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Abstract

Diffusion models have emerged as powerful tools for biological sequence design,
offering flexible conditional generation for engineering functional biomolecules.
While reinforcement learning (RL)-based fine-tuning enables multi-objective opti-
mization on limited data, existing methods face a critical trade-off: gradient-free
approaches suffer from training instability in discrete spaces, whereas gradient-
based methods incur prohibitive computational costs. This trade-off severely limits
their practical applicability in biological design tasks. We propose GLID2E, a
light-weight gradient RL framework that achieves stable and efficient fine-tuning
of discrete diffusion models. Our key insight is to constrain the exploration space
through a clipped likelihood mechanism while employing reward shaping to align
generation with design objectives. This combination mitigates the inherent insta-
bilities in RL-guided diffusion while maintaining computational efficiency. We
demonstrate GLID2E’s effectiveness on DNA and protein sequence design bench-
marks, where it matches or exceeds the performance of gradient-based methods
while requiring significantly lower computational resources. Our approach provides
a practical solution for function-driven biological sequence optimization. The code
is available at: https://github.com/chq1155/GLID2E.

1 Introduction

Designing biological sequences with desired functional properties is fundamental to protein engi-
neering and synthetic biology [1, 2]. Recent diffusion [3, 4, 5, 6, 7] and flow-matching models
[8, 9, 10, 11] have shown impressive capability in modeling sequence distributions. However, adapt-
ing these pretrained models for controllable, task-specific design remains challenging, particularly
when limited experimental data inadequately captures sequence-function relationships and design
objectives involve multiple competing criteria.

Two primary paradigms have emerged for functional sequence design: conditional sampling and
fine-tuning. Conditional sampling methods [12, 13] guide generation online by steering the diffusion
process toward desired properties. While conceptually straightforward, they incur additional inference
costs and struggle to balance multiple objectives effectively. Fine-tuning methods [14, 15, 16, 17,
18] offer a complementary approach by embedding functional knowledge into model parameters.
DRAKES [14], a representative gradient-based method, employs Gumbel-Softmax to enable gradient
flow through discrete trajectories and uses KL regularization for distribution alignment. Although
fine-tuned models generate functional sequences efficiently at inference without additional costs,
gradient-based training poses significant challenges: backpropagation through entire generation
trajectories requires storing multiple intermediate states, leading to substantial memory overhead
and computational burden. Moreover, terminal-only rewards provide limited guidance, missing
opportunities to leverage intermediate information for finer generation control.
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Figure 1: Overview of the GLID2E framework. (A) GLID2E employs a lightweight reinforcement
learning approach to fine-tune pretrained discrete diffusion models for generating functional biological
sequences, specifically regulatory DNA elements and thermostable proteins. (B) The framework
incorporates two key innovations: a Clipped Likelihood Constraint that preserves sample rationality
while allowing exploration, and a Reward Shaping mechanism that provides informative signals
throughout the diffusion process, enabling stable and lightweight fine-tuning.

We propose GLID2E (Gradient LIghtweight fine-tuning for Discrete sequence DEsign), a reinforce-
ment learning framework that reformulates fine-tuning as policy optimization. Unlike gradient-based
methods that backpropagate through full trajectories, GLID2E computes lightweight gradients only
on policy parameters while treating the generation process as environment interactions. Our approach
introduces two key mechanisms for stable and efficient optimization. First, we employ a clipped like-
lihood constraint that leverages the pretrained model’s likelihood estimates to assess sample quality,
avoiding explicit KL divergence computation while preventing unreasonable sequence exploration.
This constraint enables effective high-reward region exploration while maintaining distributional
validity. Second, our reward shaping mechanism provides informative signals at intermediate gener-
ation steps by evaluating partial sequences, guiding the policy toward promising regions earlier in
the process. This contrasts with terminal-only reward methods, enabling more efficient learning and
finer-grained control over generation trajectories.

We validate GLID2E on DNA and protein sequence design benchmarks, demonstrating comparable
or superior performance to state-of-the-art methods while achieving significantly faster training and
inference with reduced computational requirements. Ablation studies confirm that both the clipped
likelihood constraint and reward shaping contribute substantially to stability and performance. Our
results suggest that GLID2E provides a practical and scalable solution for function-driven biological
sequence optimization.

2 Related Work

Discrete Diffusion Models for Biological Sequences Diffusion models have been successfully
extended from continuous to discrete domains, enabling powerful generative modeling for biological
sequences [19, 20, 5, 6]. Recent advances have demonstrated strong performance in protein structure
generation [21, 22], RNA design [23], and DNA sequence modeling [24].

Key technical challenges distinguish discrete diffusion from its continuous counterpart. First, the
corruption process requires carefully designed categorical transition matrices rather than Gaussian
noise [19, 20], though auto-regressive variants [25] can sidestep explicit transition design. Second,
iterative categorical sampling incurs significant computational costs, particularly for long sequences.
While accelerated sampling techniques [26] and consistency models [27] have improved efficiency,
the trade-off between fidelity and computational cost remains when training data is limited—a
common scenario in biological applications where experimental characterization is expensive.

Conditional Generation and RL Fine-Tuning Adapting pretrained diffusion models for task-
specific objectives follows two primary paradigms. Training-free guidance methods steer the sampling
process online through classifier guidance [28, 29], Sequential Monte Carlo [13], or classifier-free
guidance [30]. These approaches offer flexibility without retraining but incur additional inference
costs and struggle to balance multiple competing objectives [31, 32, 33], limiting their effectiveness
for complex biological design tasks.
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RL Fine-tuning methods provide an alternative by embedding functional knowledge directly into
model parameters [17, 18, 16]. DRAKES [14] employs gradient-based optimization with Gumbel-
Softmax reparameterization and KL regularization, achieving strong performance in biological
sequence design. However, backpropagating through entire generation trajectories requires substan-
tial memory and computation. More broadly, reinforcement learning has emerged as a powerful
framework for optimizing generative models with non-differentiable objectives [34, 35, 36, 33, 37],
particularly in text generation where reward-driven fine-tuning improves fluency and alignment. Re-
cent work applies policy gradient methods to molecular and protein design [14, 38, 39], but efficiency
and stability challenges persist in high-dimensional discrete spaces.

Our Approach GLID2E bridges these paradigms by reformulating fine-tuning as lightweight policy
optimization. Unlike gradient-based methods that backpropagate through generation trajectories, we
compute gradients only on policy parameters while treating sampling as environment interactions.
Our clipped likelihood constraint replaces expensive KL divergence computation with efficient
likelihood-based filtering, while reward shaping addresses sparse reward signals without requiring
intermediate gradient flow. This design achieves the parameter-embedded knowledge benefits of
fine-tuning with computational efficiency approaching training-free methods, providing a practical
solution for function-driven biological sequence optimization.

3 Preliminary

3.1 Problem Formulation

We consider the task of adapting a pretrained generative model to produce sequences with high
functional value. Formally, let X ⊆ {1, . . . , N}n denote the discrete sequence space, where N is
the vocabulary size and n is the sequence length. Our goal is to transform a pretrained diffusion
model pprior(x) into an optimized policy pθ(x) that assigns higher probability to sequences x with
high reward r(x), where r : X → R is a reward function evaluating functional properties.

This setting is motivated by a fundamental tension in biological sequence design: pretrained diffusion
models, trained on large-scale real-world data, generate sequences that are structurally plausible but
not necessarily functionally optimized for specific tasks. Conversely, reward models can evaluate
task-specific properties but may assign high scores to invalid or unrealistic sequences when used
directly for optimization. Our objective is to leverage both the distributional knowledge of the
pretrained model and the task-specific guidance from the reward function.

3.2 Discrete Diffusion Models

We briefly review discrete diffusion models based on continuous-time Markov chains (CTMCs) [5, 6].
The forward process gradually corrupts a sequence x0 ∈ X into a fully masked sequence xT

over time t ∈ [0, T ] via a time-dependent transition rate matrix Q(t). The transition matrix is
typically handcrafted to ensure that at t = T , the sequence consists entirely of special MASK tokens,
representing maximum corruption.

The generative model learns to reverse this corruption process. A neural network parameterized by θ
is trained to approximate the reverse-time transition rates Q̄θ(t), enabling ancestral sampling from
the masked state xT back to realistic sequences x0. The reverse process follows the time-reversed
CTMC:

dxT−t

dt
= Q̄θ(T − t)xT−t (1)

where the model learns to predict appropriate tokens to replace MASK symbols at each timestep.

Throughout this work, we assume the pretrained diffusion model operates on fixed-length sequences
and is unconditional, generating samples x ∼ pprior(x) without additional conditioning inputs. Our
method fine-tunes this pretrained model to incorporate functional objectives while preserving its
ability to generate valid sequences.
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Table 1: Comparative analysis of biological sequence design methods, evaluating key features and
computational requirements. GLID2E uniquely combines light-weight policy optimization with
preserved sequence naturalness, while achieving lower training complexity (O(N ·B·T ·L·d) vs.
O(N ·B·T ·L·d2) for comparable methods). Notation: N = training iterations, B = batch size, T =
diffusion steps, L = sequence length, d = model dimension, P = number of particles.

Method Feature Comparison Computational Cost Comparison

Requires
Gradients

Preserves
Naturalness

Theoretical
Guarantees Training Inference Memory

CG ✓ ✗ ✓ O(1) O(T ·L·d2) O(d2)
SMC ✗ ✓ ✗ O(1) O(P ·T ·L·d) O(P ·L·d+ d2)
TDS ✓ ✗ ✗ O(1) O(P ·T ·L·d2) O(P ·L·d+ d2)
CFG ✓ ✗ ✗ O(N ·B·T ·L·d2) O(T ·L·d) O(d2)
DRAKES ✓ ✓ ✓ O(N ·B·T ·L·d2) O(T ·L·d) O(T ·L·d+ d2)
GLID2E ✗ ✓ ✗ O(N ·B·T ·L·d) O(T ·L·d) O(d2 +B·L)

4 Method

We present GLID2E (Gradient LIghtweight fine-tuning for Discrete sequence DEsign), a reinforce-
ment learning framework that efficiently adapts pretrained discrete diffusion models for functional
sequence design. Unlike gradient-based methods that backpropagate through entire generation tra-
jectories, GLID2E treats the diffusion sampling process as an RL environment and optimizes only
the policy parameters with lightweight gradients. Our framework addresses two fundamental chal-
lenges: (1) preventing policy collapse while maximizing rewards, and (2) overcoming sparse terminal
rewards through intermediate guidance. We introduce three core components: a clipped likelihood
constraint for rationality preservation (Section 4.1), reward shaping for informative intermediate
signals (Section 4.2), and a PPO-based optimization that integrates these mechanisms (Section 4.3).

4.1 Clipped Likelihood Constraint

The Standard KL-Regularized Objective. Directly maximizing expected rewards in RL often leads
to training instabilities and policy collapse [18, 40]. A standard approach employs KL divergence
regularization to constrain the optimized policy pθ near a reference policy pprior:

max
θ

Ex∼pθ
[r(x)]− βKL(pθ∥pprior), (2)

where β > 0 controls the regularization strength. The optimal solution to Equation (2) takes the
form:

pθ∗(x) ∝ pprior(x) exp

(
r(x)

β

)
. (3)

This formulation presents a fundamental trade-off. Large β yields conservative policies that closely
follow the prior but achieve limited reward improvement—problematic when the prior distribution,
trained on diverse task-agnostic data (e.g., entire proteomes or multi-species genomes), lacks task-
specific inductive biases. Conversely, small β permits aggressive exploration but risks generating
invalid sequences when reward models exhibit pathologies, such as assigning artificially high scores
to sequences with excessive hydrophobic regions while ignoring critical functional constraints.

Rethinking the Constraint. The optimal policy in Equation (3) uniformly mixes the prior and
reward-induced distributions across all sequences. However, we argue that rationality should be
enforced as a hard constraint rather than softly blended with reward optimization. Pretrained diffusion
models, trained on extensive real-world datasets, inherently capture distributional validity and can
effectively assess sequence plausibility through likelihood estimates. Meanwhile, over-reliance on
the prior may unnecessarily restrict exploration of high-reward regions, particularly for task-specific
objectives where the prior provides limited guidance.

This motivates reformulating the optimization as:

max
θ

Ex∼pθ
[r(x)]− αH(pθ)

subject to pθ(x) > 0 only if pprior(x) ≥ c,
(4)
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where c > 0 is a likelihood threshold defining the rationality boundary, and the entropy term
H(pθ) = −Ex∼pθ

[log pθ(x)] encourages policy diversity. This formulation restricts the policy’s
support to sequences deemed plausible by the pretrained model while allowing the reward function to
dominate within this constrained space.

Practical Implementation via Likelihood Clipping. Solving Equation (4) directly is intractable.
We propose a practical approximation by modifying the reward function to penalize sequences with
low prior likelihood. We first generate a calibration set of ncal samples from the pretrained model and
compute the empirical mean µ and standard deviation σ of their log-likelihoods. The threshold is
set as c = µ− kσ, where k ≥ 0 controls tolerance (we use k = 1 in experiments). This calibration
leverages the pretrained model’s confidence: samples within one standard deviation are considered
plausible.

The modified reward function incorporates a likelihood-based penalty:

r̃(x) = r(x) + β min

(
log pprior(x)− µ

σ
+ k, 0

)
, (5)

where the min(·, 0) operator activates penalties only for sequences below the threshold (i.e.,
log pprior(x) < µ−kσ), and β > 0 controls penalty strength. The standardization (log pprior(x)−µ)/σ
ensures robustness across different models and tasks by normalizing likelihood scales.

Using r̃(x) as the reward, we optimize the policy via standard RL without explicit KL regularization.
This approach provides a computationally efficient alternative that avoids expensive KL divergence
calculations while effectively constraining the policy to the high-likelihood region of the pretrained
distribution.

4.2 Reward Shaping

Motivation. Standard RL formulations for diffusion models provide rewards only upon complete
sequence generation, resulting in sparse signals that slow learning. To accelerate optimization
and provide finer-grained guidance, we introduce reward shaping [41], a technique that assigns
intermediate rewards while preserving the optimal policy.

RL Formulation. Following [14], we formulate diffusion sampling as a Markov Decision Process
(MDP). The state space comprises partially denoised sequences st = xt at timestep t ∈ {0, . . . , T},
where x0 is fully masked and xT is the final sequence. At each step, the diffusion model performs a
denoising action by sampling from πθ(·|xt−1, t), transitioning from st−1 to st. The standard reward
structure assigns zero rewards to all intermediate transitions (r(st) = 0 for t < T ) and provides the
final reward r(sT ) = r̃(xT ) only at termination. The discount factor is γ = 1.0.

Potential-Based Shaping. We employ potential-based reward shaping [41], which modifies rewards
via a potential function Φ : S → R as:

r′(st−1, st) = r(st−1, st) + γΦ(st)− Φ(st−1). (6)

This formulation guarantees that the cumulative return remains unchanged:
∑T

t=1 r
′(st−1, st) =

r(sT ) + Φ(sT ) − Φ(s0). By setting Φ(s0) = Φ(sT ) = 0, the optimal policies under r and r′

coincide.

Handling Masked Tokens. A key challenge is defining Φ(st) for intermediate states containing
MASK tokens, which the reward model cannot evaluate directly since it was trained only on complete
sequences. We address this by completing partial sequences through Monte Carlo sampling: for
each intermediate state st with nmask remaining masks, we sample nmc completions by independently
replacing each MASK token according to the current policy πθ(·|xt, t), with the MASK token
probability set to zero. The potential function is defined as:

Φ(st) =

{
Excomp

t ∼πcomplete
θ

[r̃(xcomp
t )] 1 ≤ t < T

0 t = 0 or t = T,
(7)

where πcomplete
θ denotes the completion distribution. In practice, we approximate the expectation using

nmc samples.

This design provides increasingly accurate reward estimates as denoising progresses: early states
with many masks yield coarse estimates, while near-complete sequences provide precise signals. The
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shaped rewards guide the policy toward promising regions throughout the trajectory, accelerating
learning compared to terminal-only feedback.

4.3 PPO-Based Policy Optimization

We integrate the clipped likelihood constraint and reward shaping within a Proximal Policy Opti-
mization (PPO) framework [42], a widely adopted policy gradient method known for stable training.
PPO employs a clipped surrogate objective to prevent excessively large policy updates that could
destabilize training.

Mixed Reference Policy. To maintain proximity to the pretrained diffusion model while allowing
reward-driven exploration, we define a mixed reference policy that interpolates between the pretrained
policy πprior and the current policy πθ:

log πref(st|st−1) = η log πprior(st|st−1) + (1− η) log πθ(st|st−1), (8)

where η ∈ [0, 1] controls the mixture weight. This design creates a "soft anchor" to the pretrained
distribution: higher η enforces stronger adherence to the prior, while lower η grants more exploration
freedom. During online sampling, we record logits from both policies to compute πref efficiently.

Clipped Surrogate Objective. The PPO objective clips importance ratios to bound policy updates:

LCLIP(θ) = Et,st

[
min

(
ρtÂt, clip(ρt, 1− ϵ, 1 + ϵ)Ât

)]
, (9)

where ρt = πθ(st|st−1)/πref(st|st−1) is the importance weight, Ât is the advantage estimate com-
puted via Generalized Advantage Estimation (GAE) [43], and ϵ > 0 is the clipping threshold (set to
0.5 in our experiments, corresponding to a clipping ratio of 1.5). The clipping mechanism prevents
large policy shifts while avoiding expensive KL divergence computations.

Combined with an entropy bonus to encourage exploration, the final objective becomes:

L(θ) = LCLIP(θ) + λH(πθ), (10)

where λ > 0 controls the entropy coefficient. Together with the clipped likelihood constraint
(Equation 5) and reward shaping (Equation 6), this framework achieves efficient and stable fine-
tuning of discrete diffusion models. The complete algorithm is provided in Appendix A.4, with
hyperparameter details in Appendix A.1.

5 Experiments

We evaluate GLID2E on two biological sequence design benchmarks: regulatory DNA enhancer
design and thermostable protein design. Our experiments demonstrate that GLID2E achieves state-
of-the-art or competitive performance while maintaining computational efficiency. We conduct
comprehensive ablation studies to validate the contribution of each component and analyze the impact
of key hyperparameters.

5.1 Experimental Setup

Datasets and Models Following DRAKES [14], we use established benchmarks for both tasks.

DNA Design. We use a comprehensive enhancer dataset containing approximately 700,000 DNA
sequences of 200 base pairs [44], characterized for activity in human cells via massively parallel
reporter assays. The discrete diffusion model follows [45], while the reward oracle adopts the
Enformer architecture [46] trained to predict activity in the HepG2 cell line.

Protein Design. The discrete diffusion model is pretrained on 19,700 high-resolution single-chain
structures from PDB, following ProteinMPNN [2]. The reward oracle is trained on the Megascale
dataset (1.8M sequences across 983 designed domains) to predict thermodynamic stability measured
by Gibbs free energy change (∆∆G). Both models use the ProteinMPNN architecture.
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Evaluation Metrics We use metrics for both functional performance and naturalness preservation.

DNA Design. Functionality is measured by Pred-Activity (predicted enhancer activity) and ATAC-Acc
(chromatin accessibility [47, 48]). Naturalness is quantified via 3-mer Correlation (similarity to
natural k-mer distributions) and Log-Likelihood under the pretrained model [44].

Protein Design. Stability is assessed by Pred-ddG (predicted ∆∆G) and %(ddG>0) (percentage of
stabilizing sequences). Structural naturalness is evaluated using scRMSD (self-consistency RMSD
between ESMFold [49] predictions from sequence and back-translation). We define Success Rate as
the percentage of sequences satisfying both ddG>0 and scRMSD<2.

Baselines We compare against the pretrained diffusion model, conditional sampling methods
(Classifier Guidance [29], SMC [13], TDS [50], and Classifier-Free Guidance [30]), the MCTS-based
tree method PepTune [51], and the gradient-based fine-tuning method DRAKES [14].

Implementation Details All experiments are conducted on a single NVIDIA A40 GPU with 20GB
memory. We use multiple GPUs for parallel runs across different random seeds. Hyperparameters
are detailed in Appendix A.1.

5.2 DNA Sequence Design

Table 2: General performance for DNA sequence design models. State-of-the-art performance is
bold, and the second-highest performance is underlined. KL, M1, and M2 denote KL regularization,
reward shaping, and likelihood penalty, respectively.

Method Pred-Activity (median) ↑ ATAC-Acc ↑ (%) 3-mer Corr ↑ Log-Lik (median) ↑

Pretrained 0.17(0.04) 1.5(0.2) -0.061(0.034) -261(0.6)
CG 3.30(0.00) 0.0(0.0) -0.065(0.001) -266(0.6)
SMC 4.15(0.33) 39.9(8.7) 0.840(0.045) -259(2.5)
TDS 4.64(0.21) 45.3(16.4) 0.848(0.008) -257(1.5)
CFG 5.04(0.06) 92.1(0.9) 0.746(0.001) -265(0.6)
DRAKES 5.61(0.07) 92.5(0.6) 0.887(0.002) -264(0.6)

GLID2E 7.29(0.162) 98.4(0.67) 0.49(0.074) -240.933(3.7)
GLID2E w/o M1 2.57(0.60) 0.63(0.3) 0.473(0.078) -239.12(10.07)
GLID2E w/o M2 6.62(0.42) 67.3(39.4) 0.458(0.009) -244.65(21.5)

Main Results Table 2 presents the DNA design results. GLID2E achieves the highest median
Pred-Activity (7.29), substantially outperforming DRAKES by 30% and demonstrating superior
functional optimization. Our method also attains the best ATAC-Acc (98.4%), indicating that
generated sequences exhibit high chromatin accessibility, a key indicator of functional enhancer
activity in biological contexts.

Regarding naturalness metrics, GLID2E achieves competitive Log-Likelihood (-240.9), second only
to the ablation variant without M1, confirming that our clipped likelihood constraint effectively
preserves distributional validity. However, GLID2E exhibits lower 3-mer correlation (0.49) compared
to DRAKES (0.887) and conditional sampling methods. This discrepancy reveals an important
finding: the pretrained model’s learned distribution diverges from conventional k-mer statistics of
natural enhancers. Rather than indicating lower quality, this suggests GLID2E discovers functionally
equivalent but compositionally distinct sequence variants that satisfy the model’s likelihood con-
straints while achieving superior predicted activity. This exploration beyond traditional motif patterns
potentially expands the design space for functional enhancers.

GLID2E exhibits lower variance in activity metrics (Pred-Activity std: 0.162) compared to natu-
ralness metrics (Log-Lik std: 3.7), suggesting convergence toward reward-optimized regions while
maintaining diversity in sequence-level characteristics.

Ablation Study The ablation experiments validate our design choices. Removing reward shaping
(w/o M1) causes dramatic performance drops: Pred-Activity decreases to 2.57 (65% reduction) and
ATAC-Acc collapses to 0.63%, demonstrating that intermediate reward signals are critical for guiding
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the policy toward functional regions during early generation steps. Notably, Log-Likelihood remains
comparable (-239.1), indicating that the model still generates valid sequences but fails to optimize for
functionality without shaped rewards.

Removing the likelihood constraint (w/o M2) maintains reasonable activity (Pred-Activity: 6.62) but
reduces ATAC-Acc to 67.3% and degrades Log-Likelihood to -244.7, confirming that the clipped
likelihood mechanism preserves both distributional validity and biologically relevant sequence
characteristics. This validates our hypothesis that the pretrained model’s likelihood estimates capture
essential naturalness constraints beyond simple k-mer statistics.

5.3 Protein Sequence Design

Table 3: General performance for protein sequence design models. State-of-the-art performance is
bold, and the second-highest performance is underlined. KL, M1, and M2 denote KL regularization,
reward shaping, and likelihood penalty, respectively.

Method Pred-ddG %(ddG > 0) scRMSD %(scRMSD < 2) Success Rate
(median) ↑ (%) ↑ (median) ↓ (%) ↑ (%) ↑

Pretrained -0.544(0.037) 36.6(1.0) 0.849(0.013) 90.9(0.6) 34.4(0.5)
CG -0.561(0.045) 36.9(1.1) 0.839(0.012) 90.9(0.6) 34.7(0.9)
SMC 0.659(0.044) 68.5(3.1) 0.841(0.006) 93.8(0.4) 63.6(4.0)
TDS 0.674(0.086) 68.2(2.4) 0.834(0.001) 94.4(1.2) 62.9(2.8)
CFG -1.186(0.035) 11.0(0.4) 3.146(0.062) 29.4(1.0) 1.3(0.4)
DRAKES 1.095(0.026) 86.4(0.2) 0.918(0.006) 91.8(0.5) 78.6(0.7)
PepTune 0.432(0.003) 94.0(2.0) 1.041(0.057) 87.3(4.0) 70.1(1.2)

GLID2E 1.012(0.094) 86.7(2.4) 0.961(0.047) 89.2(1.2) 76.7(1.2)
GLID2E w/o M1 0.843(0.099) 75.3(2.5) 0.950(0.074) 85.0(3.0) 62.0(3.4)
GLID2E w/o M2 0.893(0.170) 80.6(3.9) 0.970(0.049) 85.8(5.1) 67.5(4.4)

Main Results Table 3 shows protein design results. GLID2E achieves competitive stability perfor-
mance with Pred-ddG of 1.012 (second to DRAKES’ 1.095) and the highest %(ddG>0) at 86.7%,
demonstrating that RL-based fine-tuning can match gradient-based methods for thermodynamic opti-
mization. Peptune exhibits a more concentrated ddG distribution, and its RMSD distribution shows
similar performance to DRAKES and GLID2E. The success rate of 76.7% approaches DRAKES’
78.6%, confirming the viability of our lightweight gradient approach. The

GLID2E exhibits slightly higher scRMSD (0.961) compared to conditional sampling methods like
TDS (0.834), reflecting broader exploration of sequence space. We note that scRMSD, while
informative, provides a less direct naturalness measure than DNA’s Log-Likelihood because ESMFold-
predicted structural similarity may not fully capture sequence-level naturalness—a minor limitation
of the evaluation framework. The higher variance across GLID2E’s metrics (e.g., Pred-ddG std:
0.094 vs. DRAKES’ 0.026) further confirms this exploratory behavior, consistent with RL methods’
tendency to sample more diverse regions of the design space.

Ablation Study Removing reward shaping (w/o M1) reduces Pred-ddG to 0.843 and success rate
to 62.0%, though performance still exceeds all conditional sampling methods. This confirms that
iterative RL-based optimization accumulates more effective learning compared to one-shot conditional
generation, and that shaped rewards effectively address sparse reward signals by providing informative
gradients throughout the generation trajectory.

Removing the likelihood constraint (w/o M2) causes consistent degradation across all metrics (Pred-
ddG: 0.893, success rate: 67.5%). Since the pretrained model was trained on natural, thermostable
PDB structures, sequences closer to this distribution inherently achieve better stability and lower
scRMSD. This validates that the clipped likelihood constraint serves dual purposes: preventing invalid
sequence generation while implicitly guiding toward stable, natural structures. Unlike DRAKES’ KL
regularization, which uniformly constrains the entire distribution, our clipping mechanism permits
controlled deviation (within one standard deviation), effectively filtering irrational outliers while
allowing exploration of high-reward regions.
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5.4 Hyperparameter Analysis

Table 4: Ablation study for clipping ratio in protein sequence design models. State-of-the-art
performance is bold, and the second-highest performance is underlined.

Clipping Ratio Pred-ddG %(ddG > 0) scRMSD %(scRMSD < 2) Success Rate
(median) ↑ (%) ↑ (median) ↓ (%) ↑ (%) ↑

0.5 0.402(0.147) 65.6(0.5) 1.022(0.083) 87.0(1.3) 53.9(1.3)
1.0 0.834(0.281) 75.4(11.2) 0.988(0.061) 81.7(5.1) 60.5(1.8)
1.5 1.012(0.094) 86.7(2.4) 0.961(0.047) 89.2(1.2) 76.7(1.2)
2.0 0.932(0.144) 76.4(2.7) 0.902(0.041) 78.2(3.5) 64.7(2.5)

Clipping Ratio Table 4 shows the effect of the clipping ratio (recall that the likelihood threshold is
µ−kσ where k is the ratio). Stability metrics (Pred-ddG) initially increase then decrease: performance
peaks at ratio 1.5, then declines at 2.0. This non-monotonic trend reveals a fundamental trade-off.
Lower ratios (0.5-1.0) impose stricter likelihood constraints, limiting exploration of stable sequences
beyond the pretrained distribution. Higher ratios (2.0) relax constraints excessively, allowing the
policy to venture into regions where the pretrained model’s likelihood estimates become less reliable.

Interestingly, as the clipping ratio increases, median scRMSD decreases (1.022→0.902) while
%(scRMSD<2) also decreases (87.0%→78.2%), indicating emergence of a bimodal distribution:
tighter likelihood constraints compress the policy toward the prior, yielding more sequences with
excellent structural consistency, but also producing outliers with degraded structures. The high
variance at ratio 1.0 (Pred-ddG std: 0.281, %(ddG>0) std: 11.2) reflects this transition point where
the model struggles to balance reward optimization and distributional validity.

Table 5: Ablation study for mixture ratio in protein sequence design models. State-of-the-art
performance is bold, and the second-highest performance is underlined.

Mixture Ratio Pred-ddG %(ddG > 0) scRMSD %(scRMSD < 2) Success Rate
(median) ↑ (%) ↑ (median) ↓ (%) ↑ (%) ↑

0.01 1.012(0.094) 86.7(2.4) 0.961(0.047) 89.2(1.2) 76.7(1.2)
0.1 0.295(0.151) 61.7(3.5) 0.898(0.035) 87.5(2.4) 51.7(1.2)
1.0 -0.302(0.023) 42.1(0.6) 0.844(0.008) 93.4(1.2) 41.3(0.6)

Mixture Ratio Table 5 examines the mixture ratio η in the reference policy (Equation 8). Higher η
values enforce stronger adherence to the pretrained policy, resulting in progressively conservative
behavior: at η = 1.0, performance degrades to Pred-ddG of -0.302 and success rate of 41.3%, barely
improving over the pretrained baseline. This confirms that excessive regularization prevents effective
reward optimization.

Conversely, low η (0.01) permits aggressive exploration, achieving the best stability metrics (Pred-
ddG: 1.012, success rate: 76.7%). The intermediate ratio (η = 0.1) exhibits substantially elevated
variance across all metrics (e.g., Pred-ddG std: 0.151), similar to the clipping ratio analysis at 1.0.
This suggests that moderate regularization creates ambiguity in the optimization landscape: the
policy oscillates between prioritizing reward signals and adhering to the prior, leading to bimodal
behavior that generates either high-reward or high-naturalness sequences without effectively balancing
both objectives. These hyperparameter studies reveal that GLID2E’s performance is robust within
reasonable ranges (clipping ratio: 1.5-2.0, mixture ratio: 0.01-0.1), with clear indicators (elevated
variance) when hyperparameters approach suboptimal regimes.

6 Conclusion

We present GLID2E, a reinforcement learning framework that adapts discrete diffusion models for
functional biological sequence design through two key innovations: a clipped likelihood constraint
that preserves distributional validity without expensive KL computation, and reward shaping that
provides intermediate guidance throughout generation. These mechanisms enable stable and efficient
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fine-tuning while maintaining parameter-level knowledge embedding. Experiments demonstrate
that GLID2E matches or exceeds state-of-the-art performance on DNA enhancer and protein design
benchmarks. Our method achieves 30% activity improvement on DNA tasks and competitive
stability (Pred-ddG: 1.012, success rate: 76.7%) on protein tasks, while requiring significantly lower
computational resources. Ablation studies confirm both mechanisms contribute substantially to
performance. GLID2E’s computational efficiency and modular design make it well-suited for multi-
objective optimization, longer sequences, and data-scarce domains, providing a practical foundation
for function-driven biological sequence design.
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A Appendix

A.1 Implementation details

Common Hyperparameters: In our implementation, we utilized several key hyperparameters that
were common across experiments. These parameters control various aspects of our reinforcement
learning approach, particularly focusing on reward handling and likelihood clipping mechanisms.

For reward processing, we employed parameters such as likelihood penalty scale to adjust the
strength of likelihood constraint β in Section 4.1 and multiple_reward_sampling to determine
the number of multiple reward sampling for reward shaping in Section 4.2. For our clipped policy
optimization, we use clip_mix_factor and clip_threshold to control the mixture, described in
Section 4.3. The complete set of common hyperparameters and their values is presented in the table
below:

Table 6: Common hyperparameter configuration utilized across experiments.

Parameter Setting
likelihood penalty scale 0.1
multiple_reward_sampling 4
clip_threshold 1.5
clip_mix_factor 0.01

Hyperparameters in DNA experiment: For our DNA experiments, we configured reinforcement
learning parameters including GAE’s λ = 0.95, discount factor (γ = 0.99), and learning rate (1e−4).
We employed gradient norm clipping (1.0) and exponential moving average decay (0.999) to enhance
training stability.

Table 7: Hyperparameter configuration utilized in our DNA experiments.

Parameter Setting
batch_size 8
decay 0.999
learning_rate 1e-4
λ in GAE 0.95
γ 0.99
gradient_norm_clip 1.0
gumbel_temperature 1.0
entropy_scale 1e-3

Hyperparameters in Protein experiment: Our protein experiments used 3 encoder and decoder
layers with hidden dimension 128 and 30 neighbors for graph representation following [14]. We set
the learning rate to 3e-5 with weight decay 1e-4 and used a diffusion process with 50 timesteps.

A.2 Training time comparison

We compared the training times of DRAKES and GLID2E, as shown in 9. The light-weight scheme
enhances the algorithm’s efficiency. We achieved consistent results with the training cost in Table 1.

A.3 Sequence diversity analysis

We further tested the sequence diversity of different baselines based on entropy (Table 10). The
results showed that all baselines exhibited a decline, with GLID2E and CG achieving performance
closest to that of the pretrained model.
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Table 8: Hyperparameter configuration utilized in our protein experiments.

Parameter Setting
batch_size 16
hidden_dim 128
num_encoder_layers 3
num_decoder_layers 3
num_neighbors 30
dropout 0.0
backbone_noise 0.1
gradient_norm_clip 1.0
learning_rate 3e-5
weight_decay 1e-4
temperature 0.1
λ in GAE 0.95
num_timesteps 50
gumbel_softmax_temperature 0.5
entropy_scale 1e-3

Table 9: Training time per epoch for different methods.

Method DRAKES GLID2E (Ours)
Time 23.28± 0.14 13.54± 0.04

A.4 Detailed Training Algorithm of GLID2E
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Algorithm 1 GLID2E Training Algorithm based on PPO algorithm

1: Input: Policy network pθ, Value network Vϕ, Training epochs K, Advantage estimate Ât,
Clipping parameter ϵ

2: Initialization: Policy network parameters θ and value network parameters ϕ
3: while Termination condition is not met do
4: Collect N trajectories τi = (si,t, ai,t, log p(si,t))

T
t=0, where i = 1, . . . , N

5: Calculate indicate states xb
i,t

6: Calculate reward ri,t = Φ(xb
i,t+1)− Φ(xb

i,t), where t = 0, . . . , T − 1

7: and ri,T = r(xi,T )− Φ(xb
i,T ) + βmin

(
log pprior(xi,T )−µ

σ + k, 0
)

8: Compute advantage estimates Âi,t for each trajectory via GAE
9: for k = 1 to K do

10: for Each mini-batch B containing M samples do
11: Compute the policy loss LCLIP (θ)

LCLIP (θ) = −Êt

[
min

(
pθ(at|st)
pθold(at|st)

Ât, clip(
pθ(at|st)
pθold(at|st)

, 1− ϵ, 1 + ϵ)Ât

)]
12: Compute the value loss LV F (ϕ)

LV F (ϕ) = Êt

[(
Vϕ(st)− V̂t

)2
]

where V̂t is the estimated value
13: Compute the entropy bonus S(θ)

S(θ) = Êt [H (πθ(·|st))]

whereH is the entropy function
14: Compute the total loss L(θ, ϕ)

L(θ, ϕ) = LCLIP (θ) + LV F (ϕ)− c1S(θ)

where c1 is a hyperparameter
15: Update policy network parameters θ and value network parameters ϕ:

θ ← θ − αθ∇θL(θ, ϕ)

ϕ← ϕ− αϕ∇ϕL(θ, ϕ)
where αθ and αϕ are learning rates

16: end for
17: end for
18: end while
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Table 10: Diversity results based on sequence entropy.

Method Sequence Entropy ↑
Pretrained 34.7

CG 34.6
SMC 24.9
TDS 24.9
CFG 8.4

DRAKES 33.3
GLID2E 34.6

B Discussions

B.1 Limitations

While GLID2E offers a lightweight yet competitive approach for DNA and protein sequence design,
several limitations warrant acknowledgment. Algorithmically, reinforcement learning enables broader
design space exploration but lacks the theoretical guarantees of methods like DRAKES, potentially
yielding less stable fine-tuning and requiring more extensive hyperparameter tuning. Additionally,
though presented as a comprehensive framework, GLID2E requires validation across broader bio-
logical systems, including ligand-binding proteins, enzymes, antibodies, and RNA sequences, to
fully demonstrate its robustness and versatility. Finally, our reliance on in silico validation cannot
definitively establish real-world efficacy. Future wet lab experiments are essential to address this
limitation and advance practical biological sequence design.

B.2 Broader Impact

Our framework presents a versatile algorithm with broad applications in drug discovery systems,
potentially accelerating therapeutic development and expanding discovery frontiers. However, this
technology also poses misuse risks in designing harmful biological entities (proteins, RNA, DNA).
Furthermore, AI-generated biological constructs raise important questions regarding intellectual
property rights, patents, and ethical considerations that must be addressed as the field advances.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract section and the introduction section clearly state the range of
application of this research. Also, it addresses the current challenges as well as the innovative
designs. Also, experiments demonstrate the contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The related limitations are well stated in Appendix B.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Our proposed method contains a full set of assumptions based on mathematics.
However, the proposed method does not have theoretical guarantee, leading to no proof in
this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental results can be reproduced. We have released the details
for reproduction.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: In current stage, we decide not to release the code and data due to anonymity
preservation. Nevertheless, all the related materials will be released when the research work
is accepted by this conference.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the corresponding details are introduced in Section 5 and Appendix A.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We have multiple runs with different seeds to valid the robustness of our
methods. However, we have not prepared statistical signifance analysis. We acknowledge it
as a minor limitation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources are well introduced in Appendix A.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics are all followed in this paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The related positive and negative impacts are well presented in the Appendix
B.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All related models and data pose minor risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly cited, and are with correct attribution to their creators.
Also, all assets follow licensing requirements well.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All related new assets are well documented, including the pretrained model
and evaluation scipts.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are not utilized for any core component of this research work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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