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ABSTRACT
In this new LLM-world where users can ask any natural language
question, the focus is on the generation of answers with reliable
information while satisfying the original intent. LLMs are known to
generate multiple versions of answers for the same question, some
of which may be better than others. Identifying the most suitable
response that adequately addresses the question is non-trivial. In
order to tackle this problem, we propose an interpretable scoring
system that considers three aspects of an answer: knowledge, con-
tent, and structure. We provide an answer quality score method
that is explainable and can be a key signal to determining a good
answer.

1 INTRODUCTION
The information-seeking process assumes an interaction cycle that
includes the identification of an information need, a specification
of such need in a query, the inspection of results, and if needed, a
reformulation of the query [26]. Users may use a search engine, an
intelligent assistant, or a ChatGPT-like system [17] to accomplish a
specific task, but the cognitivemodel stays the same. The underlying
system can provide better services, but from the user’s perspective,
the overall information access procedure remains constant.

Part of the search process involves assessing how relevant the
results are according to the original intent [27]. There are many
factors that contribute to relevance criteria and degrees of rele-
vance. Instead of providing a link to a web page or document that
contains relevant bits, LLMs-based systems provide an answer that
synthesizes all the relevant information [1]. The verbosity of such
models can, unfortunately, lead to statements that are incorrect
and, therefore, produce wrong responses [10].

We propose an explicit and interpretable scoring system for the
answer generated by the LLM, thereby providing a measure for the
reliability of the LLM response. To derive such a score, we look
at three main characteristics of an answer: knowledge, structure,
and content and present the overall architecture of our proposed
system in Figure 1. Specifically, the knowledge component evalu-
ates the statements or information present in the answer against
a knowledge graph (KG) for reliability. After identifying the enti-
ties present in a statement, all relevant entries are fetched from
a suitable KG. We then evaluate if the corresponding statement
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Figure 1: Interpretable answer scoring architecture.

is attributable or contradictory with respect to the retrieved enti-
ties by querying an LLM. Adjustable hyper-parameters are used to
penalize contradictory statements and award correct statements.
The structure component focuses on the gap between the ideal and
generated answers. We first define a feature collection to match
the features of the ideal answer for each question intent. We utilize
embedding alignment techniques to capture the shared attributes
between question-answer pairs, which are represented by the out-
put distribution of the intent classifier. The final structure score
is jointly determined by the feature collection and the learnable
embedding projection. The content component is engineered to align
important entity details from the question with those articulated
in the answer. This alignment serves as a gauge for how effectively
the answer mirrors the question. By identifying and comparing the
key entities present in the question and the answer, we gauge the
extent to which the answer addresses the essence of the inquiry.

The Interpretability is essential for building information retrieval
and knowledge management systems [2]; on the other hand, in
the era of large-scale language models (LLM), providing the inter-
pretable score for the LLM generated answer is also crucial for the
evaluation of LLMs’ capabilities [7] as well as for providing mean-
ingful feedback or reward for the model training [17, 24]. Therefore,
we believe that defining reliable automatic scoring systems is a step
in the right direction.

2 ANSWERING SCORING SYSTEM
Our work is based on identifying specific answer properties that
provide signals and aggregate them into a final score. In general, we
use knowledge graphs to compute the Knowledge scores (Sec. 2.1),
question intent analyzing [4] to assist with the design of the Struc-
ture score (Sec. 2.2), and entity-based answer analyzing [15] to drive
the Content score (Sec. 2.3). As shown in the Figure 1, the overall
scoring pipeline considered the above three scores and functions in
a fully automatic manner. This modularity is by design as it allows
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Figure 2: Knowledge Graph Attribution Score (KG-AttrScore) Generation Pipeline.

us to improve a specific component. Some of the proposed features
are related to previous work on aboutness axioms [5, 6].

2.1 Knowledge Score
In addressing the knowledge limitations in LLMs, the use of infor-
mation stored in KGs as an external source is beneficial. KGs are
adaptable and suitable for handling evolving datasets, such as those
in e-commerce. A KG organizes properties and relations as triplets
and offers a clear way to organize information, facilitating efficient
retrieval. The use of KGs reduces the need for direct one-to-one
mapping of reference documents, enhancing the information pro-
cessing task and potentially reducing errors associated with direct
mapping methods.

2.1.1 Verifiable Entities Score (VE-score). Quantifies the ratio of
entities that are verifiable by the KG.

𝑉𝐸-𝑆𝑐𝑜𝑟𝑒 = |𝑡𝑒𝑥𝑡_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 ∩ 𝐾𝐺_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 |/|𝑡𝑒𝑥𝑡_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 | (1)

where 𝑡𝑒𝑥𝑡_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠 = entities identified in the text and𝐾𝐺_𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠
= entities present in the KG. The 𝑉𝐸-𝑆𝑐𝑜𝑟𝑒 measures the ratio of
verifiable entities generated by the LLM. This penalizes the LLM
when it hallucinates new entities that are invalid.

2.1.2 Entities Relevance Score (ER-Score). Quantifies the relevance
of the verifiable entities.

(2)𝐸𝑅-𝑆𝑐𝑜𝑟𝑒 =
𝑛∑︁

𝑛=1
𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑞𝑢𝑒𝑠, 𝑒𝑛𝑡𝑖𝑡𝑦_𝑑𝑒𝑠𝑐𝑖 )

+ 𝑐𝑜𝑠𝑖𝑛𝑒_𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑒_𝑞𝑢𝑒𝑠, 𝑒_𝑒𝑛𝑡𝑖𝑡𝑦_𝑑𝑒𝑠𝑐𝑖 )

where each question has 𝑛 KG entities, and
• 𝑒𝑛𝑡𝑖𝑡𝑦_𝑑𝑒𝑠𝑐𝑖 = description of 𝑖𝑡ℎ entity obtained from KG
• 𝑒_𝑞𝑢𝑒𝑠 = text embedding vector of the question
• 𝑒_𝑒𝑛𝑡𝑖𝑡𝑦_𝑑𝑒𝑠𝑐𝑖= text embedding vector of the 𝑖𝑡ℎ entity

2.1.3 KG-based Attribution Score (KG-attrScore). The proposed
attribution score presents several advancements over previous attri-
bution methods [19, 25]. Firstly, it offers a more granular approach
by enabling sentence-level evaluation. This allows for a detailed
analysis of the text, providing a finer understanding of how each
sentence contributes to the overall context. Secondly, our approach
is more comprehensive. Unlike previous methods that evaluate con-
tent against a single document, this approach utilizes a KG as the
reference point. This broadens the scope of the evaluation, incor-
porating a wider array of information and relationships present
within the KG, thus offering a more holistic assessment. Lastly,
the attribution score is more dynamic due to its integration with
the KG. As the KG is updated, the attribution score automatically
adjusts to these changes. This ensures that the evaluation remains

current and reflects the latest information and trends, enhancing
its relevance and accuracy over time.

Given a natural language query 𝑞, an answer 𝑎, and a set of
triplets 𝑆𝑜𝑇 , the scoring function 𝑓 takes (q, a, SoT) as input and
outputs a decision along with the rationale. Specifically,

• f(q, a, SoT) = 1 (Attributable) + Rationale
• f(q, a, SoT) = 0 (Extrapolatory) + Rationale
• f(q, a, SoT) = -1 (Contradictory) + Rationale

In operationalizing the objective function, we employ an LLM
Query. LLMs have shown proficiency in Natural Language Infer-
ence (NLI) tasks [8, 11, 18, 23], which forms the backbone of this
approach.

The NLI task [9] involves assessing the relationship between
a ‘premise’ and a ‘hypothesis’, which in our case corresponds to
the set of triplets and Q&A pair. The goal is to determine if the
hypothesis is true (attributable), false (contradiction), or cannot be
determined (extrapolatory) based on the given premise. This process
requires analyzing the semantic relationship between the premise
and the hypothesis, a task for which LLMs are particularly well-
suited due to their advanced capabilities in language understanding.
The prompt for performing this operation is shown in Figure 2.

In our experiment, we utilized the Flan-T5 XXL, with a genera-
tion temperature set to 0.2, to ensure controlled and precise outputs.
Although Flan-T5 XXL was employed in our implementation, the
approach is flexible and can be adapted to use other models as
needed. This adaptability allows the framework to be tailored to
different domains and answer types.

SELECT ?subject ?predicate ?object
WHERE {{
wd:{subject_qid} ?predicate wd:{object_qid}.
BIND(wd:{subject_qid} AS ?subject).
BIND(wd:{object_qid} AS ?object).
}}

SPARQL Query for retrieving triplets from Wikidata

We utilize a SPARQL query to retrieve relevant triplets from the
Wikidata KG [21]. For simplicity, our current approach focuses on
concepts represented by direct links within the KG. This method can
be further developed to accommodate more complex relationships.
An example of the 𝐾𝐺 −𝐴𝑡𝑡𝑟𝑆𝑐𝑜𝑟𝑒 for the LLM generated answer
in Figure 3 is presented in Table 1.

2.1.4 Final K-score. We compute the final K-score that encapsu-
lates the three sub-scores discussed above as follows

𝐾 −𝑆𝑐𝑜𝑟𝑒 = 𝛼 ∗𝑉𝐸−𝑠𝑐𝑜𝑟𝑒 +𝛽 ∗𝐸𝑅−𝑠𝑐𝑜𝑟𝑒 +𝛾 ∗𝐾𝐺 −𝐴𝑡𝑡𝑟𝑆𝑐𝑜𝑟𝑒 (3)
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Sent. # Prediction Relevant triplets Rationale Identified Wiki entities
1 Supports [(’Barack Obama’, ’position

held’, ’President of the United
States’)]

The triplet (’Barack Obama’, ’position held’, ’President
of the United States’) supports the statement that Barack
Obama is a former President of the United States.

Q76, Q30, Q305178, Q1169

2 Supports [(’Barack Obama’, ’ethnic
group’, ’African Americans’)]

The triplet [’Barack Obama’, ’ethnic group’, ’African
Americans’] supports the statement that he is the first
African American to have held the office. However, the
triplets provided do not directly support the statement
about his progressive policies and leadership.

Q484275, Q76, Q1156854, Q49085,
Q12823105

3 Supports [(’Patient Protection and Af-
fordable Care Act’, ’signatory’,
’Barack Obama’)]

The triplet [’Patient Protection and Affordable Care Act’,
’signatory’, ’Barack Obama’] supports the statement that
Obama enacted landmark legislation such as the Afford-
able Care Act. However, it does not provide direct sup-
port for the other legislation mentioned or the issues
addressed by Obama during his presidency.

Q43807777, Q191600, Q23789296,
Q11690, Q1414593, Q76,
Q1725430, Q17163140, Q7888423,
Q7942, Q86447, Q700719

4 Neutral NA NA Q11471, Q118157, Q76, Q5152897,
Q32518, Q11771944

Table 1: Examples of KG Attribution Score (KG-AttrScore). KG is Wikidata. Sentence number (first column) refers to the
respective sentence in Figure 3. Retrieved triplets are not displayed due to space restrictions.

Q: Can you provide a brief introduction of Barack Obama?

A: “Sure, here’s a brief introduction to Barack Obama: Barack
Obama is a former President of the United States. He is the
first African American to have held the office, and is widely
recognized for his progressive policies and leadership. During
his presidency, Obama enacted landmark legislation such as
the Affordable Care Act and the Dodd-Frank Wall Street Reform
and Consumer Protection Act, and worked to address issues
such as climate change, immigration reform, and civil rights.
Obama is widely respected for his intelligence, charisma, and
commitment to public service, and is considered one of the
most influential leaders of our time.”

Figure 3: LLM generated answer.

The hyperparameters 𝛼 , 𝛽 , and 𝛾 can be fine-tuned to align with
desirable answer characteristics and domain requirements. This
flexibility allows the K-score to adapt to a variety of contexts and
use cases. In our experiments, we assigned equal weightage to all
three parameters (𝛼 = 𝛽 = 𝛾 ≈ 0.3), which balanced the influence
of each sub-score.

2.2 Structure Score
Design. Lehnert [14] highlights the importance of understanding

question intent in question and answer systems to satisfy users’ in-
formation needs. Even if both questions are about the information of
the same entities, the different question intents result in two types of
answer structures. Bolotova et al. [4] states that with a well-defined
question intent taxonomy, the answers that satisfy one intent are ex-
pected to have a specific (language) structure. Thus, Bolotova et al.
[4] proposes a comprehensive taxonomy, NFQA, and the expected
structure of answers. Specifically, NFQA includes six categories for
non-factoid questions: instruction, reason, evidence-based, compar-
ison, experience, and debate. However, NFQA lacks the fine-grained
feature of how each intent is different from others, which limits the

reliability and interpretability of the taxonomy. Moreover, it is hard
to build an automatic scoring system based on the coarse-grained
question description. Building on top of the NFQA framework, we
have developed a specialized set of features tailored to our use case.
As shown in our scoring pipeline, highlighted by a red line in Fig-
ure 1, encompasses both the fine-tuning of an intent classifier and
the subsequent feature scoring. Given the domain-specific nature of
the classifier, it undergoes fine-tuning within our target domain to
ensure its efficacy. Upon successful training, the classifier’s intent
predictions could be used to guide the feature-scoring function. Ta-
ble 2 shows the feature set to differentiate between various intents.
We design a corresponding function for each feature to map feature
representations to scores, thereby differentiating question intents
and their respective answer structures. Practically, the feature set
includes question length, which indicates complexity and the level
of detail required for responses; tense analysis, which is closely
connected to the question intent and helps in understanding the
temporal context of inquiries; keyword extraction, enabling the
identification of the primary subject matter of questions for effi-
cient classification; pronoun detection, providing insights into the
type of information sought, such as factual details or explanations;
and consideration of the expected answer structure, such as lists
or paragraphs, to match the format preferences of users, thereby
enhancing precision in classification. By incorporating these fea-
tures, we can effectively analyze and classify questions based on
their underlying intents, facilitating more accurate and tailored
responses to user inquiries.

Implementation. Following the standard rule-based syntactic
parsing works [28], the above-mentioned functions are mainly
supported by NLTK (The Natural Language Toolkit) [3]. Specifi-
cally, we first applied dependency parsing and POS (Part-of-Speech)
tagging over the answer sentence compliance with the Penn Tree-
bank [16]. Then, the length can be easily captured by counting the
token, while the tense and pronoun can be decided by the predicate
and its POS tag. The format of the answer is detected by the special
tokens, e.g., a step-by-step list requires a newline token at the end
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Category Length Tense Keyword Pronoun Format
Instruction short to moderate present; future steps; follows 2nd step-by-step list
Reason short to moderate present; past because; due to; since 3rd, 2nd sentences short paragraph
Evidence-based moderate to long past found; indicate 3rd paragraph
Comparison moderate present; past different; compared to 3rd side-by-side list
Experience moderate to long past noticed; felt 1st paragraphs
Debate moderate to long present; past believe; think; 1st, 3rd point-counterpoint paragraphs

Table 2: Feature collection of NFQA taxonomy.

of each step description. Finally, inspired by NFQA [4], we also
manually define the keywords for each question intent and use
exact match to provide the keyword overlap score.

Figure 4: Structure Scoring Pipeline

2.3 Content Score
The Content Score, 𝐶𝑠𝑐𝑜𝑟𝑒 , quantifies the relevance and complete-
ness of an answer by measuring the overlap of entities that are im-
portant to the question’s context. Specifically, for question-answering
tasks that utilize Wikipedia data, these important entities are re-
ferred to aswikiEntities. The score is computed as the ratio of impor-
tant entities found in the model-generated answer (𝐸) to the total
number of important entities in the ground-truth answer (𝐸𝑡𝑜𝑡𝑎𝑙 ),
represented mathematically as:

𝐶𝑠𝑐𝑜𝑟𝑒 =
|𝐸 ∩ 𝐸𝑡𝑜𝑡𝑎𝑙 |
|𝐸𝑡𝑜𝑡𝑎𝑙 |

(4)

This scoring mechanism emphasizes the model’s ability to identify
and include all relevant entities in its response, ensuring that the
answer is not only correct but also comprehensive. For instance, as
depicted in Figure 5, when comparing three products—iPhone 13,
Pixel 6, and Galaxy S23, captured by their respective wikiEntities
Q108118280, Q108939091, and Q115127699—the Content Score is
calculated based on the entity overlap. As the answer includes only
two out of the three entities, the recall of important entities is
2/3, indicating that the response falls short of fully addressing the
comparison request.

2.4 Final Quality Score
The overall scoring equation is shown as Equation 5, where the
Quality score 𝑆𝐶𝐾 is the weighted sum of 𝑆 , 𝐶 , and 𝐾 scores.

𝑆𝐶𝐾 = 𝛼 ∗ 𝑆_𝑠𝑐𝑜𝑟𝑒 + 𝛽 ∗𝐶_𝑠𝑐𝑜𝑟𝑒 + 𝛾 ∗ 𝐾_𝑠𝑐𝑜𝑟𝑒 (5)

Since question intent faithfully reflects what kind of answer the
user expects, the value of the weight factors are designed intent-
wise, i.e., the structure of the expected answers for different intent
has varying feature weight. For example, Factoid intent is more

Q: Compare these iPhone 13, Pixel 6, and Galaxy S23

A: The iPhone 12, released in 2020, offers a sleek design,
a capable A14 Bionic chip, and a vibrant Super Retina
XDR display. The iPhone 13, introduced in 2021, builds
upon its predecessor with the more powerful A15 Bionic
chip, improved camera system, and longer battery life. The
Pixel 6, launched in 2021 as well, featuring impressive
computational photography capabilities, alongside a clean
Android experience. Ultimately, the choice between them
depends on user preferences, with iPhone models known for
their ecosystem integration and build quality, while the
Pixel 6 excels in camera innovation and a more pure Android
experience.

Figure 5: LLM answer compares two of the three products.
The underline highlights the Wikientities found in the text.

Intent 𝛼 𝛽 𝛾 Reason
Instruction 0.5 0.2 0.3 Answer structure > KG matching >

entity mentioning
Reason 0.5 0.3 0.2 keyword from feature collection is

useful
Evidence-based 0.2 0.3 0.5 No salient feature from structure,

Knowledge more important
Comparison 0.5 0.3 0.2 Comparison structure is easy to cap-

ture
Experience 0.4 0.5 0.1 Entity matching > structure fea-

tures > KG matching
Debate 0.4 0.4 0.2 Can hardly be grounded by KG
Factoid 0.1 0.1 0.8 KG matching > others

Table 3: Heuristic design for weight factors. The Reason
column includes the rationale behind the design, and the
Greater-than sign means that the former score is more im-
portant than the latter score under the current intent.

concerned with matching knowledge (K score) than with the struc-
ture of the answer (S score); however, Experience intent should
focus more on the common entity (C score) than on some piece
of knowledge extracted from the KG. In this work, we present our
heuristic-designed weight factors and the rationale behind them in
Table 3. In the case that label data is available, the value of weight
factors could also be learnable parameters.
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Question Answer Intent S C K SCK
What is the difference between
soups and stews?

Stews are normally chunkier w/ larger more inexpen-
sive cuts of meat since u simmer it on low heat for a
long time. Most are made with a tomato base. while
soups on the other hand don’t require large cuts of
meat and are perfect for a quick meal w/ little time
and ingredients involved compared to stews.

Comparison 1 1 0.42 0.88

What’s the application area for
router?

The application area would be anywhere you want to
connect two networks together. At home, connecting
your local network to the internet network, definitely
at businesses

Factoid 0.25 0.2 0.74 0.63

How many liquor stores in Hous-
ton?

Not enough if you can still formulate questions. :P Experience 0.0 0.0 0.10 0.01

Table 4: Three representative examples from our scoring system. SCK is the final answer quality score.

Intent Avg. SCK
Comparison 0.39
Debate 0.31
Evidence-based 0.24
Experience 0.20
Factoid 0.29
Instruction 0.33
Reason 0.33

Table 5: Average SCK score per intent for 1K data set.

3 EXPERIMENTS AND RESULTS
The system is evaluated on 1K question-answer pairs, all of which
were randomly selected from the YahooQA dataset1, a corpus con-
taining Non-factoid question-answering pairs. To the best of our
knowledge, there is no available data set of LLM answers, so we use
YahooQA as a human baseline to test our framework. To illustrate,
we present three representative examples in Table 4. The structure
of the first question’s answer aligns well with the Comparison in-
tent, resulting in a high structure score. Additionally, mentioning
both key entities contributes to a high content score. Although
not all information can be grounded, the weight factor defined for
Comparison intent in Table 3 ensures that decent Structure (S) and
Content (C) scores lead to an acceptable final quality score. In the
second example, despite the absence of the key entity “router”, the
answer’s overall quality score remains moderately high due to the
emphasis on knowledge groundedness, which is crucial for Factoid
questions. The last example with a 0.1 quality score indicates a poor
response to the question, characterized by irrelevant content and a
lack of substantial information. The average SCK scores distribution
for the 1K per intent category is presented in Table 5.

4 LIMITATIONS
In the proposed framework, we assume that the KG contains suffi-
cient information to evaluate a given answer. In practice, this may
not always be the case; therefore, we should consider the knowl-
edge coverage of the KG. Effective routing to the most relevant
KG for a given context could significantly improve the relevance

1https://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67

of the information retrieved. This indicates a need for further de-
velopment in linking LLM queries to the most appropriate KGs.
In order to support complex relationships, path prediction using
knowledge graph embedding models [20, 22] or path ranking algo-
rithms [12, 13] could be used. Additionally, the final quality score
computed is based on hand-tuned parameters, which may lead to
sub-optimal results. We expect to apply deep neural networks in
the future to facilitate weight tuning. More sophisticated feature
designs could be tried.

5 CONCLUSION AND FUTUREWORK
This work presents an automatic scoring system for answer quality
that is reliable, interpretable, and faithful. Our scoring system is a
meaningful attempt at combating the LLM hallucination problem.
Our method opens up opportunities for subsequent applications
like candidate answer ranking, results filtering, and more.

Future work involves extending testing to a wider array of LLM-
generated answers and diverse standard QA datasets to better assess
the scalability and robustness of our scoring system. We also plan
to fine-tune the integration of LLMs with knowledge graphs, aim-
ing to enhance the precision of evidence attribution and expand
quantitative studies on benchmark results for a more comprehen-
sive evaluation of the model’s performance. By understanding the
rationale behind LLM outputs at a more granular level, we expect
to gain insights into the decision-making process of these models,
potentially leading to more sophisticated applications.
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