GLID²E: Lightweight Policy-Based Fine-Tuning for Discrete Diffusion in Biological Sequence Design

Hanqun Cao¹, Haosen Shi¹, Chenyu Wang², Sinno Jialin Pan¹, Pheng-Ann Heng^{1†}

The Chinese University of Hong Kong ²Massachusetts Institute of Technology

Abstract

Diffusion models have emerged as powerful tools for biological sequence design, offering flexible conditional generation for engineering functional biomolecules. While reinforcement learning (RL)-based fine-tuning enables multi-objective optimization on limited data, existing methods face a critical trade-off: gradient-free approaches suffer from training instability in discrete spaces, whereas gradientbased methods incur prohibitive computational costs. This trade-off severely limits their practical applicability in biological design tasks. We propose GLID²E, a light-weight gradient RL framework that achieves stable and efficient fine-tuning of discrete diffusion models. Our key insight is to constrain the exploration space through a clipped likelihood mechanism while employing reward shaping to align generation with design objectives. This combination mitigates the inherent instabilities in RL-guided diffusion while maintaining computational efficiency. We demonstrate GLID²E's effectiveness on DNA and protein sequence design benchmarks, where it matches or exceeds the performance of gradient-based methods while requiring significantly lower computational resources. Our approach provides a practical solution for function-driven biological sequence optimization. The code is available at: https://github.com/chq1155/GLID2E.

1 Introduction

Designing biological sequences with desired functional properties is fundamental to protein engineering and synthetic biology [1, 2]. Recent diffusion [3, 4, 5, 6, 7] and flow-matching models [8, 9, 10, 11] have shown impressive capability in modeling sequence distributions. However, adapting these pretrained models for controllable, task-specific design remains challenging, particularly when limited experimental data inadequately captures sequence-function relationships and design objectives involve multiple competing criteria.

Two primary paradigms have emerged for functional sequence design: conditional sampling and fine-tuning. Conditional sampling methods [12, 13] guide generation online by steering the diffusion process toward desired properties. While conceptually straightforward, they incur additional inference costs and struggle to balance multiple objectives effectively. Fine-tuning methods [14, 15, 16, 17, 18] offer a complementary approach by embedding functional knowledge into model parameters. DRAKES [14], a representative gradient-based method, employs Gumbel-Softmax to enable gradient flow through discrete trajectories and uses KL regularization for distribution alignment. Although fine-tuned models generate functional sequences efficiently at inference without additional costs, gradient-based training poses significant challenges: backpropagation through entire generation trajectories requires storing multiple intermediate states, leading to substantial memory overhead and computational burden. Moreover, terminal-only rewards provide limited guidance, missing opportunities to leverage intermediate information for finer generation control.

^{*}HC and HS contributed equally.

[†]Correspondence to: pheng@cse.cuhk.edu.hk

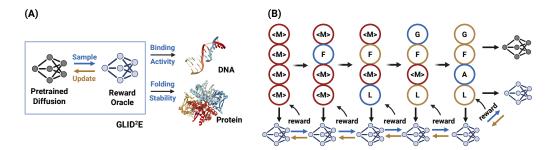


Figure 1: Overview of the GLID²E framework. (A) GLID²E employs a lightweight reinforcement learning approach to fine-tune pretrained discrete diffusion models for generating functional biological sequences, specifically regulatory DNA elements and thermostable proteins. (B) The framework incorporates two key innovations: a Clipped Likelihood Constraint that preserves sample rationality while allowing exploration, and a Reward Shaping mechanism that provides informative signals throughout the diffusion process, enabling stable and lightweight fine-tuning.

We propose GLID²E (Gradient LIghtweight fine-tuning for Discrete sequence DEsign), a reinforcement learning framework that reformulates fine-tuning as policy optimization. Unlike gradient-based methods that backpropagate through full trajectories, GLID²E computes lightweight gradients only on policy parameters while treating the generation process as environment interactions. Our approach introduces two key mechanisms for stable and efficient optimization. First, we employ a *clipped like-lihood constraint* that leverages the pretrained model's likelihood estimates to assess sample quality, avoiding explicit KL divergence computation while preventing unreasonable sequence exploration. This constraint enables effective high-reward region exploration while maintaining distributional validity. Second, our *reward shaping mechanism* provides informative signals at intermediate generation steps by evaluating partial sequences, guiding the policy toward promising regions earlier in the process. This contrasts with terminal-only reward methods, enabling more efficient learning and finer-grained control over generation trajectories.

We validate GLID²E on DNA and protein sequence design benchmarks, demonstrating comparable or superior performance to state-of-the-art methods while achieving significantly faster training and inference with reduced computational requirements. Ablation studies confirm that both the clipped likelihood constraint and reward shaping contribute substantially to stability and performance. Our results suggest that GLID²E provides a practical and scalable solution for function-driven biological sequence optimization.

2 Related Work

Discrete Diffusion Models for Biological Sequences Diffusion models have been successfully extended from continuous to discrete domains, enabling powerful generative modeling for biological sequences [19, 20, 5, 6]. Recent advances have demonstrated strong performance in protein structure generation [21, 22], RNA design [23], and DNA sequence modeling [24].

Key technical challenges distinguish discrete diffusion from its continuous counterpart. First, the corruption process requires carefully designed categorical transition matrices rather than Gaussian noise [19, 20], though auto-regressive variants [25] can sidestep explicit transition design. Second, iterative categorical sampling incurs significant computational costs, particularly for long sequences. While accelerated sampling techniques [26] and consistency models [27] have improved efficiency, the trade-off between fidelity and computational cost remains when training data is limited—a common scenario in biological applications where experimental characterization is expensive.

Conditional Generation and RL Fine-Tuning Adapting pretrained diffusion models for task-specific objectives follows two primary paradigms. *Training-free guidance* methods steer the sampling process online through classifier guidance [28, 29], Sequential Monte Carlo [13], or classifier-free guidance [30]. These approaches offer flexibility without retraining but incur additional inference costs and struggle to balance multiple competing objectives [31, 32, 33], limiting their effectiveness for complex biological design tasks.

RL Fine-tuning methods provide an alternative by embedding functional knowledge directly into model parameters [17, 18, 16]. DRAKES [14] employs gradient-based optimization with Gumbel-Softmax reparameterization and KL regularization, achieving strong performance in biological sequence design. However, backpropagating through entire generation trajectories requires substantial memory and computation. More broadly, reinforcement learning has emerged as a powerful framework for optimizing generative models with non-differentiable objectives [34, 35, 36, 33, 37], particularly in text generation where reward-driven fine-tuning improves fluency and alignment. Recent work applies policy gradient methods to molecular and protein design [14, 38, 39], but efficiency and stability challenges persist in high-dimensional discrete spaces.

Our Approach GLID²E bridges these paradigms by reformulating fine-tuning as lightweight policy optimization. Unlike gradient-based methods that backpropagate through generation trajectories, we compute gradients only on policy parameters while treating sampling as environment interactions. Our clipped likelihood constraint replaces expensive KL divergence computation with efficient likelihood-based filtering, while reward shaping addresses sparse reward signals without requiring intermediate gradient flow. This design achieves the parameter-embedded knowledge benefits of fine-tuning with computational efficiency approaching training-free methods, providing a practical solution for function-driven biological sequence optimization.

3 Preliminary

3.1 Problem Formulation

We consider the task of adapting a pretrained generative model to produce sequences with high functional value. Formally, let $\mathcal{X} \subseteq \{1,\dots,N\}^n$ denote the discrete sequence space, where N is the vocabulary size and n is the sequence length. Our goal is to transform a pretrained diffusion model $p_{\text{prior}}(x)$ into an optimized policy $p_{\theta}(x)$ that assigns higher probability to sequences x with high reward r(x), where $r: \mathcal{X} \to \mathbb{R}$ is a reward function evaluating functional properties.

This setting is motivated by a fundamental tension in biological sequence design: pretrained diffusion models, trained on large-scale real-world data, generate sequences that are structurally plausible but not necessarily functionally optimized for specific tasks. Conversely, reward models can evaluate task-specific properties but may assign high scores to invalid or unrealistic sequences when used directly for optimization. Our objective is to leverage both the distributional knowledge of the pretrained model and the task-specific guidance from the reward function.

3.2 Discrete Diffusion Models

We briefly review discrete diffusion models based on continuous-time Markov chains (CTMCs) [5, 6]. The forward process gradually corrupts a sequence $x_0 \in \mathcal{X}$ into a fully masked sequence x_T over time $t \in [0,T]$ via a time-dependent transition rate matrix Q(t). The transition matrix is typically handcrafted to ensure that at t=T, the sequence consists entirely of special MASK tokens, representing maximum corruption.

The generative model learns to reverse this corruption process. A neural network parameterized by θ is trained to approximate the reverse-time transition rates $\bar{Q}^{\theta}(t)$, enabling ancestral sampling from the masked state x_T back to realistic sequences x_0 . The reverse process follows the time-reversed CTMC:

$$\frac{dx_{T-t}}{dt} = \bar{Q}^{\theta}(T-t)x_{T-t} \tag{1}$$

where the model learns to predict appropriate tokens to replace MASK symbols at each timestep.

Throughout this work, we assume the pretrained diffusion model operates on fixed-length sequences and is unconditional, generating samples $x \sim p_{\text{prior}}(x)$ without additional conditioning inputs. Our method fine-tunes this pretrained model to incorporate functional objectives while preserving its ability to generate valid sequences.

Table 1: Comparative analysis of biological sequence design methods, evaluating key features and computational requirements. GLID²E uniquely combines light-weight policy optimization with preserved sequence naturalness, while achieving lower training complexity $(O(N \cdot B \cdot T \cdot L \cdot d))$ vs. $O(N \cdot B \cdot T \cdot L \cdot d)$ for comparable methods). Notation: N = training iterations, B = batch size, T = diffusion steps, L = sequence length, d = model dimension, P = number of particles.

Method	Fe	Feature Comparison		Computational Cost Comparison		
Memod	Requires Gradients	Preserves Naturalness	Theoretical Guarantees	Training	Inference	Memory
CG	/	Х	✓	O(1)	$O(T \cdot L \cdot d^2)$	$O(d^2)$
SMC	X	✓	×	O(1)	$O(P \cdot T \cdot L \cdot d)$	$O(P \cdot L \cdot d + d^2)$
TDS	1	X	×	O(1)	$O(P \cdot T \cdot L \cdot d^2)$	$O(P \cdot L \cdot d + d^2)$
CFG	1	X	×	$O(N \cdot B \cdot T \cdot L \cdot d^2)$	$O(T \cdot L \cdot d)$	$O(d^2)$
DRAKES	1	✓	✓	$O(N \cdot B \cdot T \cdot L \cdot d^2)$	$O(T \cdot L \cdot d)$	$O(T \cdot L \cdot d + d^2)$
$GLID^2E$	X	✓	×	$O(N \cdot B \cdot T \cdot L \cdot d)$	$O(T \cdot L \cdot d)$	$O(d^2 + B \cdot L)$

4 Method

We present GLID²E (Gradient LIghtweight fine-tuning for Discrete sequence DEsign), a reinforcement learning framework that efficiently adapts pretrained discrete diffusion models for functional sequence design. Unlike gradient-based methods that backpropagate through entire generation trajectories, GLID²E treats the diffusion sampling process as an RL environment and optimizes only the policy parameters with lightweight gradients. Our framework addresses two fundamental challenges: (1) preventing policy collapse while maximizing rewards, and (2) overcoming sparse terminal rewards through intermediate guidance. We introduce three core components: a clipped likelihood constraint for rationality preservation (Section 4.1), reward shaping for informative intermediate signals (Section 4.2), and a PPO-based optimization that integrates these mechanisms (Section 4.3).

4.1 Clipped Likelihood Constraint

The Standard KL-Regularized Objective. Directly maximizing expected rewards in RL often leads to training instabilities and policy collapse [18, 40]. A standard approach employs KL divergence regularization to constrain the optimized policy p_{θ} near a reference policy p_{prior} :

$$\max_{\theta} \mathbb{E}_{x \sim p_{\theta}} [r(x)] - \beta \operatorname{KL}(p_{\theta} || p_{\text{prior}}), \tag{2}$$

where $\beta>0$ controls the regularization strength. The optimal solution to Equation (2) takes the form:

$$p_{\theta^*}(x) \propto p_{\text{prior}}(x) \exp\left(\frac{r(x)}{\beta}\right).$$
 (3)

This formulation presents a fundamental trade-off. Large β yields conservative policies that closely follow the prior but achieve limited reward improvement—problematic when the prior distribution, trained on diverse task-agnostic data (e.g., entire proteomes or multi-species genomes), lacks task-specific inductive biases. Conversely, small β permits aggressive exploration but risks generating invalid sequences when reward models exhibit pathologies, such as assigning artificially high scores to sequences with excessive hydrophobic regions while ignoring critical functional constraints.

Rethinking the Constraint. The optimal policy in Equation (3) uniformly mixes the prior and reward-induced distributions across all sequences. However, we argue that *rationality should be enforced as a hard constraint rather than softly blended with reward optimization.* Pretrained diffusion models, trained on extensive real-world datasets, inherently capture distributional validity and can effectively assess sequence plausibility through likelihood estimates. Meanwhile, over-reliance on the prior may unnecessarily restrict exploration of high-reward regions, particularly for task-specific objectives where the prior provides limited guidance.

This motivates reformulating the optimization as:

$$\max_{\theta} \quad \mathbb{E}_{x \sim p_{\theta}}[r(x)] - \alpha H(p_{\theta})$$
subject to $p_{\theta}(x) > 0$ only if $p_{\text{prior}}(x) \ge c$, (4)

where c>0 is a likelihood threshold defining the rationality boundary, and the entropy term $H(p_{\theta})=-\mathbb{E}_{x\sim p_{\theta}}[\log p_{\theta}(x)]$ encourages policy diversity. This formulation restricts the policy's support to sequences deemed plausible by the pretrained model while allowing the reward function to dominate within this constrained space.

Practical Implementation via Likelihood Clipping. Solving Equation (4) directly is intractable. We propose a practical approximation by modifying the reward function to penalize sequences with low prior likelihood. We first generate a calibration set of $n_{\rm cal}$ samples from the pretrained model and compute the empirical mean μ and standard deviation σ of their log-likelihoods. The threshold is set as $c=\mu-k\sigma$, where $k\geq 0$ controls tolerance (we use k=1 in experiments). This calibration leverages the pretrained model's confidence: samples within one standard deviation are considered plausible.

The modified reward function incorporates a likelihood-based penalty:

$$\tilde{r}(x) = r(x) + \beta \min\left(\frac{\log p_{\text{prior}}(x) - \mu}{\sigma} + k, 0\right),$$
(5)

where the $\min(\cdot,0)$ operator activates penalties only for sequences below the threshold (i.e., $\log p_{\mathrm{prior}}(x) < \mu - k\sigma$), and $\beta > 0$ controls penalty strength. The standardization $(\log p_{\mathrm{prior}}(x) - \mu)/\sigma$ ensures robustness across different models and tasks by normalizing likelihood scales.

Using $\tilde{r}(x)$ as the reward, we optimize the policy via standard RL without explicit KL regularization. This approach provides a computationally efficient alternative that avoids expensive KL divergence calculations while effectively constraining the policy to the high-likelihood region of the pretrained distribution.

4.2 Reward Shaping

Motivation. Standard RL formulations for diffusion models provide rewards only upon complete sequence generation, resulting in sparse signals that slow learning. To accelerate optimization and provide finer-grained guidance, we introduce reward shaping [41], a technique that assigns intermediate rewards while preserving the optimal policy.

RL Formulation. Following [14], we formulate diffusion sampling as a Markov Decision Process (MDP). The state space comprises partially denoised sequences $s_t = x_t$ at timestep $t \in \{0, \dots, T\}$, where x_0 is fully masked and x_T is the final sequence. At each step, the diffusion model performs a denoising action by sampling from $\pi_{\theta}(\cdot|x_{t-1},t)$, transitioning from s_{t-1} to s_t . The standard reward structure assigns zero rewards to all intermediate transitions $(r(s_t) = 0 \text{ for } t < T)$ and provides the final reward $r(s_T) = \tilde{r}(x_T)$ only at termination. The discount factor is $\gamma = 1.0$.

Potential-Based Shaping. We employ potential-based reward shaping [41], which modifies rewards via a potential function $\Phi: S \to \mathbb{R}$ as:

$$r'(s_{t-1}, s_t) = r(s_{t-1}, s_t) + \gamma \Phi(s_t) - \Phi(s_{t-1}).$$
(6)

This formulation guarantees that the cumulative return remains unchanged: $\sum_{t=1}^{T} r'(s_{t-1}, s_t) = r(s_T) + \Phi(s_T) - \Phi(s_0)$. By setting $\Phi(s_0) = \Phi(s_T) = 0$, the optimal policies under r and r' coincide.

Handling Masked Tokens. A key challenge is defining $\Phi(s_t)$ for intermediate states containing MASK tokens, which the reward model cannot evaluate directly since it was trained only on complete sequences. We address this by completing partial sequences through Monte Carlo sampling: for each intermediate state s_t with $n_{\rm mask}$ remaining masks, we sample $n_{\rm mc}$ completions by independently replacing each MASK token according to the current policy $\pi_{\theta}(\cdot|x_t,t)$, with the MASK token probability set to zero. The potential function is defined as:

$$\Phi(s_t) = \begin{cases} \mathbb{E}_{x_t^{\text{comp}} \sim \pi_{\theta}^{\text{complete}}} [\tilde{r}(x_t^{\text{comp}})] & 1 \le t < T \\ 0 & t = 0 \text{ or } t = T, \end{cases}$$
 (7)

where $\pi_{\theta}^{\text{complete}}$ denotes the completion distribution. In practice, we approximate the expectation using n_{mc} samples.

This design provides increasingly accurate reward estimates as denoising progresses: early states with many masks yield coarse estimates, while near-complete sequences provide precise signals. The

shaped rewards guide the policy toward promising regions throughout the trajectory, accelerating learning compared to terminal-only feedback.

4.3 PPO-Based Policy Optimization

We integrate the clipped likelihood constraint and reward shaping within a Proximal Policy Optimization (PPO) framework [42], a widely adopted policy gradient method known for stable training. PPO employs a clipped surrogate objective to prevent excessively large policy updates that could destabilize training.

Mixed Reference Policy. To maintain proximity to the pretrained diffusion model while allowing reward-driven exploration, we define a mixed reference policy that interpolates between the pretrained policy π_{prior} and the current policy π_{θ} :

$$\log \pi_{\text{ref}}(s_t|s_{t-1}) = \eta \log \pi_{\text{prior}}(s_t|s_{t-1}) + (1-\eta) \log \pi_{\theta}(s_t|s_{t-1}), \tag{8}$$

where $\eta \in [0,1]$ controls the mixture weight. This design creates a "soft anchor" to the pretrained distribution: higher η enforces stronger adherence to the prior, while lower η grants more exploration freedom. During online sampling, we record logits from both policies to compute π_{ref} efficiently.

Clipped Surrogate Objective. The PPO objective clips importance ratios to bound policy updates:

$$L^{\text{CLIP}}(\theta) = \mathbb{E}_{t,s_t} \left[\min \left(\rho_t \hat{A}_t, \text{clip}(\rho_t, 1 - \epsilon, 1 + \epsilon) \hat{A}_t \right) \right], \tag{9}$$

where $\rho_t = \pi_{\theta}(s_t|s_{t-1})/\pi_{\text{ref}}(s_t|s_{t-1})$ is the importance weight, \hat{A}_t is the advantage estimate computed via Generalized Advantage Estimation (GAE) [43], and $\epsilon > 0$ is the clipping threshold (set to 0.5 in our experiments, corresponding to a clipping ratio of 1.5). The clipping mechanism prevents large policy shifts while avoiding expensive KL divergence computations.

Combined with an entropy bonus to encourage exploration, the final objective becomes:

$$L(\theta) = L^{\text{CLIP}}(\theta) + \lambda H(\pi_{\theta}), \tag{10}$$

where $\lambda > 0$ controls the entropy coefficient. Together with the clipped likelihood constraint (Equation 5) and reward shaping (Equation 6), this framework achieves efficient and stable fine-tuning of discrete diffusion models. The complete algorithm is provided in Appendix A.4, with hyperparameter details in Appendix A.1.

5 Experiments

We evaluate GLID²E on two biological sequence design benchmarks: regulatory DNA enhancer design and thermostable protein design. Our experiments demonstrate that GLID²E achieves state-of-the-art or competitive performance while maintaining computational efficiency. We conduct comprehensive ablation studies to validate the contribution of each component and analyze the impact of key hyperparameters.

5.1 Experimental Setup

Datasets and Models Following DRAKES [14], we use established benchmarks for both tasks.

DNA Design. We use a comprehensive enhancer dataset containing approximately 700,000 DNA sequences of 200 base pairs [44], characterized for activity in human cells via massively parallel reporter assays. The discrete diffusion model follows [45], while the reward oracle adopts the Enformer architecture [46] trained to predict activity in the HepG2 cell line.

Protein Design. The discrete diffusion model is pretrained on 19,700 high-resolution single-chain structures from PDB, following ProteinMPNN [2]. The reward oracle is trained on the Megascale dataset (1.8M sequences across 983 designed domains) to predict thermodynamic stability measured by Gibbs free energy change ($\Delta\Delta G$). Both models use the ProteinMPNN architecture.

Evaluation Metrics We use metrics for both functional performance and naturalness preservation.

DNA Design. Functionality is measured by *Pred-Activity* (predicted enhancer activity) and *ATAC-Acc* (chromatin accessibility [47, 48]). Naturalness is quantified via *3-mer Correlation* (similarity to natural k-mer distributions) and *Log-Likelihood* under the pretrained model [44].

Protein Design. Stability is assessed by Pred-ddG (predicted $\Delta\Delta G$) and %(ddG>0) (percentage of stabilizing sequences). Structural naturalness is evaluated using scRMSD (self-consistency RMSD between ESMFold [49] predictions from sequence and back-translation). We define $Success\ Rate$ as the percentage of sequences satisfying both ddG>0 and scRMSD<2.

Baselines We compare against the pretrained diffusion model, conditional sampling methods (Classifier Guidance [29], SMC [13], TDS [50], and Classifier-Free Guidance [30]), the MCTS-based tree method PepTune [51], and the gradient-based fine-tuning method DRAKES [14].

Implementation Details All experiments are conducted on a single NVIDIA A40 GPU with 20GB memory. We use multiple GPUs for parallel runs across different random seeds. Hyperparameters are detailed in Appendix A.1.

5.2 DNA Sequence Design

Table 2: General performance for DNA sequence design models. State-of-the-art performance is **bold**, and the second-highest performance is <u>underlined</u>. KL, M1, and M2 denote KL regularization, reward shaping, and likelihood penalty, respectively.

Method	Pred-Activity (median)↑	ATAC-Acc \uparrow (%)	3-mer Corr↑	Log-Lik (median)↑
Pretrained	0.17(0.04)	1.5(0.2)	-0.061(0.034)	-261(0.6)
CG	3.30(0.00)	0.0(0.0)	-0.065(0.001)	-266(0.6)
SMC	4.15(0.33)	39.9(8.7)	0.840(0.045)	-259(2.5)
TDS	4.64(0.21)	45.3(16.4)	0.848(0.008)	-257(1.5)
CFG	5.04(0.06)	92.1(0.9)	$\overline{0.746(0.001)}$	-265(0.6)
DRAKES	5.61(0.07)	92.5(0.6)	0.887(0.002)	-264(0.6)
GLID ² E	7.29(0.162)	98.4(0.67)	0.49(0.074)	-240.933(3.7)
GLID ² E w/o M1	2.57(0.60)	0.63(0.3)	0.473(0.078)	- 239.12(10.07)
GLID ² E w/o M2	6.62(0.42)	67.3(39.4)	0.458(0.009)	-244.65(21.5)

Main Results Table 2 presents the DNA design results. GLID²E achieves the highest median Pred-Activity (7.29), substantially outperforming DRAKES by 30% and demonstrating superior functional optimization. Our method also attains the best ATAC-Acc (98.4%), indicating that generated sequences exhibit high chromatin accessibility, a key indicator of functional enhancer activity in biological contexts.

Regarding naturalness metrics, GLID²E achieves competitive Log-Likelihood (-240.9), second only to the ablation variant without M1, confirming that our clipped likelihood constraint effectively preserves distributional validity. However, GLID²E exhibits lower 3-mer correlation (0.49) compared to DRAKES (0.887) and conditional sampling methods. This discrepancy reveals an important finding: the pretrained model's learned distribution diverges from conventional k-mer statistics of natural enhancers. Rather than indicating lower quality, this suggests GLID²E discovers functionally equivalent but compositionally distinct sequence variants that satisfy the model's likelihood constraints while achieving superior predicted activity. This exploration beyond traditional motif patterns potentially expands the design space for functional enhancers.

GLID²E exhibits lower variance in activity metrics (Pred-Activity std: 0.162) compared to naturalness metrics (Log-Lik std: 3.7), suggesting convergence toward reward-optimized regions while maintaining diversity in sequence-level characteristics.

Ablation Study The ablation experiments validate our design choices. Removing reward shaping (w/o M1) causes dramatic performance drops: Pred-Activity decreases to 2.57 (65% reduction) and ATAC-Acc collapses to 0.63%, demonstrating that intermediate reward signals are critical for guiding

the policy toward functional regions during early generation steps. Notably, Log-Likelihood remains comparable (-239.1), indicating that the model still generates valid sequences but fails to optimize for functionality without shaped rewards.

Removing the likelihood constraint (w/o M2) maintains reasonable activity (Pred-Activity: 6.62) but reduces ATAC-Acc to 67.3% and degrades Log-Likelihood to -244.7, confirming that the clipped likelihood mechanism preserves both distributional validity and biologically relevant sequence characteristics. This validates our hypothesis that the pretrained model's likelihood estimates capture essential naturalness constraints beyond simple k-mer statistics.

5.3 Protein Sequence Design

Table 3: General performance for protein sequence design models. State-of-the-art performance is **bold**, and the second-highest performance is <u>underlined</u>. KL, M1, and M2 denote KL regularization, reward shaping, and likelihood penalty, respectively.

Method	Pred-ddG (median) ↑	$\%(ddG > 0)$ $(\%) \uparrow$	$\begin{array}{c} \text{scRMSD} \\ \text{(median)} \downarrow \end{array}$	%(scRMSD < 2) (%) ↑	Success Rate (%) ↑
Pretrained	-0.544(0.037)	36.6(1.0)	0.849(0.013)	90.9(0.6)	34.4(0.5)
CG	-0.561(0.045)	36.9(1.1)	0.839(0.012)	90.9(0.6)	34.7(0.9)
SMC	0.659(0.044)	68.5(3.1)	$\overline{0.841(0.006)}$	93.8(0.4)	63.6(4.0)
TDS	0.674(0.086)	68.2(2.4)	0.834(0.001)	94.4(1.2)	62.9(2.8)
CFG	-1.186(0.035)	11.0(0.4)	3.146(0.062)	29.4(1.0)	1.3(0.4)
DRAKES	1.095(0.026)	86.4(0.2)	0.918(0.006)	91.8(0.5)	78.6 (0.7)
PepTune	0.432(0.003)	94.0(2.0)	1.041(0.057)	87.3(4.0)	70.1(1.2)
GLID ² E	1.012(0.094)	86.7(2.4)	0.961(0.047)	89.2(1.2)	76.7(1.2)
GLID ² E w/o M1	$\overline{0.843(0.099)}$	75.3(2.5)	0.950(0.074)	85.0(3.0)	$\overline{62.0(3.4)}$
GLID ² E w/o M2	0.893(0.170)	80.6(3.9)	0.970(0.049)	85.8(5.1)	67.5(4.4)

Main Results Table 3 shows protein design results. GLID²E achieves competitive stability performance with Pred-ddG of 1.012 (second to DRAKES' 1.095) and the highest %(ddG>0) at 86.7%, demonstrating that RL-based fine-tuning can match gradient-based methods for thermodynamic optimization. Peptune exhibits a more concentrated ddG distribution, and its RMSD distribution shows similar performance to DRAKES and GLID²E. The success rate of 76.7% approaches DRAKES' 78.6%, confirming the viability of our lightweight gradient approach. The

GLID²E exhibits slightly higher scRMSD (0.961) compared to conditional sampling methods like TDS (0.834), reflecting broader exploration of sequence space. We note that scRMSD, while informative, provides a less direct naturalness measure than DNA's Log-Likelihood because ESMFold-predicted structural similarity may not fully capture sequence-level naturalness—a minor limitation of the evaluation framework. The higher variance across GLID²E's metrics (e.g., Pred-ddG std: 0.094 vs. DRAKES' 0.026) further confirms this exploratory behavior, consistent with RL methods' tendency to sample more diverse regions of the design space.

Ablation Study Removing reward shaping (w/o M1) reduces Pred-ddG to 0.843 and success rate to 62.0%, though performance still exceeds all conditional sampling methods. This confirms that iterative RL-based optimization accumulates more effective learning compared to one-shot conditional generation, and that shaped rewards effectively address sparse reward signals by providing informative gradients throughout the generation trajectory.

Removing the likelihood constraint (w/o M2) causes consistent degradation across all metrics (PredddG: 0.893, success rate: 67.5%). Since the pretrained model was trained on natural, thermostable PDB structures, sequences closer to this distribution inherently achieve better stability and lower scRMSD. This validates that the clipped likelihood constraint serves dual purposes: preventing invalid sequence generation while implicitly guiding toward stable, natural structures. Unlike DRAKES' KL regularization, which uniformly constrains the entire distribution, our clipping mechanism permits controlled deviation (within one standard deviation), effectively filtering irrational outliers while allowing exploration of high-reward regions.

5.4 Hyperparameter Analysis

Table 4: Ablation study for clipping ratio in protein sequence design models. State-of-the-art performance is **bold**, and the second-highest performance is <u>underlined</u>.

Clipping Ratio	Pred-ddG (median) ↑	%(ddG > 0) (%) ↑	scRMSD (median) ↓	%(scRMSD < 2) (%) ↑	Success Rate (%) ↑
0.5	0.402(0.147)	65.6(0.5)	1.022(0.083)	87.0(1.3)	53.9(1.3)
1.0	0.834(0.281)	75.4(11.2)	0.988(0.061)	81.7(5.1)	60.5(1.8)
1.5	1.012(0.094)	86.7(2.4)	0.961(0.047)	89.2(1.2)	76.7(1.2)
2.0	0.932(0.144)	76.4(2.7)	$\overline{0.902(0.041)}$	78.2(3.5)	64.7(2.5)

Clipping Ratio Table 4 shows the effect of the clipping ratio (recall that the likelihood threshold is $\mu - k\sigma$ where k is the ratio). Stability metrics (Pred-ddG) initially increase then decrease: performance peaks at ratio 1.5, then declines at 2.0. This non-monotonic trend reveals a fundamental trade-off. Lower ratios (0.5-1.0) impose stricter likelihood constraints, limiting exploration of stable sequences beyond the pretrained distribution. Higher ratios (2.0) relax constraints excessively, allowing the policy to venture into regions where the pretrained model's likelihood estimates become less reliable.

Interestingly, as the clipping ratio increases, median scRMSD decreases $(1.022 \rightarrow 0.902)$ while %(scRMSD < 2) also decreases $(87.0\% \rightarrow 78.2\%)$, indicating emergence of a bimodal distribution: tighter likelihood constraints compress the policy toward the prior, yielding more sequences with excellent structural consistency, but also producing outliers with degraded structures. The high variance at ratio 1.0 (Pred-ddG std: 0.281, %(ddG > 0) std: 11.2) reflects this transition point where the model struggles to balance reward optimization and distributional validity.

Table 5: Ablation study for mixture ratio in protein sequence design models. State-of-the-art performance is **bold**, and the second-highest performance is <u>underlined</u>.

Mixture Ratio	Pred-ddG (median) ↑	%(ddG > 0) (%) ↑	scRMSD (median) ↓	%(scRMSD < 2) (%) ↑	Success Rate (%) ↑
0.01	1.012(0.094)	86.7(2.4)	0.961(0.047)	89.2(1.2)	76.7(1.2)
0.1	0.295(0.151)	61.7(3.5)	0.898(0.035)	87.5(2.4)	51.7(1.2)
1.0	-0.302(0.023)	42.1(0.6)	0.844(0.008)	93.4(1.2)	41.3(0.6)

Mixture Ratio Table 5 examines the mixture ratio η in the reference policy (Equation 8). Higher η values enforce stronger adherence to the pretrained policy, resulting in progressively conservative behavior: at $\eta=1.0$, performance degrades to Pred-ddG of -0.302 and success rate of 41.3%, barely improving over the pretrained baseline. This confirms that excessive regularization prevents effective reward optimization.

Conversely, low η (0.01) permits aggressive exploration, achieving the best stability metrics (PredddG: 1.012, success rate: 76.7%). The intermediate ratio ($\eta=0.1$) exhibits substantially elevated variance across all metrics (e.g., Pred-ddG std: 0.151), similar to the clipping ratio analysis at 1.0. This suggests that moderate regularization creates ambiguity in the optimization landscape: the policy oscillates between prioritizing reward signals and adhering to the prior, leading to bimodal behavior that generates either high-reward or high-naturalness sequences without effectively balancing both objectives. These hyperparameter studies reveal that GLID²E's performance is robust within reasonable ranges (clipping ratio: 1.5-2.0, mixture ratio: 0.01-0.1), with clear indicators (elevated variance) when hyperparameters approach suboptimal regimes.

6 Conclusion

We present GLID²E, a reinforcement learning framework that adapts discrete diffusion models for functional biological sequence design through two key innovations: a clipped likelihood constraint that preserves distributional validity without expensive KL computation, and reward shaping that provides intermediate guidance throughout generation. These mechanisms enable stable and efficient

fine-tuning while maintaining parameter-level knowledge embedding. Experiments demonstrate that GLID²E matches or exceeds state-of-the-art performance on DNA enhancer and protein design benchmarks. Our method achieves 30% activity improvement on DNA tasks and competitive stability (Pred-ddG: 1.012, success rate: 76.7%) on protein tasks, while requiring significantly lower computational resources. Ablation studies confirm both mechanisms contribute substantially to performance. GLID²E's computational efficiency and modular design make it well-suited for multi-objective optimization, longer sequences, and data-scarce domains, providing a practical foundation for function-driven biological sequence design.

Acknowledgements The work described in this paper was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region, China, under Project T45-401/22-N; and in part by Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems. Haosen Shi and Sinno J. Pan thank the support from the JC STEM Lab of Machine Learning and Symbolic Reasoning funded by The Hong Kong Jockey Club Charities Trust

References

- [1] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure prediction of biomolecular interactions with alphafold 3. *Nature*, pages 1–3, 2024.
- [2] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
- [3] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- [4] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint arXiv:2011.13456, 2020.
- [5] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural Information Processing Systems*, 35:28266–28279, 2022.
- [6] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating the ratios of the data distribution. 2023.
- [7] Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon, and Arash Vahdat. Energy-based diffusion language models for text generation. *arXiv* preprint *arXiv*:2410.21357, 2024.
- [8] Fang Wu, Tinson Xu, Shuting Jin, Xiangru Tang, Zerui Xu, James Zou, and Brian Hie. D-flow: Multi-modality flow matching for d-peptide design. *arXiv preprint arXiv:2411.10618*, 2024.
- [9] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. In *International Conference on Machine Learning*, pages 46495–46513. PMLR, 2024.
- [10] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design. In *International Conference on Machine Learning*, pages 5453–5512. PMLR, 2024.
- [11] Chaoran Cheng, Jiahan Li, Jiajun Fan, and Ge Liu. α -flow: A unified framework for continuous-state discrete flow matching models. *arXiv* preprint arXiv:2504.10283, 2025.
- [12] John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

- [13] Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay, and Tommi S Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the motif-scaffolding problem. In *The Eleventh International Conference on Learning Representations*.
- [14] Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal, Tommi Jaakkola, Sergey Levine, Hanchen Wang, and Aviv Regev. Fine-tuning discrete diffusion models via reward optimization with applications to dna and protein design. *arXiv* preprint arXiv:2410.13643, 2024.
- [15] Jarrid Rector-Brooks, Mohsin Hasan, Zhangzhi Peng, Zachary Quinn, Chenghao Liu, Sarthak Mittal, Nouha Dziri, Michael Bronstein, Yoshua Bengio, Pranam Chatterjee, et al. Steering masked discrete diffusion models via discrete denoising posterior prediction. arXiv preprint arXiv:2410.08134, 2024.
- [16] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*, 36:79858–79885, 2023.
- [17] Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.
- [18] Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models on differentiable rewards. *arXiv preprint arXiv:2309.17400*, 2023.
- [19] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing Systems, 34:17981–17993, 2021.
- [20] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information Processing Systems*, 34:12454–12465, 2021.
- [21] Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu, and Ava P Amini. Protein structure generation via folding diffusion. *Nature communications*, 15(1):1059, 2024.
- [22] Xinyou Wang, Zaixiang Zheng, YE Fei, Dongyu Xue, Shujian Huang, and Quanquan Gu. Diffusion language models are versatile protein learners. In *Forty-first International Conference on Machine Learning*.
- [23] Han Huang, Ziqian Lin, Dongchen He, Liang Hong, and Yu Li. Ribodiffusion: tertiary structure-based rna inverse folding with generative diffusion models. *Bioinformatics*, 40(Supplement_1):i347–i356, 2024.
- [24] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm improves controllable text generation. *Advances in Neural Information Processing Systems*, 35:4328–4343, 2022.
- [25] Tong Wu, Zhihao Fan, Xiao Liu, Hai-Tao Zheng, Yeyun Gong, Jian Jiao, Juntao Li, Jian Guo, Nan Duan, Weizhu Chen, et al. Ar-diffusion: Auto-regressive diffusion model for text generation. *Advances in Neural Information Processing Systems*, 36:39957–39974, 2023.
- [26] Ting Chen, Ruixiang ZHANG, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion models with self-conditioning. In *The Eleventh International Conference on Learning Representations*.
- [27] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In International Conference on Machine Learning, pages 32211–32252. PMLR, 2023.
- [28] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.

- [29] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance for discrete state-space diffusion and flow models. *CoRR*, 2024.
- [30] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*.
- [31] Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and Aleksander Holynski. Diffusion self-guidance for controllable image generation. *Advances in Neural Information Processing Systems*, 36:16222–16239, 2023.
- [32] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for controlled image generation. 2023.
- [33] Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee Diamant, Alex M Tseng, Tommaso Biancalani, and Sergey Levine. Finetuning of continuous-time diffusion models as entropy-regularized control. arXiv preprint arXiv:2402.15194, 2024.
- [34] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
- [35] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint arXiv:2412.15115, 2024.
- [36] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [37] Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel, Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Reinforcement learning for fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing* Systems, 36, 2024.
- [38] Masatoshi Uehara, Xingyu Su, Yulai Zhao, Xiner Li, Aviv Regev, Shuiwang Ji, Sergey Levine, and Tommaso Biancalani. Reward-guided iterative refinement in diffusion models at test-time with applications to protein and dna design. *arXiv preprint arXiv:2502.14944*, 2025.
- [39] Andrew Kirjner, Jason Yim, Raman Samusevich, Shahar Bracha, Tommi S Jaakkola, Regina Barzilay, and Ila R Fiete. Improving protein optimization with smoothed fitness landscapes. In ICLR, 2024.
- [40] Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding reinforcement learning-based fine-tuning of diffusion models: A tutorial and review. *arXiv* preprint arXiv:2407.13734, 2024.
- [41] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory and application to reward shaping. In *Icml*, volume 99, pages 278–287, 1999.
- [42] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
- [43] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. Highdimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.
- [44] Machine-guided design of synthetic cell type-specific cis-regulatory elements. bioRxiv, 2023.
- [45] Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

- [46] Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R Ledsam, Agnieszka Grabska-Barwinska, Kyle R Taylor, Yannis Assael, John Jumper, Pushmeet Kohli, and David R Kelley. Effective gene expression prediction from sequence by integrating long-range interactions. *Nature methods*, 18(10):1196–1203, 2021.
- [47] Avantika Lal, David Garfield, Tommaso Biancalani, and Gokcen Eraslan. Designing realistic regulatory dna with autoregressive language models. *Genome Research*, 34(9):1411–1420, 2024.
- [48] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human genome. *Nature*, 489(7414):57, 2012.
- [49] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.
- [50] Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and asymptotically exact conditional sampling in diffusion models. *Advances in Neural Information Processing Systems*, 36:31372–31403, 2023.
- [51] Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic peptides with multi-objective-guided discrete diffusion. *ArXiv*, pages arXiv–2412, 2025.

A Appendix

A.1 Implementation details

Common Hyperparameters: In our implementation, we utilized several key hyperparameters that were common across experiments. These parameters control various aspects of our reinforcement learning approach, particularly focusing on reward handling and likelihood clipping mechanisms.

For reward processing, we employed parameters such as likelihood penalty scale to adjust the strength of likelihood constraint β in Section 4.1 and multiple_reward_sampling to determine the number of multiple reward sampling for reward shaping in Section 4.2. For our clipped policy optimization, we use clip_mix_factor and clip_threshold to control the mixture, described in Section 4.3. The complete set of common hyperparameters and their values is presented in the table below:

Table 6: Common hyperparameter configuration utilized across experiments.

Parameter	Setting
likelihood penalty scale	0.1
multiple_reward_sampling	4
clip_threshold	1.5
clip_mix_factor	0.01

Hyperparameters in DNA experiment: For our DNA experiments, we configured reinforcement learning parameters including GAE's $\lambda=0.95$, discount factor ($\gamma=0.99$), and learning rate (1e-4). We employed gradient norm clipping (1.0) and exponential moving average decay (0.999) to enhance training stability.

Table 7: Hyperparameter configuration utilized in our DNA experiments.

Parameter	Setting
batch_size	8
decay	0.999
learning_rate	1e-4
λ in GAE	0.95
γ	0.99
gradient_norm_clip	1.0
gumbel_temperature	1.0
entropy_scale	1e-3

Hyperparameters in Protein experiment: Our protein experiments used 3 encoder and decoder layers with hidden dimension 128 and 30 neighbors for graph representation following [14]. We set the learning rate to 3e-5 with weight decay 1e-4 and used a diffusion process with 50 timesteps.

A.2 Training time comparison

We compared the training times of DRAKES and GLID²E, as shown in 9. The light-weight scheme enhances the algorithm's efficiency. We achieved consistent results with the training cost in Table 1.

A.3 Sequence diversity analysis

We further tested the sequence diversity of different baselines based on entropy (Table 10). The results showed that all baselines exhibited a decline, with GLID²E and CG achieving performance closest to that of the pretrained model.

Table 8: Hyperparameter configuration utilized in our protein experiments.

Parameter	Setting
batch_size	16
hidden_dim	128
num_encoder_layers	3
num_decoder_layers	3
num_neighbors	30
dropout	0.0
backbone_noise	0.1
gradient_norm_clip	1.0
learning_rate	3e-5
weight_decay	1e-4
temperature	0.1
λ in GAE	0.95
num_timesteps	50
gumbel_softmax_temperature	0.5
entropy_scale	1e-3

Table 9: Training time per epoch for different methods.

Method	DRAKES	GLID ² E (Ours)
Time	23.28 ± 0.14	13.54 ± 0.04

A.4 Detailed Training Algorithm of GLID²E

Algorithm 1 GLID²E Training Algorithm based on PPO algorithm

- 1: **Input**: Policy network p_{θ} , Value network V_{ϕ} , Training epochs K, Advantage estimate \hat{A}_t , Clipping parameter ϵ
- 2: **Initialization**: Policy network parameters θ and value network parameters ϕ
- 3: while Termination condition is not met do
- Collect N trajectories $\tau_i = (s_{i,t}, a_{i,t}, \log p(s_{i,t}))_{t=0}^T$, where $i = 1, \dots, N$ 4:
- 5:
- Calculate indicate states $x_{i,t}^b$ Calculate reward $r_{i,t} = \Phi(x_{i,t+1}^b) \Phi(x_{i,t}^b)$, where $t=0,\ldots,T-1$ 6:

7: and
$$r_{i,T} = r(x_{i,T}) - \Phi(x_{i,T}^b) + \beta \min\left(\frac{\log p_{prior}(x_{i,T}) - \mu}{\sigma} + k, 0\right)$$

- Compute advantage estimates $\hat{A}_{i,t}$ for each trajectory via GAE 8:
- for k = 1 to K do 9:
- 10: for Each mini-batch B containing M samples do
- Compute the policy loss $\mathcal{L}_{CLIP}(\theta)$ 11:

$$\mathcal{L}_{CLIP}(\theta) = -\hat{\mathbb{E}}_t \left[\min \left(\frac{p_{\theta}(a_t|s_t)}{p_{\theta_{old}}(a_t|s_t)} \hat{A}_t, \operatorname{clip}\left(\frac{p_{\theta}(a_t|s_t)}{p_{\theta_{old}}(a_t|s_t)}, 1 - \epsilon, 1 + \epsilon\right) \hat{A}_t \right) \right]$$

Compute the value loss $\mathcal{L}_{VF}(\phi)$ 12:

$$\mathcal{L}_{VF}(\phi) = \hat{\mathbb{E}}_t \left[\left(V_{\phi}(s_t) - \hat{V}_t \right)^2 \right]$$

where \hat{V}_t is the estimated value

13: Compute the entropy bonus $S(\theta)$

$$\mathcal{S}(\theta) = \hat{\mathbb{E}}_t \left[\mathcal{H} \left(\pi_{\theta}(\cdot | s_t) \right) \right]$$

where \mathcal{H} is the entropy function

Compute the total loss $\mathcal{L}(\theta, \phi)$ 14:

$$\mathcal{L}(\theta, \phi) = \mathcal{L}_{CLIP}(\theta) + \mathcal{L}_{VF}(\phi) - c_1 \mathcal{S}(\theta)$$

where c_1 is a hyperparameter

Update policy network parameters θ and value network parameters ϕ :

$$\theta \leftarrow \theta - \alpha_{\theta} \nabla_{\theta} \mathcal{L}(\theta, \phi)$$

$$\phi \leftarrow \phi - \alpha_{\phi} \nabla_{\phi} \mathcal{L}(\theta, \phi)$$

where α_{θ} and α_{ϕ} are learning rates

- end for 16:
- 17: end for

15:

18: end while

Table 10: Diversity results based on sequence entropy.

Method	Sequence Entropy ↑
Pretrained	34.7
CG	34.6
SMC	24.9
TDS	24.9
CFG	8.4
DRAKES	33.3
$GLID^2E$	34.6

B Discussions

B.1 Limitations

While GLID²E offers a lightweight yet competitive approach for DNA and protein sequence design, several limitations warrant acknowledgment. Algorithmically, reinforcement learning enables broader design space exploration but lacks the theoretical guarantees of methods like DRAKES, potentially yielding less stable fine-tuning and requiring more extensive hyperparameter tuning. Additionally, though presented as a comprehensive framework, GLID²E requires validation across broader biological systems, including ligand-binding proteins, enzymes, antibodies, and RNA sequences, to fully demonstrate its robustness and versatility. Finally, our reliance on in silico validation cannot definitively establish real-world efficacy. Future wet lab experiments are essential to address this limitation and advance practical biological sequence design.

B.2 Broader Impact

Our framework presents a versatile algorithm with broad applications in drug discovery systems, potentially accelerating therapeutic development and expanding discovery frontiers. However, this technology also poses misuse risks in designing harmful biological entities (proteins, RNA, DNA). Furthermore, AI-generated biological constructs raise important questions regarding intellectual property rights, patents, and ethical considerations that must be addressed as the field advances.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract section and the introduction section clearly state the range of application of this research. Also, it addresses the current challenges as well as the innovative designs. Also, experiments demonstrate the contributions.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The related limitations are well stated in Appendix B.1.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Our proposed method contains a full set of assumptions based on mathematics. However, the proposed method does not have theoretical guarantee, leading to no proof in this paper.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the experimental results can be reproduced. We have released the details for reproduction.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: In current stage, we decide not to release the code and data due to anonymity preservation. Nevertheless, all the related materials will be released when the research work is accepted by this conference.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the corresponding details are introduced in Section 5 and Appendix A.1. Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: We have multiple runs with different seeds to valid the robustness of our methods. However, we have not prepared statistical signifiance analysis. We acknowledge it as a minor limitation.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The computational resources are well introduced in Appendix A.1.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The Code of Ethics are all followed in this paper.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The related positive and negative impacts are well presented in the Appendix B.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: All related models and data pose minor risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All assets are properly cited, and are with correct attribution to their creators. Also, all assets follow licensing requirements well.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: All related new assets are well documented, including the pretrained model and evaluation scipts.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve human subjects or crowdsourcing.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are not utilized for any core component of this research work.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.