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Abstract

In simultaneous translation, the retranslation001
approach has the advantage of requiring no002
modifications to the inference engine. How-003
ever in order to reduce the undesirable instabil-004
ity (flicker) in the output, previous work has re-005
sorted to increasing the latency through mask-006
ing, and introducing specialised inference, los-007
ing the simplicity of the approach. In this pa-008
per, we argue that the flicker is caused by both009
non-monotonicity of the training data, and by010
non-determinism of the resulting model. Both011
of these can be addressed using knowledge dis-012
tillation. We evaluate our approach using si-013
multaneously interpreted test sets for English-014
German and English-Czech and demonstrate015
that the distilled models have an improved016
flicker-latency tradeoff, with quality similar to017
the original.018

1 Introduction019

Simultaneous machine translation systems, which020

process their input word by word instead of sen-021

tence by sentence, must strike a balance between022

producing output immediately (and so reducing023

quality because of incomplete input) and waiting024

for further input (and so increasing latency). A025

good simultaneous translation system will provide026

a pareto-optimal tradeoff between quality and la-027

tency. A straightforward way of doing simulta-028

neous translation is retranslation (Niehues et al.,029

2016), which has the advantage that it can be used030

with an unmodified machine translation (MT) in-031

ference engine, and can perform better than the al-032

ternative, streaming-based approaches (Arivazha-033

gan et al., 2020b). The disadvantage is that retrans-034

lation may change previous output causing flicker,035

leading to a poor user experience, and needs to be036

balanced with latency and quality.037

We argue that flickering is caused by two differ-038

ent (but related) issues: (i) instability of the trans-039

lation – the system “changes its mind” as more040

source is revealed; (ii) non-monotonicity of the 041

translation – the system favours a non-monotonic 042

translation, which means it needs high latency in 043

order to avoid flicker. Some of this instability and 044

non-monotonicity is necessary – forced by syntac- 045

tic differences between source and target, and lack 046

of information in the prefixes – but some is due 047

to arbitrary choices of the model and we aim to 048

reduce these as much as possible. 049

Researchers in non-autogressive translation 050

(NAT) have identified a related problem, known 051

as the “multimodality” problem (Gu et al., 2018), 052

where the model has two or more high scoring 053

translations but outputs a poor quality mixture of 054

them (because of the independence assumptions 055

in NAT). The solution to this problem is to use 056

sequence-level knowledge distillation (Kim and 057

Rush, 2016), which was also shown to result in 058

more monotonic translations (Zhou et al., 2020). 059

In simultaneous translation, we observe a differ- 060

ent type of multimodality (see Table 4), where 061

the model has two competing translations (which 062

may be synonyms) and flips between the two, un- 063

necessarily. We therefore investigate whether the 064

same solution as proposed there, i.e. knowledge 065

distillation or teacher-student models, can also re- 066

duce flicker in simultaneous translation. We will 067

show that an appropriately trained student model, 068

in other words a model trained on a synthetic cor- 069

pus created by translating using a teacher model, 070

is able to achieve the same quality as the teacher, 071

but with substantially lower flicker. 072

2 Background 073

We focus on simultaneous translation using the 074

retranslation approach, and in particular how to 075

stabilise the output, without reducing quality, and 076

without sacrificing the simplicity of the inference. 077

The problem of reducing flicker was considered 078

by Arivazhagan et al. (2020a), who showed that 079

masking the last k words of the output, combined 080
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with biasing the beam search towards the previ-081

ously translated prefix could improve the flicker-082

latency tradeoff, although this required modifica-083

tions to the inference engine. To set the mask dy-084

namically, Yao and Haddow (2020) showed that085

the system could make predictions of the contin-086

uation of the prefix, and compare the translations087

of these continuations to the translations of the cur-088

rent prefix. However this method has the disadvan-089

tage of requiring extra translation inference, mak-090

ing it less efficient at runtime.091

Evaluation of simultaneous translation requires092

that we consider more than just the quality of093

translation, we must also consider the latency, and094

if we are using retranslation, we should consider095

flicker. The quality of the translation can evalu-096

ated by comparing the final output of each sen-097

tence with a reference – we will show BLEU (Pa-098

pineni et al., 2002; Post, 2018), CHRF (Popovi,099

2015) and COMET (Rei et al., 2020) scores. For100

evaluation of flicker, we will use normalised era-101

sure (Arivazhagan et al., 2020a), which measures102

the number of tokens that must be deleted from103

the suffix of the previous translation to produce104

the next, normalised by sentence length. The mea-105

surement of latency has been the subject of some106

debate in the literature, with several different mea-107

sures proposed (Ma et al., 2019a; Cherry and Fos-108

ter, 2019; Ansari et al., 2021), and for retranslation109

systems there is the further question of whether to110

use the time that a word appears, or the time that it111

stabilises, in the latency calculation. In our exper-112

iments, we will vary the amount of output mask-113

ing, and observe the effect on flicker. The amount114

of masking is a clear measure of how much delay115

there is in the translation, and is easily controllable.116

The aim is to improve the mask-flicker tradeoff117

curve, and so be able to use a shorter mask with118

the same flicker budget.119

In sequence-level knowledge distillation (Kim120

and Rush, 2016), a smaller student model is cre-121

ated using data generated by the larger teacher122

model. This has found application in MT effi-123

ciency (Junczys-Dowmunt et al., 2018), where the124

small size of the student models ensure that they125

make inference much faster, and they can also be126

run using a small beam. In non-autoregressive127

translation, teacher-student models are able to re-128

duce the multimodality problem – by reducing129

the number of possible translations favoured by130

the model, the effect of the conditional indepen-131

dence assumption in NAT is mitigated (Zhou et al., 132

2020). 133

For our purposes, teacher-student methods play 134

a similar role. Because the student model tends to 135

prefer a single translation hypothesis, the model 136

is less likely to swap between translation hypothe- 137

ses unnecessarily as the source prefix is extended. 138

Also, since the student model is trained on MT 139

output, where the target order tends to be similar 140

to the source order, the student is more likely to 141

avoid unnecessary reorderings, generating a more 142

monotone translation, which can be built up incre- 143

mentally. We will demonstrate these points exper- 144

imentally in the next section. 145

Recently, Chen et al. (2021) also proposed to 146

use pseudo-reference sentences obtained through 147

forward translation of the source sentences to im- 148

prove simultaneous translation. Unlike our work, 149

they considered a streaming approach (specifically 150

wait-k (Ma et al., 2019b)) where the system can 151

only append to the output, it does not flicker like 152

retranslation. They showed that they could im- 153

prove the quality-latency tradeoff of wait-k using 154

their distillation approach, but to create the train- 155

ing data for the student system they used wait-k 156

and filtering – we avoid these complications by 157

just using the baseline system as the teacher. 158

3 Experiments 159

3.1 Data 160

In much of the previous work on simultaneous MT, 161

models are evaluated on translations that were pro- 162

duced offline, where the translators could access 163

the full sentence. As pointed out by Zhao et al. 164

(2021), this may not be a realistic evaluation. So 165

in this work, we test on the recently released ESIC 166

corpus (Macháek et al., 2021), a corpus derived 167

from the European parliament proceedings which 168

contains both transcripts of the original speeches, 169

and transcripts of the simultaneous interpretation 170

of those speeches. ESIC also contains the corre- 171

sponding text-based records, which can be consid- 172

ered as offline translations. ESIC is available for 173

English→Czech and English→German, and it is 174

aligned at the document level, but not at the sen- 175

tence level. We use the test portion for evaluation. 176

We train our systems using offline translations, 177

as there are no large corpora of simultaneous in- 178

terpretation for training. For English→German, 179

we use the IWSLT 2021 data sets (Anastasopoulos 180

et al., 2021). This includes the English→German 181
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data from WMT 2020 (Barrault et al., 2020). For182

development, we use the concatenation of IWSLT183

test sets from 2014 and 2015. We removed the184

train/test overlaps – between MuST-C.v2 and ear-185

lier IWSLT test sets, and between europarl and186

ESIC. For English→Czech, we use the training187

and valid set from WMT21 (Akhbardeh et al.,188

2021). Training data sizes are shown in Table 3.189

3.2 Teacher System190

Our initial system, which will later be used as a191

teacher model (Section 3.3), is a transformer base192

model1 (Vaswani et al., 2017) trained with marian193

(Junczys-Dowmunt et al., 2018). We use prefix194

training to reduce the mismatch between sentence-195

level training data and prefix-based inference at196

test time (Niehues et al., 2018). For each paral-197

lel sentence pair in the training set, we generate198

a corresponding prefix pair by truncating using a199

randomly chosen proportionate length.200

All data is pre-processed using a unigram lan-201

guage model (Kudo, 2018) with SentencePiece202

(Kudo and Richardson, 2018) with a shared sub-203

word (Sennrich et al., 2016) vocabulary size of204

32k. We train the MT models to convergence (us-205

ing early stopping of 10) with a learning rate of206

0.0003, and translate using a beam of 6.207

3.3 Teacher-Student Training208

In order to create a more stable system, we use209

the teacher model in the previous section to gener-210

ate training data for student models. These student211

models are trained in the same way, with the same212

architecture, but with training data synthesised by213

the teacher. For each source sentence, we generate214

n-best translations and then select the best trans-215

lation that has highest score against the reference216

translation. In our experiments we consider 8-best217

translation. We use three different scores (BLEU,218

CHRF, and model2 score), to select distilled train-219

ing data.220

In order to calculate the monotonicity of the221

training data, we use Kendall’s tau distance. To222

compute the distance, we first align the parallel223

data using fast_align (Dyer et al., 2013) and then224

find the source permutation π of a target sentence225

1With 65 million parameters.
2For distillation using model score, we do not compare

with a reference translation. Instead, each source is forward
translated into the target language by the teacher model and
we take the highest scoring translation.
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Figure 1: Sentence level Flicker vs Latency plot. The
y-axis represents flicker and the x-axis represents the
number of words that are masked.

as 226

π = {j : ith target word is aligned to jth source word} 227

We calculate the Kendall’s tau distance between 228

π and π
′
, where 229

π
′
= {i : ith target word } 230

The scores are calculated at the sentence level 231

and then averaged over a parallel corpus. The 232

higher tau score indicates more monotonicity. 233

In our experiments, we find the distance be- 234

tween 235

- the source and reference (Source-Reference) 236

- the source and 1-best distilled target (Source- 237

Distilledmodel) 238

- the source and distilled target obtained 239

from n-best using BLEU score (Source- 240

DistilledBLEU) 241

- the source and distilled target obtained 242

from n-best using ChrF score (Source- 243

DistilledChrF) 244
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Model BLEU ChrF COMET-qe Flicker
En→De

Interpreted

Teacher 17.6 59.0 0.539 2.07
Studentmodel 17.5 58.9 0.530 1.46 (29.46% ↓)
StudentBLEU 17.6 58.9 0.527 1.67 (19.32% ↓)
StudentChrF 17.6 59.0 0.530 1.69 (18.35% ↓)

En→Cs
Teacher 14.6 51.7 0.680 1.88
Studentmodel 14.6 51.7 0.660 1.45 (22.87% ↓)
StudentBLEU 14.6 51.7 0.670 1.56 (17.02% ↓)
StudentChrF 14.7 51.8 0.661 1.39 (26.06% ↓)

En→De

Translated

Teacher 36.4 63.7 0.540 2.61
Studentmodel 36.0 63.4 0.533 1.70 (34.86% ↓)
StudentBLEU 36.4 63.6 0.534 1.94 (25.67% ↓)
StudentChrF 36.6 63.9 0.532 2.02 (22.60% ↓)

En→Cs
Teacher 33.9 60.0 0.721 2.33
Studentmodel 33.3 59.7 0.693 1.62 (30.47% ↓)
StudentBLEU 33.9 60.1 0.701 1.81 (22.31% ↓)
StudentChrF 34.0 60.2 0.694 1.66 (28.75% ↓)

Table 1: Comparison between different approaches on ESIC test set. BLEU and ChrF scores are calculated at
document level for Interpreted category and at sentence level for translated category using Sacrebleu. The COMET-
qe score is calculated between source and the hypothesis using reference-less wmt20-comet-qe-da model. We use
reference-less scoring as we do not have equal number source and reference lines for interpreted ESIC corpus.
The flicker scores are calculated at sentence level on outputs without any mask. In parentheses, we show relative
reduction in flicker.

Model Pair Distance

En→De
Source-Reference 0.793
Source-DistilledBLEU 0.826
Source-DistilledChrF 0.848
Source-Distilledmodel 0.857

En→Cs
Source-Reference 0.849
Source-DistilledBLEU 0.900
Source-DistilledChrF 0.904
Source-Distilledmodel 0.906

Table 2: Kendall’s tau distances. Higher scores indicate
more monotonicity.

We have presented the tau scores in Table 2.245

From Table 2, we observe that the distillation246

makes the training data more monotonic and 1-247

best distilled data has the best tau distance.3248

3.4 Stability of Student Models249

We calculate the BLEU score at sentence and doc-250

ument level using Sacrebleu for translated and in-251

terpreted ESIC testset, respectively, and flicker at252

sentence level using SLTev toolkit (Ansari et al.,253

2021). We compare the quality of teacher and stu-254

dent models in Table 1.255

We observe that student models have a substan-256

3Additionally, we use tau distance to filter the 1-best dis-
tilled data, and then we train more models on the filtered data.
For filtering purpose, we sort the distilled parallel corpus by
monotonicity and take top 90, 80, 70, and 60% parallel sen-
tences for training student models. But this did not reduce the
flicker further significantly.

tially reduced flicker (by 17-34%) with no loss 257

in either document or sentence-level BLEU or 258

ChrF scores, although there is a moderate drop 259

in COMET-qe. The flicker can be further re- 260

duced with masking the subsequent output pre- 261

fixes. We apply different fixed mask of length 262

1-10 and plot the flicker (measure using normal- 263

ized erasure) against each fixed mask in Figure 1. 264

Masking helps reducing the flicker and the stu- 265

dent models flicker less than the teacher for a 266

given mask length. Since quality is calculated 267

on the final output, masking does not impact 268

BLEU/chrF/COMET. 269

4 Conclusion 270

In this paper, we proposed to reduce the flicker 271

in retranslation-based simultaneous translation 272

through knowledge distillation. We use differ- 273

ent metrics to select the synthetic target-side data, 274

which are monotonic measured using Kendall’s 275

tau distance, from n-best forward translations. We 276

use the synthetic data to train the retranslation- 277

based simultaneous translation system. Our eval- 278

uation on interpreted testsets for English-German 279

and English-Czech show significant reduction in 280

the flicker with similar quality as the teacher. 281

4



References282

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-283
dalena Biesialska, Ondej Bojar, Rajen Chatter-284
jee, Vishrav Chaudhary, Marta R. Costa-jussa,285
Cristina España-Bonet, Angela Fan, Christian Fe-286
dermann, Markus Freitag, Yvette Graham, Ro-287
man Grundkiewicz, Barry Haddow, Leonie Harter,288
Kenneth Heafield, Christopher Homan, Matthias289
Huck, Kwabena Amponsah-Kaakyire, Jungo Ka-290
sai, Daniel Khashabi, Kevin Knight, Tom Kocmi,291
Philipp Koehn, Nicholas Lourie, Christof Monz,292
Makoto Morishita, Masaaki Nagata, Ajay Nagesh,293
Toshiaki Nakazawa, Matteo Negri, Santanu Pal, Al-294
lahsera Auguste Tapo, Marco Turchi, Valentin Vy-295
drin, and Marcos Zampieri. 2021. Findings of the296
2021 conference on machine translation (WMT21).297
In Proceedings of the Sixth Conference on Machine298
Translation, pages 1–93, Online. Association for299
Computational Linguistics.300

Antonios Anastasopoulos, Ondřej Bojar, Jacob Bremer-301
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Appendix 471

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M4

Wikititles 410 K
Rapid 452 K

Table 3: Corpora used in training the systems
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Source I hope you will have a little time and energy to focus on another report which is, despite its
technicality, quite important for all of us.

Traget: Ich
Ich hoffe,
Ich hoffe, Sie
Ich hoffe, Sie
Ich hoffe, Sie haben
Ich hoffe, Sie haben ein
Ich hoffe, Sie werden ein wenig Zeit
Ich hoffe, Sie haben etwas Zeit
Ich hoffe, Sie haben etwas Zeit und
Ich hoffe, Sie werden etwas Zeit und Energie haben,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf ein anderes Thema
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen weiteren Bericht zu konzentrieren,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen anderen Bericht zu konzentrieren,
...
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf einen anderen Bericht zu konzentrieren,
der trotz seiner Formalität für uns alle sehr wichtig ist.

Table 4: Examples of flicker caused by the teacher model. Source is the original full sentence which is input as a
growing input prefix. Target is the output prefix in successive retranslations.
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