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Abstract

Labeling LiDAR point clouds is notoriously time-and-energy-consuming, which
spurs recent unsupervised 3D representation learning methods to alleviate the
labeling burden in LiDAR perception via pretrained weights. Existing work focus
on either masked auto encoding or contrastive learning on LiDAR point clouds,
which neglects the temporal LiDAR sequence that naturally accounts for object
motion (and their semantics). Instead, we propose TREND, short for Temporal
REndering with Neural fielD, to learn 3D representation via forecasting the future
observation in an unsupervised manner. TREND integrates forecasting for 3D pre-
training through a Recurrent Embedding scheme to generate 3D embeddings across
time and a Temporal LiDAR Neural Field specifically designed for LiDAR modality
to represent the 3D scene, with which we compute the loss using differentiable
rendering. We evaluate TREND on 3D object detection and LiDAR semantic
segmentation tasks on popular datasets, including Once, Waymo, NuScenes, and
SemanticKITTI. TREND generally improves from-scratch models across datasets
and tasks and brings gains of 1.77% mAP on Once and 2.11% mAP on NuScenes,
which are up to 400% more improvement compared to previous SOTA unsupervised
3D pre-training methods. Codes and models will be available here.

1 Introduction

Light-Detection-And-Ranging (LiDAR) is widely used in autonomous driving. By emitting laser
rays into the environment, it provides accurate measurements of the distance along each ray with
time-of-flight principle. There has been strong research interest on LiDAR-based perception like
3D object detection [1, 2, 3, 4, 5, 6, 7] and semantic segmentation [8, 9]. However, labeling for
LiDAR point clouds is notoriously time-and-energy-consuming. According to [10], it costs an expert
labeler at least 10 minutes to label one frame of LiDAR point cloud at a coarse-level and more
at finer granularity. Assuming sensor frequency at 20Hz, it could cost more than 1000 days of a
human expert to annotate a one-hour LiDAR sequence. To alleviate the labeling burden, unsupervised
3D representation learning [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] pre-trains 3D backbone and
fine-tune on downstream tasks for performance improvement with the same number of labels.

Previous literature on unsupervised 3D representation learning for LiDAR perception can be divided
into two streams, as shown in Figure 1 (a) and (b). (a) Masked-autoencoder-based methods [17, 18,
19, 20, 21] randomly mask LiDAR point clouds and the pre-training entails reconstructing the masked
areas. (b) Contrastive-based methods [15, 16] construct two views from one frame (or adjacent
frames) of LiDAR point cloud and maximize the similarity among positive pairs while minimizing
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Figure 1: Different schemes for unsupervised 3D representation learning. (a) Masked Autoencoding
applies random masking and pre-train by reconstruction. (b) Contrastive methods build views of point
cloud and pre-train by pulling together positive pairs and pushing away negative pairs. (c) TREND
explores object motion and semantic information via temporal forecasting in LiDAR sequence.

the similarity of negative pairs. Both approaches assume a predefined set of nuisance variability.
Nuisance variability refers to variables inherent in the input that should be non-consequential to
the outcome, but nonetheless may impact the output. An example of this is orientation: the same
object appearing in different orientations can cause the outcome to differ. To obtain the same
outcome, one needs to be invariant. In (a), the set of nuisance variability is occlusions, which
naturally is induced by motion; in (b) it is the handcrafted set of transformations on LiDAR scans
used in contrastive learning. While the procedures are unsupervised, they implicitly select the set
of invariants, which benefits the downstream tasks. Unlike them, we subscribe to allowing the data
to determine nuisances by simply observing and predicting scene dynamics. This leads to a novel
unsupervised 3D representation learning approach based on forecasting LiDAR point clouds (Figure
1 (c)). Naturally, points belonging to the same object instance, within a point cloud, tend to move
together. By observing current point cloud and predicting future observation, our pre-training scheme
implicitly encodes semantics and biases of object interactions over time.

However, leveraging forecasting as unsupervised 3D representation is nontrivial as scene dynamics
are often complex and nonlinear. There are two main challenges: 1) How to generate 3D embeddings
at different timestamps with current LiDAR scan? 2) How to represent the 3D scene with embeddings
and optimize the network via forecasting?

For 1), there exists tangential work in occupancy prediction field [22, 23, 24] that generates 3D
features at different timestamps via directly using 3D/2D convolution [22, 23] or a diffusion decoder
with frozen 3D encoder [24]. However, actions of the ego-vehicle is not taken into account in [22, 23],
which is important for future observation forecasting as the ego actions reflect the interaction between
ego-vehicle and other traffic participants. For example, if the ego-vehicle is running at a high speed,
pedestrians might stop to avoid accidents. If the ego-vehicle stops at the crossing, pedestrians might
start to walk across the road. For 2), applying neural field, as in existing work [19, 20, 21], to
represent the 3D scene at different timestamps yields little to no improvement. The first reason is
that the network needs to learn to understand the concept of “time” with the 3D convolution, which
could be very difficult. The second one is that the neural fields in [19, 20, 21, 25, 26] are designed
for camera modality, which neglects important characteristic in LiDAR modality like intensity.

We address these challenges by proposing TREND, short for Temporal REndering with Neural
fielD, for unsupervised 3D pre-training. For 1), we propose a Recurrent Embedding scheme, which
generates 3D embeddings along time axis with sinusoidal encoding of the ego actions followed by
a shallow 3D convolution. This enables us to model ego actions over time, which also assists in
forecasting future observations. For 2), we propose a Temporal LiDAR Neural Field that explicit
takes timestamps as inputs and integrates LiDAR geometry (surface points) as well as intensity
to reconstruct and forecast LiDAR point clouds for optimizing the backbones. While this takes
inspiration from existing work in neural field decoders [19, 20, 21, 25, 26], it is distinct from them in
that our design enables forecasting and also modeling of LiDAR characteristics, such as intensity.

We demonstrate TREND on four benchmark datasets (Once [27], NuScenes [28], Waymo [29], and
Semantic Kitti [30]) for the downstream 3D object detection and LiDAR semantic segmentation tasks,
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where TREND achieves up to 400% more improvement compared to previous SOTA pre-training
method for Once (1.77% mAP) and improves by 90% on NuScenes (2.11% mAP).

2 Related Work

Pre-training for Point Cloud. Since annotating 3D point clouds requires significant effort and
time, there has been great interest on improving label efficiency for point cloud perception via 3D
pre-training. For indoor scene point cloud, PointContrast [11] first reconstructs the whole scene and
uses contrastive learning for pre-training. The research thread was followed by P4Contrast [13] and
Contrastive-Scene-Context [12]. For outdoor scene LiDAR point clouds, there exists two primary
schools of thought, depending on whether labels are required during the pre-training stage. The first
school takes a semi-supervised 3D pre-training approach by utilizing a small sest of labels during
pre-training, where the pre-training tasks include object detection, occupancy prediction (e.g., AD-PT
[31] and SPOT [32]). The second takes an unsupervised 3D representation learning approach, where
no label is required during pre-training: 1) Contrastive-based methods [16, 14, 33, 15, 34] create
alternative (augmented) views of outdoor scene LiDAR point cloud and learns the representation
by contrastive learning. 2) Mask-Autoencoder-based methods [17, 18, 19, 20, 21, 35] mask the
input LiDAR point clouds and reconstruct the masked elements as the supervision signal. Following
these lines of work, [14, 33] utilizes adjacent frames of LiDAR point clouds as views for contrastive
learning. However, as the scenes are dynamic and there are no labels, the positive and negative pairs
selection is very noisy [16], resulting in pre-training performance degradation. T-MAE [35] proposes
to use the adjacent previous frame of LiDAR point clouds for masked autoencoding pre-training, but
temporal information is limited to two frames (less than 0.5 second) and only history information is
used. Also, ego action is not modeled in [35], which fails to learn the interaction between ego-vehicle
and other traffic participants. Furthermore, the decoder in [35] is simply Multi-layer Perceptron on
occupied 3D space and neglects empty parts of the scenes, which also matters in downstream tasks.
For RGB image pretraining, ViDAR [36] utilizes future point clouds to pre-train image encoders
with occupancy-based decoder, but suffers from the similar problem of [35]. Additionally, ViDAR
also neglects current LiDAR point clouds, which is important for downstream 3D perception tasks.
Besides, some works leverage 2D image prior to pre-train LiDAR encoder [37, 38, 39]. Unlike
them, we propose TREND and use temporal forecasting as the pre-training goal. TREND utilizes a
Recurrent Embedding scheme to integrate ego actions for temporal 3D embeddings and a Temporal
LiDAR Neural Field as decoder to render both current and future point clouds for pre-training.

Neural Field plays an important role in 3D scene representation [25, 26]. IAE [40] and Ponder
[19, 20] are pioneering work to use neural field in 3D pre-training and both use reconstruction as pre-
training task; UniPAD [21] extends this line of work. The neural fields in [25, 26, 19, 20, 21] are
originally designed for camera modality, which neglects characteristic of LiDAR point clouds and
temporal information. Unlike them, we explore time-dependent neural field for LiDAR geometry and
intensity by proposing a novel pre-training decoder and task to forecast future LiDAR point clouds.

Scene Flow and LiDAR Forecasting. 3D scene flow [41, 42, 43, 44, 45, 46, 47, 48, 49] has long
been explored. Given current and past point clouds, the goal is to estimate per-point translation for
the current point clouds. LiDAR forecasting take past and current observations as inputs and predict
the future LiDAR point clouds, which necessitates the induction that we hypothesize beneficial for
downstream perception tasks. Representative works include 4DOCC [22], Copilot4D [24] and Uno
[23]. 4DOCC [22] uses a U-Net convolutional architecture and conduct differentiable rendering on
the BEV feature map to predict the LiDAR observation in the future. Copilot4D [24] first trains
a tokenizer/encoder for LiDAR point cloud with masked-and-reconstruction task and then freeze
the encoder to train a diffusion-based decoder for LiDAR forecasting. Uno [23] proposes to use
occupancy field as the scene representation for point cloud forecasting. The forecasting training
stage in Copilot4D [24] does not envolve the 3D encoder for LiDAR point cloud and only focuses on
training the diffusion-based decoder, which actually does not introduce temporal information into the
3D encoder. 4DOCC [22] and Uno [23] train the 3D encoder for forecasting but do not take the action
of the autonomous vehicle into consideration. However, the interaction between the autonomous
vehicle and the traffic participants is important for the prediction. The above methods study treat
forecasting as the primary perception task. Unlike them, TREND adopts point cloud forecasting
for unsupervised 3D representation learning and aims to improve downstream perception tasks via
pre-training. TREND incorporate ego action, which previous works do not account, for pre-training.
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Figure 2: The overview of TREND. TREND first uses “S.E.” (sinusoidal encoding [58, 59]) and
Multi-layer Perceptron to embed ego actions and concatenate them with previous 3D embeddings to
generate 3D embeddings at different timestamps (a). Then the Temporal LiDAR Neural Field (b)
is used to represent the temporal 3D scene. The queried features, timestamp embeddings and point
positions are concatenated and fed into geometry feature function f geo. Next, we separately predict
intensity values and signed distance values with geometry features at sampled points and conduct
differentiable rendering to reconstruct and forecast LiDAR point clouds for pre-training.

LiDAR-based 3D Perception. LiDAR 3D object detection aims to take the raw LiDAR point clouds
as input and predict bounding boxes for different object categories in the scene. Existing literature on
LiDAR-based 3D object detection can be divided into three main streams based on the 3D encoder.
1) Point-based methods [50, 51] apply point-level embedding to detect objects in the 3D space. 2)
Embraced by [1, 2, 6, 5], voxel-based methods apply voxelization to the raw point clouds and use
sparse 3D convolution to encode the 3D voxels. 3) Point-voxel-combination methods [3, 4] combine
the point-level and voxel-level features from 1) and 2). LiDAR semantic segmentation predicts
category label for each LiDAR point. Cylinder3D [52], PVKD [53], Point-Transformer [54, 55, 56]
and SphereFormer [57] achieve excellent performance for LiDAR segmentation task. In this paper,
we use both LiDAR 3D object detection and segmentation as downstream tasks and fine-tune on
various datasets [27, 28, 29, 30] to evaluate the effectiveness of TREND.

3 Method

In this section, we introduce TREND for unsupervised 3D representation learning on LiDAR percep-
tion via temporal forecasting. Fig. 2 is an overview of TREND. To overcome the two challenges in
incorporating temporal forecasting for unsupervised 3D representation learning, we propose (a) the
Recurrent Embedding scheme that accounts for the effect of autonomous vehicle’s (ego)action to
generate 3D embeddings at different timestamps, (b) Temporal LiDAR Neural Field, which represents
the 3D scene by the geometry function and signed distance value function. The pre-training goal is to
render current and future point clouds to compute loss and optimize the network. We first introduce
problem formulation and overall pipeline in Section 3.1. Then we describe the Recurrent Embedding
scheme and the Temporal Neural Field in details respectively in Section 3.2 and 3.3. Finally in
Section 3.4, we discuss the differentiable rendering process and loss computation.

3.1 Problem Formulation and Overview

Notations. To start with, LiDAR point clouds are denoted as P = [L,F] ∈ RN×(3+d), the
concatenation of the xyz-location L ∈ RN×3 and point features F ∈ RN×d. Here N denotes the
number of points in the point clouds and d the number of feature channels. For instance, d = 1 in
Once [27] representing intensity and for Waymo [29], d = 2 are intensity and elongation. To indicate
point clouds at different timestamps, we use subscripts and Pt = [Lt,Ft] ∈ RNt×(3+d) is point
cloud at time t ∈ {t0, t1, t2, ..., tk}, where t0 indicates current timestamp and t1, t2, ...tk are future
timestamps. At each timestamp tn, we also have the action Atn→tn+1 = [∆x,∆y,∆θ] ∈ R3 of
the autonomous vehicle and it is described with the relative translation on x-y plane (∆x,∆y) and
orientation with respect to z-axis (∆θ) between timestamp tn and tn+1.
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Overview. Our goal is to pre-train the 3D encoder f enc in an unsupervised manner via forecasting.
We begin by embedding Pt0 with the 3D encoder f enc to obtain the 3D representations

P̂t0 = f enc(Pt0), (1)

where P̂t0 ∈ RD×H×W×d̂ denotes the embedded 3D features with spatial resolution of D×H ×W

and d̂ feature channels. Then with P̂t0 and action at different timestamps Atn→tn+1
as inputs, we

apply the recurrent embedding scheme f rec and get the 3D embedding at different timestamps

P̂tn+1
= f rec(Atn→tn+1

, P̂tn), (2)

where n = 0, 1, .... Finally, to guide the training of 3D encoder in an unsupervised manner, we use a
Temporal Neural Field to reconstruct and forecast LiDAR point clouds P̃tn

P̃tn = f render(P̂tn), (3)

and compute the loss against the raw observation Ptn for optimization. Note that all the LiDAR point
clouds are transformed into the coordinate frame of t0 for consistency.

3.2 Recurrent Embedding Scheme

In order to introduce temporal information into 3D pre-training for f enc, we embed the 3D repre-
sentation Pt0 of the current frame at t0 into future 3D representation (Pt1 , Pt2 ...). To achieve
this, previous literature [22, 23] directly apply learnable 3D/2D decoders but neglect the effect of
autonomous vehicle’s action Atn→tn+1

. However, the action of the autonomous vehicle is a part of
the interaction between the ego-vehicle and traffic participants, and may influence the motion of the
traffic participants on the road; hence, serving as a predictor. For example, if the autonomous vehicle
does not move for some time, other traffic participants might move faster and vice versa. Thus, we
propose to take Atn→tn+1 into account and use a recurrent embedding scheme.

To begin, sinusoidal encoding [58, 59] are used to encode the relative translational components
[∆x,∆y] in raw action Atn→tn+1

with sinusoidal functions of different frequencies. The resulting
translation feature ftl ∈ Rdsin contains dsin bounded scalars. Then we use frot = [sin∆θ, cos∆θ] ∈ R2

to represent the rotational component in Atn→tn+1 and concatenate both features to generate an
initial action embedding Ãtn→tn+1 = [ftl, frot] ∈ Rdsin+2 for Atn→tn+1 . Note, this initial embedding
process does not require any learnable parameter. To then further learn to embed Ãtn→tn+1

, we
apply a shared shallow multi-layer perceptron (MLP) f act and project it to Âtn→tn+1

∈ Rdact

Âtn→tn+1
= f act(Ãtn→tn+1

). (4)

With 3D embeddings at current timestamp P̂t0 and action embeddings at future timestamps Âtn→tn+1
,

we broadcast Âtn→tn+1 to the shape of P̂tn and concatenate it with P̂tn along the feature dimension,
followed by a shared shallow 3D dense convolution f 3D to get the embedding at different timestamps
P̂tn+1

∈ RD×H×W×d̂.

P̂tn+1
= f 3D([Atn→tn+1

, P̂tn ]), n = 0, 1, ... (5)

While local features reflect the understanding of other traffic participants and the environment, the
concatenation provides local features with understanding of ego-vehicle motion. Despite the feature
vector containing the vehicle ego-motion, the remainder of the feature vector allows us to predict the
feature evolution. This recurrent embedding scheme allows us to model the evolution of the latent
scene features based on vehicle ego-motion.

3.3 Temporal LiDAR Neural Field

We propose to use Neural field to represent the 3D scene around the autonomous vehicle at different
timestamp t, which is the basis for LiDAR point clouds rendering. Previous work [25, 26, 60, 61,
62] design neural field for image modality and neglect both LiDAR characteristic and temporal
information. On the contrary, we propose Temporal LiDAR Neural Field. As shown in Fig. 2, the
goal of Temporal LiDAR Neural Field is to infer the geometry features and the signed distance
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value [63, 64] for a point p in 3D space at timestamp t. Given the location of a specific point
p = [x, y, z] ∈ R3 at timestamp t, we first query the feature fp ∈ Rd̂ at p with P̂t by trilinear
interpolation f tri implemented in Pytorch [65]:

fp = f tri(p, P̂t). (6)

Similar to initial action embedding in Section 3.2, we apply sinusoidal encoding [58, 59] to encode
timestamp t to ft ∈ Rdsin . Taking the concatenation of location p, ft and the queried feature fp as
inputs, we first predict the geometry features fgeo ∈ Rdgeo with f geo and then the signed distance value
s ∈ R [63, 64] with fSDF, which are parameterized by Multi-layer Perceptron:

fgeo = f geo([p, t, f ]) ; s = fSDF(fgeo). (7)

3.4 Point Cloud Rendering

Each LiDAR point p can described by the sensor origin o ∈ R3, normalized direction d ∈ R3, and
the range r ∈ R, i.e., p = o+ rd. Similar to [25, 26, 60, 61, 62], we first sample Nrender rays at the
sensor position o that trave along the normalized direction d, and apply differentiable rendering to
predict the range of LiDAR beam rays at different timestamp t ∈ {t0, t1, t2, ...} with our Temporal
Neural Field.

Sampling of Nrender. LiDAR points on the ground are less informative and we filter out ground
points by setting a threshold zthd for z values of the point position in vehicle coordinate frame. zthd
is determined by sensor height provided in the datasets. After that, we uniformly sample Nrender at
timestamp tn to conduct range rendering and loss computation.

Range Rendering. For a specific timestamp t, we sample Nray points following [26] along each ray
and construct the point set {pn = o + rnd}

Nray
n=1. For each point in the point set, we estimate the

signed distance value sn as described in Section 3.3. Then we predict the occupancy value αn

αn = max (
Φz(sn)− Φz(sn+1)

Φz(sn)
, 0), (8)

where Φz(x) = (1+ e−zx)−1 is the sigmoid function with a learnable scalar z. With αn, we estimate
the accumulated transmittance Tn [26] by Tn =

∏n−1
i=1 (1− αi). We follow conventional rendering

methods [26] to compute an occlusion-aware and unbiased weight wn = Tnαn. Differentiable
rendering is conducted by integrating sampled points along the ray, leading to the predicted range r̃,

r̃ =

Nray∑
n=1

wn ∗ rn. (9)

Intensity Prediction. According to [66], the intensity of LiDAR point clouds is decided by three
factors: sensor system, surface material, and injection angle. Moreover, injection angle can be
inferred by the ray direction d and surface normal. The geometry feature fgeo and queried feature fp
at the scanned point includes information about the surface normal and material respectively. Thus
we first embed the ray direction d by a Multi-layer Perceptron f dir. Then we concatenate the direction
embedding fdir ∈ Rddir , geometry feature fgeo and queried feature fp at the scanned point and apply an
intensity network f int to predict the intensity Ĩ

Ĩ = f int([fdir, fgeo, fp]). (10)

Loss Function. For each sampled ray, we have the observed range ri and intensity Ii and the
predicted ones r̃i and Ĩi, with which we compute an L1 loss; meanwhile, the expected signed
distance value of the observed points si is zero. We integrate this constraint into the loss function.

Ltn =
1

Nrender

Nrender∑
i=1

(|ri − r̃i|+ |Ii − Ĩi|+ |si|). (11)
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3.5 Curriculum Learning for Forecasting Length

It is difficult for a randomly initialized network to directly learn to forecast several frames of LiDAR
point clouds. Thus we propose to borrow the idea of curriculum learning [67, 68] and gradually
increase the forecasting length. Specifically, we optimize the network with N l

curri curriculum learning
epochs for {Ptn}ln=0, where l = 1, 2, .... Because the observation nearer to current timestamp
introduce more information about the current stage, we always reconstruct the current LiDAR point
clouds and apply a decay weights p(m) (m = 1, 2, ..., l) to sample a future timestamp, where
p(m) > p(m+ 1) always holds. The final loss is computed as,

L = Lt0 + Ltm , m ∼ p(m). (12)

3.6 Discussions

Theoretical Insight of TREND. We provide an analysis in the aspect of information theory [69] and
minimal sufficient representation [70, 71, 72]. Let data be X, its representation be Z and a downstream
task be Y. Z is sufficient for Y if it is faithful to the task, e.g., fidelity of predictions. However, one
may choose a Z, including X – by the definition of data processing inequality, if X is sufficient, then
Z is also sufficient. According to our discussion in Section 1, there are factors (nuisances) in that
data that (negatively) impact predictions, and has implications towards generalization. Hence, it is
desirable for a representation to be minimal, that is, containing the smallest amount of information,
but sufficient for Y. The instantiation of this is the Information Bottleneck (IB) Lagrangian:

max I(Z;Y)− βI(X;Z), (13)

where I(; ) denotes the mutual information between two random variables. Maximizing IB Lagrangian
leads to fidelity for the task through the first data term and minimality or compression through the
second bottleneck term. Naturally, β controls the compression, where larger compression naturally
discards nuisance variability. The nuisance N influence Z only through X, which follows the casual
chain N –> X –> Z. Thus naturally we have I(Z;N) ≤ I(X;Z)− I(Z;Y). Hence, the relationship
between IB Langrangian and our proposal of temporal forecasting as a mechanism for unsupervised
representation learning lies in the choice of modeling nuisance variables N. What we want to
accomplish is to minimize I(Z;N). We posit that the temporal dynamics within a dataset better
exhibit the set of nuisance variables than does a handcrafted set through data augmentation. While it
is intractable to quantify I(Z;N) directly, our empirical findings suggest that representations learned
through temporal forecasting better suppress nuisances and improve downstream performance.

Memory and Computational Overhead of TREND. While TREND introduces temporal forecasting
and neural field rendering, the actual memory costs are comparable to baseline methods. We utilize
two design choices when sampling the rendering rays: ground point filtering and uniform ray sampling
to make the GPU memory consumption feasible for TREND. In our experiments, all pre-training
methods utilize the same GPU memory. As for computational cost during pre-training, since TREND
employs Recurrent Embedding scheme, TREND requires approximately 8% more time than previous
methods per epoch (65 mins v.s. 60 mins on 8-A100) for pre-training. Besides, recurrent embedding
and temporal neural fields are not used during both fine-tuning and inference. The downstream model
architecture, computational cost, and memory usage are identical across all methods.

4 Experiments

Unsupervised 3D representation learning aims to pre-train 3D backbones and use the pre-trained
weights to initialize downstream models for performance improvement. In this section, we design
experiments to demonstrate the effectiveness of TREND as compared to previous methods. We start
with introducing experiment settings in Section 4.1. Then main results are provided in Section 4.2.
Finally, additional experiment results and ablation study are discussed in Section 4.3.

4.1 Experiment Settings

Datasets. We conduct experiments on four popular autonomous driving datasets including Once [27]
NuScenes [28], Waymo [29] and SemanticKITTI [30]. Once utilizes a 40-beam LiDAR to collect
1 million LiDAR frames and labels 15k of them. Due to the computation resource limitation, we
conduct pre-training with TREND on the small split of the unlabeled data (100k frames) and fine-tune
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Init. F.T. mAP Vehicle Pedestrian Cyclist
0-30m 30-50m 50m- 0-30m 30-50m 50m- 0-30m 30-50m 50m-

Ran.

5%

46.07 76.71 51.15 31.84 37.53 20.12 9.84 62.00 42.61 24.18
[73] 44.69 −1.38 74.04 49.66 29.63 33.98 20.94 12.42 60.63 43.14 23.63
[74] 44.43 −1.64 76.52 49.48 30.18 35.32 18.96 9.36 60.47 40.94 22.99
[22] 40.84 −5.23 74.23 46.64 29.45 29.85 17.31 9.56 57.47 33.59 18.34
[35] 45.12 −0.95 74.20 49.52 30.25 37.51 20.46 9.97 60.93 41.82 25.75
[21] 46.23 +0.16 78.76 55.77 37.81 31.65 16.09 8.78 64.90 44.18 24.73
Ours 47.84 +1.77 79.14 55.68 36.34 35.23 18.00 11.18 64.99 45.80 28.15
Ran.

20%

57.68 82.70 63.37 46.34 52.61 36.48 19.03 71.03 55.34 36.34
[73] 56.27 −1.41 81.01 61.13 43.63 49.78 35.51 20.02 69.55 52.58 34.94
[74] 57.09 −0.59 83.51 62.57 46.28 50.96 34.55 17.90 70.37 54.50 36.79
[22] 54.30 −3.38 80.69 58.95 42.13 45.09 33.14 18.04 68.90 52.20 35.09
[35] 57.23 −0.45 81.66 62.64 45.14 51.32 34.80 17.26 70.87 54.08 33.25
[21] 58.08+0.40 84.23 65.44 48.65 49.48 34.84 19.38 70.76 55.75 38.89
Ours 58.93 +1.25 84.08 65.80 50.51 50.31 33.37 19.42 72.54 56.31 39.26
Ran.

100%

65.03 88.18 74.23 61.75 57.32 38.90 21.96 78.07 64.32 48.16
[73] 64.19 −0.84 86.07 72.44 59.28 57.25 37.14 22.25 77.62 61.94 45.91
[74] 65.10 +0.07 88.02 74.01 61.95 57.56 38.43 22.45 79.95 63.64 47.89
[22] 64.48 −0.55 88.34 74.20 61.32 55.78 37.14 22.32 77.95 62.42 46.40
[35] 65.25 +0.22 88.31 72.67 62.87 57.48 39.55 24.30 77.92 63.07 48.34
[21] 65.19 +0.16 88.11 74.00 62.28 57.67 38.49 21.99 79.51 64.40 47.65
Ours 66.09 +1.06 88.56 75.02 63.10 57.83 39.29 20.63 79.48 65.08 49.02

Table 1: Results on Once dataset [27]. “Init.” indicates the initialization methods and “Ran.” is
random initialization. “F.T.” is the ratio of sampled training data for fine-tuning stage. We show mAP
for overall performance and APs for different categories within different ranges. Green color is used
to highlight the performance improvement and red one for degradation. We also use bold font to
highlight the best mAP at different fine-tuning ratio. All the results are in %.

the pre-trained backbone with the labeled training set. NuScenes uses a 32-beam LiDAR to collect
1000 scenes in Boston and Singapore, where 850 of them are used for training and the other 150 ones
for validation. We use the whole training set without label for all the pre-training methods. Waymo
equips the autonomous vehicle with one top 64-beam LiDAR and 4 corner LiDARs to collect point
clouds. We use Waymo for evaluating the transferring ability of TREND. SemanticKITTI uses a
64-beam LiDAR for data collection and provides semantic labels for each point.

Downstream Models and Evaluation Metrics. We perform downstream 3D object detection task
on Once [27], NuScenes [28] and Waymo [29] and LiDAR semantic segmentation task on Se-
manticKITTI [30]. We follow the implementations in the popular code repository called OpenPCDet
[75] and select the SOTA models on different datasets. For Once and Waymo, we use CenterPoint
[2] as the downstream model. For Once, Average precisions for different categories within different
ranges (APs) and mean average precision (mAP) are used for evaluation. For Waymo, APs and
APs with heading (APHs) computed at two difficulty levels (Level-1 and Level-2) are utilized. For
NuScenes, we use Transfusion-LiDAR [6] as the downstream model. APs for different categories,
mAP and NuScenes Detection Score (NDS) are used for evaluation. For SemanticKITTI, We use
Cylinder3D [52] and Mean Intersection over Union (mIoU) and accuracy are computed.

Downstream Training Setting. The main goal of unsupervised 3D pre-training is to improve sample
efficiency instead of accelerating convergence, which has been discussed in previous literature
[76, 18]. Sample efficiency means the best performance we can achieve with the same model and the
same number of labeled data. Thus, we first gradually increase the training iterations for randomly
initialized models until convergence is observed, which means increasing number of training iterations
does not further improve the performance. Then we fix the training iterations and use the same
schedule for downstream fine-tuning with different pre-training methods.

Baseline 3D Pre-training Methods. We select five baseline methods. (1) ALSO [73], an occupancy-
based method. (2) Occupancy-MAE [74], an masked-autoencoder method. (3) 4DOCC [22], a
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Init. mAP NDS Car Truck Bus Bar. Mot. Bic. Ped. T.C.
Ran. 31.06 44.75 69.18 28.73 34.57 42.31 13.72 8.72 69.18 41.14
[73] 30.14 −0.92 43.73 −1.02 66.89 25.67 34.36 43.06 12.98 7.1 66.28 41.63
[74] 29.94 −1.12 43.93 −0.82 68.51 26.32 30.90 41.74 12.36 7.0 67.84 41.27
[22] 26.99 −4.07 40.97 −3.78 67.44 25.40 29.37 35.58 9.53 5.16 65.26 29.47
[35] 30.53 −0.53 44.55 −0.20 68.63 26.02 34.66 43.98 13.21 7.26 68.78 39.82
[21] 32.16 +1.10 45.50 +0.75 69.82 29.54 35.73 46.79 13.65 7.98 70.45 42.73
Ours 33.17 +2.11 46.21 +1.46 71.24 30.08 39.57 45.42 16.65 9.33 71.84 43.70

Table 2: Results on NuScenes [28] dataset. “Init.” indicates the initialization methods and “Ran.”
is random initialization. We use green color to highlight performance improvement and red for
degradation and bold fonts for best performance in mAP and NDS. All the results are in %.

Init. Level-1 Level-2
∆̄

mAP mAPH mAP mAPH
Ran. 61.60 58.58 55.62 52.87
[21] 61.57 58.57 55.60 52.83 -0.03
Ours 62.32 59.22 56.37 53.84 +0.77

Table 3: Results for transferring experiments.

Init. mAP Veh. Ped. Cyc.
Ran.* 20.48 37.88 10.62 12.96
[35]* 21.58 +1.10 37.83 11.72 15.19
[21]* 24.41 +3.93 40.66 12.01 20.55
Ours* 29.95 +9.47 44.99 16.28 28.59

Table 4: Results for accelerating convergence.

LiDAR point cloud forecasting method. (4) T-MAE [35], a concurrent work that utilizes previous
adjacent frame of LiDAR point clouds for mased-and-reconstruction without considering action
of the autonomous vehicle. (5) UniPAD [21], the masked-and-reconstruction-based method with
rendering decoder. All the pre-trainings for baseline methods are conducted with their official code.

Implementation. For f enc, we select the popular sparse convolution backbone [77]. The feature
channels for embedded 3D feaures P̂tn , sinusoidal encoding and action embeddings are respectively
set to d̂ = 128, dsin = 32 and dact = 16. The sampled ray number for rendering is Nrender = 12288
and number of points along each ray is Nray = 48. We set the pre-training learning rate as 0.0002 with
a cosine learning schedule. Random seed is fixed for all pre-training and fine-tuning to guarantee
reproducibility. More details can be found in Appendix A.

4.2 Main Results

Results on Once Dataset. We pre-train TREND and baseline methods on the small split of unlabeled
data in Once and uniformly sample 5%, 20% and 100% of the labeled training set for downstream
fine-tuning. The results are shown in Table 1. For overall performance, it can be found that TREND
achieves the best performance across different ratio of fine-tuning data. The performance improvement
compared to train-from-scratch model is 1.77, 1.25 and 1.06 respectively for 5%, 20% and 100%
fine-tuning data, which is up to 4 times more than previous 3D unsupervised pre-training methods
and demonstrates the effectiveness of TREND. As for different categories, TREND achieves up to 4%
mAP improvement on Vehicle and Cyclist for 5% fine-tuning data and generally improve these two
categories within different ranges. It can also be found that for Pedestrian class, TREND improves
with 100% downstream data but degrades the performance a little bit under 5% and 20% fine-tuning
data settings. We think this is because LiDAR point clouds stand for geometry and pedestrians are
always captured in LiDAR point clouds with a cylinder-like shape, which is less-distinguishable as
compared to cyclists and vehicle. For example, trash bins or poles also appear to be cylinder-like in
LiDAR. Thus learning to reconstruct and forecast such less-distinguishable geometry harms the ability
of the pre-trained backbone to identify pedestrians among similar cylinder-like shapes especially
when there are less labeled downstream data, leading to a little degradation for 5% and 20% settings.
Similar phenomenon is also observed for differentiable reconstruction method UniPAD.

Results on NuScenes Dataset. We pre-train TREND and baseline methods on the whole training
set of NuScenes dataset. We then uniformly sample 175 frames of labeled LiDAR point clouds
in the training set and conduct few-shot fine-tuning experiments. Results are shown in Table 2.
Our proposed method TREND achieves 2.11% mAP and 1.46% NDS improvement over randomly
initialization at convergence, which is the best among all the baselines. When compared to previous
SOTA 3D pre-training method UniPAD, TREND achieves 91% more improvement for mAP and
94% more improvement for NDS. If we look into detailed categories, TREND achieves general
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(a) (b) (c) (d)

Figure 3: T-SNE visualization of TREND’s features with Moving Object labels. The orange ones are
static points while grey blue ones are moving points.

Init. mIoU Acc
Rand. 28.23 70.68

Occ-MAE 27.82−0.41 76.57+5.89

UniPAD 29.98 +1.75 76.10+5.42

TREND 31.12+2.89 79.82+9.14

Table 5: Results on SemanticKITTI [30].

Rec. Emb. N. F. Tem. L. N. F. mAP NDS
✗ ✗ ✗ 31.06 44.75
✗ ✓ ✗ 32.16 45.26
✓ ✓ ✗ 32.45 45.76
✓ ✗ ✓ 33.17 46.21

Table 6: Results for ablation study.

improvement on different categories. For Car, Barrier, Motorcycle, Pedestrian and Traffic Cone, the
improvement are more than 2% AP. For Bus, TREND introduce an improvement of 5% AP.

4.3 Other Results

Transferring Experiments. We use the backbone pre-trained on Once dataset to initialize Center-
Point [2] and fine-tune the detector with 1% training data of Waymo [29]. The results are shown in
Table 3. It can be found that TREND brings an average gain of 0.77 on mAPs and mAPHs, while
UniPAD only achieves comparable performance. This demonstrates that TREND is able to pre-train
the backbone on one dataset and then transfer to another dataset for performance improvement.

Accelerating Convergence. We use the default training iterations in OpenPCDet [75] to train 5%
Once data, which is the convergence acceleration setting and the experiment setting in most of the
previous 3D pre-training literature. Results are shown in Table 4. It can be found that T-MAE and
UniPAD accelerate convergence and TREND achieves the best performance.

LiDAR Semantic Segmentation. Results are show in Table 5. It can be found that TREND achieves
best performance among different 3D pre-training baselines and improve the performance by 2.89%
in mIoU and 9.14% in overall accuracy, demonstrating TREND’s generalization ability across tasks.

Ablation Study. We conduct ablation study to analyze the contribution of different parts of TREN-
Dand results are shown in Table 6. “Rec. Emb.”, “N. F.” and “Tem. L. N. F.” are respectively for
Recurrent Embedding, Neural Field and Temporal LiDAR Neural Field. It can be found that using
neural field for reconstruction pre-training brings little improvement and even degrades the NDS
score compared to training-from-scratch. Adding Recurrent Embedding scheme with neural field
improves the performance both on mAP and NDS, which demonstrates that Recurrent Embedding
scheme is able to encode 3D features at different timestamps. Finally, with Temporal LiDAR Neural
Field, TREND achieves the best performance both on mAP and NDS, showing that Temporal Neural
Field better utilizes the temporal information in LiDAR sequence for unsupervised 3D pre-training.

T-SNE for TREND’s features. We explored whether TREND’s pre-trained features can distinguish
between moving and static objects. We applied T-SNE [78] on TREND’s features together with
moving/static labels from [79]. In Figure 3, where static points are colored with orange and moving
ones with grey blue, it can be found that although some noise exists, TREND’s features for moving
and static objects are generally separable after unsupervised pre-training.

5 Conclusion

In this paper, we propose TREND for unsupervised 3D representation learning via temporal fore-
casting, addressing the temporal embedding and scene representing challenges. With extensive
experiments, we demonstrate that TREND is superior in improving downstream performance com-
pared to previous SOTA techniques on various datasets and tasks. These results demonstrate the
effectiveness of temporal forecasting in 3D pre-training. We believe TREND will facilitate our
understanding on 3D perception in autonomous driving.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .

Justification: In Abstract and Section 1, we discuss the contributions and scope of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in Appendix I.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There is no theoretical result in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide implementation details in Section 4.1 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will publish code and models.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discuss the setting in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We discuss it in Section 4.2 and 4.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss this in Appendix A and Section 3.6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix H.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the related papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A More Implementation Details.

During pre-training of TREND, we set the curriculum learning epoch as N1
curri = 12 and N2

curri = 36.
We use mask augmentation for TREND with a masking rate of 0.9. The ego-motion (action)
information is directly computed from the ego-vehicle poses provided in standard autonomous
driving datasets (from IMU or GPS). All experiments are implemented with Pytorch framework. All
pre-trainings are conducted on 8 A100 GPUs with batch size equals to 3 per GPU. All downstream
tasks are trained on 4 A100 GPUs with default settings in OpenPCDet [75] except for training
iterations. We will release code and pre-trained models.

B Repeated Evaluation.

We use the same random seed in all experiments in the main paper for reproducibility. As repeated
evaluation can further reveal the training robustness, we further repeat the experiment on Once
(20% downstream data) for 5 times and compute the mean and standard deviation of the results for
randomly initialization, UniPAD and TREND, which are shown in Table 7. It can be found that
TREND still achieves the best performance in mAP while largely reducing the standard deviation.
This means pre-training by TREND alleviates the influence of random seed and makes training more
stable.

Init. mAP Vehicle Pedestrian Cyclist
Rand. 57.29±0.29 68.99±0.10 43.29±0.93 59.59±0.23

UniPAD 58.00±0.32 71.78±0.16 41.78±0.70 60.44±0.48
TREND 58.74±0.11 73.07±0.16 42.02±0.39 61.12±0.22

Table 7: Results for repeated evaluation on Once dataset [27] with 20% downstream data. Mean and
variance are in %.

C More Experiments on NuScenes

In this section, we conduct more fine-tuning experiments on NuScenes dataset. Specifically, we
randomly sample 2.5% and 5% of NuScenes training set and train the randomly initialization model
[6] until convergence is observed. Then we apply the pre-trained weight by TREND to initialize the
model [6] and fine-tune it with the same training iterations. Results are shown in Table 8. It can be
found that TREND consistently improve the performance in downstream 3D object detection task
with different ratio of downstream training data.

Init. F.T. mAP NDS Car Truck Bus Barrier Mot. Bic. Ped. T.C.
Rand.

2.5%
45.35 55.36 76.74 40.89 50.07 57.48 41.58 26.13 76.67 55.77

TREND 45.79+0.64 56.23+0.87 77.74 42.96 50.78 59.39 40.37 23.48 77.22 57.51
Rand.

5%
51.56 60.24 80.22 48.56 58.69 63.42 50.84 36.59 79.29 60.30

TREND 52.02+0.46 61.02+0.78 80.54 48.15 57.93 63.57 52.59 36.92 79.99 60.94

Table 8: Results for few shot fine-tuning on NuScenes [28] dataset. We randomly sample 2.5% and
5% of labeled point clouds in the training set and use Transfusion [6] as the downstream model for
all the experiments here. Results of overall performance (mAP) and different categories (APs) are
provided. “Init.” indicates the initialization methods. “Rand” indicates the results where we gradually
increase training iterations for train-from-scratch model until convergence is observed. Mot., Bic.,
Ped. and T.C. are abbreviations for Motorcycle, Bicycle, Pedestrian and Traffic Cone. We use green
color to highlight the performance improvement brought by different initialization methods and bold
fonts for best performance in mAP and NDS. All the results are in %.
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(a) (b)

Figure 4: Forecasting Results. Blue points are raw observation from the dataset and red ones are
prediction from TREND.

D Pre-training Decoder Choice Discussion.

There exists several other decoder choice including occupancy decoder [22, 32] and 3DGS (gaussian
splatting) [80, 81, 82]. However, we consider neural-field decoder a more reasonable choice because
the rendering process actively involve empty space into pre-training, of which information is actually
crucial in LiDAR perception: a) In 3D perception, not only does the detectors need to detect where the
objects are but also need to predict characteristics of objects (category, size, velocity and so on). Only
use occupied space will harm the performance of 3D detectors. b) Almost all of the current SOTA 3D
detectors [1, 2, 3, 4, 5, 6, 7] first generate a dense BEV-view feature map and predict the bounding
boxes and object characteristics based on the dense feature map, which describes both occupied and
empty space. c) Neural fields models signed distance values and model the entire scene including
occupied and empty space, capturing the relationship between points and their surrounding space.
This is significant for understanding scene geometry and potential object trajectories, providing a
complete understanding of the environment. We further conduct experiments with 3DGS, occupancy,
Copilot4D [24] and ViDAR [36] decoder on NuScenes. Downstream results of mAPs are 31.06%
(random init), 30.84% (occupancy), 31.90% (GS-TREND), 31.08% (Copilot4D), 30.76% (ViDAR)
and 33.17% (TREND). It can be found that replacing neural field in TREND with 3DGS or occupancy
decoder degrades the representation quality.

E More Visualizations

Forecasting results of TREND. Qualitative visualization would enhance understanding of how
TREND learns object motions. We first generate a visualization of forecasting results from TREND
in Figure 4, where blue points are observation from dataset and red ones are prediction from TREND.
As the forecasting error is small, it can be found that the difference is hard to be observed on the
figure. Furthermore, we compute Mean Square Error on range prediction. Furthermore, we compute
this error for moving objects and static objects respectively. Results (in meters) are: 0.0140. It can be
found that the error is in centi-meter scale.

F Experiments on Hyper-parameter Sensitivity and Curriculum Learning.

Forecasting Length. In our experiments, we used a maximum forecast horizon of 4 frames (approx-
imately 2 seconds). We conduct experiments on shorter and longer horizons on Once with 100%
downstream labels. Results are 65.65% (3 frames), 66.09% (4 frames) and 65.33% (5 frames). We
observe that representation quality first increases and then decreases when we add more timestamps
for forecasting. First of all, it demonstrates that temporal information helps representation learning.
Then, as longer sequence are not as predictable as shorter ones, the representation quality degrades
after 2 seconds.

Curriculum Learning Strategy. The curriculum learning strategy is indeed important for TREND’s
performance. We conducted an ablation experiment training TREND without curriculum learning
on Once dataset with 100% downstream labels. Result of mAP is 65.34%. It show that without
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curriculum learning, performance of TREND drops by 0.75%, demonstrating that gradually increasing
forecasting complexity is crucial for effective representation learning.

Masking Rate. The 90 % masking rate is determined empirically. We further conduct sensitivity
study on masking rates on Nuscenes. Results of mAP are 32.56% for 80 percent masking rate, 33.17%
for 90 percent, and 32.88% for 95 percent. While masking contributes to performance improvement,
the temporal forecasting remains the primary driver of TREND’s effectiveness.

Sampling Strategy. When sampling rays for rendering, we first filter ground LiDAR points (most
of the ground points are background and less informative in pre-training) using the height of LiDAR
sensor, which is originally provided in the datasets. Then we conduct uniform sampling. To investigate
the influence of sampling strategy, we conduct ablation study of different sampling strategies including
fully uniform sampling, farthest point sampling, uniform sampling with ground points filtering and
farthest point sampling with ground points filtering. The experiments are conducted on NuScenes
dataset. Results on mAP are 31.65% for FPS, 31.68% for uniform sampling, 32.52% for FPS with
ground point filtering and 33.17% for uniform sampling with ground point filtering. It can be found
that different sampling strategies make little difference but filtering ground points matters because
ground points are background and less informative for the backbone pre-training.

G Comparison to pre-training method leveraging 2D images.

Leveraging 2D image priors to pre-traing LiDAR encoder also serves as a promising direction.
Research efforts include SLiDR [37], LiMoE [38] and Sonota [39]. We further conduct experiments
comparing these methods. As LiMoE([38])’s official repository only publish the first stage of its
training, our experiment here utilize this part of code to pre-train the same LiDAR backbone we use.
We also apply Sonota [39] to pre-train the same LiDAR backbone we use. Experiments are conducted
on NuScenes dataset. Results are as belows:

Init. mAP NDS
From-scratch 31.06 44.75

LiMoE (first stage) 32.21 45.61
Sonota 32.32 46.07

TREND 33.17 46.21

It can be found that incorporating 2D prior yields similar results (a bit lower ; < 1% difference in
mAP and NDS) as TREND, demonstrating the effectiveness of distillation from 2D prior. Meanwhile,
as TREND only uses LiDAR modality for pre-training, it can be demonstrated that incorporating
temporal information helps learn good 3D representations for downstream perception task. It would
be a promising direction to bring both 2D prior and temporal information for pre-training.

H Broader Impact

This paper presents TREND, an unsupervised 3D representation learning method for LiDAR percep-
tion tasks in autonomous driving. There are three potential societal consequences of our work.

Enhanced Safety and Robustness. As experiment results show, TREND is able to improve perfor-
mance on different tasks in autonomous driving, which enables autonomous vehicles (AVs) to better
understand and adapt to complex environments without relying on extensive labeled datasets. This
can lead to improved generalization across diverse road conditions, reducing the risk of accidents
caused by unseen scenarios or edge cases.

Environmental and Economic Benefits. By reducing the reliance on manually annotated data,
TREND lowers the computational and labor costs associated with dataset creation. Also, improved
AV perception can lead to more energy-efficient driving behaviors, reducing fuel consumption.

Job Displacement and Workforce Transition. The adoption of unsupervised 3D pre-training in
AVs could accelerate automation in the transportation sector, potentially displacing jobs in trucking,
taxi services, and delivery industries.
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I Limitations

While TREND demonstrates significant improvements over previous unsupervised 3D representation
learning methods, two limitations should be acknowledged.

(1) Our approach shows varying effectiveness across different object classes. As observed in our
experiments, TREND achieves substantial improvements for vehicle and cyclist classes but on Once
dataset shows limited gains for pedestrian detection in low-data regimes. This is likely because
pedestrians appear as cylinder-like shapes in LiDAR point clouds, making them less distinguishable
from other similar structures in the environment.

(2) Our method currently focuses on the geometric aspects of temporal forecasting without explicitly
modeling semantic. Incorporating semantic priors from other sensors like camera could potentially
enhance the learned representations.
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