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ABSTRACT

The growing demand for prenatal ultrasound imaging has intensified a global
shortage of trained sonographers, creating barriers to essential fetal health mon-
itoring. Deep learning has the potential to enhance sonographers’ efficiency and
support the training of new practitioners. Vision-Language Models (VLMs) are
particularly promising for ultrasound interpretation, as they can jointly process
images and text to perform multiple clinical tasks within a single framework.
However, despite the expansion of VLMs, no standardized benchmark exists to
evaluate their performance in fetal ultrasound imaging. This gap is primarily due
to the modality’s challenging nature, operator dependency, and the limited pub-
lic availability of datasets. To address this gap, we present Fetal-Gauge, the first
and largest visual question answering benchmark specifically designed to evalu-
ate VLMs across various fetal ultrasound tasks. Our benchmark comprises over
42,000 images and 93,000 question-answer pairs, spanning anatomical plane iden-
tification, visual grounding of anatomical structures, fetal orientation assessment,
clinical view conformity, and clinical diagnosis. We systematically evaluate sev-
eral state-of-the-art VLMs, including general-purpose and medical-specific mod-
els, and reveal a substantial performance gap: the best-performing model achieves
only 55% accuracy, far below clinical requirements. Our analysis identifies crit-
ical limitations of current VLMs in fetal ultrasound interpretation, highlighting
the urgent need for domain-adapted architectures and specialized training ap-
proaches. Fetal-Gauge establishes a rigorous foundation for advancing multi-
modal deep learning in prenatal care and provides a pathway toward addressing
global healthcare accessibility challenges. Our benchmark is publicly available at

https://github.com/.

1 INTRODUCTION

Ultrasound is the primary modality for monitor-
ing fetal health. In 2024, more than 132 million
babies were born worldwide
(2025)), and most pregnancies involved multi-
ple ultrasound scans, typically averaging about
6—7 scans over the course of routine antenatal
visits, with some women receiving as many as
8-10 scans (2025)), depending on
maternal health and resource availability. Ul-
trasound can detect up to 85% of major fetal
anomalies (Dulgheroff et al.|(2019)), highlight-
ing its critical role in prenatal care. However,
the growing reliance on ultrasound has intensi-
fied the global shortage of trained sonographers
(2024)). Expanding the workforce
alone may not meet demand, given the time and
resources required for training. This challenge
underscores the need for innovative solutions to
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Figure 1: Number of questions categorized by the
number of models answering correctly. Each bar
represents how many of the 15 models answered
a question correctly. For example, the bar at 15
represents the set of questions that all models an-
swered correctly, comprising only 38 correctly an-
swered questions out of a total of 21,468.
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ensure universal access to high-quality prenatal
imaging.

Deep learning (DL) methods have shown great promise in ultrasound interpretation, with advances
in tasks such as plane classification (Maani et al,| (2025))), biometric measurement (Qazi et al.
(2023))), and anomaly detection (Arnaout et al. (2021)), Taratynova et al.| (2025)). DL has the po-
tential to enhance efficiency by reducing scan time, improving image quality, and supporting the
training of new sonographers. Among emerging DL approaches, Vision—Language Models (VLMs)
stand out for their ability to jointly process visual and textual information. These models enable a
wide range of tasks, including image classification, segmentation, report generation, and interactive
question answering. While several benchmarks exist to evaluate VLMs in medical imaging, there is
no benchmark dedicated to the fetal ultrasound domain, primarily due to its challenging nature, de-
pendence on operator expertise, and the limited public availability of annotated datasets. To address
this gap, we present the first comprehensive benchmark for evaluating VLMs in fetal ultrasound
interpretation. We introduce the first large-scale benchmark for fetal ultrasound VLM evaluation,
constructed by integrating 13 publicly available datasets. Our contributions are:

* Fetal-Gauge dataset: A benchmark of 42,036 images and 93,451 question—answer pairs,
spanning diverse anatomical regions, clinical tasks, and question types. This is the first and
largest dataset enabling reproducible evaluation of VLMs in fetal ultrasound.

* Comprehensive VLM evaluation: We systematically benchmark 15 state-of-the-art
VLMs, including general-purpose (open and closed-source) and medical-specific, under
a unified evaluation framework highlighting their capabilities and limitations in assessing
fetal ultrasound.

* Critical performance analysis: We analyze performance for fetal ultrasound interpreta-
tion, including visual grounding of different structure sizes, handling of phantom images,
and qualitative error patterns, providing key insights into their limitations.

This benchmark establishes a foundation for multimodal medical DL in fetal ultrasound, highlight-
ing open challenges and setting the stage for future progress in applying VLMs to real-world clinical
tasks.

2 RELATED WORK

2.1 MEDICAL VISUAL QUESTION ANSWERING DATASETS

Medical Visual Question Answering (Med-VQA) has grown rapidly in recent years, producing
datasets to address challenges in clinical image interpretation. Early efforts such as VQA-Med
(Ben Abacha et al.|(2019)) (4,200 radiology images, 15,292 QAs) and VQA-RAD (Lau et al.|(2018)))
(3,515 QAs from 315 radiology cases) established structured question categories and manual cura-
tion by clinical experts. SLAKE (Liu et al.|(2021))) expanded to a bilingual knowledge-based setting,
with 14,028 Q&As over 642 radiology images annotated with rich semantic labels.

To improve scalability, PMC-VQA (Zhang et al.|(2023b)) leveraged figure—caption pairs from med-
ical publications to generate 227k VQA pairs from 149k images, though its reliance on paper figures
introduces noise and limited clinical realism. More recent large-scale datasets, such as OmniMed-
VQA (Hu et al| (2024)) (12 modalities, all from real clinical scenarios) and CAREs (Xia et al.
(2024)) (16 modalities with evaluation of confidence, fairness, and safety), reflect a shift toward
multimodal, multi-metric evaluation. Specialized datasets like PathVQA (He et al.| (2020)) demon-
strate the benefits of domain-specific collection.

However, no public fetal ultrasound VLM dataset exists, despite ultrasound being the primary imag-
ing modality in prenatal care worldwide. Existing medical datasets concentrate on adult imaging
modalities (CT, MRI, X-ray, histopathology), overlooking a domain that demands reasoning over
noisy, operator-dependent, and contains various anatomical views. This omission creates a critical
bottleneck for standardized benchmarking and hinders the development of multimodal medical DL
systems capable of addressing clinically important tasks in fetal health, such as anomaly detection,
gestational age estimation, and automated reporting in prenatal care.



Under review as a conference paper at ICLR 2026

2.2  VISION-LANGUAGE MODELS IN MEDICAL IMAGING

Recent advances in Vision-Language Models have catalyzed significant progress in medical image
understanding, with specialized medical VLMs emerging to address domain-specific challenges.
These models generally follow two primary approaches: curriculum learning with medical data
adaptation and retrieval-augmented architectures.

Within the first approach, several models employ staged training strategies to adapt general vision-
language capabilities to medical domains. LLaVA-Med (Li et al.| (2023))) pioneered cost-efficient
biomedical adaptation by combining PubMed figure-caption datasets with GPT-4 self-instruction,
using a two-stage curriculum that first aligns biomedical vocabulary and then masters conversational
semantics. However, its reliance on publication-derived data introduces quality limitations due to
inherent noise and compression artifacts. MedVLM-R1 (Pan et al.| (2025)) advances this approach
by incorporating explicit reasoning generation, achieving remarkable improvements from 55.11% to
78.22% accuracy across MRI, CT, and X-ray tasks using Group Relative Policy Optimization (Shao
et al.|(2024)) with only 600 training samples and 2B parameters.

Large-scale foundation models aim for broader modality coverage. Lingshu (Xu et al.| (2025))) ad-
dresses medical VLM limitations through training across eight imaging modalities, including adult
ultrasound, enabling cross-modal understanding and generalization. HuatuoGPT-Vision (Zhang
et al.[(2023a))) scales this approach further with a 34B parameter model trained on refined PubMed
image-text pairs across multiple modalities, representing one of the largest medical vision-language
models available.

Specialized architectures also emerge for domain-specific optimization. MedGemma (Sellergren
et al.| (2025)) combines retrieval techniques with fine-tuned Gemma 2 models, providing broad spe-
cialty coverage across radiology, dermatology, pathology, and ophthalmology while emphasizing
research accessibility.

Despite these advances, no medical VLM has been systematically evaluated on fetal ultrasound.
The modality poses unique technical challenges for VLMs: integrating fine-grained spatial reason-
ing, interpreting images with substantial inter-operator variability, and coping with artifacts absent
in other medical imaging modalities, such as standardized imaging. Without structured, targeted
benchmarks, these limitations remain invisible, hindering progress toward clinically useful multi-
modal DL in prenatal care.

3 THE FETAL-GAUGE BENCHMARK

To address the critical gap in standardized evaluation for vision-language models in fetal ultrasound,
we introduce Fetal-Gauge, a large-scale, multi-task VLM benchmark. This section details its con-
struction. Section[3.T]defines the five core clinical tasks Fetal-Gauge is designed to evaluate. Section
[3.2) outlines the data curation and standardization pipeline. Section [3.3] presents the data splitting
strategy and final dataset statistics. Finally, section[3.4]discusses the importance of phantom images
in our dataset.

3.1 TASK DESIGN

Fetal-Gauge is structured around five clinically distinct tasks and designed to assess a model’s ca-
pabilities, from high-level scene understanding to fine-grained anatomical localization. Each task
is formulated as a multiple-choice question (MCQ), a format chosen for its simplicity, amenability
to straightforward evaluation, and ability to reduce the ambiguity inherent in free-text responses,
thereby ensuring objective, scalable, and automated assessment. This structured approach also min-
imizes biases associated with open-ended responses, prevents hallucinations, and improves the fair-
ness of model assessment. Figure [2] shows a sample of the images of our dataset, including the
question we are using for each category. The tasks are:

* Anatomical Fetal Plane Identification (PI): Models must identify the specific anatomical
plane shown in the ultrasound image (e.g., abdominal, trans-thalamic). This task evalu-
ates fundamental image recognition and classification capabilities. In addition, this is an
essential clinical task performed by a sonographer during the assessment of fetal growth.
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Figure 2: Question types in the dataset, along with representative sample images for each type,
highlighting the diversity of visual content and associated questions.

* Clinical View Conformity (VC): Models must determine if an image meets the criteria of
a clinically accepted standard view, reflecting their ability to assess adequacy for diagnostic
use. This is an essential clinical task performed by sonographers to confirm that images
are diagnostically adequate, ensuring accurate biometric measurements, reliable anomaly
detection, and standardized reporting.

* Fetal Orientation Assessment (FO): This task requires the model to determine the orien-
tation of the fetus within the scan, a crucial step in clinical assessment. Clinically, knowing
fetal orientation is crucial for establishing presentation, guiding measurement techniques,
detecting positional abnormalities, and aiding delivery planning and parental counseling.

* Clinical Diagnosis (CD): This task involves classifying the image as showing a normal,
benign, or malignant condition, evaluating the model’s capacity for clinical diagnostic rea-
soning. In practice, accurate classification enables timely clinical decision-making, ap-
propriate referrals, and patient counseling, supporting management strategies and ensuring
that abnormalities are promptly identified and addressed.

* Visual Grounding of Anatomical Structures (VG): Given an image with a red bounding
box, the model must identify the anatomical structure highlighted within it. This task di-
rectly assesses the model’s spatial reasoning and fine-grained object recognition. Clinically,
precise localization of structures is fundamental for measurement, monitoring fetal devel-
opment, guiding image-based interventions, and improving inter-observer consistency in
assessments.

3.2 DATASET CURATION AND STANDARDIZATION

The construction of Fetal-Gauge followed a systematic pipeline to unify disparate data sources into
a cohesive benchmark.

Source Aggregation. We began by aggregating thirteen publicly available fetal ultrasound datasets
(detailed in the Appendix Table ). This multi-source approach was crucial for ensuring diversity
in imaging conditions, ultrasound machinery, hospital protocols, and patient demographics, thereby
promoting the development of generalizable models.

Task and Annotation Unification . One of the main challenges was standardizing heterogeneous
annotation types (e.g., image-level labels, segmentation masks, and bounding box annotations) into a
unified format. For datasets containing segmentation masks, each mask was converted into a visual
grounding task by extracting its bounding box coordinates. The bounding box was then overlaid
onto the image as a red rectangle, enabling the formulation of spatially-grounded questions (e.g.,
”What does the red bounding box represent?”).
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Figure 3: Distribution of benchmark tasks across anatomical regions. Colored segments represent
question categories (legend on the right), with proportions shown within each bar and total counts
indicated on the right. PI: Anatomical Plane Identification, VG: Visual Grounding of Anatomical
Structures, VC: Clinical View Conformity, FO: Fetal Orientation Assessment, CD: Clinical Diag-
nosis.

Vocabulary Normalization. To minimize label noise from heterogeneous sources, we standardized
the answer vocabulary. This involved expanding clinical abbreviations (e.g., “abdomcirc” to ”ab-
dominal circumference plane”) and harmonizing synonymous terms to ensure consistency across
the entire benchmark. For certain datasets, the specific imaging plane within an organ was not indi-
cated—for example, the heart was labeled simply as "heart plane” rather than specifying views such
as “Three-vessel plane” or “Four-chamber plane,” and similar omissions occurred for the brain and
abdomen. In such cases, we retained a generic ’[organ] plane” label to ensure consistent terminol-

ogy.
3.3 DATA PARTITIONING AND STATISTICS

Splitting Strategy. To ensure that model evaluation reflects true generalization capabilities rather
than patient-specific memorization, we adopted a rigorous splitting strategy. Where available, we
preserved the original train-test splits from the source datasets. For datasets without a prespecified
split, we enforced strict patient-wise splits to prevent data leakage. Furthermore, to robustly assess
generalization to unseen data distributions, datasets with limited sample sizes were allocated exclu-
sively to the test set (detailed in Appendix Table [3). During this process, we curated the dataset by
excluding classes with limited clinical value (e.g., ”other”), focusing the benchmark on well-defined
and meaningful clinical tasks.

Dataset Scale. The Fetal-Gauge benchmark is the most extensive collection of fetal ultrasound
VLM data to date, comprising 42,036 images and 93,451 question-answer pairs. This includes a
significant portion of phantom images (19k) for specialized task evaluation. The scale and diversity
of Fetal-Gauge provide a robust foundation for training and comprehensively evaluating modern
vision-language models. Figure [3| provides the distribution of our dataset per anatomy.

3.4 THE ROLE OF PHANTOM DATA

A substantial portion of Fetal-Gauge (19k images) is composed of data from anatomical phantoms.
This is not a limitation but a strategic feature of our benchmark. Phantoms are the standard-of-care
for training sonographers, allowing them to develop probe handling skills and learn to recognize
standard planes in a controlled, repeatable environment. By including this data, we enable the
development of DL systems designed for clinical practice, education, and simulation. This creates a
pathway for future work where DL models could be trained and validated on phantoms before being
deployed, or even serve as interactive training aids for human novices.

4 EVALUATIONS AND RESULTS

This section presents a comprehensive evaluation of state-of-the-art VLMs on the Fetal-Gauge
benchmark. We first detail the experimental setup and then provide a multi-faceted analysis of
model performance, both overall and on a per-task basis.
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4.1 EVALUATION SETUP

Evaluated Models. We selected 15 prominent VLMs for evaluation. This cohort includes six
models with a specialization in medical imaging (Lingshu-7B (Xu et al,| (2025)), Lingshu-32B,
MedVLM-R1 (Pan et al|(2025)), MedGemma-4b-it (Sellergren et al.| (2025)), MedGemma-27b-it,
HuatuoGPT-Vision-7B (Zhang et al.| (2023a))), eight leading general-purpose models (InternVL3-
8B-Instruct (Zhu et al.| (2025)), InternVL3-14B-Instruct, Llama-3.2-11B-Vision-Instruct (Dubey
et al.| (2024)), Qwen2.5-VL-7B-Instruct (Wang et al. (2024)), Qwen2.5-VL-32B-Instruct, Aya-
Vision-8b (Dash et al.| (2025)), Aya-Vision-32b, vip-llava-7b (Cai et al.|(2024))) and one commercial
model GPT-5 (OpenAl (2025)). A random guess baseline was added to assess whether the model’s
high performance reflects real understanding rather than random chance. Additionally, we fine-tuned
Qwen2.5-VL-7B-Instruct and Llama-3.2-11B-Vision-Instruct on our training set using LoRA (Hu
et al.[(2021))) for various amounts of epochs (referred to as model_x where x represents the number
of epochs) to evaluate the impact of domain-specific training on model performance.

Evaluation Protocol. Given the multiple-choice question (MCQ) format of Fetal-Gauge, we use
accuracy as the primary evaluation metric. Performance is measured across the entire test set on a
per-task basis to enable a granular analysis.

4.2 OVERALL PERFORMANCE ANALYSIS

Our comprehensive evaluation reveals that fetal ultrasound interpretation poses significant chal-
lenges for current VLMs. As illustrated in Figure[I} the distribution of correct answers across our
15 evaluated models shows concerning patterns: very few questions were answered correctly by all
models, with the majority of questions being answered correctly by only a small subset of models.
This suggests fundamental limitations in current VLM architectures for this domain.

Table [T] presents the detailed performance breakdown across all five evaluation tasks. The results
demonstrate a clear performance hierarchy: GPT-5 achieves the highest overall accuracy at 55%,
followed by the Lingshu models (32B: 46%, 7B: 40%), while most other models perform at or near
random chance levels (26% overall).

Table 1: Model accuracy across question types. Best accuracy per column is in bold, second-best is
underlined. The second block of rows corresponds to fine-tuned models.

Model Pl ve FO cD VG Overall
RANDOM GUESS 026 047 024 035 025 026
AYA-VISION-32B 0.19 056 0.22 039 0.17 0.19

AYA-VISION-8B 020 056 023 020 0.19 020
HUATUOGPT-VISION-7B 033 054 0.24 0.49 026 029
INTERNVL3-14B-INSTRUCT 025 051 025 039 0.17 021
INTERNVL3-8B-INSTRUCT 028 056 0.28 047 0.16 023
LINGSHU-32B 0.53 057 024 023 047 046
LINGSHU-7B 039 0.6 024 024 045 040
LLAMA-3.2-11B-VISION-INSTRUCT 0.40 055 023 023 031 033
MEDGEMMA-27B-IT 028 045 023 030 037 032
MEDGEMMA-4B-IT 032 044 022 022 027 0.28
MEDVLM-RI 021 054 025 026 0.18 021
QWEN2.5-VL-32B-INSTRUCT 033 056 022 032 027 0.29
QWEN2.5-VL-7B-INSTRUCT 024 058 024 039 023 024
VIP-LLAVA-TB 029 046 0.25 036 023 026

GPTS 0.66 0.62 023 020 058 055

LLAMA-3.2-11B-VISION-INSTRUCT 3 0.88 0.65 079 044 079 0381

LLAMA-3.2-11B-VISION-INSTRUCT_S 0.89 0.66 0.79 049 084 084

LLAMA-32-11B-VISION-INSTRUCT_7 0.89 067 0.82 048 0.85 085

LLAMA-3.2-11B-VISION-INSTRUCT-10 0.89 0.66 0.83 035 085 085

QWEN2.5-VL-7B-INSTRUCT 3 045 0.70 045 049 052 049
QWEN2.5-VL-7B-INSTRUCT_S 057 073 0.46 0.59 049 052
QWEN2.5-VL-7B-INSTRUCT_7 037 071 043 0.56 043 042
QWEN2.5-VL-7B-INSTRUCT_10 041 074 044 055 043 043

4.3 TASK-SPECIFIC PERFORMANCE

Anatomical Plane Identification (PI): This fundamental classification task reveals the largest per-
formance variations among models. While most models struggle near random chance (26%), several
demonstrate meaningful capabilities: GPT-5 leads with 66% accuracy, followed by Lingshu-32B
(53%) and Llama-3.2-11B (40%).

Clinical View Conformity (VC) & Fetal Orientation Assessment (CD): All models performed at
near-random levels on these two tasks, with none showing any meaningful performance.
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Visual Grounding of Anatomical Structures (VG): Spatial localization tasks reveal clear perfor-
mance tiers. GPT-5 achieves the highest accuracy (58%), followed by Lingshu models (32B: 47%,
7B: 45%). Most other models cluster near the 25% random baseline, suggesting fundamental limi-
tations in fine-grained spatial reasoning.

4.4 DOMAIN ADAPTATION THROUGH FINE-TUNING

After task-specific fine-tuning, Llama-3.2-11B improves substantially from 33% to 85% overall ac-
curacy, with consistent gains observed across all tasks. Qwen2.5-VL also shows clear improvements,
increasing from 24% to 52% overall accuracy across the same set of tasks.

4.5 PHANTOM VS. CLINICAL PERFORMANCE

We evaluated model performance on phantom and real ultrasound images for two tasks: Anatomi-
cal Plane Identification (PI) and Visual Grounding of Anatomical Structures (VG). The evaluation
dataset included 4,045 phantom VG questions, 1,146 phantom PI questions, 7,286 real VG ques-
tions, and 5,417 real PI questions.

Figure [ presents the comparative results across models. Performance on phantom tasks was gen-
erally poor, with most models achieving accuracies close to or below the random guess baseline.
In contrast, performance on real clinical images was substantially higher, with nearly all models
surpassing random chance levels.

Among the models tested, Lingshu-32B and GPT-5 demonstrated the strongest performance.
Lingshu-32B exceeded 50% accuracy on both PI and VG real-image tasks, while GPT-5 consis-
tently ranked highest overall, with balanced performance across phantom and real domains.
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Figure 4: Bar plot presenting model accuracy on phantom and clinical ultrasound images through
two questions ("Plane of the image’ and ’Bounding box label”)

4.6 IMPACT OF ANATOMICAL STRUCTURE SIZE

To further evaluate visual grounding, we analyzed performance based on bounding box size. Our
evaluation set is composed of 7,373 small, 1,799 medium, and 2,160 large questions. Results are
summarized in Table[2] Models performed best on large structures, with accuracies often exceeding
80%. However, performance dropped sharply for medium and small targets, where accuracies were
frequently below 50%.

5 ANALYSIS

Commercial advantage of GPT-5. GPT-5 consistently outperformed all other models across tasks,
achieving the highest accuracy in both phantom and clinical datasets. As a closed-source commercial
model trained on large-scale proprietary data, it is possible that its training distribution included
fetal ultrasound images or closely related medical data. This may explain its superior performance
compared to open-source models, which lack access to such data.
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Table 2: Performance comparison of models based on bounding box size. The best results are in
bold and the second-best are underlined.

Model Small | Medium | Large
AYA-VISION-32B 0.22 0.09 0.04
AYA-VISION-8B 0.20 0.11 0.20
HUATUOGPT-VISION-7B 0.24 0.14 0.45
INTERNVL3-14B 0.20 0.08 0.20
INTERNVL3-8B-INSTRUCT 0.19 0.13 0.10
LINGSHU-32B 0.38 045 0.79
LINGSHU-7B 0.34 045 0.82
LLAMA-3.2-11B-VISION-INSTRUCT | 0.29 0.18 0.51
MEDGEMMA-27B-IT 0.29 0.32 0.67
MEDGEMMA-4B-IT 0.21 0.31 0.43
MEDVLM-R1 0.25 0.04 0.06
QWEN2.5-VL-32B-INSTRUCT 0.29 0.13 0.35
QWEN?2.5-VL-7B-INSTRUCT 0.23 0.19 0.28
VIP-LLAVA-7B 0.23 0.13 0.30
GPT-5 0.48 0.67 0.85

Limited utility of existing medical VLMs. None of the evaluated medical VLMs reported training
on fetal ultrasound data, which likely explains their limited performance. While they leverage adult
MRI and CT scans, these modalities differ significantly in appearance and resolution from fetal ul-
trasound. Nevertheless, such data still provide anatomical priors closer to fetal imaging than natural
image distributions (e.g., cars, trees, animals). This partial domain relevance likely contributed to
the modest but still insufficient performance observed in these models.

Role of ultrasound-specific training. The Lingshu models represent the only group that explicitly
reported training on adult ultrasound data. This appears to have been critical for their relatively
strong performance among open-source models. In particular, Lingshu-32B achieved over 50% ac-
curacy in Anatomical Plane Identification and Visual Grounding on real images, suggesting that
exposure to ultrasound imaging, even of adults, provides transferable knowledge that aids general-
ization to fetal ultrasound.

Domain adaptation and fine-grained localization. The phantom vs. clinical comparison under-
scored the persistent domain adaptation gap, with phantom images proving particularly challenging
for all models. Additionally, bounding box analysis revealed that models are far more successful
at grounding large anatomical structures than small or medium ones. This highlights an ongoing
weakness in fine-grained localization, which is critical for clinical tasks requiring precise anatomi-
cal identification.

5.1 QUALITATIVE ANALYSIS

To better understand the limitations of the models, we performed a qualitative analysis of challenging
cases where many models provided incorrect answers. Figure[5|showcases several of these instances
from both clinical and phantom datasets.

Case A: Clinical Image Challenges In the first case (Figure[5|A, left), most models failed to identify
the four-chamber plane correctly. The view is significantly zoomed out, making the key anatomical
features less distinct. We observe that many models incorrectly selected the transventricular plane
and the transverse kidney plane, suggesting that they were confused by the general elliptical shape
present in all three planes, rather than identifying the specific internal structures.

Similarly, in the second image (Figure [5]A, center), no model correctly identified the transverse
kidney plane, despite its straightforward presentation. Instead, models predominantly chose the
transcerebellar plane and four-chamber plane, which also present as elliptical shapes. This indicates
a potential model bias towards more commonly encountered elliptical structures.

The third example (Figure [SJA, right) shows that while about half of the models correctly identified
the transcerebellar plane, a significant number chose the transthalamic plane. This confusion is
understandable, as these two planes are anatomically close and can be challenging to differentiate,
even for a novice sonographer.

Case B: Phantom Image Challenges The images in Case B were sourced from a phantom. In the
first image (Figure[5B, left), models were asked to identify the structure within the red bounding box,
which is the abdomen. However, many models were incorrect, selecting options like cerebellum,
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midbrain, and head. This suggests that the models were heavily influenced by the global context of
the image (which includes prominent brain structures) and did not focus exclusively on the specified
region of interest (ROI).

The final two examples (Figure [5B, center and right) further demonstrate the models’ difficulties.
Many failed to identify the legs and the femur plane correctly. This poor performance can be at-
tributed to several factors: the structures of interest are small, the images are zoomed out, and the
phantom images are significantly brighter than typical clinical ultrasounds. This brightness variation
likely represents an out-of-distribution characteristic that the models were not adequately trained to
handle.
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Figure 5: Examples of challenging cases illustrating model failure modes. The figure shows model
predictions for (A) three clinical and (B) three phantom ultrasound images. For each case, a table
displays the distribution of answers from 15 models, with the correct option shown in bold. These
examples highlight common errors, such as confusion between similarly shaped structures and poor
generalization to phantom images.

6 CONCLUSION

We introduce Fetal-Gauge, the first large-scale benchmark for evaluating Vision-Language Mod-
els in fetal ultrasound interpretation, comprising 42,036 images and 93,451 question-answer pairs
across five clinical tasks. Our systematic evaluation of 15 state-of-the-art VLMs reveals substantial
limitations: the best-performing model achieves only 55% accuracy, far below clinical requirements.

Key findings highlight critical gaps in current VLM capabilities. Models struggle with fine-grained
spatial reasoning, particularly for small anatomical structures, and show poor domain adaptation be-
tween phantom and clinical images. While ultrasound-specific training data (as in Lingshu models)
improves performance, fundamental architectural limitations persist across all evaluated models.

Our benchmark establishes a foundation for developing specialized VLMs in prenatal care and re-
veals urgent research priorities: ultrasound-specific architectures, improved spatial reasoning, and
robust domain adaptation strategies. The substantial performance gaps underscore both current lim-
itations and opportunities for methodological innovation in medical multimodal DL. Fetal-Gauge
provides the rigorous evaluation framework necessary for measuring progress toward clinically vi-
able fetal ultrasound interpretation systems.
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THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, the authors used ChatGPT to enhance writing. After using this
tool/service, the authors reviewed and edited the content as needed and take full responsibility for
the content of the publication.
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Table 3: Dataset-wise distribution of images and corresponding questions across training and testing
splits. The values represent the number of images, with the number of associated questions shown

in parentheses.

Dataset Name Train Test Total
3-Vessel View Dataset Belciug;2022) 0(0) 253(253) 253(253)
FASS|Da Correggio et al.|(2023) 1,265(4,983) 323(1,276) 1,588(6,259)
Echo (1st Trimester) |Stoean et ul.7(2021 ) 3,223(3,223) 690(690) 3,913(3,913)
Echo (2nd Trimester) Stoean et al.|(2022) 281(756) 94(250) 375(1,006)
Fetal Planes|Burgos-Artizzu et al.[(2020) 2,908(2,908) 2,187(2,187) 5,095(5,095)
Fetal Planes & Organs|Belciug; (2624) 2,776(10,447) 695(2,704) 3,471(13,151)
Fetus Head Tumor|Anithal (2024) 1,420(1,420) 249(249) 1,669(1,669)
FOCUS|Wu et al[{2025) 250(750) 50(150) 300(900)
FPUS23 |Prabakaran et al. 712023! 15,248(31,433) 3,812(7,857) 19,060(39,290)
Large Fetal Head Biometry|Alzubaidi et a1.7(2023) 2,332(5,665) 1,715(4,337) 4,047(10,002)
MFUP|Sendra-Balcells et al.|(2023) - 217(217) 233(233) 450(450)
NatallA|Gonzdlez et al| (2024) 0(0) 346(346) 346(346)
NT Scan|Cui & Dong 15022! 1,372(10,181) 312(936) 1,684(11,117)
Total ) 31,292(71,983) | 10,959(21,468) | 42,036(93,451)

Table 4: Summary of fetal ultrasound datasets with descriptions, annotation types, and annotated
anatomical structures or planes.

Dataset

Description

Annotation

Annotated Structures / Labels

3-Vessel View Dataset

Ultrasound images of the 3 vessels & gallbladder of second
trimester fetuses.

Classification

3-vessel & bladder

FASS

2D ultrasound of fetal abdomen (term pregnancies) with manual
segmentation of abdominal organs (aorta, umbilical vein, stom-
ach, liver) to support prenatal diagnostics.

Segmentation

Abdominal aorta, intrahepatic umbilical vein, stom-
ach, liver area

Echo (1st Trimester) Frames from fetal cardiac sweep videos (12-14 weeks GA, Classification Atrioventricular flow (4-chamber), Aorta (LVOT),
Doppler color) labeled by view. Contains 6,720 images across Great vessels (RVOT), Arterial arches (3-vessel), plus
four main cardiac planes. “other”

Echo (2nd Trimester) Dataset of 8 ultrasound video sweeps from fetuses (21-24 weeks Segmentation 11 structures: e.g., septum (S), right atrium (RA), left
GA) yielding 1,040 frames across four standard heart views. Each atrium (LA), aorta (Ao), right ventricle (RV), etc.
frame is segmented with 11 cardiac structures.

Fetal Planes Large screening dataset (mid-second Trimester) from two hospi- Classification Abdomen, Brain (trans-thalamic, trans-cerebellum,

tals. 12,400+ images from 1,792 patients, labeled into six classes:
four fetal planes (Abdomen, Brain, Femur, Thorax), Cervix, and
Other. (Brain images are further sub-classified into three views
for fine-grained analysis.)

trans-ventricular), Femur, Thorax, Cervix, Other

Fetal Planes & Organs

2D US scans of fetal morphology. They are divided into different
view planes, and the organs are segmented.

Segmentation & Classifica-
tion

11 fetal ultrasound planes (e.g., biparietal head, ab-
dominal, heart) and 18 annotated structures (e.g.,
bladder, aorta, kidney, cerebellum).

Fetus Head Tumor

Ultrasound of fetal head that contains normal, benign, and malig-
nant cases. Each image is annotated at the frame level with one
of three diagnostic.

Segmentation & Classifica-
tion

Fetal head

FOCUS 4-chamber fetal heart images (second Trimester) with manual seg- Segmentation Cardiac chambers and thoracic regions
mentation of heart and thorax regions for biometric measurement
(e.g., cardiothoracic ratio).
FPUS23 Phantom fetal ultrasound at 23 weeks GA. 15,728 images for Classification Diagnostic planes, fetal orientation, anatomical land-

tasks: plane identification, fetus orientation, anatomical features,
and bounding-box detection.

(plane/orientation/features)
and Detection

marks, bounding-boxes of anatomy

Large Fetal Head Biometry

High-res fetal head ultrasound images annotated by experts for
brain biometry. Used for training segmentation/biometry algo-
rithms.

Segmentation

Fetal brain, cavum septum pellucidum (CSP), lateral
ventricles (LV)

MFUP Screening images from 5 African centers (low-resource settings). Classification Abdomen, Brain, Femur, Thorax
Contains routine second-trimester scans labeled into four com-
mon fetal planes (Abdomen, Brain, Femur, Thorax).
NatallA Phantom scans by non-experts at 23 weeks GA. 19,407 frames Classification Biparietal head plane, Abdominal plane, Heart plane,
from 90 free-hand videos (POCUS device) simulating low- Spine plane, Femur plane, No-plane
resource scans. Each frame is labeled for fetal plane (including
“no-plane”).
NT Scan Sagittal ultrasound images (11-14 weeks GA) for NT measure- Classification and Object De- Thalami, midbrain, palate, 4th ventricle, cisterna

ment plane classification and key structure detection (Down syn-
drome screening).

tection

magna, nuchal translucency, nasal tip, nasal skin,
nasal bone
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Table 5: Summary of datasets with gestational age, ultrasound machines, license, patient counts,
and geographic distribution.

Dataset Name Gestational Age Machine License #Patients Geographic Distribution
3-Vessel View Dataset 2nd Trimester Not Provided CCBY 4.0 15 Romania — University Emergency County
Hospital of Craiova
FASS Not Provided Siemens Acuson; GE Voluson 730; Philips CCBY 4.0 169 Brazil — University Hospital Polydoro Ernani de
EPIQ Elite Séo Thiago, Florian6polis
Echo (1st Trimester) 1st Trimester GE Voluson E10; GE Voluson E8; GE Voluson CCBY 4.0 326 Not Provided
E6
Echo (2nd Trimester) 2nd Trimester Not Provided CCBY 4.0 8 Not Provided
Fetal Planes 2nd & 3rd Trimester | GE Voluson E6; GE Voluson S8; GE Voluson CCBY 4.0 1,792 Spain — Hospital Clinic and Hospital Sant Joan
S10; Aloka de Déu, Barcelona
Fetal Planes & Organs 2nd Trimester GE LOGIQ e; GE Voluson 730 Pro CCBY 4.0 215 Romania — University Emergency County
Hospital of Craiova
Fetus Head Tumor Not Provided Not Provided CCBY 4.0 Not Provided Not Provided
FOCUS 2nd Trimester Not Provided CCBY 4.0 Not Provided Not Provided
FPUS23 1st Trimester Philips EPIQ 7 Not Provided N/A N/A
Large Fetal Head 2nd & 3rd Trimester GE Voluson E8; GE Voluson 730 CCBY 4.0 551 Netherlands — Radboud University Medical
Biometry Center, Nijmegen
MFUP 2nd & 3rd Trimester GE Medical Systems; Siemens; Edan CCBY 4.0 125 Egypt; Algeria; Uganda; Ghana; Malawi
Instruments; Mindray; Aloka
NatallA 2nd Trimester Clarius C3 HD3 (POCUS) CCBY 4.0 N/A N/A
NT Scan 1st Trimester Not Provided CCBY 4.0 1,519 China — Shenzhen People’s Hospital

Table 6: Dataset composition across fetal ultrasound tasks.

Task

Acronym # Samples

Visual Grounding of Anatomical Structures
Plane Identification

Fetal Orientation Assessment

Clinical View Conformity

Clinical Diagnosis

VG

PI
FO
vC
CDh

54,601
20,131
15,113
1,684
1,669
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