̂′e1e
>
1 , t0)− α̂e1e

>
1

∥∥
F
≤
∥∥∥φm(α̂′e1e

>
1 , t0)− φ̂m(α̂′e1e

>
1 , t0)

∥∥∥
F
≤ O(α̃P+1).
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By Lemma K.9, ‖φm(α̂′e1e
>
1 , t0)‖2 ≤ α̃. Then by Lemma K.12, we have∥∥φm(α̂′e1e

>
1 , t0 + t)− φ(α̂e1e

>
1 , t)

∥∥
F
≤
( c
α̃

)P
e2κcP ·O(α̃P+1) = O(α̃) = O(α̂).

This implies that {MG
α̂ (t)} satisfies Cauchy’s criterion for every t, and thus the limit M(t) exists

for t ≤ T̄ . The convergence rate can be deduced by taking limits for α̂′ → 0 on both sides.

Case 2. For t = T̄ + τ with τ > 0, φm(M , τ) is locally Lipschitz with respect toM . So∥∥MG
α̂ (t)−MG

α̂′(t)
∥∥

F
=
∥∥φm(MG

α̂ (T̄ ), τ)− φm(MG
α̂′(T̄ ), τ)

∥∥
F

= O(
∥∥MG

α̂ (T̄ )−MG
α̂′(T̄ )

∥∥
F

)

= O(α̂),

which proves the lemma for t > T̄ .

Theorem K.14. For every t ∈ (−∞,+∞), as α→ 0, we have:∥∥∥∥φm(α̂I, α̂−(P−1)

2µ1(P − 1)
+ t

)
−M(t)

∥∥∥∥
F

= O(α̂
1

P+1 ), (36)

and for any 2 ≤ k ≤ d,

λk

(
φm

(
α̂I,

α̂−(P−1)

2µ1(P − 1)
+ t

))
= O(α̂). (37)

Proof. LetMα̂(t) := φm

(
α̂I, α̂

−(P−1)

2µ1(P−1) + t
)

. Again we let c be a sufficiently small constant and

T̄ := −κ(P−1)c−c−(P−1)

2µ1(P−1) . We prove in the cases of t ∈ (−∞, T̄ ] and t > T̄ respectively.

Case 1. Fix t ∈ (−∞, T̄ ]. Let α̂1 := α̂
1

P+1 . Let α̃1 be the unique number such that κ(P − 1)α̃1 +

α̃
−(P−1)
1 = α̂

−(P−1)
1 . Let t0 := Tα̂(α̃1) =

α̂−(P−1)−α̂−(P−1)
1

2µ1(P−1) . Then∥∥φm(α̂I, t0)− α̂1e1e
>
1

∥∥
F
≤
∥∥∥φm(α̂I, t0)− φ̂m(α̂I, t0)

∥∥∥
F

+
∥∥∥φ̂m(α̂I, t0)− α̂1e1e

>
1

∥∥∥
F

= O(α̃P+1
1 + α̂)

= O(α̂).

By Lemma K.9, ‖φm(α̂′I, t0)‖2 ≤ α̃1. Then by Lemma K.12, we have∥∥Mα̂(t)−MG
α̂1

(t)
∥∥

F
=
∥∥φm(α̂I, t0 + t)− φm(α̂1e1e

>
1 , t)

∥∥
F

≤
(
c

α̃1

)P
e2κcP ·O(α̂) = O(α̂

1
P+1 ).

Combining this with the convergence rate forMG
α̂1

(t) proves the bound (36).

For (37), by Lemma K.7, we have

λ1−P
k (Mα̂(T̄ ))− λ1−P

k (Mα̂(t0)) ≤
∫ T̄

t0

2(P − 1)
∥∥∇f(MP

α̂ (t))
∥∥

2
dt

≤
∫ T̄

t0

2(P − 1)(µ1 + β ‖Mα̂(t)‖P2 ))dt

≤ −2(P − 1)
(
µ1(t− T1) +

κ

2
· gα̂,c(t)

1
P−1

)
.

(38)

By Lemma K.11, λ1(Mα̂(T̄ )) =
∥∥Mα̂(T̄ )

∥∥
2

= c+O(cP+1). For k ≥ 2,

λk(Mα̂(T̄ ))−(P−1) ≥ Ω(α̂−(P−1))− 2(P − 1)
(
µ1(T̄ − T1) +

κ

2
· c
)

≥ Ω(α̂−(P−1))− α̂−
P−1
P+1 − c−(P−1)

2µ1(P − 1)
−O(c)

≥ Ω(α̂−(P−1)).
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Thus λk(Mα̂(T̄ )) ≤ O(α̂).

Case 2. For t = T̄ + τ with τ > 0, φm(M , τ) is locally Lipschitz with respect toM . So∥∥Mα̂(t)−MG
α̂1

(t)
∥∥

F
=
∥∥φm(Mα̂(T̄ ), τ)− φm(MG

α̂1
(T̄ ), τ)

∥∥
F

= O
(∥∥Mα̂(T̄ )−MG

α̂1
(T̄ )
∥∥

F

)
= O(α̂

1
P+1 ),

which proves the bound (36).

For (37), again by Lemma K.7, we have

λ1−P
k (Mα̂(T̄ ))− λ1−P

k (Mα̂(T̄ + τ))

≤
∫ T̄+τ

T̄

2(P − 1)
∥∥∇f(MP

α̂ (t))
∥∥

2
dt

≤
∫ T̄+τ

T̄

2(P − 1)
(
β
∥∥MP

α̂ (t)− (MG)P (t)
∥∥

2
+
∥∥∇f ((MG)P (t)

)∥∥
2

)
dt

≤
∫ T̄+τ

T̄

2(P − 1)(O(α̂
1

1+P ) + β
∥∥MG(t)

∥∥P
2

)dt

≤ O(1).

Thus λ1−P
k (Mα̂(T̄ + τ)) = Ω(α̂−(P−1)), that is, λk(Mα̂(T̄ + τ)) = O(α̂), ∀k ≥ 2.

Proof of Theorem 6.2. Note that
(
M(t)

)P
= W (t) and(

φm

(
α̂I,

α̂−(P−1)

2µ1(P − 1)
+ t

))P
= φ

(
αI,

α̂−(P−1)

2µ1(P − 1)
+ t

)
.

By Theorem K.14, We have∥∥∥∥φ(αI, α−(1−1/P )

2µ1(P − 1)
+ t

)
−W (t)

∥∥∥∥
F

≤

∥∥∥∥∥
(
φm

(
α̂I,

α̂−(P−1)

2µ1(P − 1)
+ t

))P
−
(
M(t)

)P∥∥∥∥∥
F

≤ P
∥∥∥∥φm(α̂I, α̂−(P−1)

2µ1(P − 1)
+ t

)
−M(t)

∥∥∥∥
F

max

(∥∥∥∥φm(α̂I, α̂−(P−1)

2µ1(P − 1)
+ t

)∥∥∥∥
2

,
∥∥M(t)

∥∥
2

)P−1

= O(α̂
1

P+1 )O(1) = O(α
1

P (P+1) ),

and for 2 ≤ k ≤ d,

λk

(
φ

(
αI,

α−(1−1/P )

2µ1(P − 1)
+ t

))
= λk

(
φm

(
α̂I,

α̂−(P−1)

2µ1(P − 1)
+ t

))
= O(α̂P ) = O(α).

L ESCAPING DIRECTION FOR DEEP MATRIX FACTORIZATION

For deep matrix factorization, recall that we only prove that GF with infinitesimal identity initialization
escapes in the direction of the top eigenvector. The main burden for us to generalize this proof to
general initialization is that we don’t know how to analyze the early phase dynamics of (29), i.e.,
the analytical solution of (39) is difficult to compute, when L ≥ 3. Intuitively, the direction that the
infinitesimal initialization escapes 0 is exactlyM := limt→∞

M(t)
‖M(t)‖F

, whereM(t) is the solution

of (39). ShowingM = v1v
>
1 is a critical step in our analysis towards convergence to GLRL.

dM
dt

= −∇f(0)ML/2 −ML/2∇f(0). (39)
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However, unlike the depth-2 case,M can be different from v1v
>
1 even if v>1 M(0)v1 > 0. We here

give an example for diagonalM(0) and∇f(0) at Appendix L.2. Nevertheless, we still conjecture
that except for a zero measure set of M(0), M = v1v

>
1 , based on the following theoretical and

experimental evidences:

• If v>1 M(0)v1 > 0 and rank(M(0)) = 1, we prove thatM = v1v
>
1 . (See Theorem L.1)

• For the counter-example, we show experimentally, even with perturbation of only magnitude
10−5, M = v1v

>
1 . The results are shown at Figure 7. The y-axis indicates 〈v1,u1(t)〉

where u1(t) is the top eigenvector of M(t). As ‖W (t)‖F becomes larger, u1(t) aligns
better with v1, which means the noise helpsM escaping from v1. The larger the noise is,
the faster u1(t) converges to v1.

L.1 RANK-ONE CASE

Theorem L.1 (rank-1 initialization escapes along the top eigenvector). When rank(M(0)) = 1,
limt→∞

M(t)
‖M(t)‖F

= v1v
>
1 , if v>1 M(0)v1 > 0.

Proof. Let u(0) be the vector such thatM(0) = u(0)u(0)> and u(t) ∈ Rd be the solution of

du(t)

dt
= ‖u(t)‖L−2

2 ∇f(0)u(t).

It is easy to check thatM(t) = u(t)u(t)> is the solution of (39), because

dM
dt

=
du
dt
u> + u

du
dt

>
=−∇f(0)M(t) ‖u(t)‖L−2

2 −M(t)∇f(0) ‖u(t)‖L−2
2

=−∇f(0)ML/2 −ML/2∇f(0).

Let τ(t) =
∫ t

0
‖u(s)‖L−2

2 ds. Then

du
dτ

=
du
dt

dt
dτ

= − 1
dτ
dt

‖u‖L−2
2 ∇f(0)u = −∇f(0)u.

That is, under time rescaling t → τ(t), the trajectory of u(t) still follows the power iteration,
regardless of the depth L.

L.2 COUNTER-EXAMPLE FOR ESCAPING DIRECTION

Let ∇f(0) = diag(2, 0.9, 0.8, . . . , 0.1) ∈ R10×10 be diagonal. Let W (0) be also diagonal and
W (0)i,i ∼ Unif[0.9, 1.1] · α for i ∈ [10] \ {2}, W (0)2,2 = 16α, where α = 10−16 is a small
constant. Let the depth be 4.

Lemma L.2. With ∇f(0) andW (0) constructed above, v1M(0)v>1 > 0 andM 6= v1v
>
1 .

Proof. It is easy to check that v1 = e1, so v1M(0)v>1 > 0. Now we prove thatM(∞) 6= v1v
>
1 .

As bothW (0) and ∇f(0) are diagonal,W (t) is always diagonal and has dynamics

dM(t)i,i
dt

= −2∇f(0)i,iM(t)2
i,i, ∀i ∈ [10],

therefore we have closed form ofM(t):

M(t)−1
i,i = M(0)−1

i,i − 2∇f(0)i,it, ∀i ∈ [10].

For i ∈ [10], the time for M(t)i,i going to infinity is (2M(0)i,i∇f(0)i,i)
−1. By simple calculation,

M(t)2,2 goes to infinity the fastest, thusM = e2e
>
2 6= v1v

>
1 .

We remark that the scales ofW (0) and∇f(0) do not matter as in gradient flow, as scaling∇f(0) is
equivalent to scaling time (by Lemma L.3 below). And for this reason, the x-axis is the chosen as
‖W (t)‖F
‖W (0)‖F

, the relative growth rate.
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Figure 7: Dynamics of dM
dt = −∇f(0)ML/2 −ML/2∇f(0) plotted, where L = 4, u1(t) is the

top eigenvector of W (t) and ε is the relative magnitude of noise. The initialization we use in this
experiment isWnoise(0) = W (0)+ αε

2 (Z+Z>), whereW (0) is what we construct at Appendix L.2,
and Z is a matrix where entries are i.i.d. samples from the standard Gaussian distribution N (0, 1).
We run 5 fixed random seeds (the noise matrix) for each ε. The trajectory of W is calculated by
simulating gradient flow onM with small timestep and RMSprop (Tieleman and Hinton, 2012) for
faster convergence.

Lemma L.3. Suppose g : Rd → Rd is a P -homogeneous function, that is, g(αθ) = λPg(α) for
any α > 0, and dθ′(t)

dt = g(θ′(t)). Then αθ′(αP−1t) is the solution of

dθ(t)

dt
= g(θ(t)), θ(0) = αθ′(0). (40)

Proof. Simply plug in θ(t) = αθ′(αP−1t), then we have

dθ(t)

dt
=

dαθ′(αP−1t)

dt
= αP

dθ′(αP−1t)

d(αP−1t)
= αPg(θ′(αP−1t)) = g(αθ′(αP−1t)) = g(θ(t)).

M PROOF OF LINEAR CONVERGENCE TO MINIMIZER

In this section, we will present the theorems that guarantee the linear convergence to a minimizer
W0 of f( · ) if the dynamics (41) is initialized sufficiently close to W0, i.e., ‖W (0)−W0‖F is
sufficiently small. In Appendix M.3, we will apply this result to prove Theorem 6.4.

dW
dt

= −
L−1∑
i=0

W
2i
L∇f(W )W 2− 2i+2

L =: g(W ). (41)

Throughout this section, we assume rank(W0) = k and use m := λk(W0) to denote the k-th
smallest non-zero eigenvalue ofW0. The tangent space of manifold of rank-k symmetric matrices at
W0 is T = {VW>

0 +W0V
> : V ∈ Rd×k}. It can be shown that dim(T ) = k(d− k) + k(k+1)

2 =
k(2d−k+1)

2 .

Let J(W ) be the Jacobian of g(W ) in (41). For depth-2 case, we have shown that T is an invariant
subspace of J(W0) in Theorem H.5, property 2. This can be generalize to the deep case where
L ≥ 3. Therefore, we can use J(W0)|T : T → T to denote the linear operator J(W0) restricted on
T . We also define Πd2

1 (W ) as the projection ofW ∈ Rd×d on T , and Πd2

2 (W ) := W −Πd2

1 (W ).

Towards showing the main convergence result in the section, we make the following assumption.
Assumption M.1. Suppose J(W0)|T diagonalizable and all eigenvalues are negative real numbers.

W0 is a minimizer, so it is clear that J(W0)|T has no eigenvalues with positive real parts (otherwise
there is a descending direction of f( · ) from W0, since the loss f( · ) strictly decreases along
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the trajectory of (41)). If further Assumption M.1 holds, then we know J(W0)|T : T → T can
be diagonalized as J(W0)|T [ · ] = V(ΣV−1( · )), where Σi = diag(−µ1, . . . ,−µdim(T )), V :

Rdim(T ) → T , V(x) =
∑dim(T )
i=1 xiVi, and Vi is the eigenvector associated with eigenvalue −µi.

As shown in Theorem M.3 below, this assumption implies that ifW (0) is rank-k and is sufficiently
close to W0, then ‖W (t)−W0‖F ≤ Ce−µ1t for some constant C. For depth-2 case, the above
assumption is equivalent to that L(U0) is “strongly convex” at U0, except those 0 eigenvalues due
to symmetry, by property 2 of Theorem H.5). For the case where L ≥ 3, because this dynamics is
not gradient flow, in general it does not correspond to a loss function and strongly convexity does
not make any sense. Nevertheless, in experiments we do observe linear convergence toW0, so this
assumption is reasonable.

M.1 RANK-k INITIALIZATION

For convenience, we define for allW ∈ Sd,

‖W ‖V :=
∥∥∥V−1

(
Πd2

1 (W )
)∥∥∥

F
, ‖W ‖F,1 :=

∥∥∥Πd2

1 (W )
∥∥∥

F
, ‖W ‖F,2 :=

∥∥∥Πd2

2 (W )
∥∥∥

F
.

The reason for such definition of norms, as we will see later, is that the norm (or the difference) in the
tangent space of the manifold of symmetric rank-r matrices, ‖W −W ′‖F,1, dominates that in the
orthogonal complement of the tangent space, ‖W −W ′‖F,2, when bothW ,W ′ get very close to
theW0 (see a more rigorous statement in Lemma M.2). WLOG, we can assume

‖ · ‖F,1
K

≤ ‖ · ‖V ≤ ‖ · ‖F,1 ,

for some constant K, which may depend on f and W0. This also implies that ‖ · ‖V ≤ ‖ · ‖F.
Below we also assume for sufficiently small R, and anyW such that ‖W −W0‖F ≤ R, we have
‖∇f(W )‖2 ≤ ρ and ‖J(W )[∆]‖F ≤ β ‖∆‖F for any ∆. In the proof below, we assume such
properties hold as long as we can show the boundedness ofW (t)−W0.
Lemma M.2. Let max{‖W −W0‖F,1 , ‖W ′ −W0‖F,1} = r, when r ≤ m

2 , we have

‖W −W ′‖F,2 ≤
5r

m
‖W −W ′‖F,1 .

As a special case, we have

‖W −W0‖F,2 ≤
5 ‖W −W ′‖2F,1

m
.

Proof. WLOG we can assumeW0 is only non-zero in the first k dimension, i.e., [W0]ij = 0, for all
i ≥ k + 1, j ≥ k + 1. We further denoteW andW ′ by

W =

[
A B>

B C

]
and W ′ =

[
A′ B′

>

B′ C ′

]
,

where A,A′ ∈ Rk×k,B,B′ ∈ R(d−k)×k,C,C ′ ∈ R(d−k)×(d−k). By definition, we have
‖A−A′‖F , ‖B −B′‖F ≤ ‖W −W ′‖F,1 and ‖W −W ′‖F,2 = ‖C −C ′‖F . Moreover, we
have λmin(A) ≥ m− ‖A−W0‖F ≥ m− ‖W −W0‖F,1 ≥

m
2 .

SinceW ,W ′ is rank-k, we have C = BA−1B>,C ′ = B′A′
−1
B′
>. Thus

‖W −W ′‖F,2
= ‖C −C ′‖F
=
∥∥∥BA−1B> −B′A′−1

B′
>
∥∥∥
F

≤ ‖B −B′‖F‖A−1B>‖F + ‖BA−1‖F‖A′ −A‖F‖A′
−1
B′
>‖F + ‖B′A′−1‖F‖B> −B′

>‖F

≤ ‖W −W ′‖F,1
2r

m
+ ‖W −W ′‖F,1

(
2r

m

)2

+ ‖W −W ′‖F,1
2r

m

≤ ‖W −W ′‖F,1
5r

m
.
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Theorem M.3 (Linear convergence of rank-k matrices). Suppose that rank(W (0)) = rank(W0) =
k and

‖W (0)−W0‖V ≤ R := max

{
m

2K
,

µ1

K2(29β + 10ρ/m)

}
,

we have ‖W (t)−W0‖V ≤ Ce−µ1t ‖W (0)−W0‖V for some constantC depending onW0, where
W (t) satisfies (41).

Proof. For convenience, we defineW1(t) := Πd2

1 (W (t)−W0) ,W2(t) := Πd2

2 (W (t)−W0) =

Πd2

2 (W (t)). We also use 〈·, ·〉V−1 =
〈
V−1 (·) ,V−1 (·)

〉
for short.

d ‖W1(t)‖2V
dt

=
d ‖W (t)−W0‖2V

dt

= 2

〈
Πd2

1

(
dW (t)

dt

)
,Πd2

1 (W (t)−W0)

〉
V−1

= 2
〈

Πd2

1 (g(W (t))) ,W1(t)
〉
V−1

≤ 2
〈

Πd2

1 (J(W0)[W (t)−W0]) ,W1(t)
〉
V−1

+ 2 ‖g(W (t)−W0)− J(W0)[W (t)−W0]‖V ‖W (t)−W0‖V
= 2

〈
Πd2

1 (J(W0)[W1(t) +W2(t)]) ,W1(t)
〉
V−1

+ 2 ‖g(W (t)−W0)− J(W0)[W (t)−W0]‖V ‖W1(t)‖V
= 2

〈
Πd2

1 (J(W0)[W1(t)]) ,W1(t)
〉
V−1

+ 2 ‖J(W0)[W2(t)]‖V ‖W1(t)‖V
+ 2 ‖g(W (t)−W0)− J(W0)[W (t)−W0]‖V ‖W1(t)‖V .

For the first term
〈

Πd2

1 (J(W0)[W1(t)]) ,W1(t)
〉
V−1

, we knowW1(t) ∈ T , and T is an invariant

space of J(W0). Recall J(W0)|T [·] = V
(
ΣV−1 (·)

)
, we have

2
〈

Πd2

1 (J(W0)[W1(t)]) ,W1(t)
〉
V−1

= 2
〈
ΣV−1 (W1(t)) ,V−1 (W1(t))

〉
≤ −2µ1 ‖W1(t)‖F,1 .

For the second term 2β ‖J(W0)[W2(t)]‖V ‖W1(t)‖V , we have

2 ‖J(W0)[W2(t)]‖V ≤ 2 ‖J(W0)[W2(t)]‖F ≤ 2 ‖J(W0)‖2 ‖W2(t)‖F = 2ρ ‖W2(t)‖F .

For the third term 2 ‖g(W (t)−W0)− J(W0)[W (t)−W0]‖V ‖W1(t)‖V , we have

2 ‖g(W (t)−W0)− J(W0)[W (t)−W0]‖V ≤ 2β ‖W (t)−W0‖2F
≤ 4β(‖W1(t)‖2F + ‖W2(t)‖2F)

≤ 4β(K2 ‖W1(t)‖2V + ‖W2(t)‖2F).

Thus we have shown the following. Note so far we have not used the assumption thatW is rank-k.

d ‖W1(t)‖2V
dt

≤ −2µ1 ‖W1(t)‖2V+2 ‖W1(t)‖V
(
ρ ‖W2(t)‖F + 2βK2 ‖W1(t)‖2V + 2β ‖W2(t)‖2F

)
,

that is,

d log ‖W1(t)‖2V
dt

≤ −2µ1 + 4βK2 ‖W1(t)‖V +
4β ‖W2(t)‖2F + 2ρ ‖W2(t)‖F

‖W1(t)‖V
. (42)

Let T := sup{t ≥ 0 : ‖W1(t)‖V ≤
m
2K }. Setting W ′ = W0 in Lemma M.2, we have for t < T ,

r = ‖W (t)−W0‖F,1 ≤ ‖W (t)−W0‖F ≤ K ‖W (t)−W0‖V ≤
m
2 . Thus,

‖W2(t)‖F = ‖W2(t)‖F,2 ≤
5 ‖W (t)−W0‖2F,1

m
≤

5K2 ‖W (t)−W0‖2V
m

≤ 5

4
m.
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Thus, from (42) we can derive that

d log ‖W1(t)‖2V
dt

≤ −2µ1 +K2(29β + 10ρ/m)) ‖W1(t)‖V ≤ −µ1. (43)

Since µ1 < 0, ‖W1(t)‖V decreases for [0, T ). Thus T must be ∞, otherwise ‖W1(T )‖V =
limt→T− ‖W1(t)‖V < R1. Contradiction.

Therefore, for any t ∈ [0,∞), we have ‖W1(t)‖V ≤ ‖W1(0)‖V e−
µ1
2 t. That is,∫ ∞

0

‖W1(t)‖V dt ≤ 2

µ1
‖W1(0)‖V ≤

2R

µ1
.

Thus from (43), we have

‖W (t)‖V = ‖W1(t)‖V ≤ ‖W1(0)‖V exp

(
−µ1t+

K2

2
(29β + 10ρ/m)

∫ ∞
0

‖W1(t)‖V dt
)

≤ ‖W1(0)‖V exp

(
−µ1t+

K2R

µ1
(29β + 10ρ/m)

)
=: C ‖W (0)‖V e

−µ1t,

which completes the proof.

M.2 ALMOST RANK-k INITIALIZATION

We use M(t) to denote the top-k components of W (t) in SVD, and N(t) to denote the rest part,
i.e.,W (t)−M(t). One can thinkM(t) as the main part andN(t) as the negligible part.

Below we show that for deep overparametrized matrix factorization, where W (t) satisfies (41), if
the trajectory is initialized at some W (0) in a small neighborhood of the k-th critical point W0

of deep GLRL, and W (0) is approximately rank-k, in the sense that N(0) is very small, then
inft≥0 ‖W (t)−W0‖V is roughly at the same magnitude ofN(0).

Theorem M.4 (Linear convergence of almost rank-k matrices, deep case). SupposeW0 is a critical
point of rank k and W0 satisfies Assumption M.1, there exists constants C0 and r, such that if
C0 ‖N(0)‖F ≤ ‖W1(0)‖V ≤ r, then there exists a time T and constants C,C ′, such that

(1). ‖W (t)−W0‖V ≤ Ce−µ1t/2 ‖W (0)−W0‖V , for t ≤ T .

(2). ‖W (T )−W0‖F ≤ C ′ ‖N(0)‖F.

Proof. When ‖W (t)−W0‖F ≤
λmin(W0)

4 , ‖N(t)‖F ≤
λmin(W0)

4 , thus we have

‖M(t)−W0‖F,1 ≤ ‖W (t)−W0‖F,1 + ‖N(t)‖F,1 ≤
λmin(W0)

2
,

thus by Lemma M.2, we have

‖W2(t)‖F,2 ≤ ‖M(t)−W0‖F,2 + ‖N(t)‖F,2

≤
5 ‖M(t)−W0‖2F,1

λmin(W0)
+ ‖N(t)‖F,2

≤
10 ‖W1(t)‖2F,1 + 10 ‖N(t)‖2F

λmin(W0)
+ ‖N(t)‖F,2

≤
10K2 ‖W1(t)‖2V + 10 ‖N(t)‖2F

λmin(W0)
+ ‖N(t)‖F,2 .

Thus we can pick constant C0 large enough and r small enough, such that for any t ≥ 0, if
C0 ‖N(t)‖F ≤ ‖W1(t)‖V ≤ r, then it holds that:
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• The “small terms” in the RHS of (42) satisfies that

4βK2 ‖W1(t)‖V +
4β ‖W2(t)‖2F + 2ρ ‖W2(t)‖F

‖W1(t)‖V
≤ C1 ‖W1(t)‖V +C2 ‖N(t)‖F ≤ µ1

for some C1 and C2 independent of t.

• The spectral norm 1
2 ‖∇f(W (t))‖2 ≤ ‖∇f(W0)‖2 =: ρ for all t ≥ 0.

• ∀x < r, κLx
2
L
−1

(L−2)ρ > 2
µ1

ln 2r
C0x

, where κL = 1− 0.5
L−2
L .

Note these conditions can always be satisfied by some C0 and r because we can first find 3 groups
(C0, r) to satisfy each individual condition, and then take the maximal C0 and minimal r, it’s
easy to check these conditions are still verified. And we let TC0,r be the earliest time that such
condition, i.e., C0 ‖N(t)‖F ≤ ‖W1(t)‖V ≤ r fails. Thus by (42), for t ∈ [0, TC0,r), we have
‖W (t)‖V = ‖W1(t)‖V ≤ ‖W1(0)‖V e−

µ1t
2 = ‖W (0)‖V e−

µ1t
2 . Thus (1) holds for any T smaller

than TC0,r. If TC0,r = ∞, then clearly we can pick a sufficiently large T , such that (2) holds.
Therefore, below it suffices to consider the case where TC0,r is finite. And we know the condition
that fails must be C0 ‖N(t)‖F ≤ ‖W1(t)‖V , i.e. C0 ‖N(TC0,r)‖F = ‖W1(TC0,r)‖V .

By (34) in Lemma K.7, we have∣∣∣‖N(0)‖
2
L−1
2 − ‖N(t)‖

2
L−1
2

∣∣∣ ≤ (L− 2)ρt.

Define T ′ :=
κL‖N(0)‖

2
L
−1

2

(L−2)ρ , we know for any t < T ′, we have
∣∣∣‖N(0)‖

2
L−1
2 − ‖N(t)‖

2
L−1
2

∣∣∣ ≤
κL ‖N(t)‖

2
L−1
2 . That is,

‖N(t)‖
2
L−1
2

‖N(0)‖
2
L−1
2

∈
[
1− κL,

1

1− κL

]
=
[
0.5

L−2
L , 0.5−

L−2
L

]
=⇒

‖N(t)‖2
‖N(0)‖2

∈ [1/2, 2].

Now we claim it must hold that T ′ ≥ TC0,r. Otherwise, we have

C0

2
‖N(0)‖2 ≤ C0 ‖N(T ′)‖F ≤ ‖W1(T ′)‖V ≤ e

−µ1T
′/2 ‖W1(0)‖V ≤ e

−µ1T
′/2r.

Therefore, κL‖N(0)‖
2
L
−1

2

(L−2)ρ = T ′ ≤ 2
µ1

ln 2r
C0‖N(0)‖2

, which contradicts to the definition of C0 and r.

As a result, we have

2C0

√
d ‖N(0)‖2 ≥ 2C0 ‖N(0)‖F ≥ C0 ‖N(Tc0,r)‖F = ‖W1(TC0,r)‖V

≥ ‖W1(0)‖V e
−µ1TC0,r

/2,

and therefore,

TC0,r ≤
2

µ1
ln

‖W1(0)‖V
2
√
dC0 ‖N(0)‖F

.

Thus by Lemma M.2, we know

‖W (TC0,r)−W0‖F ≤ ‖W (TC0,r)−W0‖F,1 + ‖W (TC0,r)−W0‖F,2
≤ K ‖W1(TC0,r)‖V + ‖M(TC0,r)−W0‖F,2 + ‖N(TC0,r)‖F,2
≤ O(‖N(0)‖F) +O(‖N(0)‖2F) +O(‖N(0)‖F)

= O(‖N(0)‖F).
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M.3 PROOF FOR THEOREM 6.4

Proof for Theorem 6.4. Let C0, r be the constants predicted by Theorem M.4 w.r.t. to W (∞).
We claim that we can pick large enough constant T , and α0 sufficiently small, such that for all
α ≤ α0, the initial condition in Theorem M.4 holds, i.e. C0 ‖N(0)‖F ≤ ‖W1(0)‖V ≤ r, where

W (0) := φ
(
αI, α−(P−1)

2µ−1
1 (P−1)

+ T
)

.

This is because we can first ensure
∥∥W (T )−W (∞)

∥∥
2

is sufficiently small, i.e., smaller than r
2 .

By Theorem 6.2, we know when α→ 0,
∥∥W (T )−W (0)

∥∥
V ≤ K

∥∥W (T )−W (0)
∥∥

F
= o(1) and

‖N(0)‖F = O(α).

By Theorem M.4, we know there is a time T (either TC0,r or some sufficiently large number when
TC0,r =∞), such that ‖W (T )−W0‖F = O(‖N(0)‖F) = O(α).
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