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Abstract

Recent advancements in instructional fine-tuning have injected noise into
embeddings, with NEFTune (Jain et al., 2024) setting benchmarks using uni-
form noise. Despite NEFTune’s empirical findings that uniform noise outper-
forms Gaussian noise, the reasons for this remain unclear. This paper aims
to clarify this by offering a thorough analysis, both theoretical and empirical,
indicating comparable performance among these noise types. Additionally,
we introduce a new fine-tuning method for language models, utilizing
symmetric noise in embeddings. This method aims to enhance the model’s
function by more stringently regulating its local curvature, demonstrating
superior performance over the current method, NEFTune. When fine-tuning
the LLaMA-2-7B model using Alpaca, standard techniques yield a 29.79%
score on AlpacaEval. However, our approach, SymNoise, increases this
score significantly to 69.04%, using symmetric noisy embeddings. This is a
6.7% improvement over the state-of-the-art method, NEFTune (64.69%). Fur-
thermore, when tested on various models and stronger baseline instruction
datasets, such as Evol-Instruct, ShareGPT, OpenPlatypus, SymNoise con-
sistently outperforms NEFTune. The current literature, including NEFTune,
has underscored the importance of more in-depth research into the ap-
plication of noise-based strategies in the fine-tuning of language models.
Our approach, SymNoise, is another significant step towards this direction,
showing notable improvement over the existing state-of-the-art method.

1 Introduction

For Large Language Models (Vaswani et al., 2017; Devlin et al., 2019; Radford et al., 2019;
Raffel et al., 2020; Zhang et al., 2022; Touvron et al., 2023b; Zhao et al., 2023) to be effective,
their proficiency in executing specific instructions is crucial (Wang et al., 2022; Ouyang et al.,
2022; Brown et al., 2020; Chung et al., 2022). These models typically begin with training on a
vast array of unfiltered web data, after which they undergo a more focused fine-tuning stage
using a smaller, selectively chosen collection of instructional data. The fine-tuning stage,
centered on instructions, is fundamental in unlocking and controlling the full capabilities of
LLMs. The practical value of these models is predominantly dependent on how efficiently
we can leverage these concise instructional data sets for optimal performance.

In recent years, noise injection (Nukrai et al., 2022; Zang et al., 2021; Akbiyik, 2020) has
been a focal point in computer vision research, yielding methods that enhance model
robustness and accuracy. This strategy has recently been adapted for fine-tuning Large
Language Models (LLMs), exemplified by the NEFTune method (Jain et al., 2024), which
applies uniform random noise to improve model performance on diverse datasets. Despite
NEFTune’s efficacy surpassing traditional fine-tuning techniques, the reasons behind its
success, particularly against the commonly used Gaussian noise, are not entirely understood.
Our work demystifies this by presenting a detailed theoretical and empirical analysis that
reveals comparable results between noise types when appropriately scaled. Moreover,
we introduce a novel noise injection approach which not only facilitates a more intuitive
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Table 1: AlpacaEval Win Rate against Text-Davinci-003 when applied with LLaMA-2, trained
across diverse datasets. SymNoise shows an overall improvement throughout all datasets,
outperforming NEFTune on all datasets. The noise scaling factor for the Gaussian distribution
is divided by

√
3, resulting in similar performance for both methods.

Alpaca Evol-Instruct ShareGPT OpenPlatypus Average

LLaMA-2 7B 29.79 70.34 68.74 62.00 57.71
+NEFT 64.69 79.60 76.28 70.61 72.80
+Gaussian 64.98 78.88 75.94 70.20 72.49
+SymNoise 69.04 81.38 78.67 72.23 75.33

understanding but also achieves superior empirical results, outperforming NEFTune and
other established fine-tuning methods by a considerable margin.

In particular, our objective is to regularize the curvature of the function learned during train-
ing. Curvature regularization has been used in domains such as computer vision (Moosavi-
Dezfooli et al., 2019; Lee & Park, 2023), graph embedding (Pei et al., 2020), and deep neural
networks (Huh, 2020). Specifically, we aim to ensure that the function’s response changes
gradually when the input is modified slightly by noise. In more technical terms, our goal
is to have the gradient approach zero in the immediate vicinity of an input altered by a
minimal amount. This represents a more stringent condition than merely requiring small
values for the Hessian or gradient. However, considering computational efficiency, we opt
to avoid the direct computation of gradients or Hessians. Instead, we employ this stringent
condition, which, as our experiments on real-world benchmark datasets demonstrate, is
effective in practical scenarios.

In this paper, we unveil Symmetric Noise Fine Tuning (SymNoise), a new technique that
leverages symmetric Bernoulli distribution-based noise applied to the embedding vectors
of training data during the finetuning stage. Each noise component is generated with
an equal probability of 1

2 for the values −1 and 1. This method significantly enhances
instruction finetuning outcomes, often with remarkable gains, while avoiding additional
computational or data resources. While maintaining simplicity, SymNoise has a profound
impact on downstream conversational output quality. We show that when a large langudage
model like LLaMA-2-7B (Touvron et al., 2023c) is finetuned using SymNoise, its performance
on AlpacaEval (Dubois et al., 2023) rises from 29.79% to 69.04% – a substantial increase of
about 39.25 percentage points.

Importantly, when compared to the existing NEFTune method (which uses random uniform
noise), SymNoise demonstrates a superior performance edge, outperforming NEFTune by
approximately 6.7%. Thus, SymNoise not only represents a valuable advancement over
traditional finetuning methods but also establishes a new benchmark in efficiency and
effectiveness for LLM finetuning.

Contributions. In our comprehensive study, we conduct a detailed theoretical and empir-
ical examination, demonstrating that Gaussian and uniform random noise exhibit func-
tional equivalence when adjusted with an appropriate scaling factor, leading to similar
performance on real-world datasets. This insight holds significant importance, especially
considering that the creators of the NEFTune method, a leading approach employing uniform
noise, have openly recognized gaps in their understanding of the method’s superior perfor-
mance, notably in comparison to the extensively studied Gaussian noise. By establishing a
connection with Gaussian noise, our study helps demystify the NEFTune method. Moreover,
we introduce an innovative noise injection method that exceeds the capabilities of NEFTune
and existing alternatives. Our contributions thus propel the momentum for continued
exploration in this field.

2 Background and Related Work

In the evolving landscape of instruction finetuning for Large Language Models (LLMs), ini-
tial efforts like FLAN and T0 marked the beginning of cross-task generalization (Sanh et al.,
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Table 2: AlpacaEval Win Rate with and without NEFTune, SymNoise on LLaMA-2, LLaMA-1,
and OPT on various datasets. SymNoise shows improved performance across these datasets
and models.

Method/Dataset Alpaca Evol-Instruct OpenPlatypus ShareGPT
OPT-6.7B 41.4 52.2 45.7 53.4
+NEFTune 48.7 55.5 45.8 54.3
+SymNoise 50.8 57.6 46.9 55.6

LLaMA-1-7B 48.5 62.3 51.2 62.9
+NEFTune 61.7 67.5 56.9 63.6
+SymNoise 64.0 69.8 58.5 65.4

LLaMA-2-7B 48.3 62.5 57.2 63.5
+NEFTune 62.5 67.6 61.7 64.2
+SymNoise 64.9 69.6 62.1 66.1

2021; Wei et al., 2021). These models, involving encoder-decoder language architectures,
underwent finetuning across a diverse spectrum of thousands NLP tasks. This progression,
detailed in studies by Chung et al. (2022) and Xu et al. (2022) demonstrated the adaptability
of LLMs to a variety of standard NLP tasks.

Following this trajectory, OpenAI’s InstructGPT (Ouyang et al., 2022) emerged as a pioneer-
ing model adept at handling open-ended questions with remarkable efficiency. This model,
an iteration of GPT-3 (Brown et al., 2020), incorporated reinforcement learning from human
feedback (RLHF), leading to the development of advanced models like ChatGPT (OpenAI,
2022). ChatGPT, in particular, gained widespread attention for generating more coherent
and extended texts compared to InstructGPT.

Building on these developments, Wang et al. (2022) introduced the Self-Instruct approach,
utilizing InstructGPT to generate instructional pairs for further finetuning of foundational
models like LLaMA into specialized variants such as Alpaca (Taori et al., 2023). Concurrently,
the trend towards distilled models, as discussed by Taori et al. (2023) and Xu et al. (2023),
led to the creation of diverse datasets. These datasets, including works by Xu et al. (2023)
and Lee et al. (2023), focused on refining specific model capabilities like STEM question
answering and logical reasoning. Another notable advancement was AlpaGasus by Chen
et al. (2023), which employed a quality-filtering mechanism based on GPT-4 evaluations to
enhance model performance. In a different methodology, ShareGPT, as described by Chiang
et al. (2023), was developed through the crowd sourcing of real user interactions sourced
from ChatGPT.

In the context of incorporating noise into model training, the pioneering work by Zhu
et al. (2019) with the FreeLB method demonstrated the effectiveness of adversarial perturba-
tions in boosting MLM model performance. This method involved introducing calculated
Gaussian perturbations into the embeddings and optimizing them to maximally impact
model performance. Similar strategies were later applied in various domains, such as image
captioning (Nukrai et al., 2022), point cloud processing (Zang et al., 2021), graphs (Kong
et al., 2022), and privacy mechanisms (Dwork et al., 2014). Curvature regularization has
been used in domains such as computer vision (Moosavi-Dezfooli et al., 2019; Lee & Park,
2023), graph embedding (Pei et al., 2020), and deep neural networks (Huh, 2020). Noise
based on the Bernoulli distribution, as opposed to Gaussian or Uniform noise, has been
utilized, as mentioned by Spall (1998). In this approach, each outcome, either −1 or 1, is
assigned an equal probability of 1

2 .

3 On Similarity of Uniform noise and Gaussian noise

In this section, we investigate the similarity between uniform and Gaussian noise when used
for embedding perturbations. While these noise types yield different statistical properties in
low dimensions, their behavior becomes increasingly similar as the number of dimensions
grows. This phenomenon is especially relevant in the context of large language models
(LLMs), where embeddings typically reside in high-dimensional spaces.
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Lemma 1. (Uniform Distribution L2 Norm) For P = (x1, x2, ..., xd) ∼ Ud([−1, 1]), the
expected L2 norm is:

E[∥P∥2] =

√
d
3

. (1)

The proof is deferred to Appendix B.0.1.

Lemma 2. (Gaussian Distribution L2 Norm) For P = (x1, x2, ..., xd) ∼ Nd(0, 1), the expected
L2 norm is:

E[∥P∥2] =
√

d. (2)

The proof is deferred to Appendix B.0.2.
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Figure 1: Comparison of average L2 norm ratios for Gaussian and Bernoulli noise relative to
Uniform noise as a function of dimensionality.

Drawing from Lemma 1 and Lemma 2, it is apparent that the expected noise from the
Gaussian distribution is

√
3 times that of the Uniform distribution. Consequently, to equate

the noise scales for comparison, the noise scaling factor for the Gaussian distribution should
be adjusted by a factor of

√
3.

As depicted in Figure 1a, a distinct pattern emerges in the ratio of average noise (quantified
via L2 norms) between Gaussian and Uniform distributions as dimensionality increases.
Notably, the relative impact of Gaussian noise amplifies, approximating

√
3 times the

effect induced by Uniform noise with increasing dimensions. An in-depth exploration and
analysis concerning the influence of altering the sample size, while maintaining a fixed
dimensionality, are detailed in Appendix A.2.

Moreover, the comparative results on real-world datasets are presented in Table 1, where all
conditions are held constant except for the substitution of the Uniform distribution with a
Gaussian distribution. In this context, the noise scaling factor for the Gaussian distribution
is adjusted by a factor of

√
3, consistent with the discussion above, and one can notice that

the performance of both methods thereafter is comparable. A more detailed ablation study
is given in the Sec. 5.5.2.

4 Proposed Method: SymNoise

In the ideal scenario, our goal is to implement curvature regularization, a technique
prevalent in fields such as computer vision (Moosavi-Dezfooli et al., 2019; Lee & Park, 2023),
graph embedding (Pei et al., 2020), and deep neural networks (Huh, 2020). However, due to
the high computational cost associated with these methods, we aim to explore an alternative
approach that adheres to a more stringent condition. This approach has demonstrated
superior performance in practice, surpassing current state-of-the-art methodologies.
Specifically, we seek to design a function with a gradient (∇ f ) having value as 0 in the
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vicinity of the input, i.e., for x, ϵ ∈ Rd, ∇ f =

∣∣∣ f ((x−ϵ))− f (x+ϵ)
ϵ

∣∣∣
2 ≤ δ, when δ = 0, we have

f (x + ϵ) = f (x− ϵ).

In this formulation, the noise turns out to be based on a Bernoulli distribution, di-
verging from the more commonly used Gaussian or Uniform noise types. Specifically, it
uses values of −1 and 1 with equal probability, as in Spall (1998), to provide a balanced and
predictable effect on the network’s learning.

Following Jain et al. (2024), we train instruction-based models using instruction-response
pairs. Unlike NEFTune, which adds uniform noise to token embeddings, we introduce
symmetric Bernoulli noise. While we retain the same noise scaling factor, ϵ = α/

√
Ld

(with L as sequence length, d as embedding dimension, and α as a tunable parameter), our
method differs in how noise is applied. Details of our approach, SymNoise, are provided in
Algorithm 2, alongside NEFTune in Algorithm 1 for comparison.

4.1 On Similarity of Uniform noise and Bernoulli noise

Lemma 3. (Bernoulli Distribution L2 Norm) For P = (x1, x2, ..., xd), with xi ∈ {−1, 1} and
P(xi = 1) = P(xi = −1) = 0.5, the expected L2 norm is:

E[∥P∥2] =
√

d. (3)

The proof is deferred to Appendix B.0.3.

In alignment with the discussions in Sec. 3 and corroborated by Lemma1, Lemma 2, and
Fig 1b, it is evident that the noise induced by the Bernoulli distribution is amplified by a fac-
tor of

√
3 compared to that of the Uniform distribution. To accommodate this disparity, our

proposed method SymNoise incorporates this
√

3 scaling factor, as detailed in Algorithm 2.

Algorithm 1 NEFTune: Noisy Embedding Instruction Finetuning (Taken from the paper (Jain
et al., 2024))

Input: D = {xi, yi}N
1 tokenized dataset, embedding layer emb(·), rest of model f/emb(·),

model parameters θ, loss(·), optimizer opt(·)
Hyperparameter: base noise scale α ∈ R+

Initialize θ from a pretrained model.

repeat
(Xi, Yi) ∼ D {sample a minibatch of data and labels}
Xemb ← emb(Xi), RB×L×d {batch size B, seq. length L, embedding dimension d}
ϵ ∼ Uniform(−1, 1), RB×L×d {sample a noise vector}
X′emb ← Xemb + ( α√

Ld
)ϵ {add scaled noise to embeds 1}

Ŷi ← f/emb(X′emb) {make prediction at noised embeddings}
θ ← opt(θ, loss(Ŷi, Yi)) {train step, e.g., grad descent}

until Stopping criteria met/max iterations.

5 Experiments

In this section, we perform numerous experiments across various models and benchmarks
to demonstrate the efficacy of our proposed method SymNoise and compare it with existing
approaches including NEFT.

5.1 Datasets

In this section, we delve into finetuning datasets that have either gained widespread pop-
ularity or have recently achieved state-of-the-art results. Due to the memory limitations
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Algorithm 2 SymNoise: Symmetric Noisy Embedding Instruction Finetuning (Proposed
Method)

Input: D = {xi, yi}N
1 tokenized dataset, embedding layer emb(·), rest of model f/emb(·),

model parameters θ, loss(·), optimizer opt(·)
Hyperparameter: base noise scale α ∈ R+

Initialize θ from a pretrained model.

repeat
(Xi, Yi) ∼ D {sample a minibatch of data and labels}
Xemb ← emb(Xi), RB×L×d {batch size B, seq. length L, embedding dimension d}
ϵ ∼ Bernoulli{−1, 1}, RB×L×d {sample a noise vector}
X′emb ← Xemb + ( α√

Ld
) ϵ√

3
{add scaled noise to embeds 2}

X′′emb ← Xemb − ( α√
Ld
) ϵ√

3
{subtract same symmetric noise from embeds}

Ŷi ← f/emb(concat(X′emb, X′′emb)) {make prediction at noised embeddings}
θ ← opt(θ, loss(Ŷi, Yi)) {train step}

until Stopping criteria met/max iterations.

of our hardware setup, our focus is exclusively on single-turn datasets following similar
protocol as used in Jain et al. (2024). The chosen datasets are: Alpaca (Taori et al., 2023),
ShareGPT (Chiang et al., 2023), Evol-Instruc (Xu et al., 2023), and Open-Platypus (Lee et al.,
2023). More details about these datasets are in Appendix A.1

In the fine-tuning phase, each model, with the exception of ShareGPT, utilizes the prompt
from the Alpaca system. Conversely, ShareGPT is fine-tuned using the prompt from the
Vicuna system. Our approach to hyperparameter tuning, including the selection of values,
aligns with the methodologies suggested by Jain et al. (2024). We adhered strictly to the
same set of hyperparameters as those employed in NEFTune (Jain et al., 2024).

5.2 Models

Following Jain et al. (2024) setup for experimentation, our experiments predominantly
utilize Large Language Models (LLMs) with a parameter size of 7 billion. Specifically, our
focus is on models such as LLaMA-1 (Touvron et al., 2023a), LLaMA-2 (Touvron et al., 2023c),
and OPT-6.7B (Zhang et al., 2022). These transformer-based models primarily differ in the
amount of training data they’ve been exposed to, with OPT-6.7B, LLaMA-1, and LLaMA-2
being trained on 180 billion, 1 trillion, and 2 trillion tokens, respectively. This variance in
training data volume is expected to manifest in their performance across benchmarks like
MMLU, where LLaMA-2 typically outperforms the others.

5.3 Evaluation Protocols

Our experimental framework, adapted from the original NEFTune (Jain et al., 2024) setup,
primarily utilizes single-turn data for training. We assess the models’ conversational skills
using AlpacaEval and examine their performance on tasks from the OpenLLM Leaderboard.
This was done to verify that the introduction of our symnoise augmentation does not
negatively impact the models’ performance on standard multiple-choice tasks. Notably,
the results demonstrate that our augmented models consistently outperform the original
neftune models, albeit by a modest margin.

• AlpacaEval: Introduced by Dubois et al. (2023), AlpacaEval is crucial for appraising
generative quality. It functions as an automated model-based evaluator, comparing
Text-Davinci-003’s generations with our model’s over 805 prompts, focusing on
the Win Rate. The Win Rate indicates how often our model is preferred over Text-
Davinci-003, as judged by model evaluator (GPT-4, ChatGPT etc). The dataset’s
805 test prompts, sourced from various platforms, ensure a comprehensive testing
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scope. AlpacaEval’s high human agreement rate (Dubois et al., 2023), validated by
20K annotations, highlights its usefulness and accuracy. We employ both GPT-4
and ChatGPT as evaluators, using ChatGPT initially due to GPT-4’s API limitations
and costs.

• Hugging Face OpenLLM Leaderboard: For leaderboard assessments, datasets like
ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019), and MMLU (Hendrycks
et al., 2020) are utilized. These verbalized multiclass classification datasets test the
LLM’s capability in factual questioning and reasoning. Our evaluations confirm that
the SymNoise method does not diminish the models’ proficiency in these domains.

5.4 Results

The methodology we employed for tuning hyperparameters and choosing their values
adheres closely to the protocols proposed by Jain et al. (2024). Specifically, we meticulously
adopted the identical hyperparameter set as delineated in NEFTune by Jain et al. (2024).

5.4.1 Improvement in generated text quality

Our results demonstrate an enhanced metric performance compared to NEFTune in terms of
generated text quality. As evident from Table 1, there is a notable improvement across all
datasets at the 7B size, with an average increase of 17.6% (compared to NEFTune’s improve-
ment of 15.1%). This indicates that the implementation of SymNoise significantly enhances
conversational capabilities and answer quality. These findings are supported by evaluations
using AlpacaEval, where SymNoise notably outperforms NEFTune. Furthermore, as shown
in Table 2, enhancements are also observed in older models like LLaMA-1 and OPT-6.7B,
with SymNoise consistently surpassing NEFTune in these models as well. An interesting
observation is the comparatively smaller gain by NEFTune in ShareGPT, as per ChatGPT’s
analysis, a trend not mirrored in GPT-4’s evaluation. However, SymNoise consistently excels
over NEFTune for ShareGPT in evaluations by both GPT-4 and ChatGPT. In Table 1, the Win
Rate shows a significant increase from 29.79% to 69.04% for Alpaca, thereby outperforming
the state-of-the-art method NEFTune by 6.7%.

5.4.2 Improvement in OpenLLM Leaderboard tasks

In addressing the potential that SymNoise could enhance conversational abilities at the
expense of traditional skills, we conducted evaluations using tasks from the OpenLLM
Leaderboard. Employing the LM-Eval Harness framework (Gao et al., 2021), we assessed our
model’s performance on benchmarks such as MMLU (Hendrycks et al., 2020), ARC (Clark
et al., 2018), and HellaSwag (Zellers et al., 2019). These tests shed light on the model’s
knowledge base, reasoning capabilities, and adherence to factual information. As illustrated
in Figure 3, the results indicate that SymNoise not only stabilizes scores but also actively pre-
serves and, in some cases, enhances the model’s capabilities. Notably, SymNoise consistently
outperforms NEFTune in terms of performance, highlighting its effectiveness in striking a
balance between conversational proficiency and traditional computational skills.

5.5 Analysis

As shown in NEFTune (Jain et al., 2024) and related work, adding noise to embeddings during
training helps mitigate overfitting to dataset-specific quirks like formatting or phrasing.
This shifts the model from memorizing instructions to leveraging the broader capabilities
of the pretrained base model. A direct effect is that models produce longer, more coherent
responses—preferred by both human and automated evaluators (Dubois et al., 2023). While
increased verbosity contributes to performance gains, our analysis shows that SymNoise
improves both response quality and quantity beyond what NEFTune achieves.

Conceptually, SymNoise assigns probability mass to multiple noisy variants of instructions,
encouraging the model to learn a broader, more uniform distribution rather than overfitting
to the training data or a single perturbed version. This promotes better generalization and
reduces overfitting.
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Table 3: For OpenLLM Leaderboard tasks, the influence of NEFTune and SymNoise is in-
vestigated on LLaMA-2, encompassing Alpaca, Evol-Instruct, and OpenPlatypus datasets,
alongside LLaMA-1 trained on the Evol-Instruct dataset. Comparative observations reveal
a uniformity in performance metrics across the diverse datasets and models, indicating
negligible impact of NEFTune but slightly better performance of SymNoise on the overall effec-
tiveness. We follow the similar procedure as mentioned in Jain et al. (2024), and report their
results for completeness. In order to minimize computational expenses, we refrained from
conducting thorough hyper-parameter optimization, which may have further improved the
results.

Task Llama-2 7B (Alpaca) +NEFT +SymNoise

ARC 56.4 56.1 56.0
HellaSwag 80.0 80.1 80.2
MMLU 47.9 47.7 47.9

Llama-2 7B (OpenPlatypus) +NEFT +SymNoise

ARC 54.2 55.4 55.7
HellaSwag 80.4 80.6 80.8
MMLU 43.9 45.3 45.5

Llama-1 7B (Evol-Instruct.) +NEFT +SymNoise

ARC 53.7 54.1 56.0
HellaSwag 77.9 78.0 78.9
MMLU 38.3 38.4 39.1

5.5.1 Longer responses vs repetition

In this section, our objective is to determine whether the lengthier responses produced
using SymNoise are a result of increased repetition or if they contribute to more diverse and
detailed content.

Echoing the insights from Jain et al. (2024) and supporting evidence from leaderboard per-
formances, a notable correlation emerges between extended response lengths and improved
performance in the AlpacaEval task. This raises the question of whether the augmenta-
tion of response length by SymNoise could lead to diminished text diversity and quality.
Our analysis scrutinized the frequency of N-gram repetitions in responses generated by
LLaMA-2, trained on various datasets, both with and without SymNoise application.

Following the methodology of Jain et al. (2024), our analysis was restricted to the initial seg-
ments of each response to maintain consistency. Specifically, we examined the first 50 words
for Alpaca-trained models, 100 words for Evol-Instruct, and 150 words for OpenPlatypus,
ensuring that at least half of the responses exceeded these thresholds. Responses shorter
than these limits were excluded from the analysis.

As delineated in Table 5, the findings reveal that SymNoise typically yields lengthier re-
sponses. However, importantly, the frequency of 2-gram repetitions and overall token
log-diversity remain largely consistent, paralleling the results observed with NEFTune. This
suggests that the increased length of responses under SymNoise is not simply due to repeti-
tive content, but rather indicates the inclusion of additional, relevant information, thereby
enriching the depth and value of the generated responses.

5.5.2 Ablation study with different strength of noise

In this section, we explored the efficacy of employing different noise distributions, specifi-
cally uniform (NEFTune) versus Gaussian noise, versus within the SymNoise algorithm. From
the Table 4, one can notice that Gaussian noise tends to produce longer outputs. However,
this increased length does not correlate with a corresponding enhancement in performance.
While it is generally observed that longer generations are associated with improved scor-
ing, none of the generation-time strategies employed matched the effectiveness of models
trained with SymNoise. Interestingly, our innovative approach, SymNoise, exhibits superior
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performance, surpassing benchmark results. It demonstrates an approximate improvement
of 6.7% over the models utilizing NEFTune. Furthermore, we conducted a comparative
analysis with Bernoulli noise to underscore the effectiveness of the symmetric opposing
noise component in SymNoise.

Moreover, we maintained consistent experimental conditions while substituting the Uniform
distribution with a Gaussian distribution. In alignment with our theoretical framework,
we adjusted the noise scaling factor for the Gaussian distribution by dividing it by

√
3.

This adjustment led to comparable performance between the two methods across various
NEFTune noise levels, reinforcing the validity of our noise scaling approach.

Table 4: AlpacaEval Win Rate
and Average Character Count
assessed by ChatGPT across var-
ious noise settings.

Setting Alpaca Evol-Instruct OpenPlatypus
LLaMA-2-7b 48.26 (375) 62.55 (864) 57.20 (1101)
+NEFT
Noise 5 62.55 (1062) 67.58 (1404) 60.99 (1428)
+NEFT
Noise 10 61.18 (1010) 65.59 (1697) 60.62 (1834)
+NEFT
Noise 15 61.86 (820) 66.58 (1651) 61.74 (1694)
+Gaussian
Noise 5/

√
3

62.6 (1073) 68.01 (1431) 60.31 (1437)

+Gaussian
Noise 10/

√
3

61.01 (1211) 65.29 (1783) 60.32 (1878)

+Gaussian
Noise 15/

√
3

61.93 (835) 65.99 (1767) 61.38 (1806)

+Gaussian
Noise 5

60.93 (1371) 65.09 (2066) 59.13 (2061)

+Bernoulli
Noise 5

61.32 (1272) 65.10 (1840) 60.22 (1968)

+SymNoise
Noise 5

64.92 (1186) 69.62 (1700) 62.14 (1689)

Table 5: Transposed view of average
lengths and 2-gram repetition rates in
AlpacaEval responses for different train-
ing methods.

Metric LLaMA-2 7B +NEFT +SymNoise
Character Length

Alpaca 375 1061 1186
Evol-Instruct 864 1403 1700
OpenPlatypus 1100 1694 1689

Whitespace Length
Alpaca 60 169 176
Evol-Instruct 138 225 245
OpenPlatypus 170 264 270

2-Gram Repetition %
Alpaca 1.49 1.72 1.80
Evol-Instruct 3.87 3.79 3.80
OpenPlatypus 2.73 3.21 3.30

6 CONCLUSION

In this work, we rigorously establish that Gaussian and uniform random noise are function-
ally analogous, contingent on appropriate scaling, and demonstrate similar effectiveness on
real-world datasets. This revelation is pivotal, particularly in light of the NEFTune creators’
admission of the method’s unexplained superiority, especially over the well-examined
Gaussian noise. This insight not only sheds light on the previously opaque superiority of
the NEFTune method but also bridges the gap with the well-understood Gaussian noise.

Furthermore, we have introduced SymNoise, a novel noise injection technique that outper-
forms NEFTune and other existing methods by a large margin. The advancements showcased
by SymNoise in training large language models (LLMs) emphasize the importance of in-
novative algorithmic strategies and regularization techniques. Echoing the sentiments of
(Jain et al., 2024), the field of LLMs, unlike its counterpart in computer vision, has often
favored standardized training methods focusing on model scaling and dataset expansion.
However, SymNoise underscores the potential of fine-tuning techniques in enhancing model
performance, particularly in situations where overfitting to limited instruction datasets is a
concern.
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A Appendix

A.1 Datasets

• Alpaca Taori et al. (2023): Developed using the Self-Instruct method by Wang et al.
(2022) and the Text-Davinci-003 Ouyang et al. (2022) model (Ouyang et al., 2022),
Alpaca leverages a small set of seed tasks to generate new instruction tuning tasks
and filter out ineffective ones. This dataset has been instrumental in advancing
instruction-based learning.

• ShareGPT Chiang et al. (2023): Comprising 70k voluntarily shared ChatGPT
conversations Sha (2023), ShareGPT provides a rich source of real-world interaction
data. While originally multi-turn, we adapt it to a single-turn format using the
Vicunav1.1 dataset version for consistency with our experimental setup.

• Evol-Instruc Xu et al. (2023): This dataset, comprising 70k single-turn instructions,
is considered more complex than Alpaca. Originating from the Alpaca dataset,
Evol-Instruct employs ChatGPT to refine and evolve the initial instructions, thus
broadening the scope and complexity of the tasks.

• Open-Platypus Lee et al. (2023): Formed by combining 11 open-source datasets,
Open-Platypus is tailored to enhance LLM performance in STEM and logical reason-
ing domains. It includes approximately 25k questions, with around 10% generated
by LLMs and the rest by human experts. This dataset emphasizes the importance
of variety and complexity in question formats.

A.2 Analysis of Distributional Characteristics in High-Dimensional Spaces

In this section, we analyze the behavior of Gaussian, Bernoulli, and Uniform distributions in
high-dimensional spaces. We explore how the average L2 norm ratios of these distributions
change with respect to varying dimensions and sample sizes, providing insights into their
geometric properties and implications for high-dimensional data analysis.
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A.2.1 Average L2 Norm Ratio with Varying Dimensionality
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Figure 2: Gaussian/Uniform Average L2 Norm Ratio as a Function of Dimensionality.
The plot illustrates the ratio of the average L2 norm of points drawn from a Gaussian
distribution to that of a Uniform distribution, with the number of points fixed at 256 and
the dimensionality varying from 1 to 4096.
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Figure 3: Bernoulli/Uniform Average L2 Norm Ratio as a Function of Dimensionality. The
plot depicts the ratio of the average L2 norm of points drawn from a Bernoulli distribution to
that of a Uniform distribution, with the number of points fixed at 256 and the dimensionality
varying from 1 to 4096.

A.2.2 Average L2 Norm Ratio with Varying Number of Points
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Figure 4: Gaussian/Uniform Average L2 Norm Ratio for Varying Number of Points. The
plot illustrates the ratio of the average L2 norm of points drawn from a Gaussian distribution
to that of a Uniform distribution, with the dimensionality fixed at 4096 and the number of
points varying from 64 to 256.
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Figure 5: Bernoulli/Uniform Average L2 Norm Ratio for Varying Number of Points. The
plot depicts the ratio of the average L2 norm of points drawn from a Bernoulli distribution
to that of a Uniform distribution, with the dimensionality fixed at 4096 and the number of
points varying from 64 to 256.
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B Deferred proofs

In this section, we show the proofs omitted from Sec. 3 and Sec. 4.1.

B.0.1 Proof of Lemma 1

We state again Lemma 1 from Sec. 3 and present the proof.

Lemma 1. (Uniform Distribution L2 Norm) For P = (x1, x2, ..., xd) ∼ Ud([−1, 1]), the
expected L2 norm is:

E[∥P∥2] =

√
d
3

.

Proof: Each xi is uniformly distributed over [−1, 1]. The second moment about the origin for
a uniform distribution U(a, b) is given by b3−a3

3(b−a) . For U(−1, 1), this yields E[x2
i ] = 1

3 . The
components xi are independent, hence the sum of their squares, which represents the L2 norm
squared, is the sum of their expected values: E[∥P∥2

2] = ∑d
i=1 E[x2

i ] = d · 1
3 . Taking the square root

gives the expected L2 norm: E[∥P∥2] =
√

E[∥P∥2
2] =

√
d
3 .

B.0.2 Proof of Lemma 2

We state again Lemma 2 from Sec. 3 and present the proof.

Lemma 2. (Gaussian Distribution L2 Norm) For P = (x1, x2, ..., xd) ∼ Nd(0, 1), the expected
L2 norm is:

E[∥P∥2] =
√

d.

Proof: Each xi is distributed according to N(0, 1). The square of a standard normal variable, x2
i ,

follows a chi-squared distribution with 1 degree of freedom, for which the mean (expected value)
is 1. Given the independence of the components xi, the expected value of the sum of their squares,
representing the L2 norm squared, is: E[∥P∥2

2] = ∑d
i=1 E[x2

i ] = d · 1 = d. The expected L2 norm is

the square root of this sum: E[∥P∥2] =
√

E[∥P∥2
2] =

√
d.

B.0.3 Proof of Lemma 3

We state again Lemma 3 from Sec. 4.1 and present the proof.
Lemma 3. (Bernoulli Distribution L2 Norm) For P = (x1, x2, ..., xd), with xi ∈ {−1, 1} and
P(xi = 1) = P(xi = −1) = 0.5, the expected L2 norm is:

E[∥P∥2] =
√

d.

Proof: Each xi takes values -1 or 1 with equal probability, leading to x2
i = 1 irrespective of xi’s

actual value. Hence, E[x2
i ] = 1. Given the independence of the components xi, the expected value of

the sum of their squares, which represents the L2 norm squared, is simply the sum of the expected
values: E[∥P∥2

2] = ∑d
i=1 E[x2

i ] = d · 1 = d. Therefore, the expected L2 norm is the square root of

this value: E[∥P∥2] =
√

E[∥P∥2
2] =

√
d.
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