# MangaVQA and MangaLMM: A Benchmark and Specialized Model for Multimodal Manga Understanding

Jeonghun Baek\* Kazuki Egashira\* Shota Onohara\* Atsuyuki Miyai\*
Yuki Imajuku Hikaru Ikuta Kiyoharu Aizawa
The University of Tokyo

https://github.com/manga109/MangaLMM/

# **Abstract**

Manga, or Japanese comics, is a richly multimodal narrative form that blends images and text in complex ways. Teaching large multimodal models (LMMs) to understand such narratives at a human-like level could help manga creators reflect on and refine their stories. To this end, we introduce two benchmarks for multimodal manga understanding: MangaOCR, which targets in-page text recognition, and MangaVQA, a novel benchmark designed to evaluate contextual understanding through visual question answering. MangaVQA consists of 526 high-quality, manually constructed question—answer pairs, enabling reliable evaluation across diverse narrative and visual scenarios. Building on these benchmarks, we develop MangaLMM, a manga-specialized model finetuned from the open-source LMM Qwen2.5-VL to jointly handle both tasks. Through extensive experiments, including comparisons with proprietary models such as GPT-40 and Gemini 2.5, we assess how well LMMs understand manga. Our benchmark and model provide a comprehensive foundation for evaluating and advancing LMMs in the richly narrative domain of manga.

#### 1 Introduction

2

3

5

8

10

11

12

13

14

15

16

- Manga is a rich and distinctive form of multimodal narrative, combining complex panel layouts, expressive visual elements, and text embedded directly within images. As large multimodal models (LMMs) continue to advance in vision-language understanding, enabling them to understand manga presents an exciting opportunity, not only as a technical milestone, but also as a way to support human creativity. Such models could assist manga creators in reflecting on and refining their stories. To provide meaningful assistance, an LMM would need to function like a skilled editor or assistant, capable of reading and understanding manga in a way human does. This calls for evaluating models' abilities to process visual-textual content and follow the context in a coherent and human-like manner.
- Although recent efforts such as Magi [25, 24, 26] and CoMix [30] have tackled comic understanding, they primarily focus on generating transcriptions from comic pages they do not evaluate to what
- extent models can accurately read in-page text using optical character recognition (OCR), or under-
- stand the content based on that text through visual question answering (VQA). As a result, it remains
- stand the content based on that text through visual question answering (VQA). As a result, it remains
- 29 unclear to what extent models truly comprehend manga content in a human-like manner based on the
- 30 embedded textual information.
- To pave a reliable path toward comprehensive manga understanding in LMMs, we believe it is essential to evaluate two core capabilities: OCR and VQA. To address these needs, we propose

<sup>\*</sup>Equal contribution.

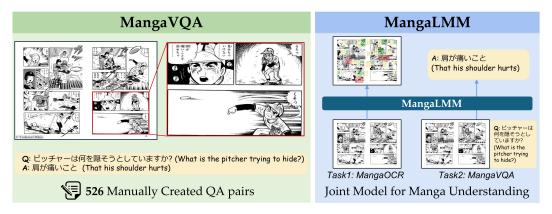


Figure 1: **Overview of MangaVQA and MangaLMM.** We present MangaVQA, a newly proposed benchmark for multimodal context understanding, consisting of 526 manually constructed question–answer pairs. We also develop MangaLMM, a manga-specialized model jointly trained to handle both MangaOCR and MangaVQA tasks.

two benchmarks: MangaOCR and MangaVQA. MangaOCR focuses on detecting and recognizing textual content such as dialogue and sound effects. We consolidate existing annotations from the 34 well-known Manga109 dataset [20, 2] and the manga onomatopoeia dataset [3] to construct this 35 benchmark. Further, as our primary contribution, we propose MangaVQA, a novel benchmark 36 designed to evaluate an LMM's ability to accurately answer targeted, factual questions grounded in 37 both visual and textual context. It consists of 526 high-quality, manually constructed question-answer 38 pairs covering a diverse range of scenarios, enabling assessment of a model's narrative understanding. 39 Together, these benchmarks provide a comprehensive framework for evaluating a model's ability 40 to understand manga as a multimodal narrative medium, with MangaVQA playing a central role in assessing deeper semantic and contextual comprehension. 42

Furthermore, truly human-like understanding of manga requires the ability to jointly perform both 43 OCR and VQA, rather than treating them as isolated tasks. Therefore, building on our two proposed 44 benchmarks, we finetune an open-source LMM (Qwen2.5-VL [4]) to develop MangaLMM, a 45 manga-specialized model designed to jointly address both OCR and VQA tasks. MangaLMM 46 serves as a practical baseline for human-like manga understanding. We conduct comprehensive 47 experiments, including analyses on model and dataset size, and compare MangaLMM with state-of-48 the-art proprietary models such as GPT-40 [12] and Gemini 2.5 [9] to evaluate the current landscape 49 of multimodal manga understanding. Our results show that even the proprietary models struggle 50 on our two benchmarks, while MangaLMM jointly handle OCR and VQA, achieving promising 51 performance on both. 52

53 An overview of our proposed MangaVQA benchmark and the MangaLMM model is shown in 54 Figure 1. Our contributions are summarized as follows:

- We present MangaVQA, a novel benchmark for evaluating multimodal question answering
  in manga, consisting of 526 manually constructed question—answer pairs. Combined with
  MangaOCR, which focuses on precise, in-page text detection and recognition—an aspect
  often overlooked in prior comic-related benchmarks, our benchmarks provide a foundational
  evaluation of multimodal manga understanding across both visual and textual dimensions.
- We develop MangaLMM, a manga-specialized version of Qwen2.5-VL finetuned on synthetic VQA and MangaOCR annotation, designed to jointly address both VQA and OCR.
- We perform extensive analysis on how model size and training data influence performance, and evaluate MangaLMM against proprietary models such as GPT-40 and Gemini 2.5 to assess the limitations of general-purpose LMMs in stylized visual domains.

# 2 Related Work: Comic Datasets and Tasks

55

56

57

58

59

60

61

62

63

64

Recent work, CoMix [30], has unified various comic-related tasks by analyzing existing datasets, including French comics (eBDtheque [10]), American comics (COMICS [14] and DCM772 [23]),

and Japanese comics (Manga109 [20] and PopManga [25]). CoMix primarily focuses on transcript generation-related tasks, including object detection, speaker identification, character re-identification, 69 reading order prediction, and character naming prediction. Similarly, the recent Magi series (v1 [25], 70 v2 [24], and v3 [26]) also centers on transcript generation. Notably, Magi v3 extends this pipeline by 71 generating image captions from transcriptions and further producing prose based on those captions. 72 Although recent studies such as CoMix and the Magi series have addressed a wide range of tasks,

the evaluation of OCR has often been underexplored, particularly in detecting the locations of texts 74 within an image and recognizing their content. One exception is COMICS TEXT+ [28], which 75 evaluates OCR performance at the panel level, but it does not address page-level evaluation. However, 76 humans typically perceive and interpret text at the page level, integrating visual and textual cues 77 across the entire layout. To reflect this human reading process, we evaluate OCR performance on 78 two-page spreads using MangaOCR. 79

Existing studies have also largely overlooked the visual question answering (VQA) task in the context of comics. Among prior datasets, the Manga Understanding Benchmark (MangaUB [13]) is the 81 most closely related to our proposed MangaVQA. While MangaUB can be considered a simple 82 VQA benchmark, it contains only eight predefined question types—such as identifying the number 83 of characters, the weather, or the time of day—thus offering limited question diversity. As a result, 84 MangaUB does not address a broad spectrum of VQA problems centered on text understanding in 85 manga. Furthermore, its scope is restricted to the panel level. 86

In contrast, MangaVQA goes beyond individual panels and focuses on two-page spreads, reflecting 87 how humans naturally read manga. It features diverse VQA questions grounded in textual content 88 at the spread level, aiming to approximate the reading experience of human readers. In this regard, 89 MangaVQA is conceptually aligned with TextVQA [27] and DocVQA [19], as it requires models to 90 understand and reason over text embedded in images. 91

#### The Manga109 Dataset and Our Consolidated MangaOCR Dataset 92

This section presents the widely used manga dataset Manga109 [20] and our MangaOCR Benchmark. 93

#### Manga109: A Widely Used Dataset for Manga Research

Among the many comic datasets introduced in the Related Work, We selected Manga109 for its open-96 access license, diverse manga titles, and rich annotations and meta-information. It has also been widely used in previous comic-related research [24, 26, 3, 15, 13], making it a reliable and practical dataset for our study.

95

99

100

101

102

103

104

105

106

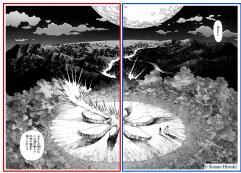
107

108

109

115

Manga109 is a dataset composed of 109 volumes of Japanese comics (manga). Manga is a unique visual storytelling medium characterized by spatially arranged panels and artistic expression. The Manga109 dataset captures many distinctive features of manga, including its predominantly black-and-white artwork, two-page spreads, right-to-left reading order, vertical text layout, and the frequent use of stylized ono-



Left page

Right page

Figure 2: Illustration of a two-page spread from the Manga109 dataset.

matopoeia (e.g., Boom, Bang) integrated into the illustrations. It also contains culturally specific 110 dialogue, often incorporating honorifics and idiomatic expressions. Although these characteristics are not explicitly annotated, they present unique challenges for manga understanding tasks. Given these 112 characteristics, Manga109 serves as a representative dataset for developing and evaluating manga 113 understanding models. Figure 2 shows an example of two-page spreads from the Manga109 dataset. 114

# MangaOCR: A Consolidated Dataset for Manga Text Recognition

Text in manga carries essential narrative information, appearing as speech balloons and stylized onomatopoeia integrated into the artwork. Recognizing such text is crucial for machine understanding

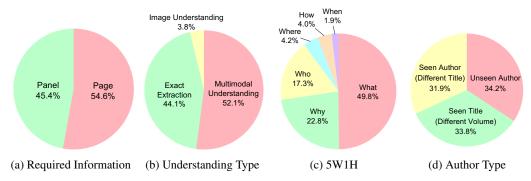


Figure 3: **Distributions in MangaVQA.** The dataset is structured along four key axes: (a) Required Information, (b) Understanding Type, (c) 5W1H, and (d) Author Type.

of manga, as humans also rely on this information to comprehend the story. MangaOCR addresses this challenge by targeting two key categories of embedded text: dialogue and onomatopoeia. We construct the MangaOCR dataset by consolidating existing annotations from the Manga109 dataset and the manga onomatopoeia dataset [3]. It contains approximately 209K narrative text instances, spanning a wide variety of visual styles and layouts. Training with MangaOCR can improve the ability of LMMs to extract and interpret textual information in manga, contributing to better overall understanding. The MangaOCR task is performed on two-page spreads and primarily consists of two sub-tasks: text detection, which localizes textual regions, and text recognition, which reads the localized text.

Author-Aware Dataset Split. We adopt the dataset split protocol from prior work [3], with a few modifications. In the original split, the 109 volumes were divided into training, validation, and test sets based on author information. To evaluate intra-series generalization, five of the ten test volumes belong to the same series as those in the training set, where the first volume is included in the training set and the last volume is in the test set. This setting tests whether a model trained on the beginning of a series can generalize to its later volumes. To evaluate intra-author generalization, the remaining five test

Table 1: **Statistics of manga datasets.** More details about MangaVQA are presented in §4 and §5.

| <b>Count type</b> | Total  | Train  | Valid | Test  |
|-------------------|--------|--------|-------|-------|
| Comic volumes     | 109    | 89     | 7     | 13    |
| Images            | 10,602 | 8,763  | 673   | 1,166 |
| MangaOCR          |        |        |       |       |
| Dialogue          | 148K   | 120K   | 9K    | 18K   |
| Onomatopoeia      | 61K    | 50K    | 4K    | 7K    |
| Total             | 209K   | 170K   | 13K   | 26K   |
| MangaVQA          |        |        |       |       |
| QA pairs          | 42,421 | 41,895 | _     | 526   |

volumes are titles by authors who also have other works in the training set. This allows us to assess whether a model can generalize across different works by the same author.

To further evaluate out-of-distribution generalization with respect to author identity, we move three volumes from the validation set to the test set. These volumes are authored by individuals who did not contribute to any works in the training set. Table 1 shows the dataset statistics after the split.

# 4 MangaVQA: A Novel Benchmark for Multimodal Context Understanding

To evaluate model performance under realistic conditions, we manually created a set of question—answer (QA) pairs based on images from Manga109. Five annotators from the authors have created a high-quality evaluation set for MangaVQA. To ensure a more robust and unambiguous evaluation, we focused on questions with definite answers, avoiding those that could be inferred merely from the vague impressions of the image.

As shown in Figure 3, the question types are designed based on four key axes: (a) whether solving the question requires information from individual panels or the entire page, (b) what type of manga understanding is necessary to answer the question correctly, (c) 5W1H: whether the question asks about a person (who), an object or action (what), a time (when), a place (where), a reason (why), or a method or condition (how), and (d) inclusion of the author / title in the training split.

# (2) Multimodal Understanding Q. 周子ちゃんがもらったお人形の名前は何ですか? (What is the name of the doll that Fuko-chan received?) (2) Multimodal Understanding Q. 相手は、打着のどのような変化に気づきましたか? (What is the name of the doll that Fuko-chan received?) (What has the man in the bottom right attacking?) (What was the man in the bottom right attacking?) (What was the man in the bottom right attacking?) A. 必うちゃん (Fu-chan) A. ふうちゃん (Fu-chan)

Figure 4: **Main categorization of MangaVQA questions.** MangaVQA consists of (1) Exact Extraction, where the answer is directly extracted from the image; (2) Multimodal Understanding, where the answer requires comprehension of the story beyond simple extraction; and (3) Image Understanding, which can be answered without referring to the text.

We illustrate examples along axes (b) type of manga understanding in Fig. 4. The categorization of (b) the type of manga understanding is as follows:

(1) Exact Extraction (232 questions): Questions that Require Extracting Answer Words from the Image. These questions necessitate accurately retrieving the answer word from the manga page.
We include one example in the left of Fig. 4. The question is "風子ちゃんがもらったお人形の名前は何ですか?" ("What is the name of the doll that Fuko-chan received?") and the answer is "ふうちゃん" ("Fu-chan"), which is directly written in the dialogue. This category assesses the LMM's basic comprehension ability to identify and extract the correct answer part from the manga panels.

(2) Multimodal Understanding (274 questions): Questions that Require the Content Comprehension in the Images. These questions go beyond simple answer word extraction and require comprehending the context within the manga. We include one example in the middle of Fig. 4. The question is "What changes did the catcher notice in the batter?". The correct answer is "He used to stand with an open stance, but now he stands with a closed stance." This category allows us to evaluate whether the LMM can not only recognize the dialogue but also understand its underlying meaning in the context of the narrative.

(3) Image Understanding (20 questions): Questions Solvable without Referring to the Text in the Image. Finally, we designed a small set of questions that can be answered without referring to the text within the images. We include one example on the right of Fig. 4. The question is "What was the man in the bottom right corner attempting to attack?". The answer is "Baby". This category relies purely on the visual depiction of characters and their actions, allowing the LMMs to infer the correct answer even in the absence of dialogue. We consider that including such questions provides a broader assessment of the LMM's capability for the manga understanding.

# 5 MangaLMM: A Specialized Model for MangaOCR and MangaVQA

We develop MangaLMM, a specialized model designed to read and understand manga in a humanlike manner. To build MangaLMM, we finetune the open-source LMM Qwen2.5-VL [4] on the MangaOCR and MangaVQA datasets, resulting in a joint model for both tasks. In this section, we describe the training data construction and training details for MangaLMM.

# 5.1 Training Data Construction

164

165

166

167

168

169

170

178

183

OCR Training set  $T_{OCR}$ . For the OCR task, we use the MangaOCR training set, as described in §3.2. For each image, we format the sequence of text annotations as {"bbox\_2d":coordinates<sub>1</sub>, "text\_content":text<sub>1</sub>}, {"bbox\_2d":coordinates<sub>2</sub>, "text\_content":text<sub>2</sub>},..., where coordinates<sub>i</sub> corresponds to the location of the text<sub>i</sub> in the image represented as  $x_{top_left}$ ,  $y_{top_left}$ ,  $y_{top_left}$ ,  $y_{bottom_right}$ .

Synthetic VQA training set  $T_{\rm VQA}$ . For the VQA task, we generate synthetic training data using GPT-40 [12](gpt-4o-2024-11-20). Following the synthetic data construction used in LLaVA [16], we generate five questions per image using both the image and its annotation from the OCR training set  $T_{\rm OCR}$ . Here we exclude < 0.1% of the images where the text annotation is not included or GPT-4o refused to respond (e.g., due to violent content). As a result, we created a total of 41,895 synthetic VQA samples from 8,379 images. The prompt used for question generation is provided in the supplementary materials. We plan to release this as a training split of our MangaVQA.

# 5.2 Training Details

196

LMM Selection. Our tasks require an open-source multilingual LMM that can handle Japanese and also has strong Japanese OCR capabilities, which are important for understanding manga. Several powerful multilingual LMMs have been proposed recently [35, 31, 4, 17, 7, 21]. Among them, the Qwen series [31, 4] and Phi-4 [21] are especially notable for their Japanese OCR performance. In this work, we build MangaLMM based on Qwen2.5-VL [4], which is one of the strongest open-source models in this category.

Training Strategy. We perform continual finetuning on both  $T_{\rm OCR}$  and  $T_{\rm VQA}$  using the pretrained Qwen2.5-VL 7B (Qwen2.5-VL-7B-Instruct). Most hyperparameters follow the original Qwen2.5-VL configuration, with a few modifications. For Manga109 images (1654×1170 resolution), we follow Qwen2.5-VL's image resizing mechanism, which is based on pixel count thresholds, where the minimum and maximum number of input pixels are 3,136 and 2,116,800, respectively.

Elapsed Time for Training. Each dataset is trained for one epoch. Training Qwen2.5-VL 7B using four NVIDIA A100 GPUs took about 1 hour when using  $T_{\rm OCR}$  or  $T_{\rm VQA}$ , and about 2 hours when using both  $T_{\rm OCR}$  and  $T_{\rm VQA}$ .

# 211 6 Experiments

Evaluation Protocol for MangaOCR. We follow the evaluation protocols from prior OCR studies [33, 11] and ICDAR 2019 multilingual OCR competitions [6, 36, 29, 22]. First, a predicted bounding box is considered a correct detection if its intersection over union (IoU) with a ground truth box exceeds 0.5. Based on the matched boxes, we compute precision (P), recall (R), and the harmonic mean (Hmean). Second, for each matched box, we calculate the normalized edit distance (NED) between the predicted and ground truth texts as a character-level metric. NED ranges from 0 to 1, with higher values indicating better performance; details are in the supplementary materials.

Since LMMs sometimes output the same word repeatedly, we apply post-processing to exclude repeated text segments that appear more than ten times, treating them as noise. Except for the analysis in § 6.3, we report only the end-to-end Hmean for simplicity.

Evaluation Protocol for MangaVQA. Following LLaVA-Bench [16], we adopt the LLM-as-a-judge approach [37] as our evaluation metric. We provide GPT-40 [12] (gpt-40-2024-11-20) with the question, a human-written answer, and the model's response. Based on the human-written answer, GPT-40 assesses whether the model's response is appropriate and relevant to the question, using a 1–10 scale. The prompt used for LLM-as-a-judge is provided in the supplementary materials.

LMMs Used for Comparison. We evaluate two proprietary LMMs, gpt-4o-2024-11-20 [12] and gemini-2.5-flash-preview-04-17 [9], and two open-source LMMs, Phi-4-multimodal-instruct [1] and Qwen2.5-VL-7B-Instruct [4].

#### 6.1 Main Results

230

Table 2 compares LMMs for both MangaOCR and MangaVQA tasks. Overall, MangaLMM can handle both tasks effectively: it achieves over 70% OCR score and outperforms GPT-40 in VQA score (5.75 vs. 6.57).

Analysis of Low Performance on MangaOCR. As shown in Table 2, GPT-40, Gemini 2.5, Phi-4, and Qwen2.5-VL all show near-zero score on the MangaOCR benchmark. Most of their predictions consist of meaningless repetitions or short repeated tokens. The extremely low OCR score before finetuning is likely due to two main factors: (1) these models are not familiar with manga data, and

Table 2: Comparison of LMMs on MangaOCR and MangaVQA.

| Method           | MangaOCR<br>Hmean (%) | MangaVQA<br>LLM (/10.0) |
|------------------|-----------------------|-------------------------|
| GPT-40           | 0.0                   | 5.76                    |
| Gemini2.5 Flash  | 0.0                   | 3.87                    |
| Phi-4-Multimodal | 0.0                   | 3.08                    |
| Qwen2.5-VL 7B    | 0.9                   | 5.36                    |
| MangaLMM (Ours)  | 71.5                  | 6.57                    |

Table 3: **Effect of finetuning (FT).** FT is performed on the OCR training set  $T_{\rm OCR}$ , the VQA training set  $T_{\rm VQA}$ , or both.

| FT data               | MangaOCR<br>Hmean (%) | MangaVQA<br>LLM (/10.0) |  |
|-----------------------|-----------------------|-------------------------|--|
| None                  | 0.9                   | 5.36                    |  |
| $T_{OCR}$             | 74.9                  | 1.03                    |  |
| $T_{VQA}$             | 0.0                   | 6.46                    |  |
| $T_{OCR}$ + $T_{VQA}$ | 71.5                  | 6.57                    |  |

(2) their weak detection capabilities may limit OCR performance. Prior work [32] has shown that GPT-40, for example, exhibits poor detection ability, which may also apply to the other models.

Despite the near-zero OCR score—where not only position information is missing but even the correct text content is not generated—these models still manage to answer certain VQA questions that require interpreting text within the image. This is somewhat *counterintuitive*. Although the models fail to explicitly output the correct OCR results, they appear to capture some textual semantics from the image. This suggests that they are able to extract relevant information needed for answering VQA questions, even without performing OCR correctly.

Analysis of the Effect of Finetuning. Table 3 shows the effect of finetuning. Finetuning Qwen2.5-VL on  $T_{\rm OCR}$  and  $T_{\rm VQA}$  allows the model to specialize in each respective task. On MangaOCR, the finetuned model achieves a significant improvement to a score of 74.9%, which we provide more interpretation in § 6.3. On MangaVQA, while the model initially underperforms compared to GPT-40, it demonstrates a notable performance gain, even surpassesing GPT-40. These results highlight the effectiveness of our synthetic VQA training set  $T_{\rm VQA}$ , which we further analyze in §6.4.

Analysis from the Perspective of Task Interference. MangaLMM, a Qwen2.5-VL model fine-tuned jointly on both  $T_{\rm OCR}$  and  $T_{\rm VQA}$ , shows a slight drop in OCR performance compared to using  $T_{\rm OCR}$  alone, but achieves a small gain in VQA score over using  $T_{\rm VQA}$  alone. A common issue in multi-task learning is *task interference* [18, 34, 8, 5], where models jointly trained on multiple tasks (e.g., A and B) tend to perform worse on task A compared to models trained solely on A. Under this assumption, one might expect the VQA performance of a jointly trained OCR+VQA model to degrade relative to a VQA-only model. Interestingly, we observe a slight improvement in VQA score under joint training, contrary to typical interference expectations. This suggests that although task interference may be present, the enhanced OCR capability likely provides beneficial textual cues that marginally improve VQA performance.

#### 6.2 Effect of Model and Dataset Size

Table 4 shows the performance of Qwen2.5-VL models of different sizes (3B and 7B) under various finetuning settings. Similar to the 7B model, the 3B model shows a slight drop in MangaOCR performance when finetuned on both  $T_{\rm OCR}$  and  $T_{\rm VQA}$ , while its MangaVQA performance improves slightly. Table 5 shows the results of varying dataset size (25%, 50%, 75%, and 100%). We observe that performance generally improves as the dataset size increases.

# **6.3** Performance Analysis of MangaOCR

Table 6 shows MangaOCR performance at both the detection and end-to-end stages. The Hmean of detection is 75.8%, while the Hmean of end-to-end reaches 68.7%, implying that once text regions are detected, the model can read them with approximately 90% (=68.7 / 75.8) accuracy. Some false positives occur when the model predicts text that is indeed present in the manga but not included in the annotations—for example, page numbers or editorial marks that are not part of the narrative content such as dialogue or onomatopoeia. As a result, the precision is unlikely to reach 100%. Compared to precision, recall is relatively low (65.0%). This suggests that around 35% of ground-truth narrative text remains undetected, indicating room for improvement in capturing all semantically relevant content. Qualitative analysis of MangaOCR is provided in the supplementary materials.

Table 4: Effect of model size (3B and 7B).

| Size | FT data | MangaOCR<br>Hmean (%)             | MangaVQA<br>LLM (/10.0)             |
|------|---------|-----------------------------------|-------------------------------------|
| 3В   |         | 0.1<br>73.5<br>0.0<br>66.5        | 4.30<br>3.78<br>5.71<br>5.86        |
| 7B   |         | 0.9<br><b>74.9</b><br>0.0<br>71.5 | 5.36<br>1.03<br>6.46<br><b>6.57</b> |

Table 5: Effect of dataset size.

| Ratio (%) | MangaOCR<br>Hmean (%) | MangaVQA<br>LLM (/10.0) |
|-----------|-----------------------|-------------------------|
| 25        | 59.0                  | 6.15                    |
| 50        | 64.9                  | 5.99                    |
| 75        | 68.4                  | 6.39                    |
| 100       | 71.5                  | 6.57                    |

Table 6: Detection and end-to-end performance on MangaOCR.

| Stage      | Prec. | Recall | Hmean |
|------------|-------|--------|-------|
| Detection  | 80.3  | 71.8   | 75.8  |
| End-to-end | 72.8  | 65.0   | 68.7  |

# 6.4 Performance Analysis of MangaVQA

Category-wise VQA Performance. Figure 5 shows a breakdown of model performance across the annotated categories in MangaVQA. We observe performance improvements across nearly all tags in every annotated category, indicating that our training contributes to a consistent and balanced enhancement in VQA capabilities. For example, perhaps surprisingly, the model generalizes well to questions from unseen authors, although the performance gain is slightly smaller compared to other tags (rightmost figure).

The only exception is the questions that do not require textual information ("Understanding Type = Image"). In this case, a slight performance drop has been observed after training. We hypothesize this is because our training is strongly text-aware — not only is the model trained on MangaOCR, but synthetic VQA generation is guided with text annotation. We do not consider this a major limitation as uniqueness of manga lies in its multimodality and use cases on non-textual understanding are relatively rare. Still, the training methods better suited for such cases is left for future work.

Effect of OCR Annotation when Generating VQA Data. On creating synthetic QA pairs for training, we provide GPT-40 with the OCR annotation as part of the prompt. Here, we ablate the impact of this by comparing the effect of VQAs made with and without text annotation. As shown in Table 7, the performance of a model on VQA data generated without OCR information (5.44) does not outperform GPT-40's own score (5.76). In contrast, OCR-guided

Table 7: Effect of OCR Annotation on VQA Generation.

| OCR Annot. | LLM (/10.0) |
|------------|-------------|
|            | 5.44        |
| ✓          | 6.57        |

VQAs substantially improve the score (6.57), even outperforming the GPT-40. These results suggest that OCR annotations help GPT-40 generate high-quality QA pairs beyond its inherent performance.

Qualitative Analysis for MangaVQA. In Figure 6, we provide a few examples comparing the outputs of the original Qwen model and our trained model. Here, we briefly summarize our observations: Left: The original model generates a general answer based on the panel in which the person in question appears, while the trained model's answer is based on the content of a text bubble and is more specific, resulting in a score increase of  $7 (3 \rightarrow 10)$ . Middle: The original model extracts text irrelevant to the question, while the trained model extracts the correct text, resulting in a score increase of  $8 (2 \rightarrow 10)$ . Right: The original model extracts the wrong dish name, which is not asked about in the question. The trained model correctly identifies the target dish name but fails to extract it character by character, resulting in no score improvement  $(2 \rightarrow 2)$ .

# 7 Conclusion and Discussion

We present MangaVQA, a benchmark for evaluating to what extent LMMs can understand manga in a human-like way through contextual visual question answering, and MangaOCR, a consolidated benchmark for in-page text recognition. Together, they cover both textual and narrative aspects of multimodal manga understanding. To establish a strong baseline, we develop MangaLMM, a specialized model jointly finetuned on OCR and VQA tasks. Experiments show that even state-of-the-

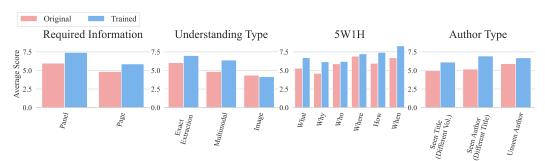


Figure 5: **Category-wise score breakdown.** Compared to the original model (Qwen2.5-VL-7B-Instruct), our trained MangaLMM improves scores across nearly every tag in every category.

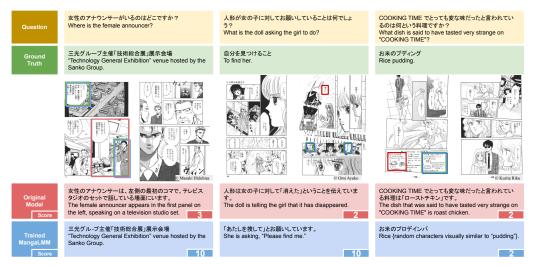


Figure 6: **Qualitative analysis on MangaVQA.** The regions in the image relevant to the question or models' answer are highlighted with boxes in corresponding colors. In the left and middle examples, the model's performance improves significantly after training, whereas in the right example, the trained model still struggles to produce an accurate answer.

art proprietary LMMs struggle with manga's unique complexity, while MangaLMM performs well across both tasks. By releasing open benchmarks, synthetic data, and a strong open-source baseline, we aim to advance research in multimodal manga understanding.

**Limitation.** One limitation of our model is its slow inference speed for OCR. LMMs are much slower than dedicated OCR models; for instance, processing 1,166 test images with 25,651 texts takes several hours on an A100 GPU. In contrast, a dedicated OCR model like DeepSolo [33], running at over 10 FPS, would finish in about 2 minutes. This slowdown stems from the large number of output tokens and occasional repeated or looping outputs during inference.

**Impact Statement.** Copyright issues surrounding manga data are often complex. In the case of PoPManga [25], its training data is not publicly available, and its test data is inaccessible from several Asian countries due to copyright restrictions. In contrast, the Manga109 [20] dataset we use consists only of works for which explicit permission for research use has been obtained from the manga authors. We hope that future research in the manga domain will increasingly rely on copyright-clear datasets like Manga109, enabling the field to advance in a cleaner and more reliable manner.

# References

[1] Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-loras. arXiv preprint arXiv:2503.01743, 2025.

- 234 [2] Kiyoharu Aizawa, Azuma Fujimoto, Atsushi Otsubo, Toru Ogawa, Yusuke Matsui, Koki Tsubota, and Hikaru Ikuta. Building a manga dataset "manga109" with annotations for multimedia applications. *IEEE MultiMedia*, 2020.
- [3] Jeonghun Baek, Yusuke Matsui, and Kiyoharu Aizawa. Coo: Comic onomatopoeia dataset for recognizing arbitrary or truncated texts. In ECCV, 2022.
- [4] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
   Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang
   Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
   Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report.
   arXiv preprint arXiv:2502.13923, 2025.
- [5] Zeren Chen, Ziqin Wang, Zhen Wang, Huayang Liu, Zhenfei Yin, Si Liu, Lu Sheng, Wanli
   Ouyang, and Jing Shao. Octavius: Mitigating task interference in MLLMs via loRA-moe. In
   *ICLR*, 2024.
- [6] Chee Kheng Chng, Yuliang Liu, Yipeng Sun, Chun Chet Ng, Canjie Luo, Zihan Ni, ChuanMing Fang, Shuaitao Zhang, Junyu Han, Errui Ding, et al. Icdar2019 robust reading challenge on arbitrary-shaped text-rrc-art. In *International Conference on Document Analysis and Recogni*tion (ICDAR), 2019.
- Tohere Labs. Aya vision 8b. https://huggingface.co/CohereLabs/aya-vision-8b, 2025. Accessed: 2025-05-13.
- [8] Chuntao Ding, Zhichao Lu, Shangguang Wang, Ran Cheng, and Vishnu Naresh Boddeti.
   Mitigating task interference in multi-task learning via explicit task routing with non-learnable primitives. In CVPR, 2023.
- [9] Google DeepMind. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/, 2025. Accessed: 2025-05-12.
- [10] Clément Guérin, Christophe Rigaud, Antoine Mercier, Farid Ammar-Boudjelal, Karell Bertet,
   Alain Bouju, Jean-Christophe Burie, Georges Louis, Jean-Marc Ogier, and Arnaud Revel.
   ebdtheque: a representative database of comics. In *International Conference on Document Analysis and Recognition (ICDAR)*, 2013.
- [11] Mingxin Huang, Jiaxin Zhang, Dezhi Peng, Hao Lu, Can Huang, Yuliang Liu, Xiang Bai,
   and Lianwen Jin. Estextspotter: Towards better scene text spotting with explicit synergy in
   transformer. In *ICCV*, 2023.
- [12] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
   AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
   preprint arXiv:2410.21276, 2024.
- Hikaru Ikuta, Leslie Wohler, and Kiyoharu Aizawa. Mangaub: A manga understanding benchmark for large multimodal models. *IEEE MultiMedia*, 2025.
- Mohit Iyyer, Varun Manjunatha, Anupam Guha, Yogarshi Vyas, Jordan Boyd-Graber, Hal Daume, and Larry S Davis. The amazing mysteries of the gutter: Drawing inferences between panels in comic book narratives. In *CVPR*, 2017.
- 374 [15] Yingxuan Li, Ryota Hinami, Kiyoharu Aizawa, and Yusuke Matsui. Zero-shot character
   375 identification and speaker prediction in comics via iterative multimodal fusion. In ACMMM,
   376 2024.
- 1377 [16] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS, 2023.
- Muhammad Maaz, Hanoona Rasheed, Abdelrahman Shaker, Salman Khan, Hisham Cholakal, Rao M Anwer, Tim Baldwin, Michael Felsberg, and Fahad S Khan. Palo: A polyglot large multimodal model for 5b people. In *WACV*, 2024.

- [18] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-tasking of multiple tasks. In CVPR, 2019.
- [19] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Docvqa: A dataset for vqa on document images. In WACV, 2021.
- Yusuke Matsui, Kota Ito, Yuji Aramaki, Azuma Fujimoto, Toru Ogawa, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based manga retrieval using manga109 dataset. *MTAP*, 2017.
- 388 [21] Microsoft. Phi-4-multimodal-instruct. https://huggingface.co/microsoft/ 389 Phi-4-multimodal-instruct, 2025. Accessed: 2025-05-13.
- Nibal Nayef, Yash Patel, Michal Busta, Pinaki Nath Chowdhury, Dimosthenis Karatzas, Wafa
   Khlif, Jiri Matas, Umapada Pal, Jean-Christophe Burie, Cheng-lin Liu, et al. Icdar2019 robust
   reading challenge on multi-lingual scene text detection and recognition—rrc-mlt-2019. In
   International Conference on Document Analysis and Recognition (ICDAR), 2019.
- [23] Nhu-Van Nguyen, Christophe Rigaud, and Jean-Christophe Burie. Digital comics image
   indexing based on deep learning. *J. Imaging*, 2018.
- Ragav Sachdeva, Gyungin Shin, and Andrew Zisserman. Tails tell tales: Chapter-wide manga transcriptions with character names. In *ACCV*, 2024.
- <sup>398</sup> [25] Ragav Sachdeva and Andrew Zisserman. The manga whisperer: Automatically generating transcriptions for comics. In *CVPR*, 2024.
- 400 [26] Ragav Sachdeva and Andrew Zisserman. From panels to prose: Generating literary narratives from comics. *arXiv preprint arXiv:2503.23344*, 2025.
- 402 [27] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi 403 Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *CVPR*, 2019.
- [28] Gürkan Soykan, Deniz Yuret, and Tevfik Metin Sezgin. A comprehensive gold standard and
   benchmark for comics text detection and recognition. In *International Conference on Document* Analysis and Recognition (ICDAR), 2024.
- Yipeng Sun, Zihan Ni, Chee-Kheng Chng, Yuliang Liu, Canjie Luo, Chun Chet Ng, Junyu Han, Errui Ding, Jingtuo Liu, Dimosthenis Karatzas, et al. Icdar 2019 competition on large-scale street view text with partial labeling-rrc-lsvt. In *International Conference on Document Analysis and Recognition (ICDAR)*, 2019.
- 411 [30] Emanuele Vivoli, Marco Bertini, and Dimosthenis Karatzas. Comix: A comprehensive bench-412 mark for multi-task comic understanding. In *NeurIPS*, 2024.
- 413 [31] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
  414 Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception
  415 of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.
- Yixuan Wu, Yizhou Wang, Shixiang Tang, Wenhao Wu, Tong He, Wanli Ouyang, Jian Wu, and
   Philip Torr. Dettoolchain: A new prompting paradigm to unleash detection ability of mllm. In
   ECCV, 2024.
- Maoyuan Ye, Jing Zhang, Shanshan Zhao, Juhua Liu, Tongliang Liu, Bo Du, and Dacheng Tao.
  Deepsolo: Let transformer decoder with explicit points solo for text spotting. In *CVPR*, 2023.
- 421 [34] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
  422 Gradient surgery for multi-task learning. In *NeurIPS*, 2020.
- Xiang Yue, Yueqi Song, Akari Asai, Seungone Kim, Jean de Dieu Nyandwi, Simran Khanuja,
   Anjali Kantharuban, Lintang Sutawika, Sathyanarayanan Ramamoorthy, and Graham Neubig.
   Pangea: A fully open multilingual multimodal llm for 39 languages. In *ICLR*, 2025.

- I36] Rui Zhang, Yongsheng Zhou, Qianyi Jiang, Qi Song, Nan Li, Kai Zhou, Lei Wang, Dong Wang,
   Minghui Liao, Mingkun Yang, et al. Icdar 2019 robust reading challenge on reading chinese text
   on signboard. In *International Conference on Document Analysis and Recognition (ICDAR)*,
   2019.
- Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. In *NeurIPS*, 2024.

# **NeurIPS Paper Checklist**

#### 1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims are well-supported by the proposed datasets, model, and experimental results, mainly discussed in Sections 3 to 6

#### Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
  contributions made in the paper and important assumptions and limitations. A No or
  NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
  are not attained by the paper.

#### 2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 7

#### Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was
  only tested on a few datasets or with a few runs. In general, empirical results often
  depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach.
   For example, a facial recognition algorithm may perform poorly when image resolution
   is low or images are taken in low lighting. Or a speech-to-text system might not be
   used reliably to provide closed captions for online lectures because it fails to handle
   technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

# 3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We do not have theoretical results.

#### Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

# 4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide experimental setup in Sections 5 and 6, with additional details in the Appendix.

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
  - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
  - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
  - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
  - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

#### 5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

#### 540 Answer: [Yes]

Justification: The code and dataset is open-sourced on GitHub and Hugging Face, respectively.

#### Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
  to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

# 6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The selection of the data splits are detailed in Sections 3 and 4, with exact numbers in Table 1

#### Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

# 7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the substantial scale of the large language models used in our experiments, associated cost made it impractical for us to perform multiple full repetitions of all experimental runs.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
  - The assumptions made should be given (e.g., Normally distributed errors).
  - It should be clear whether the error bar is the standard deviation or the standard error
    of the mean.
  - It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
  - For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
  - If error bars are reported in tables or plots, The authors should explain in the text how
    they were calculated and reference the corresponding figures or tables in the text.

# 8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

591

592

593

594

595

596

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

Justification: We provide the computational resources used for training in Section 5.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

#### 9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our experiments do not involve human subjects.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
  deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

# 10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The positive impacts of our work are stated throughout our paper, and the negative aspects of the field is summarized as Impact Statement in Section 7.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
  impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

#### 11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not include such artifacts with a high risk for misuse.

#### Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
  not require this, but we encourage authors to take this into account and make a best
  faith effort.

#### 12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: A part of the work is heavily based on Manga109 dataset [20], and we made sure we did not violate its license.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
  package should be provided. For popular datasets, paperswithcode.com/datasets
  has curated licenses for some datasets. Their licensing guide can help determine the
  license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

#### 13. New assets

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731 732

733

734

735

736

737

738

739

740

741

742

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The details of our proposed datasets are documented mainly in Sections 3 and 4

#### Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

# 14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor human subjects.

#### Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

# 15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: No experiments with human subjects have been conducted.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
  may be required for any human subjects research. If you obtained IRB approval, you
  should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

#### 16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

# Answer: [Yes]

Justification: We relied on an LLM for synthetic data generation and for evaluating the scores on the VQA benchmark. In Sections 5 and 6 we provide which model we used in what way, with further detail (e.g., prompt) in the Appendix.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.