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ABSTRACT

This paper is concerned with self-supervised learning for small models. The
problem is motivated by our empirical studies that while the widely used contrastive
self-supervised learning method has shown great progress on large model training,
it does not work well for small models. To address this problem, we propose a
new learning paradigm, named SElf-SupErvised Distillation (SEED), where we
leverage a larger network (as Teacher) to transfer its representational knowledge
into a smaller architecture (as Student) in a self-supervised fashion. Instead of
directly learning from unlabeled data, we train a student encoder to mimic the
similarity score distribution inferred by a teacher over a set of instances. We show
that SEED dramatically boosts the performance of small networks on downstream
tasks. Compared with self-supervised baselines, SEED improves the top-1 accuracy
from 42.2% to 67.6% on EfficientNet-B0 and from 36.3% to 68.2% on MobileNet-
V3-Large on the ImageNet-1k dataset.

1 INTRODUCTION
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Figure 1: SEED vs. MoCo-V2 (Chen et al.,
2020c)) on ImageNet-1K linear probe accuracy.
The vertical axis is the top-1 accuracy and the
horizontal axis is the number of learnable pa-
rameters for different network architectures. Di-
rectly applying self-supervised contrastive learn-
ing (MoCo-V2) does not work well for smaller
architectures, while our method (SEED) leads
to dramatic performance boost. Details of the
setting can be found in Section 4.

The burgeoning studies and success on self-supervised
learning (SSL) for visual representation are mainly
marked by its extraordinary potency of learning from
unlabeled data at scale. Accompanying with the SSL
is its phenomenal benefit of obtaining task-agnostic
representations while allowing the training to dispense
with prohibitively expensive data labeling. Major ram-
ifications of visual SSL include pretext tasks (Noroozi
& Favaro, 2016; Zhang et al., 2016; Gidaris et al.,
2018; Zhang et al., 2019; Feng et al., 2019), con-
trastive representation learning (Wu et al., 2018; He
et al., 2020; Chen et al., 2020a), online/offline cluster-
ing (Yang et al., 2016; Caron et al., 2018; Li et al.,
2020; Caron et al., 2020; Grill et al., 2020), etc.
Among them, several recent works (He et al., 2020;
Chen et al., 2020a; Caron et al., 2020) have achieved
comparable or even better accuracy than the super-
vised pre-training when transferring to downstream
tasks, e.g. semi-supervised classification, object detec-
tion.

The aforementioned top-performing SSL algorithms
all involve large networks (e.g., ResNet-50 (He et al.,
2016) or larger), with, however, little attention on
small networks. Empirically, we find that existing
techniques like contrastive learning do not work well on small networks. For instance, the linear probe
top-1 accuracy on ImageNet using MoCo-V2 (Chen et al., 2020c) is only 36.3% with MobileNet-
V3-Large (see Figure 1), which is much lower compared with its supervised training accuracy
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75.2% (Howard et al., 2019). For EfficientNet-B0, the accuracy is 42.2% compared with its supervised
training accuracy 77.1% (Tan & Le, 2019). We conjecture that this is because smaller models with
fewer parameters cannot effectively learn instance level discriminative representation with large
amount of data.

To address this challenge, we inject knowledge distillation (KD) (Buciluǎ et al., 2006; Hinton et al.,
2015) into self-supervised learning and propose self-supervised distillation (dubbed as SEED) as
a new learning paradigm. That is, train the larger, and distill to the smaller both in self-supervised
manner. Instead of directly conducting self-supervised training on a smaller model, SEED first trains
a large model (as the teacher) in a self-supervised way, and then distills the knowledge to the smaller
model (as the student). Note that the conventional distillation is for supervised learning, while the
distillation here is in the self-supervised setting without any labeled data. Supervised distillation can
be formulated as training a student to mimic the probability mass function over classes predicted by a
teacher model. In unsupervised knowledge distillation setting, however, the distribution over classes
is not directly attainable. Therefore, we propose a simple yet effective self-supervised distillation
method. Similar to (He et al., 2020; Wu et al., 2018), we maintain a queue of data samples. Given an
instance, we first use the teacher network to obtain its similarity scores with all the data samples in
the queue as well as the instance itself. Then the student encoder is trained to mimic the similarity
score distribution inferred by the teacher over these data samples.

The simplicity and flexibility that SEED brings are self-evident. 1) It does not require any cluster-
ing/prototypical computing procedure to retrieve the pseudo-labels or latent classes. 2) The teacher
model can be pre-trained with any advanced SSL approach, e.g., MoCo-V2 (Chen et al., 2020c),
SimCLR (Chen et al., 2020a), SWAV (Caron et al., 2020). 3) The knowledge can be distilled to any
target small networks (either shallower, thinner, or totally different architectures).

To demonstrate the effectiveness, we comprehensively evaluate the learned representations on series
of downstream tasks, e.g., fully/semi-supervised classification, object detection, and also assess the
transferability to other domains. For example, on ImageNet-1k dataset, SEED improves the linear
probe accuracy of EfficientNet-B0 from 42.2% to 67.6% (a gain over 25%), and MobileNet-V3
from 36.3% to 68.2% (a gain over 31%) compared to MoCo-V2 baselines, as shown in Figure 1 and
Section 4.

Our contributions can be summarized as follows:

• We are the first to address the problem of self-supervised visual representation learning for
small models.

• We propose a self-supervised distillation (SEED) technique to transfer knowledge from a
large model to a small model without any labeled data.

• With the proposed distillation technique (SEED), we significantly improve the state-of-the-
art SSL performance on small models.

• We exhaustively compare a variety of distillation strategies to show the validity of SEED
under multiple settings.

2 RELATED WORK

Among the recent literature in self-supervised learning, contrastive based approaches show prominent
results on downstream tasks. Majority of the techniques along this direction are stemming from
noise-contrastive estimation (Gutmann & Hyvärinen, 2010) where the latent distribution is estimated
by contrasting with randomly or artificially generated noises. Oord et al. (2018) first proposed
Info-NCE to learn image representations by predicting the future using an auto-regressive model for
unsupervised learning. Follow-up works include improving the efficiency (Hénaff et al., 2019), and
using multi-view as positive samples (Tian et al., 2019b). As these approaches can only have the
access to limited negative instances, Wu et al. (2018) designed a memory-bank to store the previously
seen random representations as negative samples, and treat each of them as independent categories
(instance discrimination). However, this approach also comes with a deficiency that the previously
stored vectors are inconsistent with the recently computed representations during the earlier stage
of pre-training. Chen et al. (2020a) mitigate this issue by sampling negative samples from a large
batch. Concurrently, He et al. (2020) improve the memory-bank based method and propose to use
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the momentum updated encoder for the remission of representation inconsistency. Other techniques
include Misra & Maaten (2020) that combines the pretext-invariant objective loss with contrastive
learning, and Wang & Isola (2020) that decomposes contrastive loss into alignment and uniformity
objectiveness.

Knowledge distillation (Hinton et al., 2015) aims to transfer knowledge from a cumbersome model
to a smaller one without losing too much generalization power, which is also well investigated in
model compression (Buciluǎ et al., 2006). Instead of mimicking the teacher’s output logit, attention
transfer (Zagoruyko & Komodakis, 2016) formulates knowledge distillation on attention maps.
Similarly, works in (Ahn et al., 2019; Yim et al., 2017; Koratana et al., 2019; Huang & Wang, 2017)
have utilized different learning objectives including consistency on feature maps, consistency on
probability mass function, and maximizing the mutual information. CRD (Tian et al., 2019a), which is
derived from CMC (Tian et al., 2019b), optimizes the student network by a similar objective to Oord
et al. (2018) using a derived lower bound on mutual information. However, the aforementioned efforts
all focus on task-specific distillation (e.g., image classification) during the fine-tuning phase rather
than a task-agnostic distillation in the pre-training phase for the representation learning. Several
works on natural language pre-training proposed to leverage knowledge distillation for a smaller yet
stronger small models. For instances, DistillBert (Sanh et al., 2019), TinyBert (Jiao et al., 2019), and
MobileBert (Sun et al., 2020), have used knowledge distillation for model compression and shown
their validity on multiple downstream tasks. Similar works also emphasize the value of smaller and
faster models for language representation learning by leveraging knowledge distillation (Turc et al.,
2019; Sun et al., 2019). These works all demonstrate the effectiveness of knowledge distillation for
language representation learning in small models, while are not extended to the pre-training for visual
representations. Notably, a recent concurrent work CompRess (Abbasi Koohpayegani et al., 2020)
also point out the importance to develop better SSL method for smaller models. SEED closely relates
to the above techniques but aims to facilitate visual representation learning during pre-training
phase using distillation technique for small models, which as far as we know has not yet been
investigated.

3 METHOD

3.1 PRELIMINARY ON KNOWLEDGE DISTILLATION

Knowledge distillation (Hinton et al., 2015; Buciluǎ et al., 2006) is an effective technique to transfer
knowledge from a strong teacher network to a target student network. The training task can be
generalized as the following formulation:

θ̂S = argmin
θS

N∑
i

Lsup(xi, θS , yi) + Ldistill(xi, θS , θT ), (1)

where xi is an image, yi is the corresponding annotation, θS is the parameter set for the student
network, and θT is the set for the teacher network. The loss Lsup is the alignment error between
the network prediction and the annotation. For example in image classification task (Mishra &
Marr, 2017; Shen & Savvides, 2020; Polino et al., 2018; Cho & Hariharan, 2019), it is normally a
cross entropy loss. For object detection (Liu et al., 2019; Chen et al., 2017), it includes bounding
box regression as well. The loss of Ldistill is the mimic error of the student network towards a
pre-trained teacher network. For example in (Hinton et al., 2015), the teacher signal comes from the
softmax prediction of multiple large-scale networks and the loss is measured by the Kullback–Leibler
divergence. In Romero et al. (2014), the task is to align the intermediate feature map values and to
minimize the squared l2 distance. The effectiveness has been well demonstrated in the supervised
setting with labeled data, but remains unknown for the unsupervised setting, which is our focus.

3.2 SELF-SUPERVISED DISTILLATION FOR VISUAL REPRESENTATION

Different from supervised distillation, SEED aims to transfer knowledge from a large model to a
small model without requiring labeled data, so that the learned representations in small model can
be used for downstream tasks. Inspired by contrastive SSL, we formulate a simple approach for the
distillation on the basis of instance similarity distribution over a contrastive instance queue. Similar
to He et al. (2020), we maintain an instance queue for storing data samples’ encoding output from the
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Figure 2: Illustration of our self-supervised distillation pipeline. The teacher encoder is pre-trained by SSL and
kept frozen during the distillation. The student encoder is trained by minimizing the cross entropy of probabilities
from teacher & student for an augmented view of an image, computed over a dynamically maintained queue.

teacher. Given a new sample, we compute its similarity scores with all the samples in the queue using
both the teacher and the student models. We require that the similarity score distribution computed
by the student matches with that computed by the teacher, which is formulated as minimizing the
cross entropy between the student and the teacher’s similarity score distributions (as illustrated in
Figure 2).

Specifically, for a randomly augmented view xi of an image, it is first mapped and normalized
into feature vector representations zTi = fTθ (xi)/||fTθ (xi)||2, and zSi = fSθ (xi)/||fSθ (xi)||2, where
zTi , z

S
i ∈ RD, and fTθ and fSθ denote the teacher and student encoders, respectively. Let D =

[d1...dK ] denote the instance queue where K is the queue length and dj is the feature vector
obtained from the teacher encoder. Similar to the contrastive learning framework, D is progressively
updated under the “first-in first-out” strategy as distillation proceeds. That is, we en-queue the visual
features of the current batch inferred by the teacher and de-queue the earliest seen samples at the end
of iteration. Note that the maintained samples in queue D are mostly random and irrelevant to the
target instance xi. Minimizing the cross entropy between the similarity score distribution computed
by the student and teacher based on D softly contrasts xi with randomly selected samples, without
directly aligning with the teacher encoder. To address this problem, we add the teacher’s embedding
(zTi ) into the queue and form D+ = [d1...dK ,dK+1] with dK+1 = zTi .

Let pT (xi; θT ;D+) denote the similarity score between the extracted teacher feature zTi and dj’s
(j = 1, ...,K + 1) computed by the teacher model. pT (xi; θT ;D+) is defined as

pT (xi; θT ,D
+) = [ pT1 ... p

T
K+1] , pTj =

exp(zTi · dj/τT )∑
d∼D+ exp(zTi · d/τT )

, (2)

and τT is a temperature parameter for the teacher. Note, we use ()T to represent the feature from the
teacher network and use (·) to represent the inner product between two features.

Similarly let pS(xi; θS ,D+) denote the similarity score computed by the student model, which is
defined as

pS(xi; θS ,D
+) = [ pS1 ... p

S
K+1] , where pSj =

exp(zSi · dj/τS)∑
d∼D+ exp(zSi · d/τS)

, (3)

and τS is a temperature parameter for the student.

Our self-supervised distillation can be formulated as minimizing the cross entropy between the
similarity scores of the teacher, pT (xi; θT ,D+), and the student, pS(xi; θS ,D+), over all the
instances xi, that is,

θ̂S = argmin
θS

N∑
i

−pT (xi; θT ,D+) · logpS(xi; θS ,D+)

= argmin
θS

N∑
i

K+1∑
j

− exp(zTi · dj/τT )∑
d∼D+ exp(zTi · d/τT )

· log exp(zSi · dj/τS)∑
d∼D+ exp(zSi · d/τS)

.

(4)

Since the teacher network is pre-trained and frozen, the queued features are consistent during training
w.r.t. the student network. The higher the value of pTj is, the larger weight will be laid on pSj . Due

4



Published as a conference paper at ICLR 2021

to the l2 normalization, similarity score between zTi and dK+1 remains constant 1 before softmax
normalization, which is the largest among pTj . Thus, the weight for pSK+1 is the largest and can be
adjusted solely by tuning the value of τT . By minimizing the loss, the feature of zSi can be aligned
with zTi and meanwhile contrasts with other unrelated image features in D. We further discuss the
relation of these two goals with our learning objective in Appendix A.5.

Relations with Info-NCE loss. When τT → 0, the softmax function for pT smoothly approaches to
a one-hot vector, where pTK+1 equals 1 and all others 0. In this extreme case, the loss becomes

LNCE =

N∑
i

− log
exp(zTi · zSi /τ)∑

d∼D+ exp(zSi · d/τ)
, (5)

which is similar to the widely-used Info-NCE loss (Oord et al., 2018) in contrastive-based SSL (see
discussion in Appendix A.6.

4 EXPERIMENT

4.1 PRE-TRAINING

Self-Supervised Pre-training of Teacher Network. By default, we use MoCo-V2 (Chen et al.,
2020c) to pre-train the teacher network. Following (Chen et al., 2020a), we use ResNet as the network
backbone with different depths/widths and append a multi-layer-perceptron (MLP) layer (two linear
layers and one ReLU (Nair & Hinton, 2010) activation layer in between) at the end of the encoder
after average pooling. The dimension of the last feature dimension is 128. All teacher networks
are pre-trained for 200 epochs due to the computational limitation unless explicitly specified. As
our distillation is independent with the teacher pre-training algorithm, we also show results with
other self-supervised pre-trained models for teacher network, e.g., SWAV (Caron et al., 2020),
SimCLR (Chen et al., 2020a).

Self-Supervised Distillation on Student Network. We choose multiple smaller networks with
fewer learnable parameters as the student network: MobileNet-v3-Large (Howard et al., 2017),
EfficientNet-B0 (Tan & Le, 2019), and smaller ResNet with fewer layers (ResNet-18, 34). Similar to
the pre-training for teacher network, we add one additional MLP layer on the basis of the student
network. Our distillation is trained with a standard SGD optimizer with momentum 0.9 and a weight
decay parameter of 1e-4 for 200 epochs. The initial learning rate is set as 0.03 and updated by a
cosine decay scheduler (Nair & Hinton, 2010) with 5 warm-up epochs and batch size 256. In Eq. 4,
the teacher temperature is set as τT = 0.01 and the student temperature is τS = 0.2. The queue
size of K is 65,536. In the following subsections and appendix, we also show results with different
hyper-parameter values, e.g., for τT and K.

4.2 FINE-TUNING AND EVALUATION

In order to validate the effectiveness of self-supervised distillation, we choose to assess the perfor-
mance of representations of the student encoder on several downstream tasks. We first report its
performances of linear evaluation and semi-supervised linear evaluation on the ImageNet ILSVRC-
2012 (Deng et al., 2009) dataset. To measure the feature transferability brought by distillation, we
also conduct evaluations on other tasks, which include object detection and segmentation on the
VOC07 (Everingham et al.) and MS-COCO (Lin et al., 2014) datasets. At the end, we compare the
transferability of the features learned by distillation with ordinary self-supervised contrastive learning
on the tasks of linear classification on datasets from different domains.

Linear and KNN Evaluation on ImageNet. We conduct the supervised linear classification
on ImageNet-1K, which contains ∼1.3M images for training, and 50,000 images for validation,
spanning 1,000 categories. Following previous works in (He et al., 2020; Chen et al., 2020a), we
train a single linear layer classifier on top of the frozen network encoder after self-supervised pre-
training/distillation. SGD optimizer is used to train the linear classifier for 100 epochs with weight
decay to be 0. The initial learning rate is set as 30 and is then reduced by a factor of 10 at 60 and 80
epochs (similar as in Tian et al. (2019a)). Notably, when training the linear classifier for MobileNet
and EfficientNet, we reduce the initial learning rate to 3. The results are reported in terms of Top-1
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Table 1: ImageNet-1k test accuracy (%) using KNN and linear classification for multiple students and MoCo-
v2 pre-trained deeper teacher architectures. 7 denotes MoCo-V2 self-supervised learning baselines before
distillation. * indicates using a deeper teacher encoder pre-trained by SWAV, where additional small-patches are
also utilized during distillation and trained for 800 epochs. K denotes Top-1 accuracy using KNN. T-1 and T-5
denote Top-1 and Top-5 accuracy using linear evaluation. First column shows Top-1 Acc. of Teacher network.
First row shows the supervised performances of student networks.

T
S T-1 Eff-b0 Eff-b1 Mob-v3 R-18 R-34

K T-1 T-5 K T-1 T-5 K T-1 T-5 K T-1 T-5 K T-1 T-5

Supervised Acc. 77.3 79.2 75.2 72.1 75.0

7 - 30.0 42.2 68.5 34.4 50.7 74.6 27.5 36.3 62.2 36.7 52.5 77.0 41.5 57.4 81.6

R-50 67.4 46.0 61.3 82.7 46.1 61.4 83.1 44.8 55.2 80.3 43.4 57.9 82.0 45.2 58.5 82.6
∆ +16.0 +19.1 +14.2 +16.1 +10.7 +8.8 +17.3 +18.9 +18.1 +6.7 +5.1 +4.8 +3.7 +1.1 +1.0

R-101 70.3 50.1 63.0 83.8 50.3 63.4 84.6 48.8 59.9 83.5 48.6 58.9 82.5 50.5 61.6 84.9
∆ +20.1 +20.8 +15.3 +15.9 +12.7 +10.0 +21 .3 +23.6 +21.3 +11.9 +6.4 +5.5 +9.0 +4.2 +3.3

R-152 74.2 50.7 65.3 86.0 52.4 67.3 86.9 49.5 61.4 84.6 49.1 59.5 83.3 51.4 62.7 85.8
∆ +20.7 +23.1 +17.5 +18.0 +16.6 +12.3 +22.0 +25.1 +22.4 +12.4 +7.0 +6.3 +9.9 +5.3 +4.2

R50×2∗ 77.3 57.4 67.6 87.4 60.3 68.0 87.6 55.9 68.2 88.2 55.3 63.0 84.9 58.2 65.7 86.8
∆ +27.4 +25.4 +18.9 +25.9 +17.3 +13.0 +18.9 +31.9 +26.0 +18.6 +10.5 +7.9 +16.7 +8.3 +5.2
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Figure 3: ImageNet-1k Top-1 accuracy for semi-supervised evaluations using 1% (red line), 10% (blue line)
of the annotations for linear fine-tuning, in comparison with the fully supervised (green line) linear evaluation
baseline for SEED. For the points whose Teacher’s number of parameters is at 0, we show the semi-supervised
linear evaluation results of MoCo-V2 without any distillation. The Student models tend to perform better on the
semi-supervised tasks after distillation from larger Teachers.

and Top-5 accuracy. We also perform classification using K-Nearest Neighbors (KNN) based on the
learned 128d vector from the last MLP layer. The sample is classified by taking the most frequent
label of its K (K = 10) nearest neighbors.

Table 1 shows the results with various teacher networks and student networks. We list the baseline of
contrastive self-supervised pre-training using MoCo-V2 (Chen et al., 2020c) in the first row for each
student architecture. We can see clearly that smaller networks perform rather worse. For example,
MobileNet-V3 can only reach 36.3%. This aligns well with previous conclusions from (Chen et al.,
2020a;b) that bigger models are desired to perform better in contrastive-based self-supervised pre-
training. We conjecture that this is mainly caused by the inability of smaller network to discriminate
instances in a large-scale dataset. The results also clearly demonstrate that the distillation from a larger
network helps boosting the performances of small networks, and show obvious improvement. For
instance, with MoCo-V2 pre-trained ResNet-152 (for 400 epochs) as the teacher network, the Top-1
accuracy of MobileNet-V3-Large can be significantly improved from 36.3% to 61.4%. Furthermore,
we use ResNet-50×2 (provided in Caron et al. (2020)) as the teacher network and adopt the multi-crop
trick (see A.2 for details). The accuracy can be further improved to 68.2% (last row of Table 1) for
MobileNet-V3-Large with 800 epochs of distillation. We note that the gain benefited from distillation
becomes more distinct on smaller architectures and we further study the effect of various teacher
models in ablations.

Semi-Supervised Evaluation on ImageNet. Following (Oord et al., 2018; Kornblith et al., 2019;
Kolesnikov et al., 2019), we evaluate the representation on the semi-supervised task, where a fixed
1% or 10% subsets of ImageNet training data (Chen et al., 2020a) are provided with the annotations.
After the self-supervised learning with and without distillation, we also train a classifier on top of the
representation. The results are shown in Figure 3, where the baseline without distillation is depicted
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Table 2: Object detection and instance segmentation results using contrastive self-supervised learning and
SEED distillation using ResNet-18 as backbone: bounding-box AP (APbb) and mask AP (APmk) evaluated
on VOC07-val and COCO testing split. More results on different backbones can be found in the Appendix.
Subscript in green represents improvement is larger than 0.3.

S T VOC Obj. Det. COCO Obj. Det. COCO Inst. Segm.

APbb APbb
50 APbb

75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

R-18

7 46.1 74.5 48.6 35.0 53.9 37.7 31.0 51.1 33.1
R-50 46.1( 0.0) 74.8(+0.3) 49.1(+0.5) 35.3(+0.3) 54.2(+0.3) 37.8(+0.1) 31.1(+0.1) 51.1( 0.0) 33.2(+0.1)

R-101 46.8(+0.7) 75.8(+1.3) 49.3(+0.7) 35.3(+0.3) 54.3(+0.4) 37.9(+0.2) 31.3(+0.3) 51.3(+0.2) 33.4(+0.3)

R-152 46.8(+0.7) 75.9(+1.4) 50.2(+1.6) 35.4(+0.4) 54.4(+0.5) 38.0(+0.3) 31.3(+0.3) 51.4(+0.3) 33.4(+0.3)
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Figure 4: ImageNet-1k Accuracy (%) of student network (EfficientNet-B0 and ResNet-18) transferred to other
domains (CIFAR-10, CIFAR-100, SUN-397 datasets) with and without distillation from lager architectures
(ResNet-50/101/152).

when teacher parameters are 0. As we can see, the accuracy is also improved remarkably with SEED
distillation, and a stronger teacher network with more parameters leads to a better performed student
network.

Transferring to Classification. To further study whether the improvement of the learned represen-
tations by distillation is confined to ImageNet, we evaluate on additional classification datasets to
study the generalization and transferability of the feature representation. We strictly follow the linear
evaluation and fine-tuning settings from (Kornblith et al., 2019; Chen et al., 2020a; Grill et al., 2020),
that a linear layer is trained on the basis of frozen features. We report Top-1 Accuracy of models
before and after distillation from various architectures on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), SUN-397 (Xiao et al., 2010) datasets (see Figure 4). More details regarding pre-processing
and training can be found in A.1.2. Notably, we observe that our distillation surpasses contrastive
self-supervised pre-training consistently on all benchmarks, verifying the effectiveness of SEED.
This also proves the generalization ability of the learned representations from distillation to a wide
range of data domain and different classes.

Transferring to Detection and Segmentation. We conduct two downstream tasks here. The first
is Faster R-CNN (Ren et al., 2015) model for object detection trained on VOC-07+12 train+val set
and evaluated on VOC-07 test split. The second is Mask R-CNN (He et al., 2017) model for the
object detection and instance segmentation on COCO 2017 dataset (Lin et al., 2014). The pre-trained
model serves as the initial weight and following He et al. (2020), we fine-tune all the layers of the
model. More experiment settings can be found in A.2. The results are illustrated in Table 2. As we
can see, on VOC, the distilled pre-trained model achieves a large improvement. With ResNet-152 as
the teacher network, the Resnet18-based Faster R-CNN model shows +0.7 point improvement on AP,
+1.4 improvement on AP50 and +1.6 on AP75. On COCO, the improvement is relatively minor and
the reason could be that COCO training set has ∼118k training images while VOC has only ∼16.5k
training images. A larger training set with more fine-tuning iterations reduces the importance of the
initial weights.

4.3 ABLATION STUDY

We now explore the effects of distillation using different Teacher architectures, Teacher Pre-training
algorithms, various distillation strategies and hyper-parameters.
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Table 3: ImageNet-1k Accuracy (%) of student net-
work (ResNet-18) distilled from variants of self-
supervised ResNet-50. P-E/D-E represent the pre-
training and distillation epochs. T./S.-Top represent
testing accuracy of Teacher and Student. ∗ represents
distillation using additional small patches. First row
is the ResNet-18 SSL baseline using MoCo-v2 trained
for 200 epochs.

Teacher P-E D-E T. Top-1 S. Top-1 S. Top-5

7 7 7 7 52.5 77.0
MoCo 200 200 60.6 52.1 77.0
SimCLR 200 200 65.6 57.5 81.7
MoCo-v2 200 200 67.4 57.9 82.0

800 200 71.1 60.5 83.5
SWAV 800 100 75.3 61.1 83.8

800 200 75.3 61.7 84.2
800 400 75.3 62.0 84.4

SWAV∗ 800 200 75.3 62.6 84.8
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Figure 5: Accuracy (%) of student networks
(EfficientNet-b0 and ResNet-18) on ImageNet dis-
tilled from wider MoCo-v2 pre-trained ResNet
(ResNet-50/101/152×2).

Different Teacher Networks. Figure 5 summarizes the accuracy of ResNet-18 and EfficientNet-B0
distilled from wider and deeper ResNet architectures. We see clear performance improvement as
depth and width of teacher network increase: compared to ResNet-50, deeper (ResNet-101) and
wider (ResNet-50×2) substantially improve the accuracy. However, further architectural enlargement
has relatively limited effects, and we suspect the accuracy might be limited by the student network
capacity in this case.

Different Teacher Pre-training Algorithms. In Table 3, we show the Top-1 accuracy of ResNet-18
distilled from ResNet-50 with different pre-training algorithms, i.e., MoCo-V1 (He et al., 2020),
MoCo-V2 (Chen et al., 2020c), SimCLR (Chen et al., 2020a), and SWAV (Caron et al., 2020)).
Notably, the aforementioned methods all unanimously adopt contrastive-based pre-training except
SWAV, which is based upon online clustering. We find that our SEED is agnostic to pre-training
approaches, making it easy to use any self-supervised models (including clustering-based approach
like SWAV) in self-supervised distillation. In addition, we observe that more training epochs for both
teacher SSL and distillation epochs can bring beneficial gain.

Other Distillation Strategies. We explore several alternative distillation strategies. l2-Distance:
where the l2-distance of teacher & student’s embeddings are minimized, motivated by Romero et al.
(2014). K-Means: we exploit K-Means clustering to assign a pseudo-label based on the teacher
network’s representation. Online Clustering: we continuously update the clustering centers during
distillation for pseudo-label generation. Binary Contrastive Loss: we adopt an Info-NCE alike loss
for contrastive distillation (Tian et al., 2019a). We provide details for other strategies in A.4. Table 4
shows the results for each method on ResNet-18 (student) distilled from ResNet-50. From the results,
the simple l2-distance minimizing approach can achieve a decent accuracy, which demonstrates the
effectiveness of applying the distillation idea to the self-supervised learning. Beyond that, we study
the effect of the original SSL (MoCo-V2) supervision as supplementary loss to SEED and find it does
not bring additional benefits to distillation. We find close results from these two strategies (Top-1
linear Acc.), SEED achieves 57.9%, while SEED + MoCo-V2 achieves 57.6%. This implies that
the loss of SEED can to a large extent cover the original SSL loss, and it is not necessary to conduct
SSL any further during distillation. Meanwhile, our proposed SEED outperforms these alternatives
with highest accuracy, which shows the superiority of aligning the student towards the teacher and
contrasting with the irrelevant samples.

Other Hyper-Parameters. Table 5 summarizes the distillation performances on multiple datasets
using different temperature τT . We observe a better performance when decreasing τT to 0.01 for
ImageNet-1k and CIFAR-10 dataset, and to 1e-3 for CIFAR-100 datasets. When τ is large, the
softmax-normalized similarity score of pTj between zTi and instance dj in the queue D+ also becomes
large, which means the student’s feature should be less discriminative with the features of other
images to some extent. When τT is 0, the teacher model will generate a one-hot vector, which only
treats zTi as a positive instance and all others in the queue as negative. Thus, the best τ is a trade-off
depending on the data distribution. We further compare effect of different hyper-parameters in A.8.
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Table 4: Top-1/5 accuracy of linear classifica-
tion results on ImageNet using different distillation
strategies on ResNet-18 (student) and ResNet-50
(teacher) architectures.

Method Top-1 Acc. Top-5 Acc.

l2-Distance 55.3 80.3
K-Means 51.0 75.8

Online Clustering 56.4 81.2
Binary Contr. Loss 57.4 81.5
SEED + MoCo-V2 57.6 81.8

SEED 57.9 82.0

Table 5: Effect of τT for the distillation of ResNet-18
(student), ResNet-50 (teacher) on multiple datasets.

τT
ImageNet CIFAR-10 CIFAR-100

Top-1 Top-5 Top-1 Top-1

0.3 54.8 80.0 78.7 46.6
0.1 54.9 80.1 83.0 50.1
0.05 56.5 81.3 84.4 56.2
0.01 57.9 82.0 87.5 60.6
1e-3 57.6 81.8 86.9 60.8

5 CONCLUSIONS

Self-Supervised Learning is acknowledged for its remarkable ability in learning from unlabeled, and
large scale data. However, a critical impedance for the SSL pre-training on smaller architecture comes
from its low capacity of discriminating enormous number of instances. Instead of directly learning
from unlabeled data, we proposed SEED as a novel self-supervised learning paradigm, which learns
representation by self-supervised distillation from a bigger SSL pre-trained model. We show in
extensive experiments that SEED effectively addresses the weakness of self-supervised learning for
small models and achieves state-of-the-art results on various benchmarks of small architectures.
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A APPENDIX

We discuss more details and different hyperparameters for SEED during distillation.

A.1 PSEUDO-IMPLEMENTATIONS

We provide pseudo-code of the SEED distillation in PyTorch Paszke et al. (2019) style:

1 ‘‘‘Q: maintaining queue of previous representations: (N X D)
2 T: Cumbersome encoder as Teacher.
3 S: Target encoder as Student.
4 temp_T, temp_S: temperatures of the Teacher & Student.
5 ‘‘‘
6

7 # activate evaluation mode for Teacher to freeze BN and updation.
8 T.eval()
9

10 for images in enumerate(loader): # Enumerate single crop-view
11

12 # augment image to get one identical view
13 images = aug(images)
14

15 # Batch-size
16 B = images.shape[0]
17

18 # extract embedding from S: 1 X D
19 X_S = S(images)
20 X_S = torch.norm(X_S, p=2, dim=1)
21

22 # use the gradient-free mode
23 with torch.no_grad():
24 X_T = T(image) # embedding from T: 1 X D
25 X_T = torch.norm(X_T, p=2, dim=1)
26

27 # insert the current batch embedding from T
28 enqueue(Q, X_T)
29

30 # probability scores distribution for T, S: B X (N + 1)
31 S_Dist = torch.einsum(’bd, dn -> bn’, [X_S], Q.t().clone().detach())
32 T_Dist = torch.einsum(’bd, dn -> bn’, [X_T], Q.t().clone().detach())
33

34 # Apply temperatures for soft-labels
35 S_Dist /= temp_S
36 T_Dist = SoftMax(T_Dist/temp_T, dim=1)
37

38 # loss computation, use log_softmax for stable computation
39 loss = -torch.mul(T_Dist, Log_SoftMax(S_Dist, dim=1)).sum()/B
40

41 # update the random sample queue
42 dequeue(Q, B) # pop-out earliest B instances
43

44 # SGD updation
45 loss.backward()
46 update(S.params)
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A.1.1 DATA AUGMENTATIONS

Both our teacher pre-training and distillation adopt the data augmentations as follows:

Random Resized Crop: The image is randomly resized with a scale of {0.2, 1.0}, then
cropped to the size of 224×224.
Random Color Jittering: with brightness to be {0.4, 0.4, 0.4, 0.1} with probability at 0.8.
Random Gray Scale transformation: with probability at 0.2.
Random Gaussian Blur transformation: with σ = {0.1, 0.2} and probability at 0.5.
Horizontal Flip: Horizontal flip is applied with probability at 0.5.

A.1.2 PRE-TRAINING AND DISTILLATION ON MOBILENET AND EFFICIENTNET

MobileNet (Howard et al., 2017) and EfficientNet (Tan & Le, 2019) have been considered as the
smaller counterparts with larger models, i.e., ResNet-50 (with supervised training, EfficientNet-
B0 hits 77.2% Top-1 Acc., and MobileNet-V3-large reaches 72.2% on ImageNet testing split).
Nevertheless, un-matched performances are observed in the task of self-supervised contrastive pre-
training: i.e., Self-Supervised Learning (MoCo-V2) on MobileNet-V3 only yields 36.3% Top-1 Acc.
on ImageNet. We conjecture that several reasons might lead to this dilemma:

1. The inability of models with less parameters for handling large volume of categories and
data, which exists also in other domains, i.e., face recognition (Guo et al., 2016; Zhang et al.,
2017).

2. Less possibility for optimum parameters to be chosen when transferring to downstream
tasks: models with more parameters after pre-training might produce a plenty cornucopia of
optimum parameters for fine-tuning.

To narrow the dramatic performance gap between smaller architectures using contrastive SSL with
the larger, we explore with architectural manipulations and training hyper-parameters. In specific, we
find that by adding a deeper projection head largely improves the representation quality, a.k.a., better
performances on linear evaluation. We experiment with adding one additional linear projection head
on the top of convolutional backbones.

Similarly, we also expand the MLP projection head on EfficientNet-b0. Though recent work shows
that fine-tuning from a middle layer of the projection head can produce a largely different result (Chen
et al., 2020b), we consistently just use the representations from convolutional trunk without adding
extra layers during the phase of linear evaluation. As shown in Table 6, pre-training with a deeper
projection head dramatically helps the improvement on linear evaluations, adding 17% Top-1. Acc.
for Mobile-v3-large, and we report the improved baselines in the main paper (see the first row in
Table 1 of the main paper). We keep most of the hyper-parameters as the distillation on ResNet except
reducing the weight-decay of them to 1e-5, following (Tan & Le, 2019; Sandler et al., 2018).

Table 6: Linear evaluations on ImageNet of EfficientNet and MobileNet pre-trained using MoCo-v2. A deeper
projection head largely boosts the linear evaluation performances on smaller architectures.

Model Deeper MLPs Top-1 Acc. Top-5 Acc.

EfficientNet-b0 7 39.1 64.6
EfficientNet-b0 X 42.2 68.5
Mobile-v3-large 7 19.0 41.3
Mobile-v3-large X 36.3 62.2

A.2 ADDITIONAL DETAILS OF EVALUATIONS

We list additional details regarding our evaluation experiments in this section.

ImageNet-1k Semi-Supervised Linear Evaluation. Following Zhai et al. (2019); Chen et al.
(2020a), we train the FC layers on the basis of our student encoder after distillation using a fraction
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Table 7: Before and after distillation Top-1/5 test accuracy (%) on ImageNet of EfficientNet-b0 and MobileNet-
large without deeper MLPs.

Student Teacher Top-1 Top-5

EfficientNet-b0

7 39.1 64.6
ResNet-50 59.2 81.2
ResNet-101 62.8 84.7
ResNet-152 63.3 85.6

MobileNet-v3

7 19.0 41.3
ResNet-50 50.9 77.7
ResNet-101 57.6 82.6
ResNet-152 58.3 82.9

Table 8: ImageNet-1k test accuracy (%) under KNN and linear classification on ResNet-50 encoder with
deeper, MoCo-V2/SWAV pre-trained teacher architectures. 7 denotes MoCo-V2 self-supervised learning
baselines before distillation. * indicates using a stronger teacher encoder pre-trained by SWAV with additional
small-patches during distillation.

Teac.
Stud. ResNet-50

Epoch KNN Top-1 Top-5
7 200 46.1 67.4 87.8

ResNet-50 200 46.1 67.5 87.8
∆ +0.0 +0.1 +0.0

ResNet-101 200 52.3 69.1 88.7
∆ +6.2 +1.7 +0.9

ResNet-152 200 53.2 70.4 90.5
∆ +7.1 +3.0 +2.7

ResNet-50×2∗ 800 59.0 74.3 92.2
∆ +12.9 +6.9 +4.4

of labeled ImageNet-1k dataset (1% and 10%), and evaluate it on the whole test split. The fraction of
labeled dataset is constructed in a class-balanced way, with roughly 12 and 128 images per class∗. We
use SGD optimizer and set initial learning rate to be 30 with a multiplier = BatchSize/256 without
weight decaying for 100 epochs. We use the step-wise scheduler for the learning rate updating
with 5 warm-up epochs, and the learning rate is reduced by 10 at 60 and 80 epochs. On smaller
architectures like EfficientNet and MobileNet, we reduce the initial learning rate to 3. During training,
the image is center-cropped to the size of 224×224 with just Random Horizontal Flip as the data
augmentation. For testing, we first resize the image to 256×256 and use the center cropped 224×224
for pre-processing. In Table 8, we show the distillation results on a larger encoder (ResNet-550)
when using different teacher networks.

Transfer Learning. We test the transferability of the representations learned from self-supervised
distillation by conducting the linear evaluations using offline features on several other datasets.
Specifically, a single layer logistic classifier is trained following (Chen et al., 2020a; Grill et al., 2020)
using SGD optimizer without weight decay and momentum parameter at 0.9. We use CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009) and SUN-397 (Xiao et al., 2010) as our testing beds.

CIFAR: As the size for CIFAR dataset is 32×32, we resize all images to 224×224 pixels along
the shorter side using bicubic resampling method, followed by a center crop operation. We
set the learning rate at 1e-3 constantly and train it for 120 epochs. The hyper-parameters are
searched using 10 fold cross-validation on the train split and report its final top-1 accuracy on
the test split.

∗The full image ids for semi-supervised evaluation on ImageNet-1k can be found at https://github.
com/google-research/simclr/tree/master/imagenet_subsets.
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Table 9: Object detection and instance segmentation fine-tuned on VOC07: bounding-box AP (APbb) and mask
AP (APmk) evaluated on VOC07-val. The first row shows the baseline from MoCo-v2 backbones without
distillation.

Student Teacher VOC Object Detection
APbb APbb

50 APbb
75

ResNet-34

7 53.6 79.1 58.7
ResNet-50 53.7 (+0.1) 79.4 (+0.3) 59.2 (+0.5)

ResNet-101 54.1 (+0.5) 79.8 (+0.7) 59.1 (+0.4)

ResNet-152 54.4 (+0.8) 80.1 (+1.0) 59.9 (+1.2)

ResNet-50

7 57.0 82.4 63.6
ResNet-50 57.0 (+0.0) 82.4 (+0.0) 63.6 (+0.0)

ResNet-101 57.1 (+0.1) 82.8 (+0.4) 63.8 (+0.2)

ResNet-152 57.3 (+0.3) 82.8 (+0.4) 63.9 (+0.3)

Table 10: Object detection and instance segmentation fine-tuned on COCO: bounding-box AP (APbb) and
mask AP (APmk) evaluated on COCO-val2017. The first several rows show the baselines from unsupervised
backbones without distillation.

Student Teacher Object Detection Instance Segmentation
APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

ResNet34

7 38.1 56.8 40.7 33.0 53.2 35.3
ResNet50 38.4 (+0.3) 57.0 (+0.2) 41.0 (+0.3) 33.3 (+0.3) 53.6 (+0.4) 35.4 (+0.1)

ResNet101 38.5 (+0.4) 57.3 (+0.5) 41.4 (+0.7) 33.6 (+0.6) 54.1 (+0.9) 35.6 (+0.3)

ResNet152 38.4 (+0.3) 57.0 (+0.2) 41.0 (+0.3) 33.3 (+0.3) 53.7 (+0.5) 35.3 (+0.0)

SUN-397: We further extend our transferring evaluation to the scene dataset SUN-397 for a more
diverse testing. The official dataset specifies 10 different train/test splits, with each contains
50 images per category covering 397 different scenes. We follow (Chen et al., 2020a; Grill
et al., 2020) and use the first train/test split. For the validation set, we randomly pick 10 images
(yielding 20% of the dataset), with identical optimizer parameters as CIFAR.

Object Detection and Instance Segmentation. As indicated by (He et al., 2020), features produced
by self-supervised pre-training have divergent distributions in downstream tasks, thus resulting the
supervised pre-training picked hyper-parameters not applicable. To relieve this, He et al. (2020)
uses feature normalization during the fine-tuning phase and train the BN layers. Different from
previous transferring and linear evaluations where we exploit only offline features, model for detection
and segmentation is trained with all parameters tuned. For this reason, annotations on COCO for
segmentation gives much higher influence for the backbone model than the VOC dataset (see Table 9),
and gives an offset to the pre-training difference (see Table 10). Thus, this makes the performance
boosting by pre-training less obvious, and leads to trivial AP differences before and after distillation.

Object Detection on PASCAL VOC-07: We train a C4 (He et al., 2017) based Faster R-CNN (Ren
et al., 2015) as the detector with different ResNet architectures (ResNet-18, ResNet-34 and
ResNet-50) for evaluating the transferability of features for object detection tasks. We use
Detectron2 (Wu et al., 2019) for the implementations. We train our detector for 48k iterations
with a batch size of 32 (8 images per GPU). The base learning rate is set to 0.01 with 200
warm-up iterations. We set the scale of images for training as [400, 800] and 800 at inference.
Object Detection and Segmentation on COCO: We use Mask R-CNN (He et al., 2017) with the
C4 backbone for the object detection and instance segmentation task on COCO dataset, with 2×
schedule. Similar to the VOC detection, we tune the BN layers and all parameters. The model is
trained for 180k iterations with initial learning rate set to 0.02. We set the scale of images for
training as [600, 800] and 800 at inference.
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Table 11: Linear evaluations on ImageNet of ResNet-18 after distillation from the SWAV pre-trained ResNet-50
using either single view, cross-views, or small patch views.

Method Multi-View(s) Top-1 Acc. Top-5 Acc.
Identical-View 1×224 61.7 84.2
Cross-Views 2×224 58.2 81.7
Multi-Crops + Cross-Views 1×224 + 6×96×96 61.9 84.4
Multi-Crops + Identical-View 1×224 + 6×96×96 62.6 84.8
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Figure 6: We experiment with different strategies of using views during distillation, which include: (a). Identical
view for distillation. (b). Cross view distillation. (c). Large-small cross view distillation. (d). Large-small
identical view distillation.

A.3 SINGLE CROP V.S. MULTI-CROPS VIEW(S) FOR DISTILLATION

In contrary with most contrastive SSL methods where two different augmented views of an image are
utilized as the positive samples (see Figure 6-a), SEED uses an identical view for each image (see
Figure 6-b) during distillation and yields better performances, as is shown in Table. 11. In addition,
we have also experimented with two strategies of using small patches. To be specific, we follow the
set-up in SWAV (Caron et al., 2020), that 6 small patches of the size 96×96 are sampled at the scale of
(0.05, 0.14). Then, we apply the same augmentations as introduced previously as data pre-processing.
Figure. 6-c shows the way that is similar in SWAV for small-patch learning, where both large and 6
small patches are fed into the student encoder, with the learning target (zT ) to be the embedding of
large view from the teacher encoder. Figure. 6-d is the strategy we use during distillation, that both
views are fed into student and teacher to produce the embeddings for small-views (zSs , zTs ) and large
views (zSl , zTl ). Based on that, the distillation is formulated separately on the small and large views.
Notably, we maintain two independent queues for storing historical data samples for the large and
small views.

A.4 STRATEGIES FOR OTHER DISTILLATION METHODS

We compare the effect of distillation using different strategies with SEED.

l2-Distance: We train the student encoder by minimizing the squared l2-distance of representations
from student (zSi ) and teacher (zTi ) for an identical view xi.

K-Means: We experiment with the K-Means clustering method to retrieve pseudo class labels for
distillation. Specifically, we first extract offline image features using the SSL pre-trained Teacher
network without any image augmentations. Based on this, we conduct our K-Means clustering with
4k and 16k unique centroids. Then the final centroids are used to produce pseudo labels for unlabelled
instances. With that, we carry out the distillation by training the model on a classification task using
the produced labels as the ground-truth. To avoid trivial solutions that the majority of images are
assigned to a few clusters, we sample images based on a uniform distribution over pseudo-labels as
clustering proceeds. We observe very close results when adjusting numbers of centroids.

Online-Clustering: With K-Means for pseudo-label generation training, it does not lead to satisfying
results (51.0% on ResNet-18 with ResNet-50 as Teacher) as instances might have not been accurately
categorized by limited frozen centroids. Similar to (Caron et al., 2018; Li et al., 2020), we resort
to the “in-batch” and dynamical clustering to substitute the frozen K-Means method. We conduct
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K-Means clustering within a batch and continuously update the centroid based on the teacher feature
representation as distillation goes on. This alleviates the above problems and yields a substantial
performance improvement on ResNet-18 to 56.4%.

Binary Contrastive Loss: We resort to CRD (Tian et al., 2019a) and adopt an info-NCE loss-alike
training objective in unsupervised distillation tasks. Specifically, we treat representation features
from Teacher and Student for instance xi as positive pairs, and random instances from D as negative
samples:

θ̂S = argmin
θS

N∑
i

log h(zSi , z
T
i ) +K · [log h(1− h(zSi ,dTj ))], (6)

where dTj ∈ D, h(·) is any family of functions that satisfy h: {z, d}→ [0, 1], e.g., cosine similarity.

A.5 DISCUSSIONS ON SEED

Our proposed learning objective for SEED is composed of two goals, that is to align the encoding zS

by the student model with zT produced by the teacher model; meanwhile, zS also softly contrasts
with random samples maintained in the D. This can be formulated more directly as minimizing the
l2 distance of zT , zS , together with the cross-entropy computed using D:

L =
1

N

N∑
i

{
λa ·
∣∣∣∣∣∣ zTi − zSi

∣∣∣∣∣∣
2
− λb · pT (xi; θT ,D) · logpS(xi; θS ,D)

}

=

N∑
i

{
− λa ·zTi ·zSi − λb ·

K∑
j

exp(zTi · dj/τT )∑
d∼D exp(zTi · d/τT )

· log exp(zSi · dj/τS)∑
d∼D exp(zSi · d/τS)

}
,

(7)

Directly optimizing Eq. 7 can lead to apparent difficulty in searching optimal hyper-parameters
(λa, λb, τT and τS). Our proposed objective on D+ indeed is an approximated upper-bound of the
above objectiveness however much simplified:

LSEED =
1

N

N∑
i

−pT (xi; θT ,D+) · logpS(xi; θS ,D+)

=

N∑
i

K+1∑
j

− exp(zTi · dj/τT )∑
d∼D+ exp(zTi · d/τT )︸ ︷︷ ︸

wi
j

· log exp(zSi · dj/τS)∑
d∼D+ exp(zSi · d/τS)

,
(8)

where we let wi
j denote the weighting term regulated under τT . Since the (K + 1)th element in D+

is our supplemented vector zTi , the above objective can be expanded into:

LSEED =
1

N

N∑
i

{
wi
K+1 ·

(
− zSi · zTi /τS + log

∑
d∼D+

exp(zSi · d/τS)
)

+

K∑
j=1

wi
j ·
(
− zSi · dj/τS + log

∑
d∼D+

exp(zSi · d/τS)
)} (9)

Note that the LSE term in the first line is strictly non-negative as the range of inner product for zS
and d lies between

[
-1, +1

]
:

LSE(D+, zSi ) ≥ log
(
M ·exp(−1/τS)

)
= log

(
M · exp(−5)

)
> 0, (10)

where M denotes the cardinality of the maintained queue D+ and is set to 65,536 in our experiment
with τS = 0.2 constantly. Meanwhile, the LSE term in the second line satisfies the following
inequality:

LSE(D+, zSi ) ≥ LSE(D, zSi ). (11)
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Thus, this demonstrates that the objective for SEED as Eq. 8 is equivalent to minimizing a weakened
upper-bound of e.q. 7:

LSEED =
1

N

N∑
i

−pT (xi; θT ,D+) · logpS(xi; θS ,D+)

≥ 1

N

N∑
i

{
wi
K+1 · (−zSi · zTi /τS) +

K∑
j=1

wi
j ·
(
− zSi · dj/τS + log

∑
d∼D

exp(zSi · d/τS)
)}

=
1

N

N∑
i

{
−

wi
K+1

τS
· zSi · zTi − pT (xi; θT ,D) · logpS(xi; θS ,D)

}
(12)

This proves that our LSEED directly relates to a more intuitive distillation formulation as Eq. 7 (l2 +
cross entropy loss), and it implicitly contains the objective of aligning and contrasting. However, our
training objective is much simplified. During practice, we find by regulating τT , both training losses
produce equal results.

A.6 DISCUSSION ON THE RELATIONSHIP OF SEED WITH INFO-NCE

The objective of distillation can be considered as a soft version of Info-NCE (Oord et al., 2018), with
the only difference to be that SEED learns from the negative samples with probabilities instead of
treating them all strictly as negative samples. To be more specific, following Info-NCE, the “hard”
style contrastive distillation can be expressed as aligning with representations from the Teacher
encoder and contrasting with all random instances:

θ̂S = argmin
θS

LNCE = argmin
θS

N∑
i

− log
exp(zTi · zSi /τ)∑
d∼D exp(zSi · d/τ)

(13)

which can be further deduced with two sub-terms consisting of positive sample alignment and
contrasting with negative instances:

LNCE =

N∑
i

{
−zSi · zTi /τ︸ ︷︷ ︸
alignment

+ log
∑
d∼D

exp(zSi · d/τ)︸ ︷︷ ︸
contrasting

}
. (14)

Similarly, the objective of SEED can be dissembled into the weighted form of alignment and
contrasting terms:

LSEED =
1

N ∗M

N∑
i

K+1∑
j

− exp(zTi · dj/τT )∑
d∼D+ exp(zTi · d/τT )

· log exp(zSi · dj/τS)∑
d∼D+ exp(zSi · d)/τS

=
1

N ∗M

N∑
i

K+1∑
j

exp(zTi · dj/τT )∑
d∼D+ exp(zTi · d/τT )︸ ︷︷ ︸

wi
j

·(−zSi · zTi /τS︸ ︷︷ ︸
alignment

+ log
∑
d∼D

exp(zSi · d/τS)︸ ︷︷ ︸
contrasting

)),

(15)
where the normalization term can be considered as soft labels, Wi =

[
wi

1 . . .w
i
K+1

]
, which can

weight the above loss as:

LSEED =
1

N ∗M

N∑
i

K+1∑
j

wi
j ·
{
− zSi · zTi /τS + log

∑
d∼D

exp(zSi · d/τS))
}
, (16)

When tuning hyper-parameter τT towards 0, Wi can be altered into the format of one-hot vector
with wi

K+1 = 1, which is then degraded to the case of contrastive distillation as in equation 14. In
practice, the choice of an optimal τT can be dataset-specific. We show that the higher τT (with labels
be more ‘soft’) can actually yield better results on other datasets, e.g., CIFAR-10 (Krizhevsky et al.,
2009).
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A.7 COMPATIBILITY WITH SUPERVISED DISTILLATION

SEED conducts self-supervised distillation at the pre-training phase for the representation learning.
However, we verify that SEED is compatible with traditional supervised distillation that happened
during fine-tuning phrase at downstream, and can even produce better results. We begin with the SSL
pre-training on a larger architecture (ResNet-152) using MoCo-V2 and train it for 200 epochs as the
teacher network. As images in CIFAR-100 are in the size of 32×32, we modify the first conv layer
in ResNet with kernel size = 3 and stride = 1.

We then compare the Top-1 accuracy of a smaller ResNet-18 on CIFAR-100 when using different
distillation strategies when all parameters are trainable. First, we use SEED to pre-train ResNet-18
with Res-152 as the teacher model, and then evaluate in on the test split of CIFAR-100 using linear
fine-tuning task. As we keep all parameters trainable during the fine-tuning phase, distillation on the
pre-training only yields a trivial boost: 75.4% v.s. 75.2%. Then, we adopt the traditional distillation
method, e.g., (Hinton et al., 2015), to first fine-tune the ResNet-152 model, and then use its output
class probability to facilitate the linear classification task on ResNet-18 in the fine-tuning phrase.
This improves the linear classification accuracy on ResNet-18 to 76.0%. At the end, we initialize
the ResNet-18 with our SEED pre-trained ResNet-18, and equip it with the supervised classification
distillation during fine-tuning. With that, we find that the performance of ResNet-18 is further boosted
to 78.1%. We can conclude that our SEED is compatible with traditional supervised distillation that
mostly happened at downstream for specific tasks, e.g., classification, object detection.

Table 12: CIFAR-100 Top-1 Accuracy(%) of ResNet-18 with (or without) distillation at different phase: self-
supervised pre-training stage, and supervised classification fine-tuning. All backbone parameters of ResNet-18
are trainable in experiments.

Pre-training Distill. Fine-tuning Distill. Top-1 Acc

7 7 75.2
X 7 75.4
7 X 76.0
X X 78.1
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Figure 7: Linear evaluation accuracy (%) of distillation between ResNet-18 (as the Student) and ResNet-50 (as
the Teacher) using different size of queue when LR=0.03 and weight decay=1e-6. Note the axis is the log(·)
value of queue lengths.

A.8 ADDITIONAL ABLATION STUDIES

We study effects of different hyper-parameters to distillation using a ResNet-18 (as Student) and a
SWAV pre-trained ResNet-50 (as Teacher) with small patch views. In specific, we list the Top-1 Acc.
on validation split of ImageNet-1k using different lengths of queue (K=128, 512, 1,024, 4,096, 8,192,
16,384, 65,536) in Figure. 7. With the increasing of random data samples, the distillation boosts the
accuracy of learned representations, however within a limited range: +1.5 when the queue size is
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Table 13: Linear evaluation accuracy (%) of dis-
tillation between ResNet-18 (as the Student) and
ResNet-50 (as the Teacher) using different learn-
ing rates when the queue size is 65,536 and weight
decay=1e-6.

LR Top-1 Acc. Top-5 Acc.

1 58.9 83.1
0.1 62.9 85.3

0.03 63.3 85.4
0.01 62.6 85.0

Table 14: Linear evaluation accuracy (%) of distillation
between ResNet-18 (as the Student) and ResNet-50 (as
the Teacher) using different weight decays when the
queue size is 65,536 and LR=0.03.

WD Top-1 Acc. Top-5 Acc.

1e-2 11.8 27.7
1e-3 62.3 84.7
1e-4 61.9 84.4
1e-5 61.6 84.2
1e-6 63.3 85.4

65,536 compared with 256. Furthermore, Table. 13 and 14 summarize the linear evaluation accuracy
under different learning rates and weight decays.
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