Robotic Manipulation by Imitating Generated Videos
Without Physical Demonstrations
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Abstract— This work introduces Robots Imitating Generated
Videos (RIGVid), a system that enables robots to perform
complex manipulation tasks—such as pouring, wiping, and
mixing—purely by imitating Al-generated videos, without re-
quiring any physical demonstrations or robot-specific training.
Given a language command and an initial scene image, a video
diffusion model generates potential demonstration videos, and
a vision-language model (VLM) automatically filters out results
that do not follow the command. A 6D pose tracker then
extracts object trajectories from the video, and the trajectories
are retargeted to the robot in an embodiment-agnostic fashion.
Through extensive real-world evaluations, we show that filtered
generated videos are as effective as real demonstrations, and
that performance improves with generation quality. We also
show that relying on generated videos outperforms more
compact alternatives such as keypoint prediction using VLMs,
and that strong 6D pose tracking outperforms other ways to
extract trajectories, such as dense feature point tracking. These
findings suggest that videos produced by a state-of-the-art off-
the-shelf model can offer an effective source of supervision for
robotic manipulation.

I. INTRODUCTION

Videos offer a rich and expressive source of training
data for robotic manipulation, and numerous methods have
successfully leveraged them for supervision. Such methods
typically fall into two categories: (1) Learning from publicly
available large-scale datasets of real-world videos [1-6],
and (2) Imitation of specific demonstrations captured under
controlled conditions that closely match the execution set-
ting [7-12]. Unfortunately, both of these strategies come with
challenges that limit broad deployment. Large-scale video
datasets often introduce domain gaps [3, 13, 14] and require
adaptation to specific robot embodiments and tasks [1, 15].
On the other hand, video-based imitation involves laborious
data collection that must ensure close alignment in view-
points, morphologies, and interaction modalities [6,7, 16,
17].

Motivated by recent advances in video generation, we
explore a potentially new paradigm: can a single generated
video, synthesized to exactly match our input environment
and task description, be used as the sole source of supervision
for robotic manipulation? Recently released models like
SORA [18] and Kling [19] have demonstrated impressive
capabilities in producing realistic-seeming videos from lan-
guage and image inputs. At the same time, it has been shown
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that such videos can suffer from distorted object geome-
tries [20,21], physically implausible interactions [22,23],
and unrealistic scene dynamics [24, 25]. Consequently, while
the idea of synthesizing video demonstrations is enticing, its
usefulness in the robotics setting is yet to be convincingly
established. Prior work incorporating video generation into
robotics typically relies on additional supervision, such as
task-specific training [26] or fine-tuning on offline robot
trajectory datasets [27,28]. By contrast, we ask whether a
robot can perform real-world manipulation tasks solely by
imitating generated videos—without any additional supervi-
sion or task-specific training.

To this end, we introduce Robots Imitating Generated
Videos (RIGVid), a framework that connects video genera-
tion models to real-world robotic execution. Fig. [T] gives an
oveview of the method. Given an input RGB-D image of the
scene and a free-form language command (e.g., “pour water
on the plant”), we use a state-of-the-art video diffusion model
to generate a candidate video of the task being performed.
The generated video is not guaranteed to accurately follow
the language command — but we show that a VLM can
be used to automatically filter out unsuccessful generations
with high accuracy. Next, we estimate per-frame depth on
the video, segment the manipulated object, and track its 6D
object pose trajectory across the frames using the Founda-
tionPose tracker [29]. While this tracker relies on a pre-
computed object mesh, preliminary experiments (App.
indicate that our method is compatible with mesh-free ap-
proaches, though their inference speed is currently infeasible
for real-time deployment. Finally, the extracted 6D object
pose trajectory is retargeted to the robot for execution. The
retargeting process only requires the transformation between
the end-effector and the object, so it can be easily applied
across platforms. During deployment, RIGVid performs real-
time object tracking and dynamically adjusts the robot’s
actions to handle disturbances and execution-time variations,
promoting robust and adaptive behavior.

We evaluate RIGVid on four real-world manipulation
tasks: pouring water, lifting a lid, placing a spatula on a pan,
and sweeping trash. These tasks span diverse manipulation
challenges, including a range of depth variation (minimal in
pouring vs. significant in lifting), thin and partially occluded
objects (spatula, sweeping brush), and diverse object geome-
tries and actions. Our results show that, when paired with
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Fig. 1: RIGVid overview. Given an initial scene image and depth, we generate a video conditioned on a language command. A VLM-
based automatic filtering step (not shown) can be used to reject videos that fail to follow the prompt. A monocular depth estimator recovers
depth for each frame of the generated video, and these depth maps are combined with the corresponding RGB frames to produce 6D
Object Pose Trajectory. After grasping, the trajectory is retargeted to the robot for execution.

our filtering mechanism, generated videos are as effective as
human videos for visual imitation, enabling robots to act
entirely from synthetic supervision. Moreover, the perfor-
mance of RIGVid improves with video quality, suggesting a
favorable trend where advances in generative models directly
translate to stronger manipulation capabilities.

The main downside of video generation is its substantial
computational cost. Also, on a representational level, one
may wonder whether predicting video pixels is wasteful,
and whether we should instead predict a more compact and
minimal representation that can be efficiently translated to an
executable trajectory. One example of this philosophy is the
recent ReKep method [30], which uses a VLM to generate
relational keypoint constraints from a task description and
then solves for a 6D trajectory given these constraints. We
compare our approach to ReKep and demonstrate that video
generation does, in fact, perform substantially better than the
generation of a more sparse and high-level representation.
Next, given a generated video, one may ask whether 6D
object-level tracking is necessary, given its up-front require-
ment of an object mesh. To address this question, we com-
pare against a broad range of alternative tracking approaches
— sparse point tracking [27], dense optical flow [31], 3D
feature fields [32], and generated goal supervision [28] —
and show consistently higher success rates.

In summary, our key contributions are: (1) We propose
a framework that enables robots to perform open-world
manipulation tasks without any real-world demonstrations —
only generated videos. (2) We show high-quality generated
videos perform on par with real videos for robotic imitation,
establishing that synthetic data can serve as an effective
substitute for real data in this domain. (3) We demonstrate
that our combination of video generation and 6D trajectory
extraction outperforms a wide variety of competing state-of-
the-art methods based on VLMs, point tracking, optical flow,
feature fields, and generated-goal supervision.

II. RELATED WORK

Direct Imitation from Videos. This seeks to match visual
states in demonstration videos to those of the learner, without
requiring expert action labels or robot state information [6—
9,16,32-41]. While effective, this approach demands paired
demonstrations in the same setting. A common strategy is
to leverage visual correspondences—tracks [27] or optical

flow [42-44]—to infer object trajectories. Bharadhwaj [27]
predicts object tracks and uses PnP to recover poses for
closed-loop task execution. Dense descriptor learning [45—
47] has proven powerful for handling variations in object
geometry and appearance. Kerr [32] recover object part
trajectories from monocular videos using feature fields. Cru-
cially, these methods rely on demonstrations collected under
conditions closely matching the target task. In contrast, our
method removes this requirement by generating task and
scene-conditioned videos.

Imitation from Offline Videos. This paradigm alleviates the
need for paired demonstrations by leveraging offline video
data, and has attracted significant attention [5,9, 31, 38,48—
60]. Many works focus on learning affordance models from
internet-scale video datasets [1,5,58-69]. Here, affordances
are defined as scene-centric predictions of where and how an
agent can interact, often captured as contact-point heatmaps
and short motion trajectories that can be translated into
robot actions. For example, Bahl [1] learn from large-scale
human videos to output dense contact maps and trajectory
waypoints, which downstream imitation, exploration, or re-
inforcement modules can transform into executable robot
motions. However, these methods suffer from domain gap
between training videos and task-specific environments, and
require additional mechanisms to obtain task-conditioned
affordances. In contrast, our method does not explicitly
predict affordances, but instead relies on generated, task- and
scene-specific generated videos for imitation.

Video Generation for Robotics. Video generation has
emerged as a promising avenue for robotics [26,28,70—
72,72-75]. A common limitation of these is their reliance on
robot data, either to train the video generation model [72,76],
or to train policies [28], or both [26,70,71]. Bharadhwaj
[28] leverages tracks on generated videos to condition policy
learning. Albaba [74] uses generated videos to compute
rewards for RL training. The most closely related work is
Liang [72], which executes robotic tasks by tracking tools
attached to the robot’s end effector. While effective, their
method relies on 1,822 human-collected robot demonstra-
tions for four tasks, and is confined to tasks executable
only by tools. In contrast, our approach requires no such
data collection. Instead of tools, our method tracks objects,
enabling a significantly broader range of manipulation tasks
without using any robot data.



6D Pose Estimation and Tracking. Instance-level object
pose tracking methods fall into two main categories: model-
based and model-free. Model-based approaches [77-84] re-
quire a 3D CAD model and typically estimate pose by
constructing 2D-3D correspondences and solving the PnP
problem [80, 85-88]. In contrast, model-free methods [89—
95] rely on multiple reference images instead of an explicit
3D mesh. Recent advances in vision foundation models and
large datasets have enabled zero-shot methods [81, 84,96—
98], which extend to unseen objects and categories but still
lag behind instance-level methods in performance. We em-
ploy FoundationPose [29], a versatile instance-level tracking
method that supports model-based pose tracking. Notably,
it does not require any instance-specific fine-tuning. Our
choice is guided by its state-of-the-art performance and real-
time execution speed, both of which are crucial for ensuring
robustness against disturbances during execution.

Motion Retargeting for Object Manipulation. Early work
in learning from demonstration established the foundation for
object-centric motion retargeting [99-104]. More recently,
deep learning-based retargeting methods have emerged [105—
107], with some incorporating object-centric representations
to bridge the gap between demonstrator and robot [11,32,
108]. Many approaches have applied retargeting to humanoid
robots [109-113]. Other works have extended these tech-
niques to dexterous manipulation [114, 115]. Like most prior
work, we assume a fixed transformation between the end-
effector and the object. While motion retargeting has tradi-
tionally relied on human demonstrations, RIGVid eliminates
this dependency by leveraging generated videos.

I1I. OUR METHOD

An overview of our method is shown in Fig. [I] It takes
as inputs the initial scene RGB image, its corresponding
depth map, and a free-form human command. Our goal is to
predict the robot’s 6DoF end-effector trajectory. This section
describes the key steps of RIGVid: (1) Generate a scene and
task-conditioned video and predict its corresponding depth
using a monocular depth estimator (Sec. [[lI-A); (2) Compute
6D pose rollout via an object pose tracker (Sec. [[II-B);
(3) Grasp the object and retarget the pose trajectory to the
robot, and execute the resulting trajectory (Sec. [[II-C).

A. Generating Videos and Corresponding Depth

Since the generated videos may not necessarily follow the
language command or have other issues, we need an auto-
matic filtering mechanism to discard inaccurate generations.
We found that we can do the filtering reliably by prompting
a VLM - specifically, GPT-40 [116] — to assess whether
the generated video depicts a successful execution of the
command. As image input to GPT-40, we sample four evenly
spaced frames in the video and concatenate them vertically
to create a video summary. The VLM determines whether the
action described in the command is performed by a visible
hand. App. [VII] provides the full prompt used for filtering
and examples of video summaries with their corresponding
VLM responses. If the response is negative, we regenerate

the video and repeat the process for up to five attempts. If
all attempts fail, we default to the final attempt.

As input to the downstream tracking step, we also need
to predict the depth for the generated video, using the
predictor from Ke [117]. One complication is that the
estimated depth values are not grounded in real-world units,
but subject to a scale and shift ambiguity [118]. Consistent
with prior works adopting depth estimators in vision-based
robotics [119,120], we compute an affine scale-and-shift
transformation, aligning the predicted depth in the first frame
with the initial real depth map around the active object
(discussed in Sec. [[II-B). This transformation is then applied
to the entire predicted video to resolve the ambiguity.

B. Identifying Active Object Mask and 6D Object Pose
Trajectory

To extract 6D pose rollout, we first identify the active
object—the one being manipulated in the generated video.
A binary mask for this object in the initial RGB image is
essential for object tracking and determining which object
to grasp. Given the initial image and the task command,
we prompt GPT-4o0 to identify the object most likely to be
manipulated. We then ground the predicted object category
into a bounding box using Grounding DINO [121], and refine
this into a segmentation mask using SAM-2 [122].

Once the active object is localized by the mask, we track it
across the generated video using the scaled predicted depth.
This yields the 6D pose rollout. Tracking objects in videos is
arich area of research, and we experimented with several 6D
pose trackers [29,81, 123]. For real-world deployment, we
found FoundationPose [29] to perform the best. It requires an
object mesh, which we pre-compute using BundleSDF [123].
For this, we record a short RGBD video where the object is
held and rotated in front of the camera to capture all sides.
While straightforward, this process constrains our method
to settings where a mesh can be precomputed. Nonetheless,
as shown in App. our method is also compatible with
mesh-free approaches—BundleSDF can jointly reconstruct
and track the object—but current inference speeds make
these alternatives infeasible for real-time use. To ensure
stable and realistic motion during execution, we apply an
averaging filter to smooth abrupt pose changes, particularly
in rotation. Additional details on this smoothing step are

provided in App.

C. Object to Robot Motion Retargeting

o e e
Fig. 2: Re-targeting RIGVid to a robot trajectory. Assuming a
fixed transformation between the end-effector and the object after
grasping, the 6D Object Pose Trajectory (orange arrow) is re-
targeted to the robot (blue arrow). This formulation is embodiment
agnostic and can be transferred to a different robot.



Once the object trajectory is obtained, we first grasp the
object. We use an off-the-shelf grasper, AnyGrasp [124],
to identify and execute the highest-scoring grasp within
a defined boundary around the active object mask. After
grasping, we retarget its trajectory to the robot’s end-effector.
Since the object remains firmly grasped, we assume a fixed
transformation between the robot’s end-effector and the ob-
ject. This transformation is obtained by composing two rigid-
body transforms: (1) the pose of the object relative to the
gripper at the moment it is grasped and (2) the offset between
the gripper and the robot’s end-effector. By combining these
two components, we obtain a single transformation from the
end-effector to the object.

The corresponding end-effector trajectory is obtained by
applying the fixed end-effector-to-object transformation to
the object’s pose along the entire trajectory. This formulation
ensures that the retargeted 6D pose rollout follows the
object’s motion while maintaining a stable grasp. These are
executed on the physical robot, enabling it to reproduce the
object’s movement as observed in the generated video. A
key strength of this approach is that it is robot-agnostic.
Specifically, to accommodate a different robot or gripper,
only the end-effector to the object transformation needs to
be updated to reflect the new end-effector configuration.

Robot backtracks

Successful execution

Fig. 3: RIGVid is robust to perturbations. A human pushes the
robot during execution (image 1), causing the object to deviate from
the planned trajectory. When the deviation is detected (image 2), the
robot backtracks to the last successfully executed trajectory point
(image 3) and then resumes the planned motion (image 4).

D. Closed Loop Execution

A core strength of our approach is its ability to operate
in a closed-loop manner, enabling robust execution despite
disturbances or unexpected changes during task execution.
During deployment, the system continuously tracks the ob-
ject’s 6D pose in real time using FoundationPose to update
the robot’s end-effector trajectory as the task progresses.
This feedback allows the robot to dynamically adjust its
motions: if the object deviates from the planned trajectory
due to external perturbations, such as a human pushing
the robot or a slip after grasping, the system detects the
discrepancy by comparing the current object pose to the
precomputed trajectory. If the detected deviation exceeds a
threshold of 3 cm in position or 20 degrees in orientation,
the robot backtracks to the last successfully executed tra-
jectory point and resumes execution from there (Fig. [3).

This recovery mechanism enables RIGVid to maintain stable
task execution, realigning and successfully completing the
manipulation task despite perturbations. Additional examples
of robustness to perturbations are provided in App.

IV. EXPERIMENTS

This section presents our experimental evaluation. We
describe the robot setup, manipulation tasks, and evaluation
protocol (Sec. [[V-A). Then assess the impact of video gener-
ation models and filtering strategies on downstream robotic
performance (Sec. [IV-B). Next, we compare RIGVid to
SOTA VLM-based trajectory prediction method that allows
zero-shot execution (Sec. [[V-C), and to alternative tracking
approaches for trajectory extraction (Sec. [V-D). Finally, we
test generalization across embodiments, extensions to new
tasks, and robustness to real-world disturbances (Sec. [[V-E).

A. Robot Setup, Tasks, and Evaluation

We conduct experiments on an XArm7 robot arm with
a stationary Orbbec Femto Bolt camera, positioned next
to the robot to capture RGBD observations. We evaluate
our method on four everyday manipulation tasks, which are
illustrated in Fig. @] These span a diverse range of robotic
challenges, and their descriptions are as follows:

1) Pouring water requires the robot to position and tilt
a watering can above a plant. While the depth of the
can relative to the camera remains largely constant,
successful execution demands a smooth trajectory span-
ning the pick-up, transport, and pouring phases. A trial
is considered successful if the watering can’s spout is
positioned above the plant at the end of the execution.

2) Lifting a lid requires the robot to lift a pot lid. Unlike
pouring, where the camera is viewing the scene from
the side, the camera here is looking down towards the
pot. As a result, this task involves significant variation
in object depth, as the lid moves closer to the camera
during execution. Success is achieved if the lid is no
longer in contact with the pot at the end of the trial.

3) Placing a spatula on a pan requires the robot to place
the head of a spatula into a pan. The spatula has a thin,
elongated geometry and is often partially occluded dur-
ing manipulation, which presents a challenge for object
tracking, particularly for non-mesh-based approaches.
The task is considered successful if the spatula’s head
is in the pan at the end of execution.

4) Sweeping trash requires the robot to sweep trash into
a dustpan. This task is especially challenging as it
combines the need for precise positioning to align the
head of the sweeping brush with the trash, along with
all the challenges encountered from the placing task. A
trial is successful if the trash is touching the base of the
dustpan at the end of the execution.

Task success is determined via human judgment based on
the above criteria, though the procedure could be readily
automated with a VLM. The initial setup configuration is
fixed across trials of the same task, and each trial has a



Pour water on the plant

Fig. 4: Evaluation tasks. We evaluate RIGVid on everyday manipulation tasks of varying difficulty.

Lift lid of the pot

Kling V1.5

Place spatula on the pan Sweep trash onto the dustpan

Kling v1.5 (middle) does not fully follow the prompt (water not poured over the plant) and exhibits physically implausible behaviors
(water pouring out of the top of the kettle but not the spout). Kling v1.6 (bottom) produces the most consistent and realistic result.

different generated video. All baselines use the same videos
for consistent comparison and reporting.

B. Quality and Filtering of Generated Videos

As discussed in Sec. [[lI-A] we experimented with Sora,
Kling v1.5, and Kling v1.6 for video generation. We
also compared different video filtering strategies. Next, we
present our key empirical findings.

How do different video generation models compare for
robotic imitation? Sora is known for creating visually im-
pressive and cinematic videos. Unfortunately, these videos
often prioritize aesthetics over following the human com-
mand. As seen in the top row of Fig. 5] Sora frequently
alters the camera viewpoint, changes object positions, or
even swaps out objects mid-sequence. This lack of scene and
object consistency makes Sora poorly suited for imitation.
Kling v1.5 places more emphasis on following language
instructions, generally preserves the original scene, and cor-
rectly depicts the target object. Nonetheless, it is still prone
to physically implausible behaviors and command following
failures. In the second row of Fig. [5] the teapot is not posi-
tioned over the plant and the water pours out from the top,
not the spout (in other failure cases, nothing happens in the
video, and the command is not even attempted). By contrast,
Kling v1.6 (bottom row of Fig. ) has greatly improved
command following and physical plausibility, proving to be
the most reliable video generator for us. More examples of
generated videos are shown in App. Fig. 21]

What are the filtering statistics for different video genera-
tion models? Confirming the trends described above, Fig. [6]
reports the pass rates of each model across our four tasks
for the GPT-4o filter described in Sec. [II=Al Sora fails all
tasks 100% of the time. Kling v1.5 does better, successfully
passing pouring 52.6% of the time, lifting 27.7%, placing
4%, and sweeping 2%. Kling V1.6 shows a substantial
improvement across tasks, passing pouring 83%, lifting 66%,
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placing 55%, and sweeping 45% of the time. We noticed that,
particularly for the placing and sweeping tasks, even Kling
V1.6 frequently generated videos in which the command was
not followed. In many cases, the video remained static, and
no action was performed.

How accurate is VLM-based video filtering, and are there
any simpler alternatives? In Tab. [l we report Pearson
correlation coefficients between filtering metrics and human
judgments of generation correctness. Our VLM-based filter-
ing achieves strong agreement with human ratings across all
tasks, with high correlation values. Most errors made by the
VLM-based filter are false negatives—occasionally discard-
ing usable videos, but almost never passing an incorrect one.
We also explore the most relevant metrics for our case from a
recent benchmark suite for evaluating video generation qual-
ity and instruction following, VBench++ [125]: (i) video-text
consistency measuring the alignment between the command
and the generated video [126], and (ii) image-to-video (I2V)
subject consistency which evaluates whether subjects present
in the input image persist throughout the video [127]. These
metrics correlate only weakly or inconsistently with task
success and are not reliable for filtering.

Does higher video quality lead to better robot perfor-
mance? To quantify this, Fig. [7] plots RIGVid ’s task success
across five video sources: unfiltered Sora, unfiltered Kling
vl.5, unfiltered Kling v1.6, filtered Kling v1.6, and real
human demonstration videos. For each source, we use 10



Filtering Metrics Pour Water  Lift Lid Place Spatula  Sweep Trash  Average
Video-text Consistency 0.06 0.47 0.70 0.11 0.34
12V Subject Consistency 0.35 0.58 -0.09 0.63 0.37
Querying GPT ol 0.91 0.91 0.91 0.66 0.84

TABLE I: Comparison of video filtering metrics. Pearson correlation coefficients measure each metric’s effectiveness in assessing
whether a generated video follows the language command. Querying GPT ol proves to be most effective.
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Fig. 7: RIGVid performance vs. video quality. The dashed lines separate performance on generated videos from real videos. Kling
V1.6 produces most reliable videos and leads to highest RIGVid success. Filtered videos perform on par with real ones. UF denotes

unfiltered and F denotes filtered.

videos per task. We observe a clear trend: as video quality
improves, so does success rate. Sora’s unfiltered videos lead
to 0% success rate, Kling v1.5 performs better, and Kling
v1.6 gives the highest results among all generated videos.
Filtering dramatically improves reliability: after discarding
failed generations using our automatic approach, success rate
with filtered Kling v1.6 videos improves from 80% to 100%
on pouring, from 60% to 80% on lifting, from 50% to 90%
on placing, and from 20% to 70% on sweeping.

Can generated videos replace real videos for imitation?
The results in Fig. indicate that, when using filtered
Kling v1.6 videos, RIGVid ’s performance is similar to that
achieved with real human demonstration videos. This finding
suggests that, at current model quality, generated videos are
already sufficient for visual imitation, substantially reducing
the need for manual data collection.

What causes failure of imitation given high-quality videos?
Aside from one case where the object slipped out of the grip-
per, all failures on filtered Kling v1.6 videos are attributed
to errors in monocular depth estimation. These errors result
in inaccurate 6D trajectories and lead to tracking failures.
Notably, similar depth estimation issues are also observed in
real videos, suggesting that the limitation lies in the depth
model itself. App. [XIV]provides a detailed analysis of failure
cases with qualitative examples.

C. RIGVid vs. VLM-Based Trajectory Prediction

Video generation is computationally expensive, prompting
the question of whether more efficient alternatives can en-
able robot manipulation without any demonstrations. VLMs
offer one potential alternative by predicting simplified task
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Fig. 8: RIGVid vs. ReKep Success Rates. RIGVid outperforms
SOTA VLM-based trajectory prediction method ReKep.

abstractions—goal states [128], constraints [30], or reward
functions [129]—without generating full visual sequences,
making them cheaper in computation and inference time.
We take the state-of-the-art ReKep [30] method as a rep-
resentative of this line of work, and compare against it
in Fig. [§] In our comparison, RIGVid achieves 85% vs.
ReKep’s 50% success over four tasks. App. illustrates
ReKep’s failures, which we attribute to inaccurate keypoint
predictions. This comparison suggests that, for our tasks and
experimental setup, VLM-generated abstractions are compact
and may lack the rich, necessary details for successful robot
execution. Thus, despite its higher cost, video generation
provides crucial supervision rather than being a wasteful
expense in these settings.

While this result highlights, for our tasks and setup, the
additional detail in generated videos supports more reliable
execution than the current VLM-based alternative, it does not
rule out the possibility that future or alternative VLM-based
approaches could close this gap. Our findings suggest that, at
present, video generation can provide richer supervision for
manipulation compared to this specific VLM-based method,
despite its higher computational cost.

D. Comparison to Alternative Trajectory Extraction Meth-
ods

Next, we investigate the best way to extract trajectory
information from videos for the purpose of visual imitation.
To this end, we adapted several competitive methods that use
different types of tracking tos imitate a video without any
demonstrations. For each method, we describe its inputs and
outputs, core approach, our modifications, and the motivation
for its inclusion (additional details can be found in App. [X).
Track2Act [27] (Tracks-Based). This method takes an
RGBD image of the initial scene, and a single goal image
that specifies the desired final configuration. Since we have
no other way to get the goal image, we set it to the last
frame of the generated video. Using only this pair of images,
Track2Act uses a learned model to predict a dense grid
of 2D point tracks, producing pixel-level correspondences
between the initial and goal image. These tracks are then
lifted to 3D using the depth map from the initial frame
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Fig. 9: Comparative evaluation of trajectory extraction methods. RIGVid consistently achieves higher success rates across all four
tasks; relative improvements are higher as tasks become harder (i.e., from left to right).

and converted into a sequence of 3D object poses via the
Perspective-n-Point (PnP) algorithm. We do not finetune
their track prediction network, and do not use their residual
policy. Track2Act is an attractive alternative as it uses a
dedicated track prediction network that operates solely on
the start and goal images, without requiring any intermediate
frames. However, its main drawback is that the learned track
prediction network may not generalize to all scenarios, as
evidenced by our experiments and qualitative results.

AVDC [31] (Flow-Based). Given an initial RGBD image,
task description, and active object mask, AVDC predicts
object motion by first generating a task-conditioned video
and then computing optical flow between frames. This optical
flow is used in an optimization process to reconstruct the
object trajectory. In our adaptation, we substitute AVDC’s
original video generator with our improved model, while
preserving all downstream processing. Unlike Track2Act,
AVDC leverages optical flow across the entire video, giving
it dense temporal correspondences at every pixel and thus
many more cues for tracking. It is attractive because it offers
a denser input for object tracking. Nevertheless, it is sensitive
to cumulative errors in flow estimation, which can degrade
the accuracy of the resulting object trajectories.

4D-DPM [32] (Feature Field-Based). This method takes a
3D Gaussian splatting field of the object and a real video
of the task, and outputs object trajectories over time. A
feature field, similar to NeRF representations, is a continuous
mapping from 3D space to high-dimensional feature vectors
that capture both geometry and appearance. By aligning
the feature field with individual video frames, the method
can estimate object trajectory across the video. To build
the field, 4D-DPM requires a separate video where the
object is captured from all sides. In our adaptation, since
4D-DPM expects a real human demonstration video, we
instead use a generated video as the task input video. We
modify this method from tracking object part poses to
tracking single objects. This approach is compelling because
it applies semantic, feature-based reasoning to track objects,
capturing entire object structure from video, without relying
on explicit correspondences. However, it tends to produce
unstable tracking in our experiments, limiting its practicality.

Gen2Act [28] (Generated Goal-Based). Gen2Act takes as
input an RGBD image of the scene and a task description,
and outputs robot actions predicted by a learned policy. In
the original formulation, the extracted tracks on the generated
video were used to supervise behaviour-cloning on a large

offline robotics dataset. In our adaptation, we do not use
any policy learning. Instead, we extract object tracks from
the generated video and directly estimate object poses from
these tracks using the initial depth image. This removes any
dependence on expert demonstration data or learned policies.
Gen2Act is notable for leveraging sparse correspondences
extracted from the generated video, enabling task-relevant
object motion to be tracked and retargeted without requiring
explicit actions. However, when large portions of the object
become occluded or undergo significant rotations, many of
the tracking points are lost, resulting in too few correspon-
dences to estimate object pose accurately and ultimately
causing the tracking to fail.

Fig. E] shows that RIGVid achieves a success rate of 85.0%,
compared to 67.5% for Gen2Act and considerably lower
rates for all other baselines. This margin grows with more
complex tasks. Methods such as Track2Act (7.5%), AVDC
(32.5%), and 4D-DPM (35.0%) rely on point tracks or optical
flow, but their performance remains limited—especially as
object rotations or occlusions are severe. Gen2Act, which
combines video generation with point-based tracking, closes
part of the gap but consistently struggles when large portions
of the object become untrackable. In contrast, RIGVid’s
use of a structured 6D object pose trajectory enables ro-
bust execution across all tasks, accounting for the 17.5%
improvement over Gen2Act. This advantage persists when
more powerful tracking models like CoTracker3 [130] are

used, as shown in App.

Looking at the task-wise breakdown in Fig. [0] RIGVid
maintains high success rates even as object depth varies
significantly (such as in the lifting task) or when the objects
are thin, small, or partially occluded (such as in placing
a spatula or sweeping trash). Other methods frequently
struggle in these settings, often failing to recover accurate
object trajectories when objects become partially hidden or
change distance rapidly. The advantage of RIGVid is most
pronounced on the most challenging tasks: for both spatula
placement and sweeping, RIGVid achieves success rates
20-25% above the next best baseline. These results suggest
that the structured 6D pose trajectory not only enables robust
tracking under depth changes and occlusion but also scales
to scenarios where correspondence methods fail.

Visualizing the outputs in Fig. [I0] for the same generated
video, we observe the intermediate predictions and resulting
robot executions produced by each method. For Track2Act,
the predicted tracks diverge from the true object path, leading



Track2Act (Tracks)

AVDC (Flow)

Robot Execution

Gen2Act (Generated Goal)

4D-DPM (Feature Field) RIGVid (6D Object Pose Traj)

Fig. 10: Analyzing intermediate visual representations. Only Gen2Act and our 6D Object Pose Trajectory can correctly track the position
and rotation of the watering can, leading to a successful execution. Check the description in the main paper for detailed discussions of

the failure modes of the alternative methods.

Wipe Table Mix Pot

o

Unplug Charge! Spill Beans

Upright Ketchup.

; Bimanual Place Shoes

Fig. 11: RIGVid’s embodiment-agnostic capabilities and ex-
amples on solving complex, open-world tasks. RIGVid can
readily work on ALOHA setup [131] as shown on top left. On
the bottom left, RIGVid is retargeted to the bimanual ALOHA
setup. On the right, it generates trajectories for diverse manipulation
tasks—including wiping, mixing, and ironing—without using any
physical demonstrations.

to failed execution. Often, the track2act track prediction does
not follow the true motion paths, which is the primary source
of errors in our experiments. AVDC generates reasonable
optical flow in individual frames, but when summed across
the entire video, the resulting trajectory is often physically
implausible, and the execution fails. We often found that
this summing up of object flow across the video leads to
small errors that accumulate over the entire video, resulting
in faulty object location across the video. Gen2Act yields
plausible tracks and leads to successful manipulation. We
often found that tracks were accurate, and the resulting
trajectory after PnP was also accurate. 4D-DPM exhibits in-
consistent tracking performance. While it accurately follows
the object in certain segments, the example shown reveals
incorrect tracking during the first half of the episode, which
ultimately causes the rollout to fail. We often found that the
tracking was unstable and very jerky. In contrast, the 6D
object pose trajectories produced by RIGVid remain stable
throughout the episode and closely match the actual object
motion, resulting in successful execution.

E. Testing Generalization

Embodiment-Agnostic Transfer. We test RIGVid’s gen-
eralizability to another embodiment by deploying it on the
ALOHA robot for the pouring task (Fig. [TT] top left). On this
setup, it achieves 80% success, compared to 100% on our
default xArm setup. RIGVid also generalizes to a bimanual
setup, simultaneously placing a pair of shoes into a box using
both arms (Fig. [TT] bottom left).

Extensions to Additional Tasks. Besides our four main
focus tasks, we also obtained promising preliminary results
on a larger variety of diverse and challenging manipulation
tasks shown in Fig. [T1] (right). These tasks include wiping,
mixing, and ironing, uprighting a ketchup bottle, unplugging
a charger, and rotating a spoon to spill beans. Notably, the
latter three tasks involve extreme rotations.

V. CONCLUSIONS

We introduced Robots Imitating Generated Videos
(RIGVid), the first method for robotic manipulation that
works without demonstrations: no teleoperation, no human
demonstration, or expert policy rollouts. By leveraging re-
cent advances in generative vision models and 6D pose
estimation, RIGVid enables robots to execute complex tasks
entirely from generated video. We extract 6D Object Pose
Trajectory from the generated videos and retarget it to the
robot, demonstrating a data-efficient approach to robotic skill
acquisition. Our analysis shows a clear correlation between
video quality and task success: as generation improves,
RIGVid approaches real demo performance. Additionally,
our comparisons with SOTA VLM-based zero-shot manip-
ulation methods confirm that leveraging dense visual and
temporal cues from generated videos yields much more
reliable performance.



(1]

[2]

[3]

(4]

[3]
(6]

(7]
[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S. Bahl, R. Mendonca, L. Chen, U. Jain, and D. Pathak, “Affordances
from human videos as a versatile representation for robotics,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023, pp. 13778-13790.

S. Ye, J. Jang, B. Jeon, S. Joo, J. Yang, B. Peng, A. Mandlekar,
R. Tan, Y.-W. Chao, B. Y. Lin et al., “Latent action pretraining from
videos,” arXiv preprint arXiv:2410.11758, 2024.

S. Gao, S. Zhou, Y. Du, J. Zhang, and C. Gan, “Adaworld: Learn-
ing adaptable world models with latent actions,” arXiv preprint
arXiv:2503.18938, 2025.

H. Bharadhwaj, A. Gupta, S. Tulsiani, and V. Kumar, “Zero-shot
robot manipulation from passive human videos,” arXiv preprint
arXiv:2302.02011, 2023.

M. Chang, A. Gupta, and S. Gupta, “Semantic visual navigation by
watching youtube videos,” in NeurIPS, 2020.

A. Sivakumar, K. Shaw, and D. Pathak, “Robotic telekinesis: Learn-
ing a robotic hand imitator by watching humans on youtube,” arXiv
preprint arXiv:2202.10448, 2022.

S. Bahl, A. Gupta, and D. Pathak, “Human-to-robot imitation in the
wild,” arXiv preprint arXiv:2207.09450, 2022.

S. Kareer, D. Patel, R. Punamiya, P. Mathur, S. Cheng, C. Wang,
J. Hoffman, and D. Xu, “Egomimic: Scaling imitation learning via
egocentric video,” arXiv preprint arXiv:2410.24221, 2024.

C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu,
and A. Anandkumar, “Mimicplay: Long-horizon imitation learning
by watching human play,” arXiv preprint arXiv:2302.12422, 2023.
E. Chane-Sane, C. Schmid, and I. Laptev, “Learning video-
conditioned policies for unseen manipulation tasks,” in 2023 IEEE In-
ternational Conference on Robotics and Automation (ICRA). 1EEE,
2023, pp. 909-916.

J. Li, Y. Zhu, Y. Xie, Z. Jiang, M. Seo, G. Pavlakos, and Y. Zhu,
“Okami: Teaching humanoid robots manipulation skills through
single video imitation,” in 8th Annual Conference on Robot Learning,
2024.

M. Lepert, J. Fang, and J. Bohg, “Phantom: Training robots without
robots using only human videos,” arXiv preprint arXiv:2503.00779,
2025.

J. Zhou, T. Ma, K.-Y. Lin, Z. Wang, R. Qiu, and J. Liang, “Mitigating
the human-robot domain discrepancy in visual pre-training for robotic
manipulation,” arXiv preprint arXiv:2406.14235, 2024.

A. Xie, L. Lee, T. Xiao, and C. Finn, “Decomposing the general-
ization gap in imitation learning for visual robotic manipulation,” in
2024 IEEE International Conference on Robotics and Automation
(ICRA). 1IEEE, 2024, pp. 3153-3160.

A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar et al.,
“Open x-embodiment: Robotic learning datasets and rt-x models,”
arXiv preprint arXiv:2310.08864, 2023.

S. Dasari and A. Gupta, “Transformers for one-shot visual imitation,”
in Conference on Robot Learning. PMLR, 2021, pp. 2071-2084.
A. Bahety, P. Mandikal, B. Abbatematteo, and R. Martin-Martin,
“Screwmimic: Bimanual imitation from human videos with screw
space projection,” arXiv preprint arXiv:2405.03666, 2024.

T. Brooks, B. Peebles, C. Holmes, W. DePue, Y. Guo,
L. Jing, D. Schnurr, J. Taylor, T. Luhman, E. Luhman,
C. Ng, R. Wang, and A. Ramesh, “Video generation

models as world simulators,” 2024. [Online]. Available: https:
//openai.com/research/video- generation-models-as- world-simulators
“Kling ai,” https://www.klingai.com/, 2024, accessed: 2024-02-10.
F. Liu, W. Sun, H. Wang, Y. Wang, H. Sun, J. Ye, J. Zhang, and
Y. Duan, “Reconx: Reconstruct any scene from sparse views with
video diffusion model,” arXiv preprint arXiv:2408.16767, 2024.

Q. Zhang, S. Zhai, M. A. Bautista, K. Miao, A. Toshev, J. Susskind,
and J. Gu, “World-consistent video diffusion with explicit 3d mod-
eling,” arXiv preprint arXiv:2412.01821, 2024.

S. Motamed, L. Culp, K. Swersky, P. Jaini, and R. Geirhos, “Do
generative video models learn physical principles from watching
videos?” arXiv preprint arXiv:2501.09038, 2025.

X. Yang, B. Li, Y. Zhang, Z. Yin, L. Bai, L. Ma, Z. Wang, J. Cai,
T.-T. Wong, H. Lu et al., “Vlipp: Towards physically plausible video
generation with vision and language informed physical prior,” arXiv
e-prints, pp. arXiv—2503, 2025.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

H. Bansal, Z. Lin, T. Xie, Z. Zong, M. Yarom, Y. Bitton,
C. Jiang, Y. Sun, K.-W. Chang, and A. Grover, “Videophy: Eval-
uating physical commonsense for video generation,” arXiv preprint
arXiv:2406.03520, 2024.

X. Guo, J. Huo, Z. Shi, Z. Song, J. Zhang, and J. Zhao,
“T2vphysbench: A first-principles benchmark for physical consis-
tency in text-to-video generation,” arXiv preprint arXiv:2505.00337,
2025.

Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schu-
urmans, and P. Abbeel, “Learning universal policies via text-guided
video generation,” Advances in Neural Information Processing Sys-
tems, vol. 36, 2024.

H. Bharadhwaj, R. Mottaghi, A. Gupta, and S. Tulsiani, “Track2act:
Predicting point tracks from internet videos enables diverse zero-shot
robot manipulation,” 2024.

H. Bharadhwaj, D. Dwibedi, A. Gupta, S. Tulsiani, C. Doersch,
T. Xiao, D. Shah, F. Xia, D. Sadigh, and S. Kirmani, “Gen2act:
Human video generation in novel scenarios enables generalizable
robot manipulation,” arXiv preprint arXiv:2409.16283, 2024.

B. Wen, W. Yang, J. Kautz, and S. Birchfield, “Foundationpose:
Unified 6d pose estimation and tracking of novel objects,” arXiv
preprint arXiv:2312.08344, 2023.

W. Huang, C. Wang, Y. Li, R. Zhang, and L. Fei-Fei, “Rekep: Spatio-
temporal reasoning of relational keypoint constraints for robotic
manipulation,” arXiv preprint arXiv:2409.01652, 2024.

P.-C. Ko, J. Mao, Y. Du, S.-H. Sun, and J. B. Tenenbaum, “Learning
to act from actionless videos through dense correspondences,” arXiv
preprint arXiv:2310.08576, 2023.

J. Kerr, C. M. Kim, M. Wu, B. Yi, Q. Wang, K. Goldberg, and
A. Kanazawa, “Robot see robot do: Imitating articulated object
manipulation with monocular 4d reconstruction,” arXiv preprint
arXiv:2409.18121, 2024.

E. Valassakis, G. Papagiannis, N. Di Palo, and E. Johns, “Demon-
strate once, imitate immediately (dome): Learning visual servoing
for one-shot imitation learning,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 1EEE, 2022,
pp. 8614-8621.

D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, 2018, pp. 2050-2053.

P. Sharma, D. Pathak, and A. Gupta, “Third-person visual imitation
learning via decoupled hierarchical controller,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive
meta-learning,” arXiv preprint arXiv:1802.01557, 2018.

Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” arXiv preprint
arXiv:2406.10454, 2024.

J. Shi, Z. Zhao, T. Wang, 1. Pedroza, A. Luo, J. Wang, J. Ma,
and D. Jayaraman, “Zeromimic: Distilling robotic manipulation skills
from web videos,” arXiv preprint arXiv:2503.23877, 2025.

C.-C. Hsu, B. Wen, J. Xu, Y. Narang, X. Wang, Y. Zhu, J. Biswas,
and S. Birchfield, “Spot: Se (3) pose trajectory diffusion for object-
centric manipulation,” arXiv preprint arXiv:2411.00965, 2024.

M. Xu, Z. Xu, C. Chi, M. Veloso, and S. Song, “Xskill: Cross em-
bodiment skill discovery,” in Conference on robot learning. PMLR,
2023, pp. 3536-3555.

J. Wang, K. Liu, D. Guo, X. Zhou, and C. G. Atkeson, “One-shot
video imitation via parameterized symbolic abstraction graphs,” arXiv
preprint arXiv:2408.12674, 2024.

M. Argus, L. Hermann, J. Long, and T. Brox, “Flowcontrol: Optical
flow based visual servoing,” in 2020 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS). 1EEE, 2020, pp.
7534-7541.

M. Xu, Z. Xu, Y. Xu, C. Chi, G. Wetzstein, M. Veloso, and S. Song,
“Flow as the cross-domain manipulation interface,” arXiv preprint
arXiv:2407.15208, 2024.

C. Gao, H. Zhang, Z. Xu, Z. Cai, and L. Shao, “Flip: Flow-centric
generative planning for general-purpose manipulation tasks,” arXiv
preprint arXiv:2412.08261, 2024.

P. R. Florence, L. Manuelli, and R. Tedrake, “Dense object nets:
Learning dense visual object descriptors by and for robotic manipu-
lation,” arXiv preprint arXiv:1806.08756, 2018.


https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://www.klingai.com/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

J.Zhu, Y. Ju, J. Zhang, M. Wang, Z. Yuan, K. Hu, and H. Xu, “Dense-
matcher: Learning 3d semantic correspondence for category-level
manipulation from a single demo,” arXiv preprint arXiv:2412.05268,
2024.

M. Vecerik, C. Doersch, Y. Yang, T. Davchev, Y. Aytar, G. Zhou,
R. Hadsell, L. Agapito, and J. Scholz, “Robotap: Tracking arbitrary
points for few-shot visual imitation,” in 2024 [EEE International
Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
5397-5403.

L. Smith, N. Dhawan, M. Zhang, P. Abbeel, and S. Levine, “Avid:
Learning multi-stage tasks via pixel-level translation of human
videos,” arXiv preprint arXiv:1912.04443, 2019.

Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2018, pp. 1118-1125.

P. Sharma, L. Mohan, L. Pinto, and A. Gupta, “Multiple interactions
made easy (mime): Large scale demonstrations data for imitation,”
arXiv:1810.07121, 2018.

K. Zakka, A. Zeng, P. Florence, J. Tompson, J. Bohg, and
D. Dwibedi, “Xirl: Cross-embodiment inverse reinforcement learn-
ing,” in Conference on Robot Learning. PMLR, 2022, pp. 537-546.
P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in 2018 IEEE international conference on
robotics and automation (ICRA). 1EEE, 2018, pp. 1134-1141.

C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in CoRL, 2017.

D. Patel, H. Eghbalzadeh, N. Kamra, M. L. Iuzzolino, U. Jain, and
R. Desai, “Pretrained language models as visual planners for human
assistance,” in ICCV, 2023.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao,
J. Emmons, A. Gupta, E. Orbay et al., “Roboturk: A crowdsourcing
platform for robotic skill learning through imitation,” in Conference
on Robot Learning. PMLR, 2018, pp. 879-893.

L. Barcellona, A. Zadaianchuk, D. Allegro, S. Papa, S. Ghidoni, and
E. Gavves, “Dream to manipulate: Compositional world models em-
powering robot imitation learning with imagination,” arXiv preprint
arXiv:2412.14957, 2024.

H. Zhou, R. Wang, Y. Tai, Y. Deng, G. Liu, and K. Jia, “You only
teach once: Learn one-shot bimanual robotic manipulation from video
demonstrations,” arXiv preprint arXiv:2501.14208, 2025.

G. Ponimatkin, M. Cifka, T. Soucek, M. Fourmy, Y. Labbé, V. Petrik,
and J. Sivic, “6d object pose tracking in internet videos for robotic
manipulation,” arXiv preprint arXiv:2503.10307, 2025.

A. Patel, A. Wang, I. Radosavovic, and J. Malik, “Learning to
imitate object interactions from internet videos,” arXiv preprint
arXiv:2211.13225, 2022.

J. Ren, P. Sundaresan, D. Sadigh, S. Choudhury, and J. Bohg,
“Motion tracks: A unified representation for human-robot transfer in
few-shot imitation learning,” arXiv preprint arXiv:2501.06994, 2025.
M. K. Srirama, S. Dasari, S. Bahl, and A. Gupta, “Hrp: Human af-
fordances for robotic pre-training,” arXiv preprint arXiv:2407.18911,
2024.

R. Mendonca, S. Bahl, and D. Pathak, “Structured world models from
human videos,” arXiv preprint arXiv:2308.10901, 2023.

G. Li, D. Sun, L. Sevilla-Lara, and V. Jampani, “One-shot open
affordance learning with foundation models,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2024, pp. 3086-3096.

C. Yuan, C. Wen, T. Zhang, and Y. Gao, “General flow as
foundation affordance for scalable robot learning,” arXiv preprint
arXiv:2401.11439, 2024.

Y. Ju, K. Hu, G. Zhang, G. Zhang, M. Jiang, and H. Xu, “Robo-abc:
Affordance generalization beyond categories via semantic correspon-
dence for robot manipulation,” in European Conference on Computer
Vision. Springer, 2024, pp. 222-239.

G. Li, N. Tsagkas, J. Song, R. Mon-Williams, S. Vijayaku-
mar, K. Shao, and L. Sevilla-Lara, “Learning precise affordances
from egocentric videos for robotic manipulation,” arXiv preprint
arXiv:2408.10123, 2024.

S. Dasari, M. K. Srirama, U. Jain, and A. Gupta, “An unbiased look
at datasets for visuo-motor pre-training,” in Conference on Robot
Learning. PMLR, 2023, pp. 1183-1198.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

S. Karamcheti, S. Nair, A. S. Chen, T. Kollar, C. Finn, D. Sadigh,
and P. Liang, “Language-driven representation learning for robotics,”
arXiv preprint arXiv:2302.12766, 2023.

B. Baker, 1. Akkaya, P. Zhokov, J. Huizinga, J. Tang, A. Ecoffet,
B. Houghton, R. Sampedro, and J. Clune, “Video pretraining (vpt):
Learning to act by watching unlabeled online videos,” Advances in
Neural Information Processing Systems, vol. 35, pp. 24 639-24 654,
2022.

Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet,
T. Yu, P. Abbeel, J. B. Tenenbaum et al., “Video language planning,”
arXiv preprint arXiv:2310.10625, 2023.

A. Ajay, S. Han, Y. Du, S. Li, A. Gupta, T. Jaakkola, J. Tenen-
baum, L. Kaelbling, A. Srivastava, and P. Agrawal, “Compositional
foundation models for hierarchical planning,” Advances in Neural
Information Processing Systems, vol. 36, pp. 22304-22 325, 2023.
J. Liang, R. Liu, E. Ozguroglu, S. Sudhakar, A. Dave, P. Tokmakov,
S. Song, and C. Vondrick, “Dreamitate: Real-world visuomotor policy
learning via video generation,” arXiv preprint arXiv:2406.16862,
2024.

H. Zhen, Q. Sun, H. Zhang, J. Li, S. Zhou, Y. Du, and C. Gan,
“Tesseract: Learning 4d embodied world models,” 2025. [Online].
Available: https://arxiv.org/abs/2504.20995

M. Albaba, C. Li, M. Diomataris, O. Taheri, A. Krause, and M. Black,
“Nil: No-data imitation learning by leveraging pre-trained video
diffusion models,” arXiv preprint arXiv:2503.10626, 2025.

M. Yang, Y. Du, K. Ghasemipour, J. Tompson, D. Schuurmans,
and P. Abbeel, “Learning interactive real-world simulators,” arXiv
preprint arXiv:2310.06114, vol. 1, no. 2, p. 6, 2023.

Y. Sun, H. Zhou, L. Yuan, J. J. Sun, Y. Li, X. Jia, H. Adam,
B. Hariharan, L. Zhao, and T. Liu, “Video creation by demonstration,”
arXiv preprint arXiv:2412.09551, 2024.

Y. He, W. Sun, H. Huang, J. Liu, H. Fan, and J. Sun, “Pvn3d: A deep
point-wise 3d keypoints voting network for 6dof pose estimation,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11632-11641.

Y. He, H. Huang, H. Fan, Q. Chen, and J. Sun, “Ffb6d: A full flow
bidirectional fusion network for 6d pose estimation,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recog-
nition, 2021, pp. 3003-3013.

Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic, “Cosypose: Con-
sistent multi-view multi-object 6d pose estimation,” in Computer
Vision-ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23-28, 2020, Proceedings, Part XVII 16. Springer, 2020, pp.
574-591.

K. Park, T. Patten, and M. Vincze, “Pix2pose: Pixel-wise coordinate
regression of objects for 6d pose estimation,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2019, pp.
7668-76717.

Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield,
J. Tremblay, J. Carpentier, M. Aubry, D. Fox, and J. Sivic, “Mega-
pose: 6d pose estimation of novel objects via render & compare,” in
Proceedings of the 6th Conference on Robot Learning (CoRL), 2022.
I. Shugurov, F. Li, B. Busam, and S. Ilic, “Osop: A multi-stage
one shot object pose estimation framework,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 6835-6844.

V. N. Nguyen, T. Groueix, M. Salzmann, and V. Lepetit, “Gigapose:
Fast and robust novel object pose estimation via one correspondence,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 9903-9913.

A. Caraffa, D. Boscaini, A. Hamza, and F. Poiesi, “Freeze: Training-
free zero-shot 6d pose estimation with geometric and vision foun-
dation models,” European Conference on Computer Vision (ECCV),
2024.

J. Wasserman, K. Yadav, G. Chowdhary, A. Gupta, and U. Jain, “Last-
mile embodied visual navigation,” in Conference on Robot Learning.
PMLR, 2023, pp. 666-678.

J. Wasserman, G. Chowdhary, A. Gupta, and U. Jain, “Exploitation-
guided exploration for semantic embodied navigation,” in 2024
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 2901-2908.

J. Tremblay, T. To, B. Sundaralingam, Y. Xiang, D. Fox, and
S. Birchfield, “Deep object pose estimation for semantic robotic
grasping of household objects,” arXiv preprint arXiv:1809.10790,
2018.


https://arxiv.org/abs/2504.20995

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

V. Lepetit, F. Moreno-Noguer, and P. Fua, “Ep n p: An accurate o
(n) solution to the p n p problem,” International journal of computer
vision, vol. 81, pp. 155-166, 2009.

X. He, J. Sun, Y. Wang, D. Huang, H. Bao, and X. Zhou,
“Onepose++: Keypoint-free one-shot object pose estimation without
cad models,” Advances in Neural Information Processing Systems,
vol. 35, pp. 35103-35115, 2022.

Y. He, Y. Wang, H. Fan, J. Sun, and Q. Chen, “Fs6d: Few-shot 6d
pose estimation of novel objects,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
6814-6824.

K. Park, A. Mousavian, Y. Xiang, and D. Fox, “Latentfusion: End-
to-end differentiable reconstruction and rendering for unseen object
pose estimation,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10710-10719.
J. Sun, Z. Wang, S. Zhang, X. He, H. Zhao, G. Zhang, and X. Zhou,
“Onepose: One-shot object pose estimation without cad models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 6825-6834.

M. Cai and I. Reid, “Reconstruct locally, localize globally: A model
free method for object pose estimation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3153-3163.

F. Li, S. R. Vutukur, H. Yu, I. Shugurov, B. Busam, S. Yang,
and S. Ilic, “Nerf-pose: A first-reconstruct-then-regress approach for
weakly-supervised 6d object pose estimation,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp.
2123-2133.

Y. Liu, Y. Wen, S. Peng, C. Lin, X. Long, T. Komura, and W. Wang,
“Gen6d: Generalizable model-free 6-dof object pose estimation from
rgb images,” in European Conference on Computer Vision. Springer,
2022, pp. 298-315.

P. Ausserlechner, D. Haberger, S. Thalhammer, J.-B. Weibel, and
M. Vincze, “Zs6d: Zero-shot 6d object pose estimation using vision
transformers,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). 1EEE, 2024, pp. 463—469.

E. P. Ornek, Y. Labbé, B. Tekin, L. Ma, C. Keskin, C. Forster, and
T. Hodan, “Foundpose: Unseen object pose estimation with founda-
tion features,” European Conference on Computer Vision (ECCV),
2024.

X. Liu, G. Wang, R. Zhang, C. Zhang, F. Tombari, and X. Ji,
“Unopose: Unseen object pose estimation with an unposed rgb-d
reference image,” arXiv preprint arXiv:2411.16106, 2024.

M. Gleicher, “Retargetting motion to new characters,” in Proceedings
of the 25th annual conference on Computer graphics and interactive
techniques, 1998, pp. 33-42.

S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent service robotics, vol. 9, pp. 1-29, 2016.

S. Niekum, S. Osentoski, G. Konidaris, and A. G. Barto, “Learning
and generalization of complex tasks from unstructured demonstra-
tions,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2012, pp. 5239-5246.

Z. Luo, J. Cao, K. Kitani, W. Xu et al., “Perpetual humanoid control
for real-time simulated avatars,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 10895-
10904.

X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa,
“Amp: Adversarial motion priors for stylized physics-based character
control,” ACM Transactions on Graphics (ToG), vol. 40, no. 4, pp.
1-20, 2021.

B. Jiang, X. Chen, W. Liu, J. Yu, G. Yu, and T. Chen, “Motiongpt:
Human motion as a foreign language,” Advances in Neural Informa-
tion Processing Systems, vol. 36, pp. 20067-20079, 2023.

X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang, “Ex-
pressive whole-body control for humanoid robots,” arXiv preprint
arXiv:2402.16796, 2024.

S. Choi, M. K. Pan, and J. Kim, “Nonparametric motion retargeting
for humanoid robots on shared latent space.” in Robotics: science
and systems, 2020.

T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi,
“Learning human-to-humanoid real-time whole-body teleoperation,”
in 2024 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). 1EEE, 2024, pp. 8944-8951.

A. Wu, R. Wang, S. Chen, C. Eppner, and C. K. Liu, “One-shot
transfer of long-horizon extrinsic manipulation through contact re-

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

targeting,” in 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 1EEE, 2024, pp. 13891-13 898.

S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa,
and K. Ikeuchi, “Task model of lower body motion for a biped
humanoid robot to imitate human dances,” in 2005 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems. 1EEE,
2005, pp. 3157-3162.

K. Hu, C. Ott, and D. Lee, “Online human walking imitation in
task and joint space based on quadratic programming,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 3458-3464.

L. Penco, N. Scianca, V. Modugno, L. Lanari, G. Oriolo, and
S. Ivaldi, “A multimode teleoperation framework for humanoid loco-
manipulation: An application for the icub robot,” IEEE Robotics &
Automation Magazine, vol. 26, no. 4, pp. 73-82, 2019.

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, pp. 429-455, 2016.
Y. Liang, W. Li, Y. Wang, R. Xiong, Y. Mao, and J. Zhang,
“Dynamic movement primitive based motion retargeting for dual-
arm sign language motions,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2021, pp. 8195-8201.
Y. Qin, Y.-H. Wu, S. Liu, H. Jiang, R. Yang, Y. Fu, and X. Wang,
“Dexmv: Imitation learning for dexterous manipulation from human
videos,” in European Conference on Computer Vision.  Springer,
2022, pp. 570-587.

A. S. Lakshmipathy, J. K. Hodgins, and N. S. Pollard, “Kinematic
motion retargeting for contact-rich anthropomorphic manipulations,”
arXiv preprint arXiv:2402.04820, 2024.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman,
D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4
technical report,” arXiv preprint arXiv:2303.08774, 2023.

B. Ke, D. Narnhofer, S. Huang, L. Ke, T. Peters, K. Fragkiadaki,
A. Obukhov, and K. Schindler, “Video depth without video models,”
2024. [Online]. Available: https://arxiv.org/abs/2411.19189

R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot,
“Navigating to objects in the real world,” Science Robotics, 2023.
M. Chang, T. Gervet, M. Khanna, S. Yenamandra, D. Shah, S. Y.
Min, K. Shah, C. Paxton, S. Gupta, D. Batra, R. Mottaghi, J. Ma-
lik, and D. S. Chaplot, “Goat: Go to any thing,” arXiv preprint
arXiv:2311.06430, 2023.

S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li,
J. Yang, H. Su, J. Zhu et al., “Grounding dino: Marrying dino with
grounded pre-training for open-set object detection,” arXiv preprint
arXiv:2303.05499, 2023.

N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr,
R. Ridle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K. V. Alwala,
N. Carion, C.-Y. Wu, R. Girshick, P. Dollér, and C. Feichtenhofer,
“Sam 2: Segment anything in images and videos,” 2024. [Online].
Available: https://arxiv.org/abs/2408.00714

B. Wen, J. Tremblay, V. Blukis, S. Tyree, T. Muller, A. Evans, D. Fox,
J. Kautz, and S. Birchfield, “Bundlesdf: Neural 6-dof tracking and
3d reconstruction of unknown objects,” CVPR, 2023.

H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu,
Y. Xie, and C. Lu, “Anygrasp: Robust and efficient grasp perception
in spatial and temporal domains,” IEEE Transactions on Robotics,
2023.

Z. Huang, F. Zhang, X. Xu, Y. He, J. Yu, Z. Dong, Q. Ma,
N. Chanpaisit, C. Si, Y. Jiang, Y. Wang, X. Chen, Y.-C. Chen,
L. Wang, D. Lin, Y. Qiao, and Z. Liu, “Vbench++: Comprehensive
and versatile benchmark suite for video generative models,” arXiv
preprint arXiv:2411.13503, 2024.

Y. Wang, Y. He, Y. Li, K. Li, J. Yu, X. Ma, X. Li, G. Chen, X. Chen,
Y. Wang et al., “Internvid: A large-scale video-text dataset for mul-
timodal understanding and generation,” in The Twelfth International
Conference on Learning Representations, 2023.

M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski,
and A. Joulin, “Emerging properties in self-supervised vision trans-
formers,” in Proceedings of the International Conference on Com-
puter Vision (ICCV), 2021.

W. Huang, C. Wang, R. Zhang, Y. Li, J. Wu, and L. Fei-Fei,


https://arxiv.org/abs/2411.19189
https://arxiv.org/abs/2408.00714

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

“Voxposer: Composable 3d value maps for robotic manipulation with
language models,” arXiv preprint arXiv:2307.05973, 2023.

S. Patel, X. Yin, W. Huang, S. Garg, H. Nayyeri, L. Fei-Fei,
S. Lazebnik, and Y. Li, “A real-to-sim-to-real approach to robotic
manipulation with vlm-generated iterative keypoint rewards,” arXiv
preprint arXiv:2502.08643, 2025.

N. Karaev, I. Makarov, J. Wang, N. Neverova, A. Vedaldi, and
C. Rupprecht, “Cotracker3: Simpler and better point tracking by
pseudo-labelling real videos,” arXiv preprint arXiv:2410.11831,
2024.

T. Z. Zhao, V. Kumar, S. Levine, and C. Finn, “Learning fine-grained
bimanual manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330-1334, 2000.

H. Xu, J. Zhang, J. Cai, H. Rezatofighi, and D. Tao, “Gmflow:
Learning optical flow via global matching,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 8121-8130.

B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis, “3d gaussian
splatting for real-time radiance field rendering.” ACM Trans. Graph.,
vol. 42, no. 4, pp. 139-1, 2023.

C. M. Kim, M. Wu, J. Kerr, K. Goldberg, M. Tancik, and
A. Kanazawa, “Garfield: Group anything with radiance fields,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024, pp. 21 530-21539.

C. Doersch, Y. Yang, D. Gokay, P. Luc, S. Koppula, A. Gupta,
J. Heyward, R. Goroshin, J. Carreira, and A. Zisserman, “Boot-
stap: Bootstrapped training for tracking-any-point,” arXiv preprint
arXiv:2402.00847, 2024.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, G. Krueger,
and I. Sutskever, “Learning transferable visual models from
natural language supervision,” 2021. [Online]. Available: https:
//arxiv.org/abs/2103.00020

Z. Li, Z.-L. Zhu, L.-H. Han, Q. Hou, C.-L. Guo, and M.-M.
Cheng, “Amt: All-pairs multi-field transforms for efficient frame
interpolation,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.


https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020

APPENDIX

We structure the supplement into the following subsections:

[V1l Details on best practices for video generation.

[VIIl Overview of prompt and examples of video summaries
with GPT responses used for video filtering.

[VIII Results and discussion on our method’s mesh-free
object tracking version.

[X] Details on reducing noise in 6D pose rollouts for stable
and realistic motion.

[X] Adaptation and implementation details of baseline
methods.

[XT Comprehensive example of Rekep Predictions and Ex-
ecution.

[XII Discussion of limitations of Tracking using point tracks.

[XIIT Elaboration on our method’s robustness.

[XTV] Thorough analysis of errors caused by depth estima-
tion.

[XV] Discussion regarding the choice between the use of
MegaPose and FoundationPose, focusing on trajectory
stability.

[XVI Additional analysis of generated videos and human
demos using VBench++ metrics.

VI. BEST PRACTICES FOR VIDEO GENERATION

We found that the following practices lead to reliable video
generation: (1) having a clean background without visual
distractions, (2) minimizing the number of distractor objects
in the scene, (3) ensuring objects are reasonably large and
viewed from a natural, human-like perspective, (4) ensuring
there is one clearly identifiable task that can be performed,
(5) using simple and concise text prompts, and (6) setting
the relevance factor to 0.7 with the negative prompt “fast
motion” led to the most reliable video generations.

VII. PROMPTING FOR VIDEO FILTERING AND FILTERING
STATISTICS

The prompt for GPT ol-based filtering is shown in Figure
[[2} We provide GPT ol with the prompt, a video sum-
mary—created by vertically concatenating evenly sampled
frames from the video—and the language command (e.g.,
“pour water”). GPT ol then responds with ”Yes” or ”"No” to
indicate whether the task is successfully performed.

VIII. MESH-FREE OBJECT TRACKING

We experiment with a mesh-free object tracking version
of our method. Specifically, we use BundleSDF [123], which
jointly performs 6-DoF object tracking and reconstruction
from RGBD observations. For the pouring task, we evaluate
our method using trajectories obtained via BundleSDF over
10 trials and observe a success rate of (90%), matching
our default tracking setup. While the BundleSDF paper
reports real-time capabilities, we found that its official imple-
mentation takes approximately 30 minutes to process each
video in practice, which limits its applicability for real-
time deployment. In contrast, our default tracker operates in
real-time, enabling closed-loop execution and recovery from
disturbances as discussed in Sec.[[V-El While the BundleSDF

Prompt

(## Instructions

You need to determine whether a specific action occurs in the

given image.

### Image Format

- The image has four rows.

- The action progresses from top to bottom.

### Task

- Examine the image and the provided query.

- Decide if the action described in the query is clearly

depicted.

~ A hand should be performing the action. Without it, the
actions are likely implausible as the action needs to be
executed by an actor.

— The task has to be done with the specified object in the first
frame. The video cannot bring in a new object such that there
are two of the same objects.

### Output Format

Your response must be in the following format

Explain if we see a hand.

Explain if a new object has been brought in that is different

from any objects in the first frame

Explain your reasoning for the given image.

action_done: Yes or No

## Query

Query Task: Pour water from the watering can on the plant

\ Query Image: J

GPT o1 Response

[We do see a hand holding and tilting the same watering can from the first frame. Water is ]

visibly flowing onto the plant in the final frame.
action_done: Yes

s H
Prompt v

## Instructions |
/‘7 .

Same as previous prompt. Instructions omitted for simplicity.

## Query
Query Task: Place the spatula on the pan
Query Image:

GPT o1 Response

1) Hand present? Yes, a hand is visible holding the spatula.

2) New object introduced? No, there is no new object introduced; it is still the original
spatula and the original pan.

3) Reasoning: Although we see a hand holding the spatula, there is no point at which the
spatula is placed on or in the pan. The spatula instead ends up resting on the table next
to the pan.

action_done: No

Fig. 12: Examples of prompting GPT ol to filter generated
videos. We sample frames from the generated video and prompt
GPT ol to assess whether the specified task is performed success-
fully in the video. The top example passes the filtering, while the
bottom does not.

paper reports real-time capabilities, we observed significantly
higher runtimes in practice with the official implementation.
We expect that future advances in model-free tracking will
address these efficiency bottlenecks, allowing for real-time
mesh-free deployment.

IX. SMOOTHING OBJECT TRAJECTORIES

To reduce noise and jitter in the estimated object poses,
we apply a moving average filter with a fixed sliding window
(centered on each point) to the position and orientation com-
ponents. Translations are smoothed independently along each
axis, while orientation is processed similarly after converting
from quaternions to rotation vectors. This approach mitigates
abrupt changes, resulting in a more stable and realistic object
trajectory with smoother transitions.

X. DESCRIPTION OF BASELINES

Track2Act [27]: We adapt Track2Act’s procedure to our
setup preserving its core idea of object-centric trajectory
estimation from point tracks. Track2Act generates a future
interaction plan by predicting 2D point trajectories (using a
DiT-based diffusion model) between an initial image and a
goal image, then recovers a sequence of 3D object transforms
via Perspective-and-Point (PnP) [132].

To integrate this into our pipeline, we use their published
checkpoint but modify the input formulation—while the initial



image remains identical to our real camera’s view, the goal
image is taken from the last frame of a generated video
rather than being physically captured. We then use PnP on
the predicted point tracks along with the initial depth image
to estimate the object’s rigid motion across frames, thereby
defining the end-effector trajectory. We use interpolation
between consecutive poses because Track2Act generates
only a sparse set of frames, and denser sampling is needed
for smooth trajectory estimation and execution. However, we
exclude Track2Act’s closed-loop residual policy correction,
focusing solely on open-loop 6D object-pose estimation and
execution. This adaptation allows us to directly evaluate how
well a vision-based, open-loop approach generalizes to our
setting without additional corrections.

AVDC [31]: The AVDC approach models action trajectories
by synthesizing a task-driven video (using a trained text-
conditioned video generation model) and using optical flow
from GMFlow [133] to estimate dense pixel correspon-
dences. It then reconstructs 3D object motion using an
optimization step that refines pose estimates based on the
tracked flow and depth information. To improve robustness,
AVDC also includes a replanning mechanism that re-executes
the pipeline when predicted motion stagnates.

Since the trained text-conditioned video generation model
did not generalize well to our setup, we use the same
generated video as in other experiments to ensure a fair
comparison. While we do not employ AVDC’s replanning
strategy, we predict object poses using a similar optimization
framework based on flow and depth information.

4D-DPM [32]: 4D-DPM is designed to track 3D motion
of articulated object parts from a single video. It constructs
a 3D Gaussian splatting [134] representation of the scene
to capture object features, then applies GARField [135] to
cluster the Gaussians into discrete object components. In
our adaptation, we modify this to operate on entire objects
rather than individual parts. Specifically, we set the clustering
parameters to treat the object as a single entity, ensuring that
motion estimation is performed at the object level rather than
segmenting it into multiple parts. This allows us to track and
execute trajectories for the whole object.

Gen2Act [28]: Gen2Act introduces a video-conditioned
policy learning framework that first generates a human
video using a video generation model from a scene image
and a task description. It then extracts object tracks using
BootsTAP [136], and trains a policy using behavior cloning
with an auxiliary track prediction loss and offline robot
demonstrations. At inference, Gen2Act uses the generated
video and the learned policy to predict robot actions. Our
approach presents a simplified adaptation of this framework
that removes the need for behavior cloning, and offline
demonstrations. Instead of using the extracted tracks as an
auxiliary loss, we directly process them for pose estimation.
To recover 3D object positions, we leverage an initial depth
image corresponding to the scene image, allowing us to
obtain depth values for the extracted 2D tracks. We apply
RANSAC filtering to remove outlier track points and then

(et stagel_subgoal_constraint1(end_effector, keypoints): h
"""Align the end-effector with the watering can handle (keypoint 1)."""
handle_point = keypoints[1]
cost = np. linalg.norm(end_effector - handle_point)
return cost
N J
( : n N\
def stage2_path_constraintl(end_effector, keypoints):
""" The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)
def stage2_path_constraint2(end_effector, keypoints):
""" The watering can must stay upright to avoid spilling (spout above base)."""
spout = keypoints[8]
base = keypoints[7]
# Ensure spout is not lower than base
cost = max(@, spout[2] - base[2])
\___ return cost Y,
(“det stage2_subgoal_constraint1(end_effector, keypoints): N
"""The watering can spout (keypoint 8) needs to be 18cm above the
center of the plant (keypoint 15)."""
spout = keypoints[8]
plant = keypoints[15]
offsetted_point = plant + np.array([0, @, 0.10]) # 1@cm above the plant
cost = np.linalg.norm(spout — offsetted_point)
return cost
- J/
4 K N\
def stage3_path_constraintl(end_effector, keypoints):
"""The robot must still be grasping the watering can handle (keypoint 1)."""
return get_grasping_cost_by_keypoint_idx(1)
def stage3_path_constraint2(end_effector, keypoints):
"""The watering can spout (keypoint 8) is directly above the plant (keypoint 15)
in x-y plane."""
spout = keypoints[8]
plant = keypoints[15]
cost = np.linalg.norm(spout[:2] - plant[:2])
\___return cost )
(def stage3_subgoal_constraintl(end_effector, keypoints): N
winThe watering can spout (keypoint 8) needs to be 10cm above the
center of the plant (keypoint 15)."""
spout = keypoints[8]
plant = keypoints [15]
offsetted_point = plant + np.array([@, @, 0.1]) # 10cm above the plant
cost = np. linalg.norm(spout — of fsetted_point)
return cost
def stage3_subgoal_constraint2(end_effector, keypoints):
"iThe watering can spout (keypoint 8) must be tilted below the base (keypoint 4) to pour."""
spout = keypoints [8]
base = keypoints [4]
# Ensure spout is lower than base
cost = max(@, spout[2] - base[2])
\___return cost Y,

Fig. 13: ReKep’s output for the pouring task and the resulting
robot execution (top-right). The VLM predicts to grasp at keypoint
1, move keypoint 8 above 15 and 7 during transport, and above 15
and 4 for pouring—Ileading to failed execution.

use the Perspective-n-Point (PnP) [132] to estimate the
object’s 6DoF pose. This adaptation preserves the core idea
of leveraging video and track-based signals while eliminating
the need for supervised policy learning.

XI. REKEP PREDICTIONS AND EXECUTIONS

A detailed example of ReKep’s keypoint and VLM pre-
dictions for pouring task is shown in Fig. [[3] The VLM
first predicts grasping the watering can at keypoint 1. For
the transport phase, it instructs moving keypoint 8 above
keypoint 15, while keeping its height above keypoint 7. For
the pouring action, keypoint 8 remains above 15 (to place
the spout over the plant) and above keypoint 4 (to induce
tilting). The resulting robot execution fails. We attribute most
ReKep failures to inaccurate keypoint predictions, as shown
in Fig. [T4] In the lid image, no keypoint appears at the lid
handle. In the placing task, keypoints cluster around pan
corners. For the sweeping task, the keypoints are generally
well-placed, and executions succeeded. Suboptimal initial
keypoints lead to inaccurate downstream VLM predictions.



Fig. 14: Examples of ReKep’s Keypoint Locations. The keypoint
placements are often suboptimal, except for sweeping task, where
the keypoints are reasonable.

XII. LIMITATION OF TRACKING WITH POINT TRACKS

All point tracks fail under extreme rotations, as initially
visible points often become occluded. This is a fundamental
limitation of any correspondence-based tracking method re-
lying solely on visible surface features. We show this failure
in Fig.[I3] As the object rotates, most initial points are lost,
resulting in insufficient 2D-3D correspondences to solve a
stable PnP problem. This degrades pose estimation quality,
leading to large drift or abrupt jumps in estimated object
motion. Such instability cascades into execution errors, often
causing the robot to fail the task altogether. As a result, both
variants of Gen2Act—despite stronger tracking backbones
like CoTracker—still fail under large out-of-plane rotations.
In contrast, RIGVid’s model-based 6D tracking handles these
situations more robustly, as it uses full-object geometry and
SE(3) filtering to maintain stable trajectories.

XIIT. ADDITIONAL ROBUSTNESS EXAMPLES

Examples of RIGVid’s robustness are shown in Fig. [T6]
In the first row, the robot grasps the object, but due to a
misaligned grasp, the object rotates unexpectedly. The robot
compensates by rotating it back to the correct orientation
and then resumes the planned trajectory, completing the
task successfully. In the bottom row, a human perturbs the
object during execution while it is held by the robot. RIGVid
detects the resulting change in the relative transformation and
automatically re-aligns the object before continuing. When

Gen2Act with BootsTAP Gen2Act with Cotracker3 RIGVid

Fig. 15: Gen2Act with BootsTAP, CoTracker, and RIGVid. Blue
points denote the tracked points used for PnP; red points represent
the reprojected 3D points. For a good PnP solution, these should
align, as seen in the first frame. For Gen2Act, the blue points drift
significantly from the red ones in later frames, indicating failure in
pose estimation due to tracking loss, which leads to failed robot
execution.

the human intervenes a second time, RIGVid again corrects
the deviation, resulting in successful task completion.

grasp grasp rotates the object  Robot corrects the faulty grasp Successful Execution

Human pushes again Recovery & Successful Execution

t

Fig. 16: Additional examples of RIGVid’s robustness. In the top
row, RIGVid recovers from a faulty initial grasp by reorienting the
object before continuing execution. In the bottom row, it corrects
for external disturbances on the object when a human pushes it
mid-execution, realigning and successfully completing the task.

XIV. ERRORS FROM DEPTH ESTIMATION

In Fig.[T7] we isolate the impact of depth estimation errors.
Robot executions on real videos with real depth (captured us-
ing an RGBD camera) achieve a 100% success rate, whereas
executions from real videos with generated depth result in
an 85% average success. Similarly, executions from Kling
V1.6-generated videos with generated depth also achieve
85% success, suggesting that the primary source of error lies
in monocular depth estimation. Upon inspection, we observe
two common undesirable behaviors in the predicted depth:
inaccurate depth values and temporal flickering. An example
of inaccurate depth is shown in Fig. [I8] In the generated
video, when the spatula is brought close to the camera, the
depth changes by only 6.8 cm, which is visibly inconsistent
with the video and likely much smaller than the real-world
change. Inaccuracies also occur in real videos, as shown in
the figure—the head of the spatula is estimated to be far
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Fig. 17: Impact of Depth Estimation Errors on RIGYVid
performance. Errors in monocular depth estimation result in worse
performance of generated and real videos. RIGVid achieves perfect
success across all tasks with real videos and real depth.
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Fig. 18: Errors in Monocular Depth Estimation. In the generated
video (top), the depth of the spatula changes only slightly despite a
large visual change. In the real video (bottom), the spatula’s head
is predicted to lie farther away, contradicting the visual appearance.

from the camera, despite appearing close, revealing another
failure mode in monocular depth estimation. Flickering is
shown in Fig. [T9] Although the position of the watering can
relative to the camera remains nearly unchanged across three
consecutive frames, the estimated depth varies significantly.
The zoomed-in region on the right shows the can appearing
much whiter than on the left, indicating a substantial change
in predicted depth. The average depth of the can changes
from 40.1 cm to 38.2cm-a 1.9 cm difference over just 0.066
seconds—which is physically implausible for the generated
video. We find similar flickering behavior in real videos as
well, where the depth changes from 43.2cm to 40.9cm in
the given example—a 2.3 cm difference. Since errors in the
generated depth are the main source of failure, we also tested
removing it entirely by estimating object pose directly from
the RGB frames of the generated video using MegaPose.
However, this approach leads to even more unstable and
noisy trajectories, as detailed in App. [XV]

(a) Generated Video

Avg Depth: 43.275 cm Avg Depth: 40.969 cm

Fig. 19: Flickering in Depth Prediction. We show three con-
secutive frames of the video and its corresponding predicted
depth. The depth of the watering can change noticeably across
frames—appearing significantly whiter in the third frame despite
minimal actual motion. We observe this behavior in both generated
and real videos.

XV. CHOICE BETWEEN MEGAPOSE AND
FOUNDATIONPOSE

We compare trajectory stability from MegaPose [81] and
FoundationPose [29] by computing the translational and
rotational RMS jitter. For each method, we apply a Gaus-
sian smoothing filter (¢ = 2 frames) to the raw SE(3)
pose sequences, compute the residual between original and
smoothed trajectories, and then calculate:

1 N
N b2, jitter,, =

t=1

j ittertrans =

where At; is the translational residual at frame ¢, and 6,
is the angular magnitude (in radians) of the relative rotation
R i Reaw, converted to degrees. Metrics are averaged over
ten pouring trajectories from generated videos.

MegaPose yields an average translational RMS jitter of
0.0045m and rotational RMS jitter of 37.47°, whereas Foun-
dationPose achieves 0.0029m translational and 14.31° rota-
tional jitter. This demonstrate that FoundationPose produces
significantly smoother and more stable trajectories. Addition-
ally, it allows for real-time tracking during the execution,
making RIGVid robust to external disturbances.



XVI. COMPARING VIDEO GENERATIVE MODELS

To further assess video quality, we report VBench++ [125]
metrics in Table [lI| and explain them below. The numbers
in the table are scaled 100x for easier interpretation. We
collect these metrics on 40 randomly selected and unfiltered
videos per model, 10 for each of the four tasks. Kling
v1.6 outperformed the other models on most metrics but
performed similarly or worse in video-text consistency and
dynamic degree. Human evaluations discussed in Sec.
suggest that the video-text consistency and I2V subject
consistency are not reliable indicators of whether a generated
video correctly follows a given command. Sora scored high
on dynamic degree, likely due to its tendency to drastically
alter the scene, resulting in exceptionally large motions.
Generated videos from these models and their corresponding
metrics are shown in Fig. 20| and further details on these
metrics can be found the next section.

VBench++ Metric Definitions:

e Subject Consistency. Subject consistency describes
whether subjects’ appearance remain consistent, which is
computed by DINOv1 [127] similarities across video frames.
e Background Consistency. Background temporal consis-
tency by CLIP [137] similarities across frames.

e Motion Smoothness. Evaluates smoothness of videos by
utilizing video frame interpolation model AMT [138].

e Dynamic Degree. Describes whether the video contains
large motions as a binary metric.

o Aesthetic Quality. Human perceived artistic and beauty
value such as photo-realism, layout and color harmony.

o Imaging Quality. Assesses the presence of distortion in a
video, such as noisiness, blurriness, and over-exposure.

e Video-Text Consistency. Text-to-video alignment score
calculated by ViCLIP [126].

e 12V Subject Consistency. Similarity between subjects in
input image and each video frame, as well as similarity
between consecutive frames. Features are extracted from
DINOv1 [127].

. Video Generation Models Human

Metrics Demos
Kling V1.6 Kling V1.5 Sora

Subject Consistency 96.34 91.66 83.09 94.91
Background Consistency 96.64 93.97 89.34 95.00
Motion Smoothness 99.68 99.57 99.06 99.51
Dynamic Degree 52.5 57.5 70.0 80.0
Aesthetic Quality 51.75 49.77 46.22 49.30
Imaging Quality 72.80 71.48 68.68 72.52
Video-Text Consistency 22.01 22.61 21.42 21.57
12V Subject Consistency 97.88 95.96 89.09 97.89

TABLE 1II: Video generation quality metrics for real human
demonstration videos and different models. Higher values indi-
cate better quality. Kling v1.6 performs comparably to or surpasses
other models on most metrics.
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Fig. 20: Qualitative Comparison of Different Video Generative Models. Videos from the three video generation models are shown
using evenly sampled frames, along with VBench++ [125] metrics: video-text consistency, image-to-video subject consistency, and subject
consistency. Kling v1.6 scores highest on these metrics, followed by Kling v1.5 and then Sora.
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Fig. 21: Qualitative comparison of video generation. Sora-generated videos often alter the scene layout and objects. Kling V1.5 produces
more plausible results but includes physically implausible elements. Kling V1.6 better preserves scene fidelity and closely follows the
human command.
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