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Abstract

When training deep neural networks, models can adopt various heuristics, leading
to different out-of-distribution (OOD) behaviors. Previous works have attributed
these preferences to choices of model architecture or training objective, but the role
of training data is less explored. Here, we examine how data composition impacts
a model’s generalization behavior and accounts for inconsistent training outcomes
across random seeds. Using the question formation task as a case study, we show
that hierarchical rule — the correct rule in English grammar — is induced by
grammatically complex sequences with center embedding structures, whereas the
linear rule — the surface level heuristic — is learned from simpler right branching
sequences. Additionally, we show that models stabilize their OOD behavior in
training only when committing to a rule. When the data contains a mix of simple
and complex examples, potential rules compete, leading to unstable dynamics in
training runs that fail to commit. Our findings highlight how training data shapes
generalization patterns and how competition between data subsets can lead to
inconsistent training results.

1 Introduction
Deep neural networks trained to solve a specific task often find “shortcut” heuristics instead of the
intended comprehensive solution. While these heuristics fit well to the training data, they often lead
to different out-of-distribution (OOD) behaviors. In this work, we study the source of inductive
bias towards different generalization rules in language models, in particular the source of syntactic
structure. Recent work [1, 12, 13] uses cases studies in learning English grammar to show that in
cases where the training data is ambiguous between two heuristics—a linear rule and a hierarchical
rule—the language model favors the hierarchical rule. They further hypothesize that learning the
hierarchical rule allows the model to generalize to unseen sentences. However, these studies have not
adequately addressed two critical aspects: (1) the inconsistencies observed across different training
runs, and (2) the role of training data in shaping a model’s preference towards the hierarchical rule.
In this work, we use the question formation task to investigate how training data affects model’s
preference towards different heuristics and its inconsistency under random variation in seeds.

First, we demonstrate that inclusion of an auxiliary task in the training data —forming declaration
sentences— is necessary to induce any consistent rule preferences on OOD data. We then identify
the key data component in the auxiliary task, namely sentences with center embeddings, that drives a
model’s preference towards the hierarchical rule. While the above analysis suggests that different
data compositions can significantly influence a model’s bias towards hierarchical generalization, it
does not fully explain the inconsistent generalization behaviors observed across random seeds. By
examining training dynamics, we find that the training data composition determines the likelihood of
a model committing to a rule. Moreover, only runs that commit to a simple rule exhibit stable OOD
performance during training. Finally, models trained on a mix of hierarchical-inducing samples and
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Training on Different Partitions of the QF Dataset

Figure 1: Components of training data drive different generalization behaviors. Panel I: Center-
embedded sentences, appearing only in declaration copying task, induce hierarchical generalization.
Panel II&III: Partitioning declaration sentences by number of relative clauses. Panel IV: Sentences
with one relative clause can be further partitioned based on whether the clause modifies the subject
(center-embedded) or the object (right-branching). This additional evidence indicates that relative
clause alone is not sufficient to induce hierarchical generalization.

linear-inducing samples vary the most across random seeds. In summary, our findings demonstrate
that data plays a critical role in shaping model’s preference towards certain heuristics and in shaping
model’s OOD generalization behaviors.

2 Experimental Setup
2.1 Question Formation Task

Input: My unicorn does move the dogs that do wait. 
Output: Does my unicorn move the dogs that do wait? 

Input: My unicorn who doesn't sing does move.
Linear rule output: Doesn't my unicorn who sing does move?
Hierachical rule output: Does my unicorn who doesn't sing move?

Input: My unicorn who doesn't sing does move.
Output: My unicorn who doesn't sing does move.

Quest
(Ambiguous)

Decl

Task type

Quest
(Unambiguous)

Example

Input: My zebra behind the peacock smiled. 
Output: My zebra behind the peacock smiles. 

Input: My zebra behind the peacocks smiled. 
Linear rule output: My zebra behind the peacocks smile. 
Hierachical rule output: My zebra behind the peacocks smiles.

Inflect
(Ambiguous)

Present
(Unambiguous)

Tense 
Inflection

Figure 2: Details on the training data. Left: A table showing examples of question formation task,
and declaration copy task. Right: Breakdown of different tasks and declaration types in the dataset.

In the question formation (QF) task, a declarative sentence is transformed into a question (see
Figure 2) by moving the main auxiliary verb (such as “does” in “does move”) to the front. There are
two strategies for identifying which auxiliary to move: (1) a linear rule that moves the first auxiliary,
or (2) a hierarchical rule—the correct rule in English grammar—based on the sentence’s syntactic
structure. This syntactic structure links each word into a tree-like structure with specific dependency
relationships (e.g., subject, preposition, object), as shown in Figure 3. The model leverages this tree
representation to determine which auxiliary to move.

In Figure 2, the first example is considered ambiguous because both the hierarchical and linear rules
produce the correct outcome. In contrast, the second example is unambiguous because only the
hierarchical rule yields the correct result. The training data contains only ambiguous samples, while
the OOD generalization set includes only unambiguous samples. If a model has learned a hierarchical
representation of syntax, it should achieve 100% accuracy on both the in-distribution (ambiguous
questions) and OOD generalization (unambiguous questions) sets. Conversely, a model relying solely
on linear rules will score 0% on the OOD generalization set, but still score 100% accuracy on the
in-distribution set. In our experiments, we use the model’s performance on the OOD generalization
set as a metric for hierarchical generalization.

2.2 Model and Training
We use a decoder-only Transformer architecture with 12M parameters: 6 layers of 8 heads with a
512-dimensional embedding. All models are trained from scratch on a causal language modeling
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unicorn who doesn't wait doesMy

unicorn that doesn't smile.does entertainMy her tyrannosaurus unicorn who doesn't wait does entertainMy her tyrannosaurus that doesn't smile.

root

subj

det rcmod verb

root

subj verbdet obj rcmod

root

verb

subj

det rcmod obj rcmod

unicorn does entertainMy

root

subjdet verb

Right Branching

her tyrannosaurus. 

obj

entertain her tyrannosaurus. 

obj

Center Embedding

Figure 3: Sentence Examples. Left: Right-branching sentence examples. The linear progression of
the main phrase is not interrupted by the relative clause. Right: Center-embedded sentence examples.
When the relative clause modifies the subject, it interrupts the linear progression of the main clause.

objective using the Adam optimizer [10], a learning rate of 1e-4, and a linear decay schedule and
train for 300K steps. We run all experiments on the same 50 random seeds.

3 Data Characteristics Drive Generalization Behaviors
3.1 Center embeddings induce hierarchical generalization
Center embeddings Center embedding occurs when a clause — often acting as a modifier — is
placed within another clause or phrase. In Figure 3 left, we illustrate two center-embedded sentences
examples. In those two sentences, the embedded clause interrupts the syntactic dependencies between
sentence components (for example, the subject-verb-object relationship). Right branching is the
opposite of center-embedding. Right branching does not exclude the use of modifying clauses —
they can be appended at the end of main clause without interrupting the linear progression of the
main clause. We illustrate two right-branching sentences in Figure 3 right. Linguists have studied the
types of data required for humans to acquire grammatical rules, and center-embedding is central to
the study. According to Chomsky’s generative grammar framework [4], center-embedded clauses
give rise to the hierarchical, tree-like structures of syntax. Wexler and Culicover [28] further posits
that all English syntactic rules can be learned using “degree 2" data: namely, sentences containing no
more than one embedded clause nested within another.

We now aim to understand whether the same type of data can induce a LM to acquire the hierarchical
grammar rule. To correctly predict the distribution of next tokens, LMs also need to keep track of
the dependency between different sentence components. When modeling right-branching sentences,
LMs can identify the dependency relationship by linear proximity. For example, in Figure 3, the
LM simply needs a linear bigram model to capture the the subject-auxiliary relationship. In contrast,
when modeling center-embedded sentences, the length and syntax of the relative clause can vary,
rendering the linear n-gram model inefficient for capturing the subject-verb dependency. For those
sentences, using a tree structure to model the subject-verb relationship is more compact and efficient.

A secondary task Specified in Section 2.1, the training data needs to be ambiguous between the
linear rule (i.e., move the first auxiliary) and the hierarchical rule (i.e., move the main auxiliary).
Center-embedded sentences do not fulfill the ambiguity requirement, and cannot appear in question
formation training samples. To ensure that the model is exposed to a variety of sentence types during
training, McCoy et al. [13] introduces a secondary task during training: declaration copying. Similar
to the question formation, the declaration-copying training sample starts with a declarative sentence,
but instead of transforming it into a question, the model simply needs to repeat it. Since the ambiguity
requirement does not impose restrictions on the declaration-copying task, center-embedded sentences
appear in this secondary task. See Appendix B for concrete examples of both tasks.

Experiment results We now train models on three subsets of original training data by varying
components of the declaration-copying task. In the first one, we remove the declaration-copying
task altogether. In the second one, we only keep center-embedded sentences. In the third subset, we
only keep right-branching sentences. For all three subsets, the question formation samples remain
unchanged. Training on all three subsets, the in-distribution validation accuracy reaches 100%.
On the other hand, the OOD generalization performances, shown in Figure 1 (I), exhibit distinct
behaviors. By removing the declaration-copying task altogether, none of the 50 training runs reaches
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a OOD generalization accuracy higher than 75%, indicating the declaration-copying task is essential
to induce the hierarchical rule. Furthermore, by only training on center-embedded sentences in the
declaration-copying task, the model has a strong tendency towards the hierarchical rule. In contrast,
by only training on right-branching sentences in the declaration-copying task, the model again fails
to generalize hieratically. This evidence suggests that center-embedded sentence induce a model’s
preference towards the hierarchical rule.

3.2 Center embedding is the necessary requirement
An alternative hypothesis Center embedding imposes two restrictions on the syntax structure: first,
the sentence must have a relative clause and second, the relative clause must modify the subject token.
On the other hand, right-branching sentences may or may not have a relative clause. Experiments
from the previous section indicates that center-embedded sentences can induce the model to learn the
hierarchical rule and generalize OOD. However, we have not eliminated the possibilities that other
data partitions can also induce hierarchical generalization. Specifically, we have not imposed control
on number of relative clauses in the previous experiment.

We now partition declarations based on the number of relative clauses present. We train models on
three datasets, each retains only declarations with a specific number of relative clauses. We also
conduct experiments on subsets where we mix two of the three data partitions while excluding the
third. Results are shown in Figure 1 (II and III). Models trained on declarations without any relative
clauses fail to generalize hierarchically, and those trained sentences with two relative clauses are
likely to succeed in doing so. This observation give rise to an alternative hypothesis: the number
of relative clauses determines sentence complexity and complex sentence (ones with more relative
clauses) induces the model to learn the tree-like representation of syntax.

Experiment results However, experiments on declaration sentences with one relative clause will
show that this alternative hypothesis is in fact incorrect. With only one relative clause present, the
clause either modifies the subject or the object. The ones modifying the subject are center-embedded
while the other modifying the object are right-branching. We keep samples with one relative clause in
declaration-copying task, and further partition them based on center-embedding / right-branching. The
distinct generalization behaviors, shown in Figure 1 (IV), suggest that when controlling the number
of relative clauses, only center-embedded sentences induces the hierarchical rule. For sentences
with two relative clause, both the subject and object have a relative clause modifier, therefore, they
are always center-embedded. This explains why the number of relative clauses may seem to be an
alternative data partition to induce different generalization behaviors.

4 Stability Comes from Commitment to a Simple Rule
4.1 Instability during training
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Figure 4: Total variation measures intra-
run instability.

A model’s OOD behavior can be highly unstable during
training. Instead of evolving monotonically, generalization
accuracy often exhibits large swings. To quantify this
intra-run instability, we use the total variation as a metric.
Specifically, we checkpoint the model every 2K steps and
measure the generalization accuracy at each checkpoint,
denoting as Acci. The total variation is defined as:

Total Variation (TV) = Avgi (|Acci −Acci−1|)

In Figure 4, we visualize the OOD behavior of two runs
during training and their total variation. Both trained on
the original data, the more stable run (blue line) reaches
100% generalization accuracy within 50K steps and main-
tains it. In contrast, the less stable run (orange line) occas-
tionaly reaches 100% accuracy but fluctuates, eventually
converging around 65%.

4.2 Training stability ties to rule commitment
Our next step is to investigate whether all models with stable (i.e., small TV) OOD behavior during
training commit to the hierarchical rule. We validate this hypothesis by analyzing runs trained on

4



0 10 20
0.0

0.5

1.0

Ge
n 

Ac
c

linear:
0%

0 10 20
linear:

10%
0 10 20

linear:
50%

0 10 20
linear:

95%
0 10 20

linear:
99%

Total Variation

Total variation v.s. Generalization Accuray on 5 QF Data Compositions

Figure 5: Total Variation v.s. final generalization accuracy. OOD training stability ties to
committing to a simple rule, and mixing declaration types leads to variations in rule learning across
random seeds. “Linear" denotes the proportion of linear-inducing declarations in the data.

different data compositions. Each dataset contains a different proportion of hierarchical-inducing and
linear-inducing declarations (further details on the dataset in Appendix C). In Figure 5, we visualize
the relationship between a training run’s total variation and its final generalization accuracy.

Across 5 datasets, we observe two distinct regimes of OOD behavior. For runs with a total variation
below 5, the final generalization accuracy is either 100% or 0%. Furthermore, data composition (i.e.,
proportions of hierarchical/linear inducing data) determines which rule is favored by stable runs.
Interestingly, in mixed data scenarios (e.g., linear=10% case), the final generalization accuracy of
stable runs shows a bimodal distribution, clustering around 100% or 0%. This bimodality suggests
that training stability is tied to committing to a simple rule, even when the data is “ambiguous"
between rules. In Appendix D, we visualize sample runs with different total variation values.
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Figure 6: Competition between subsets of data
drives training instability.

In addition to different rule preference, we also
observe different distributions of stable and un-
stable runs across 5 datasets. We now exam-
ine how data composition not only drives rule
preferences but also also impact training insta-
bility. In Figure 6, we visualize the distribution
of total variation across different seeds to assess
whether heterogeneous data mixes lead to train-
ing instabilities. When the data composition is
dominated by either hierarchical-inducing (e.g.,
linear=0%) or linear-inducing (e.g., linear=99%)
data, we observe more stable runs, signified by
small total variations. This suggests that data ho-
mogeneity results in both training stability and
consistency across random seeds. On the other
hand, as the data becomes more heterogeneous
(e.g., linear=50%), a higher proportion of runs exhibit unstable OOD behavior. This indicates that
mixed data types contribute to training instabilities and inconsistent OOD behavior at convergence.

5 Conclusion
We have shown how training data — at least in a specific setting — shapes the OOD generalization
patterns and how competition between different components in the data lead to training inconsistency.
In fact, both during-training and at-convergence random variations on OOD data have been observed
in the wild [29]. For future work, it would be interesting to extend our analysis that links data,
simplicity bias and training inconsistency to these tasks. We have also shown that for English
grammatical rules, specific structures identified in linguistic studies play a significant role in shaping
an LM’s inductive bias toward hierarchical grammar rules. For future work, it would be interesting
to extend this analysis to other syntactic structures, examining how diverse grammatical patterns
influence LMs’ language acquisition behaviors.
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A Related Work
A.1 Syntax and Hierarchical Generalization
McCoy et al. [13] first used the question formation task to study hierarchical generalization in
neural networks, showing that RNNs trained with a seq-to-seq objective exhibit limited hierarchical
generalization. However, adding attention mechanisms improved performance on the generalization
set. Later, McCoy et al. [12] found that tree-structured architectures consistently induce hierarchical
generalization. Petty and Frank [24] and Mueller et al. [18] further investigated inductive biases and
concluded that, like RNNs, transformers tend to generalize linearly. This view was challenged by
Murty et al. [19], who attributed the failure of prior attempts to insufficient training, demonstrating that
decoder-only transformers can generalize hierarchically, but only after in-distribution performance
has plateaued. Expanding on this, Ahuja et al. [1] showed that hierarchical generalization is achieved
only with models trained on a language modeling objective.

While the previous work focused on models trained from scratch, another line of research examined
the inductive bias of pre-trained models. Mueller and Linzen [16] and Mueller et al. [17] pre-trained
transformers on text corpora such as Wikipedia and CHILDES [11] before fine-tuning them on the
question formation task. They found that exposure to large amounts of natural language data enables
transformers to generalize hierarchically.

Instead of using the question formation task as a probe, Hewitt and Manning [9] and Murty et al.
[20] directly interpreted model’s internal representation to understand whether transformers constrain
their computations to to follow tree-structure patterns. Hewitt and Manning [9] demonstrated that
the syntax tress are embedded in model’s representation space. Similarly, Murty et al. [20] projects
transformers into a tree-structured network, and showed that transformers become more tree-like over
the course of training on language data.

Previous work primarily attributed the source of inductive bias toward hierarchical rule to model
architecture, whereas our study highlights two overlooked aspects: training inconsistency and the
impact of data. McCoy et al. [13] and Ahuja et al. [1] observed inconsistencies across training runs,
but the underlying causes remain unexplored. While McCoy et al. [13] emphasized the importance of
declarative sentences, their conclusions were based on RNNs trained with a seq-to-seq objective.

A.2 Random Variation
Specific training choices, such as hyperparameters, are crucial to model outcomes. However, even
when controlling for these factors, training machine learning models remains inherently stochas-
tic—models can be sensitive to random initialization and the order of training examples. D’Amour
et al. [6], Naik et al. [21], and Zhou et al. [29] reported significant performance differences across
model checkpoints on various analysis and stress test sets. Zhou et al. [29] further found that insta-
bility extends throughout the training curve, not just in final outcomes. To investigate the source
of this inconsistency, Dodge et al. [7] compared the effects of weight initialization and data order,
concluding that both factors contribute equally to variations in out-of-sample performance.

Similarly, Sellam et al. [27] found that repeating the pre-training process on BERT models can result
in significantly different performances on downstream tasks. To promote more robust experimental
testing, they introduced a set of 25 BERT-BASE checkpoints to ensure that experimental conclusions
are not influenced by artifacts, such as specific instances of the model. In this work, we also
observe training inconsistencies across runs on OOD data, both during training and at convergence.
Unlike prior studies that focus on implications of random variations on experimental design, we
study the source of training inconsistencies and link these inconsistencies to simplicity bias and the
characteristics of the training data.

A.3 Simplicity Bias
Models often favor simpler functions early in training, a phenomenon known as simplicity bias
[8], which is also common in LMs. Choshen et al. [5] found that early LMs behave like n-gram
models, and Saphra and Lopez [26] observed that early LMs learn simplified versions of the language
modeling task. McCoy et al. [14] showed that even fully trained models can rely on simple heuristics,
like lexical overlap, to perform well on Natural Languge Inference (NLI) tasks. Chen et al. [3]
further explored the connection between training dynamics and simplicity bias, showing that simpler
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Figure 7: Hierarchical generalization is sensitive to data compositions. Datasets are standardized
to contain 50K question formation samples and 50K declaration samples. For declaration samples,
we experiment mixing different proportions of hierarchical-inducting declarations (depth 3 and depth
2 with mixed-branching) and linear-inducing declarations (depth 1).

functions learned early on can continue to influence fully trained models, and mitigating this bias can
have long-term effects on training outcomes.

Phase transitions have been identified as markers of shifts from simplistic heuristics to more complex
model behavior, often triggered by the amount of training data or model size. In language models,
Olsson et al. [23] showed that the emergence of induction heads in autoregressive models is linked to
handling longer context sizes and in-context learning. Similar phase transitions have been studied in
non-language domains, such as algorithmic tasks [15, 25] and arithmetic tasks [2, 22].

In the context of hierarchical generalization, Ahuja et al. [1] used a Bayesian approach to analyze
the simplicity of hierarchical versus linear rules in modeling English syntax. They argued that
transformers favor the hierarchical rule because it is simpler than the linear rule. However, their
model fails to explain (1) why learning the hierarchical rule is delayed (i.e., after learning the linear
rule) and (2) why hierarchical generalization is inconsistent across runs. In this work, we offer a
different perspective, showing that a model’s simplicity bias towards either rule is driven by the
characteristics of the training data.

B Training Data Samples
When we mention “declarations," we are referring to the declaration copying task, and “questions"
refer to the question formation task. Here are two examples randomly taken from the training data:

• Declaration Example: our zebra doesn’t applaud the unicorn . decl our zebra
doesn’t applaud the unicorn .

• Question Example: some unicorns do move . quest do some unicorns move ?

Both tasks begin with an input declarative sentence, followed by a task indicator token (decl or
quest), and end with the output. During training, the entire sequence is used in the caucal language
modeling objective.

C Sensitivity to Data Compositions
Data Composition Details We construct variations of the training data using the following proce-
dure. Each new dataset contains 50K questions (reused from the original data) and 50K declarations,
where we control the ratio between hierarchical-inducing and linear-inducing sentences. To generate
additional declarations, we follow the distribution of the original dataset by resampling words from
the vocabulary while preserving the syntactic structure. These datasets are used for the experiments
in Section 4.2.

Additional Experiments We also use these datasets to examine how different mix ratios affect the
model’s preference for hierarchical generalization. The median generalization accuracy, along with
error bars representing the 35th and 65th percentiles, is shown in Figure 7. Including as little as 1
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D Sample Training Runs
We visualize several training runs with different total variation values in Figure 8.
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Figure 8: Sample Runs with different total variation

E Details on Training Dynamics
In Figure 9, we visualize the training dynamics for 30 independent runs when trained on the original
data. Each run differs in both initialization and data order. These runs share a similar progression in
training loss, validation accuracy, and generalization accuracy up until moment when the training
loss converges. Pink line marks the median training steps when the model reaches 100% validation
(ID) accuracy, indicating linear rule is applied ID. Immediately after, all runs reach 0% on the
generalization set (brown line), indicating that the model strictly prefers linear rules on OOD data.
After that, models start to achieve non-trivial performance in generalization accuracy. Gray line marks
then median training steps when model reaches 100% for the first time on OOD data, indicating the
hierarchical rule is preferred. However, for many runs the generalization accuracy does not increase
monotonically. Instead, we observe massive swings in generalization accuracy during this training
period as well as large inconsistency across different seeds.
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Figure 9: Training Dynamics on original data. After a training momen when models apply linear
rule on OOD data (brown line), we observe large training inconsistency on OOD data both within a
single run and across different runs.

10


	Introduction
	Experimental Setup
	Question Formation Task
	Model and Training

	Data Characteristics Drive Generalization Behaviors
	Center embeddings induce hierarchical generalization
	Center embedding is the necessary requirement

	Stability Comes from Commitment to a Simple Rule 
	Instability during training
	Training stability ties to rule commitment

	Conclusion
	Related Work
	Syntax and Hierarchical Generalization
	Random Variation
	Simplicity Bias

	Training Data Samples
	Sensitivity to Data Compositions
	Sample Training Runs
	Details on Training Dynamics

