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ABSTRACT

Sheaf neural networks (SNNs) leverage cellular sheaves to induce flexible diffusion
processes on graphs, generalizing the diffusion mechanism of classical graph
neural networks. While SNNs have been shown to cope well with heterophilic
tasks and alleviate oversmoothing, we show that there is further room for
improving sheaf diffusion. More specifically, we argue that SNNs do not allow
nodes to independently choose how they cooperate with their neighbors, i.e.,
whether they convey and/or gather information to/from their neighbors. To address
this issue, we first introduce the notion of cellular sheaves over directed graphs and
characterize their in- and out-degree Laplacians. We then leverage our construction
to propose Cooperative Sheaf Neural Network (CSNN). Additionally, we formally
characterize its receptive field and prove that it allows nodes to selectively attend
(listen) to arbitrarily far nodes while ignoring all others in their path, which is key
to alleviating oversquashing. Our results on synthetic data empirically substantiate
our claims, showing that CSNN can handle long-range interactions while avoiding
oversquashing. We also show that CSNN performs strongly in heterophilic node
classification and long-range graph classification benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) have become the standard models for an array of predictive tasks
over networked data, with far-reaching applications in, e.g., physics simulation (Sanchez-Gonzalez
et al., 2020), recommender systems (Ying et al., 2018), and molecular modeling (Duvenaud et al.,
2015; Gilmer et al., 2017). Nonetheless, classical GNNs have well-known pitfalls. For instance, they
typically struggle on heterophilic tasks (Zhu et al., 2020) — i.e., cases where connected nodes often
belong to different classes or have dissimilar features. Furthermore, GNNs may also be susceptible to
oversmoothing (Oono and Suzuki, 2020) and oversquashing (Alon and Yahav, 2021). Oversmoothing
occurs when stacking multiple GNN layers yields increasingly similar node representations, whereas
oversquashing refers to the loss of information when carrying information through increasingly long
paths — due to the compression of exponentially growing information into fixed-size vectors.

A recent line of works (e.g., Hansen and Gebhart, 2020; Bodnar et al., 2022; Bamberger et al., 2025),
which we henceforth refer to as Sheaf Neural Networks (SNNs), proposes modeling node interactions
using cellular sheaves to achieve a principled solution to deal with oversmoothing and heterophilic
tasks. A cellular sheaf F over an undirected graph associates (i) vector spaces Fpiq and Fpeq, known
as stalks, to each vertex i and each edge e, and (ii) a linear map Fi⊴e, known as a restriction map,
to each incident vertex-edge pair i ⊴ e. These mathematical constructs induce a sheaf Laplacian
which is governed by the restriction maps and generalizes the conventional Graph Laplacian.

In a parallel line of investigation, Finkelshtein et al. (2024) have recently shown that GNNs generally
lack the flexibility to allow for nodes to individually select how they cooperate with their neighbors,
i.e., choose whether they convey and/or gather information to/from their neighbors. This selective
communication (also called cooperative behavior) is an especially desirable trait to tackle oversquash-
ing, as it allows controlling the amount of information flowing between nodes. A natural question
ensues: Can sheaf neural networks achieve cooperative behavior?

In this paper, we provide a negative answer to this question. More precisely, for SNNs to zero out
all the incoming information at a node i, they must set Fi⊴e “ 0 for all incident edges e, which also
implies the information flowing from i is suppressed (see Figure 2). To circumvent this limitation, we
introduce the notion of directed cellular sheaves (Definition 3.2) and define their in- and out-degree
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Laplacians (Definition 3.3). Leveraging these notions, we propose Cooperative Sheaf Neural
Networks (CSNNs). Importantly, we show that cooperative behavior can be achieved using only a
pair of restriction maps per node, which considerably increases computational efficiency compared to
full sheaves — in which the amount of restriction maps increases linearly with the number of edges.

Our theoretical results show that CSNN allows for nodes to selectively listen to other arbitrarily
distant nodes, which is a desirable trait to alleviate over-squashing. Our results on synthetic data
specifically designed to induce over-squashing (Alon and Yahav, 2021) substantiate our claims,
showcasing CSNNs’ superior potential to handle long-range dependencies. In addition, extensive
real-world experiments on 11 node-classification benchmarks and 2 long-range graph-classification
tasks demonstrate that CSNN typically outperforms existing SNNs and cooperative GNNs.

In summary, our contributions are:

1. We introduce the notions of in- and out-degree Laplacians for cellular sheaves over directed
graphs, which can be used to model asymmetric relationships between nodes. We treat undirected
edges as a pair of directed ones and leverage these constructions to propose CSNN — provably
extending the flexibility of sheaf diffusion to accommodate cooperative behavior;

2. We provide a theoretical analysis of CSNN, showing that: (a) for each layer t in CSNN, nodes
may be affected by information from nodes at distance up to 2t-hop neighbors (Proposition 4.2),
instead of up to t-hop neighbors in usual GNNs; and (b) there exist restriction maps which make
the embedding of a node i at layer t highly sensitive to the initial feature of a node j, where t is
also the distance between i and j (Proposition 4.3).

3. We carry an extensive experimental campaign to validate the effectiveness of CSNNs, encom-
passing both synthetic and real-world tasks. Our experiments on synthetic data show that
CSNNs is remarkably capable of mitigating over-squashing and modeling long-range dependen-
cies. Meanwhile, results on over 13 real-world tasks show CSNNs typically outperform prior
sheaf-based models and cooperative GNNs.

2 BACKGROUND

For the sake of completeness, here we provide a summary of core concepts concerning cellular
sheaves over undirected graphs. We also briefly discuss neural sheaf diffusion and cooperative GNNs.

In this work, we denote an undirected graph by a tuple G “ pV,Eq where V is a set of vertices
(or nodes) and E is a set of unordered pairs of (distinct) vertices, called edges, with n “ |V | and
m “ |E|. We denote the neighbors of a node i in G by Npiq “ tj : ti, ju P Eu. Next, Definition 2.1
introduces the notion of cellular sheaves over undirected graphs.

Definition 2.1. A cellular sheaf pG,Fq over a (undirected) graph G “ pV,Eq associates:
1. Vector spaces Fpiq to each vertex i P V and Fpeq to each edge e P E, called stalks.
2. Linear maps Fi⊴e :Fpiq Ñ Fpeq to each incident vertex-edge pair i⊴e, called restriction maps.

Hereafter, we assume all vertex and edge stalks are isomorphic to Rd. If all restriction maps are equal
to the identity map, we say the cellular sheaf is constant. Moreover, if d“1, the sheaf is said trivial.

Given the importance of the Laplacian operator for graph representation learning, it is instrumental to
define the Laplacian for undirected cellular sheaves – a key concept in the design of SNNs. Towards
this end, we introduce in Definition 2.2 the spaces of 0- and 1-cochains.

Definition 2.2. The space of 0-cochains, denoted by C0pG,Fq, and the space of 1-cochains,
C1pG,Fq, of a cellular sheaf pG,Fq are given by

C0pG,Fq “
à

iPV

Fpiq and C1pG,Fq “
à

ePE

Fpeq. (1)

where ‘ denotes the (external) direct sum.

Now, for each e P E choose an orientation e “ i Ñ j and consider the coboundary operator
δ :C0pG,Fq Ñ C1pG,Fq defined by pδXqe “ Fj⊴exj ´ Fi⊴exi. Then, the sheaf Laplacian is
defined by LF “ δJδ. If F is the trivial sheaf, δJ can be seen as the incidence matrix, recovering
the n ˆ n graph Laplacian. A more explicit way to describe the Laplacian is the following:
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Definition 2.3. The sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator LF :
C0pG,Fq Ñ C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

LF pXqi :“
ÿ

i,j⊴e

FJ
i⊴e pFi⊴exi ´ Fj⊴exjq @i P V. (2)

The Laplacian LF can also be seen as a positive semidefinite matrix with diagonal blocks
Lii “

ř

i⊴e FJ
i⊴eFi⊴e and non-diagonal blocks Lij “ LJ

ij “ ´FJ
i⊴eFj⊴e.

To build intuition around Definition 2.1, we may interpret the node stalks Fpiq as the space of private
opinions held by an individual i, following the perspective of Hansen and Ghrist (2021). For an edge e
connecting nodes i and j, the stalk Fpeq corresponds to the public opinions exchanged between them.

That being said, note that kerLF “ tX P C0pG,Fq | Fi⊴exi “ Fj⊴exj @e “ ti, ju P EpGqu.
This can be understood as the space of public agreement between all pairs of neighboring nodes i
and j. Note that i and j can have distinct opinions about the same topic on their respective private
opinion spaces Fpiq and Fpjq; however, when they publicly discuss this topic, they may prefer to
not manifest their true opinion. Alternatively, since the edge stalks may be different from the node
stalks, some topics of the private opinion spaces do not need to be discussed at all. In both cases, the
apparent consensus lies in KerLF .

Vector bundles. When restriction maps are orthogonal, we call the sheaf a vector bundle. In this
case, LF pXqi :“

ř

i,j⊴e

`

xi ´ FJ
i⊴eFj⊴exj

˘

, for any i P V . Flat vector bundles are special cases
of vector bundles in which we assign an orthogonal map Oi to each node i and set Fi⊴e “ Oi for all
e incident to i. This entails LF pXqi :“

ř

i,j⊴e

`

xi ´ OJ
i Ojxj

˘

, for any i P V . Note that flat vector
bundles only comprise n restriction maps as opposed to 2m maps in general cellular sheaves. Prior
works (Bodnar et al., 2022; Bamberger et al., 2025) have leveraged these simpler constructions to
propose computationally efficient sheaf-based neural networks.

Neural Sheaf Diffusion (NSD). Bodnar et al. (2022) introduce NSD building on Euler iterations of
the heat equation induced by ∆F , i.e., 9X “ ´∆FX. First, we project the initial node features X
into h channels using an MLP η, i.e., X0 “ ηpXq P Rndˆh. Then, NSD recursively computes

Xt`1 “ p1 ` p1nˆh b εqq d Xt ´ σp∆FptqpI b W1,tqXtW2,tq, (3)

where 1nˆh is an n ˆ h matrix of ones, ∆Fptq is the sheaf Laplacian at layer t, ε P r´1, 1sd is a
(learned) vector scaling the features along each stalk dimension, σ is an element-wise non-linearity,
and W1,t P Rdˆd,W2,t P Rhˆh are weight matrices. Importantly, the restriction maps which govern
∆Fptq are learned in an end-to-end fashion, alongside W1,t and W2,t.

Cooperative GNNs. Finkelshtein et al. (2024) recently proposed flexibilizing message-passing
GNNs by treating nodes as players that can choose how they cooperate with their neighbors. More
specifically, cooperative GNNs employ an auxiliary GNN, called the action network, that decides
individually how each node partakes in the message passing of the base GNN, or environment network.
The action network decides whether each node only propagates information (PROPAGATE), only
gathers information from neighbors (LISTEN), does none (ISOLATE) or does both (STANDARD).
Cooperative GNNs learn the action and environment GNNs simultaneously, using the straight-through
Gumbel-Softmax estimator to propagate gradients through the discrete actions of the action network.

3 CELLULAR SHEAVES FOR DIRECTED GRAPHS

We kick off this section addressing our initial research question: Can SNNs achieve cooperative behav-
ior? Recall that communication between nodes in an SNN is governed by its sheaf Laplacian, which
is induced by the restriction maps. Thus, in SNNs, picking a state among PROPAGATE, LISTEN,
ISOLATE, and STANDARD node i translates to choosing a suitable configuration for its respective
restriction maps. The following result says that SNNs cannot fully alternate between these action.
Proposition 3.1. Let i P V . If LF pXqi does not depend on xj for any j P V neighbor of i, then
LF pXqj “ 0 or LF pXqj “

ř

j,i⊴e FJ
j⊴eFj⊴exj .

Put plainly, Proposition 3.1 states that the sheaf diffusion provides a framework where a node i that
does not LISTEN (since it does depend on j) must not PROPAGATE (since the update of j does
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Figure 1: On the left, a cellular sheaf shown for a single edge of an undirected graph with stalks
isomorphic to R2. The restriction maps Fi⊴e,Fj⊴e move the vector features between these spaces.
On the right, the analogous situation for a sheaf on a single pair of directed edges. Then there are
four, possibly distinct, restriction maps Fi⊴ij ,Fi⊴ji,Fj⊴ij ,Fj⊴ji.

not depend on i), independently of the action that j takes. In other words, PROPAGATE implies
LISTEN, which means it collapses to ISOLATE (see Figure 2).

We can circumvent this limitation by treating undirected edges as a pair of directed ones, creating
an additional channel of communication between nodes. To accommodate directed edges (i.e.,
E Ď V ˆ V ), we propose using cellular sheaves over directed graphs.

Cellular sheaves over directed graphs must distinguish the restriction map where i is the source node
of an edge from the restriction map where i is the target node of an edge. Therefore, we change the
edge notation from e to ij and ji to make this distinction explicit. See Figure 1 for an illustration.
Definition 3.2. A cellular sheaf pG,Fq over a (directed) graph G “ pV,Eq associates:

1. Vector spaces Fpiq to each vertex i P V and Fpijq to each edge ij P E, called stalks.
2. A linear map Fi⊴ij : Fpiq Ñ Fpijq for each incident vertex-edge pair i⊴ ij and a linear map

Fi⊴ji : Fpiq Ñ Fpjiq for each incident vertex-edge pair i⊴ ji, called restriction maps.

For simplicity, again, we henceforth assume all node and edge stalks are d-dimensional.

We are now left with the task of defining sheaf Laplacians that can be used for information diffusion
in directed graphs. For directed graphs, it is common to define both in- and out-degree Laplacians
(Agaev and Chebotarev, 2005). Given a directed graph with possibly asymmetric adjacency matrix
A, the out-degree Laplacian is Lout :“ Dout ´ A and the in-degree Laplacian is Lin :“ Din ´ A,
with Din and Dout denoting the diagonal matrices containing in- and out-degree of nodes in V pGq.
Definition 3.3 below generalizes these notions to sheaves over directed graphs.
Definition 3.3. The out-degree sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator
Lout
F : C0pG,Fq Ñ C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

Lout
F pXqi :“

ÿ

jPNpiq

`

FJ
i⊴ijFi⊴ijxi ´ FJ

i⊴jiFj⊴jixj

˘

, @i P V. (4)

The in-degree sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator Lin
F : C0pG,Fq Ñ

C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

Lin
F pXqi :“

ÿ

jPNpiq

`

FJ
i⊴jiFi⊴jixi ´ FJ

i⊴ijFj⊴ijxj

˘

, @i P V. (5)

We note that if pG,Fq is the trivial sheaf, then Lout
F “ pLoutqJ and Lin

F “ Lin.

Flat vector bundles over directed graphs. We can also improve the parameter efficiency of cellular
sheaves over directed graphs using flat vector bundles. Since the graphs are directed, we need to
distinguish between edges with identical endpoints but with different orientations. Thus, for each
node i, we assign a source conformal map Si and a target conformal map Ti, and set Fi⊴ij “ Si

and Fi⊴ji “ Ti for all neighbors j of i.

4 COOPERATIVE SHEAF NEURAL NETWORKS

In this section, we leverage the sheaf Laplacians in Definition 3.3 to propose Cooperative Sheaf Neural
Networks (CSNNs), an SNN which allows nodes to independently to decide how they participate in
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message diffusion, choosing whether to broadcast their information and/or to listen from the neighbors.
To exploit the asymmetric communication induced by sheaves over directed graphs, we convert our
input undirected graph into a directed one by replacing undirected edges with a pair of directed ones.

We design CSNN’s diffusion mechanism by composing the out-degree and the transposed in-degree
sheaf Laplacians. In practice, we use their normalized versions

∆out
F “ D

´ 1
2

out L
out
F D

´ 1
2

out and p∆in
F qJ “ D

´ 1
2

in pLin
F qJD

´ 1
2

in ,

where Din, Dout are the block-diagonals of the in and out Laplacians, respectively.

We define a CSNN layer by augmenting the Euler discretization of our novel heat equation
9X “ p∆in

F qJ∆out
F X with linear transformations and a nonlinear activation function σ:

Xt`1 “ p1 ` p1nˆh b εqq d Xt ´ σpp∆in
FptqqJ∆out

FptqpIn b W1,tqXtW2,tq, (6)

where 1nˆh is an n-by-h matrix of ones, ε P r´1, 1sdˆ1, and W1,t P Rdˆd and W2,t P

Rhˆh are learned matrices responsible for mixing node features and channels, respectively.

Efficient implementation. For computational efficiency, we use flat vector bundles to define
both the in- and out- degree sheaf Laplacians. More precisely, for each node i, we define a source
conformal map Si and a target conformal map Ti for all neighbor j of i. Thus, out-degree sheaf
Laplacian simplifies to

Lout
F pXqi :“

ř

jPNpiq

`

SJ
i Sixi ´ TJ

i Sjxj

˘

, (7)

while the transpose of the in-degree sheaf Laplacian is

ppLin
F qJpXqqi :“

ř

jPNpiq

`

TJ
i Tixi ´ TJ

i Sjxj

˘

. (8)

Note these matrices have a block structure, with diagonals pLin
F qJ

ii “
ř

TJ
i Ti, pLout

F qii “
ř

SJ
i Si,

and remaining blocks pLin
F qJ

ij “ pLout
F qij “ ´TJ

i Sj . We point out that, since conformal maps are of
the form Si “ CSi

Qi and Ti “ CTi
Ri, for some orthogonal matrices Qi, Ri and scalars CSi

, CTi
,

computing their inverses and normalizing the Laplacian becomes trivial. In this case, block scaling
simplifies to a block matrix of scalars time identity and the normalization is both numerically stable
and computationally efficient.

The first step of each layer t consists of computing the conformal maps Ti,t and Si,t. We do this
through learnable functions Si,t “ ηpG,Xt, iq and Ti,t “ ϕpG,Xt, iq, @i P V . As in prior works on
SNNs Bodnar et al. (2022); Bamberger et al. (2025), we use neural networks to learn the restriction
maps. In addition, we use Householder reflections (Mhammedi et al., 2017; Obukhov, 2021) to
compute orthogonal maps and multiply them by a learned positive constant for each node.

4.1 ANALYSIS

Figure 2: Oi “ 0 creates the effect of isolating
the node i. Directed edges provide the possibil-
ity of performing LISTEN and PROPAGATE,
separately.

We now show that CSNN can achieve cooperative
behavior, characterize its receptive field, and prove
that appropriate conformal maps can help CSNNs
handle long-range interactions.

We note that CSNN allows each node i drift from
the STANDARD behavior (Si,Ti ‰ 0) by zeroing-
out its conformal maps. Setting Ti ‰ 0 drives
i to LISTEN. Setting Si ‰ 0 corresponds to
PROPAGATE. Finally, Si “ Ti “ 0 implies
ISOLATE.

We highlight the importance of considering the
directions: for undirected graphs, there is a single
map Oi for each node i, where Oi “ 0 could only
mean that i does not communicate at all. In other
words, the possible actions are only STANDARD and ISOLATE. We illustrate this in Figure 2.
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Thus, to show a model achieves cooperative behavior, we must ensure the following: (a) if i does
not listen, then its update cannot depend on xj , @j P V, j ‰ i; and (b) if i has a non-propagating
neighbor k, then its update cannot depend on xk. Proposition 4.1 shows that CSNN satisfies these
conditions, while Figure 3 illustrates them and delineates limitations of the NSD model.

Proposition 4.1. If the target map Ti is zero, then ppLin
F qJLout

F pXqqi “ 0. If the source map Sk “ 0
for some neighbor k of i, then ppLin

F qJLout
F pXqqi does not depend on xk.

Figure 3: Given a graph paq we illustrate
the consequences of preventing node 3 from
listening. For NSD pbq, this means LF pXq3
must not depend on xj, for j “ 1, 2, 4
implying Fj⊴e “ 0 and leading to LF pXqj
not depending on x3, preventing node 3
from propagating information. In CSNN
pcq, we can set T3 “ 0. Provided S3 ‰ 0,
outbound communication is possible.

Moreover, our model has the ability to reach longer
distances. In most GNNs, if t is the distance between
two nodes i and j, then they can only communicate
after t layers. CSNN enables communication between
these nodes after rt{2s layers.

Proposition 4.2. In each layer t, the features of a node
can be affected by the features of nodes up to 2t-hops.

We also show in Proposition 4.3 that CSNNs with t
layers are capable of making i and j communicate
while ignoring all the other nodes on a path from i to j
such that |j ´ i| ď t. This feature is an asset to handle
over-squashing in long range tasks, allowing CSNN
to selectively tend to information from distant nodes.
Example 4.4 illustrates this result in a four-node graph.

Proposition 4.3. Let i and j be nodes at a distance t. In CSNN, i can learn to ignore all the t ´ 1
nodes in the shortest path from i to j while receiving the information from j in the t-layer. Moreover,
if we choose a path with n ą t ´ 1 nodes between i and j, then i receives the information from j in
the pn ` 1q-layer.

Example 4.4. Consider a directed graph with vertex set V “ t1, 2, 3, 4u and edge set E “ tp1, 2q,
p2, 3q, p3, 4q, p4, 3q, p3, 2q, p2, 1qu. We follow the proof of Proposition 4.3 to show we can propagate
a message from node 4 to node 1, while the latter ignores all remaining nodes. We denote the
target/source map of node i at layer t by Ti,t and Si,t respectively. To achieve our desired result:

a. In the first layer, must have zero source and target maps except for T3,1 and S4,1. A simple
verification gives that ppLin

F qJLout
F pXqqk “ 0, for all k ‰ 3. So ppLin

F qJLout
F pXqqk “ 0, for

all k ‰ 3. If k “ 3, then ppLin
F qJLout

F pXqq3 “ ´2TJ
4,1S4,1x

p0q

4 , with x
ptq
k denoting the feature

vector of k at layer t, thus xp0q

4 will be the only feature vector to influence x
p1q

3 ;

b. In the second layer, we must have that all source and target maps are zero except for T2,2 and

S3,2. Then ppLin
F qJLout

F pXqqk “ 0, for all k ‰ 2 and ppLin
F qJLout

F pXqq2 “ ´2TJ
2,2S3,2x

p1q

3 .

Thus xp1q

3 will be the only feature vector to influence x
p2q

2 ;

c. In the third layer, all source and target maps must be zero except for T1,3 and S2,3. Then

ppLin
F qJLout

F pXqqk “ 0, for all k ‰ 1 and ppLin
F qJLout

F pXqq1 “ ´2TJ
1,3S2,3x

p3q

2 . Thus xp3q

1 is

influenced only by x
p2q

2 , which was influenced only by x
p1q

3 , which is influenced only by x
p0q

4 .

Consequently, xp3q

1 is affected by xp0q

4 while ignoring the features of all other nodes in all other layers.

This configuration shows that although CSNN can achieve 2-hop neighbors, it can also refrain from
this behavior to only access 1-hop neighbors per layer. Moreover, this flexibility indicates there are
multiple forms to stablish communication between two distant nodes while ignoring others.

Observe that the derivative of xp3q

1 in relation to x
p0q

4 can be as high as the values of the non-zero
Ti and Si permit. This shows our model can mitigate over-squashing, which refers to the failure
of an information propagating to distance nodes. Di Giovanni et al. (2023) and Topping et al.
(2022), studied over-squashing in message passing neural networks through a bound on the Jacobian
ˇ

ˇ

ˇ

Bx
ptq

i {Bx
p0q

j

ˇ

ˇ

ˇ
ď ctÂt

ij , where t is the layer, c is a constant that depends on the architecture of the model,

and Â the normalized adjacency matrix. Moreover, over-squashing occurs when we have a small
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Figure 4: Illustration of Example 4.4. At layer t, we consider that all maps but T4´t,t and S4´pt´1q,t

are 0, enabling the flow of information from right to left following the bottom edges.

derivative Bx
ptq

i {Bx
p0q

j , since it means that after t layers, the feature at i is mostly insensitive to the
information initially contained at j, i.e., the information was not propagated properly. Proposition 4.3
states that the feature at node i can be sensitive to the information initially contained at node j,
independently of the distance, given enough layers and an appropriate configuration of restriction
maps. Consequently, Proposition 4.3 suggests that the restriction maps regulating the sensibility
between distant nodes can provide higher upper bounds to Bx

ptq

i {Bx
p0q

j while decreasing the value of
Bx

ptq

i {Bx
p0q

k for other nodes k.

5 RELATED WORKS

Cooperative GNNs. Finkelshtein et al. (2024) were the first to propose flexibilizing message
passing by allowing nodes to choose how they cooperate with each other. Each layer of their model,
CO-GNN, employs an additional GNN that chooses an action for each node. While CO-GNNs can
be employed with arbitrary base and action networks, their main caveat is that training can become
increasingly difficult as these networks become more complex — the grid of hyper-parameters grows
considerably and the stochastic nature of the action network may affect model selection. Different
from CO-GNN, our CSNN does not rely on discrete actions and can smoothly modulate between
cooperative behavior patterns.

Sheaf Neural Networks. Besides works on SNNs for graph data with real-valued node features,
recent works have expanded the literature to accommodate heterogeneous edge types (Braithwaite
et al., 2024), hypergraphs (Duta et al., 2023), nonlinear Sheaf Laplacians (Zaghen et al., 2024), and
node features living on Riemann manifolds (Battiloro et al., 2024). While recent works on SNNs
learn restriction maps in an end-to-end fashion, there are also prior works in which they are manually
constructed (Hansen and Ghrist, 2019) or computed as a pre-processing step (Barbero et al., 2022).

Quiver Laplacians. Sumray et al. (2024) propose sheaf Laplacians over quivers (directed graphs
w/ self-loops) to improve feature selection on tabular data, with no learning component involved.
The in- and out-Laplacians we defined here are not particular cases of the Laplacians over quivers.
The former are positive semi-definite matrices, while our Laplacians may have complex eigenvalues
with negative real parts.

6 EXPERIMENTS

We provide both synthetic and real-world experiments to evaluate the performance of CSNN, including
node- and graph-level prediction tasks. Section 6.1 assess CSNN’s capacity to circumvent over-
squashing using the NeighborsMatch benchmark proposed by Alon and Yahav (2021). Section 6.2
presents experiments on eleven node classification tasks, showcasing the effectiveness of CSNN
for heterophilic graphs. Finally, Section 6.3 consider the Peptides datasets from the Long Range
Graph Benchmark (Dwivedi et al., 2022) to substantiate the capability of our model to mitigate
under-reaching and over-squashing on real-world graph classification. We also provide additional
experiments in Appendix B.

6.1 OVER-SQUASHING

In order to verify our theoretical results on the capacity of CSNN to alleviate over-squashing,
we reproduce the NeighborsMatch problem proposed by Alon and Yahav (2021), using the same
framework. The datasets consist of binary trees of depth r, with the root node as the target, the leaves

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

containing its possible labels, and the leaf with the same number of neighbors as the target node
containing its true label. We provide the parameters used for this task in Appendix C.

Figure 5 shows GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2019) fail to fit the datasets
starting from r “ 4 and GAT (Veličković et al., 2018) and GGNN (Li et al., 2016) fail to fit the
datasets starting from r “ 5. These models suffer from over-squashing and are not able to distinguish
between different training examples, while the CSNN model reaches perfect accuracy for all tested r.

Alon and Yahav (2021) argue that the difference in performance for the GNNs are related to how
node features are updated: on one hand, GCN and GIN aggregate all neighbor information before
combining it with the representation of the target node, forcing them to compress all incoming
information into a single vector. On the other hand, GAT uses attention to selectively weigh messages
based on the representation of the target node, allowing it (to some degree) to filter out irrelevant
edges and only compress information from a subset of the neighbors. So models like GAT (and
GGNN) that compress less information per step can handle higher r better than GCN and GIN.
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Figure 5: Accuracy for increasing tree depths
in the NeighborsMatch task. CSNN consistently
achieves 100% accuracy for all values of r.

This experiment shows that CSNN is more
efficient in ignoring irrelevant nodes and can
avoid loosing relevant information. Moreover,
Proposition 4.3 provides theoretical support for
this result, as it states that there are choices of
parameters for which the model can listen only
to the nodes along a path between distant nodes
i and j, enabling selective communication to
diminish noise impact.

Comparison against other sheaf models. No-
tably, CSNN outperforms other sheaf methods
in this task. BuNN reports 100% accuracy until
r “ 6. Then it drops to 71% and 42% for r “ 7
and r “ 8, respectively, as reported in Bamberger et al. (2025). For NSD with orthogonal maps, we
obtained 100% accuracy when r “ 2, 91% for r “ 3, and then a sharp drop to 5% when r “ 4.

6.2 NODE CLASSIFICATION

Datasets. We evaluate our model on the five recently proposed heterophilic graphs from Platonov et al.
(2023), and also on six classical ones for which benchmarking results can be found in Pei et al. (2020);
Rozemberczki et al. (2021); Tang et al. (2009). As pointed out in Platonov et al. (2023), the datasets
Squirrel and Chameleon have many duplicate nodes, which may lead to data leakage. Following
their guidelines, we use their cleaned version of these datasets to ensure a meaningful evaluation. For
binary classification datasets, we report AUROC, while for multiclass datasets we report accuracy.

Table 1: Performance comparison on datasets from Platonov et al. (2023). AUROC is reported for
minesweeper, tolokers and questions, accuracy is reported for the remaining datasets. CSNN is the
best-performing method in 6 out of 7 datasets.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon
Edge Homophily 0.05 0.38 0.68 0.59 0.84 0.20 0.23

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12
SAGE 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62 36.09 ± 1.99 37.77 ± 4.14
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08
GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 35.46 ± 3.10 39.26 ± 2.50
GT 86.51 ± 0.73 51.17 ± 0.66 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68 36.30 ± 1.98 38.87 ± 3.66
GT-sep 87.32 ± 0.39 52.18 ± 0.80 92.29 ± 0.47 82.52 ± 0.92 78.05 ± 0.93 36.66 ± 1.63 40.31 ± 3.01

CO-GNN 89.44 ± 0.50 54.20 ± 0.34 97.35 ± 0.63 84.84 ± 0.96 75.97 ± 0.89 39.39 ± 2.76 41.14 ± 5.40
O(d)-NSD 80.41 ± 0.72 42.76 ± 0.54 92.15 ± 0.84 78.83 ± 0.76 69.69 ± 1.46 35.79 ± 3.34 37.93 ± 2.24
BuNN 91.75 ± 0.39 53.74 ± 0.51 98.99 ± 0.16 84.78 ± 0.80 78.75 ± 1.09 - -

CSNN 92.63 ± 0.50 52.07 ± 1.00 99.07 ± 0.25 85.45 ± 0.53 79.31 ± 1.22 41.18 ± 2.23 43.09 ± 3.17

Experimental setting. As baselines for benchmarks in Platonov et al. (2023), we use GCN (Kipf
and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018) and GT (Shi
et al., 2021), together with the variations GAT-sep and GT-sep, which concatenate the representation
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Table 2: Accuracy for node classification datasets on the fixed splits of Pei et al. (2020). CSNN
achieves the best results in 3 out of 4 datasets.

Model Texas Wisconsin Film Cornell
Edge Homophily 0.11 0.21 0.22 0.30

GGCN 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 85.68 ± 6.63
H2GCN 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 82.70 ± 5.28
GPRGNN 78.38 ± 4.36 82.94 ± 4.21 34.63 ± 1.22 80.27 ± 8.11
FAGCN 82.43 ± 6.89 82.94 ± 7.95 34.87 ± 1.25 79.19 ± 9.79
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 73.51 ± 6.34
GCNII 77.57 ± 3.83 80.39 ± 3.40 37.44 ± 1.30 77.86 ± 3.79
Geom-GCN 66.76 ± 2.72 64.51 ± 3.66 31.59 ± 1.15 60.54 ± 3.67
PairNorm 60.27 ± 4.34 48.43 ± 6.14 27.40 ± 1.24 58.92 ± 3.15
GraphSAGE 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 75.95 ± 5.01
GCN 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 60.54 ± 5.30
GAT 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 61.89 ± 5.05
MLP 80.81 ± 4.75 85.29 ± 3.31 36.53 ± 0.70 81.89 ± 6.40
FSGNN 87.57 ± 4.86 87.65 ± 3.51 35.62 ± 0.87 87.30 ± 4.53
GloGNN 84.32 ± 4.15 87.06 ± 3.53 37.35 ± 1.30 83.51 ± 4.26
ACMGCN 87.84 ± 4.40 88.43 ± 3.22 36.28 ± 1.09 85.14 ± 6.07

CO-GNN 77.57 ± 5.41 83.73 ± 4.03 36.26 ± 3.74 72.70 ± 5.47

Diag-NSD 85.67 ± 6.95 88.63 ± 2.75 37.79 ± 1.01 86.49 ± 7.35
O(d)-NSD 85.95 ± 5.51 89.41 ± 4.74 37.81 ± 1.15 84.86 ± 4.71
Gen-NSD 82.97 ± 5.13 89.21 ± 3.84 37.80 ± 1.22 85.68 ± 6.51

CSNN 87.30 ± 5.93 90.00 ± 2.83 38.03 ± 1.12 81.62 ± 4.32

of a node to the mean of its neighbors instead of summing them (Zhu et al., 2020). These are all
classical baselines used in Platonov et al. (2023) to compare against GNN architectures specifically
developed for heterophilic settings, and that achieve the best performance in most cases. We also
compare CSNN against recent models such as CO-GNN, NSD, and BuNN (Bamberger et al., 2025).
Results for BuNN on Squirrel, Chameleon, and the datasets in Table 2 are not available, since we
do not have access to their code.

For the remaining datasets, we compare against the classical GCN, GAT and SAGE; the models
specifically tailored for heterophilic data GGCN (Yan et al., 2022), Geom-GCN (Pei et al., 2020),
H2GCN (Zhu et al., 2020), GPRGNN (Chien et al., 2020), FAGCN (Bo et al., 2021), FSGNN (Maurya
et al., 2022), GloGNN Li et al. (2022), ACMGCN (Luan et al., 2022), and MixHop (Abu-El-Haija
et al., 2019); and the models GCNII (Chen et al., 2020) and PairNorm (Zhao and Akoglu, 2020)
designed to alleviate oversmoothing. We use the 10 fixed splits proposed by Platonov et al. (2023)
and Pei et al. (2020). We refer to Appendix C for further implementation details.

Results. Table 1 and Table 2 show that CSNN is the best-performing method in 9 out of 11 datasets.
These results highlight our model’s capacity to deal with heterophilic graphs of different sizes and
heterophily levels. We note CSNN often outperforms both NSD and CO-GNN in Table 1. While we
report the results in Table 2 for completeness, we note they exhibit high variance — in accordance
to the findings of Platonov et al. (2023), which highlight that the small scale of these datasets may
incur unstable and statistically insignificant results.

6.3 GRAPH CLASSIFICATION

Table 3: Performance comparison of models on
the peptides datasets.

Model peptides-func Ò peptides-struct Ó

GCN 68.60 ± 0.50 24.60 ± 0.07
GINE 66.21 ± 0.67 24.73 ± 0.17
GatedGCN 67.65 ± 0.47 24.77 ± 0.09
DReW 71.50 ± 0.44 25.36 ± 0.15
SAN 64.39 ± 0.75 25.45 ± 0.12
GPS 65.34 ± 0.91 25.09 ± 0.14
G-ViT 69.42 ± 0.75 24.49 ± 0.16
Exphormer 65.27 ± 0.43 24.81 ± 0.07
BuNN 72.76 ± 0.65 24.63 ± 0.12
CSNN 71.58 ± 0.80 24.32 ± 0.04

To assess the effectiveness of CSNNs on long-
range tasks, we evaluate it on the peptides
dataset from the Long Range Graph Benchmark
Dwivedi et al. (2022). It is a dataset containing
15k graphs and two different tasks: peptides-
func is a graph classification task, while
peptides-struct is a regression one. We report
average precision (AP) for peptides-func and
mean absolute error (MAE) for peptides-struct.

Setup. We follow the experimental setup of
Tönshoff et al. (2024), and tune the network
hyperparameters keeping the „500k parameter
budget proposed by Dwivedi et al. (2022) for
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fair comparison. We run the model using four different seeds and report mean and standard deviation
of the evaluation metrics. The baselines are taken from Tönshoff et al. (2024) and we also compare
against the results reported for BuNN by Bamberger et al. (2025).

Results. Our model achieves the best performance in the peptides-struct dataset, and second-best in
the peptides-func, as shown in Table 3. These results further strengthen our claims on the capacity
of CSNNs to mitigate over-squashing and perform better in scenarios where long-range and under-
reaching are known issues.

7 CONCLUSION

This work proposed Cooperative Sheaf Neural Networks, a novel SNN architecture that incorporates
directionality in order to increase its efficiency by learning sheaves with conformal maps, allowing
nodes to choose the optimal behavior in terms of information propagation with respect to its neighbors.
We provided theoretical insights on how CSNN can alleviate over-squashing due to its capacity to
smoothly modulate node behavior in information diffusion. We also validated its effectiveness on
node and graph classification experiments on heterophilic graphs and long-range tasks.

Limitations and Future Works. While CSNN is not computationally more taxing than other SNNs, it
is worth pointing that developing strategies to scale sheaf-based networks is a major research challenge.
While we have used conformal maps to reduce the parameter complexity of restriction maps, we leave
open the possibility that there are further ways to improve the scalability of CSNN. We also believe
that efficient message-passing implementations could represent a step towards large-scale SNNs.

Another promising direction for future works is extending SNNs to cope with high-order structures
like cell- and simplicial complexes, possibly allowing for more expressive models and promoting
long-range communication with fewer layers.
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A PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proof. Suppose LF pXqi does not depend of xj for any j neighbor of i. Since LF pXqi “
ř

i,j⊴e FJ
i⊴e pFi⊴exi ´ Fj⊴exjq, this means FJ

i⊴eFj⊴exj “ 0. Therefore, Fj⊴exj P kerpFJ
i⊴eq,

for any j neighbor of i. Thus, Fi⊴exi “ 0 or Fj⊴exj “ 0, for every j.

Note that, Fi⊴exi “ 0 implies that LF pXqj “
ř

j,i⊴e FJ
j⊴eFj⊴exj .

If Fj⊴exj “ 0 for every j, then LF pXqj “ 0.

A.2 REMARK REGARDING PROPOSITION 3.1 AND NONLINEAR SHEAF LAPLACIAN

If the sheaf Laplacian is nonlinear as in Zaghen et al. (2024), i.e, LF pXqi “
ř

i,j⊴e FJ
i⊴eϕe pFi⊴exi ´ Fj⊴exjq, where ϕe : Fpeq Ñ Fpeq is a continuous function for each

edge e, then saying that LF pXqi does not depend of xj means FJ
i⊴eϕeFj⊴exj “ 0. Then the proof

holds similarly to the above.

A.3 PROOF OF PROPOSITION 4.1

Proof. We have that pLin
F qJLout valued at a given vertex i is:

ÿ

jPNpiq

¨

˝TJ
i Ti

¨

˝

ÿ

jPNpiq

`

SJ
i Sixi ´ TJ

i Sjxj

˘

˛

‚´ TJ
i Sj

¨

˝

ÿ

uPNpjq

`

SJ
j Sjxj ´ TJ

j Suxu

˘

˛

‚

˛

‚ (9)

So Ti “ 0 (i.e. i does not listen) implies ppLin
F qJLout

F pXqqi “ 0. If i listens, but a certain neighbor k
does not broadcast, i.e., Tk “ 0, then ppLin

F qJLout
F pXqqi is

ÿ

jPNpiqzk

¨

˝TJ
i Ti

¨

˝

ÿ

jPNpiqzk

`

SJ
i Sixi ´ TJ

i Sjxj

˘

˛

‚´ TJ
i Sj

¨

˝

ÿ

uPNpjqzk

`

SJ
j Sjxj ´ TJ

j Suxu

˘

˛

‚

˛

‚

Since the sum does not go through the index k, xk is not a component in ppLin
F qJLout

F pXqqi.
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A.4 PROOF OF PROPOSITION 4.2

Proof. Let t “ 1, and fix a node i. Then we are essentially just using the composition described in
Equation (9) (up to normalization and learnable weights). In the equation we have a sum running
over all neighbors j of i and another sum running over all neighbors u of each j. So u can be a 2-hop
neighbor of i and we have that i was updated with information from up to 2-hop neighbors. Similarly,
the node u is updated by up to 2-hop neighbors. Therefore, in the second layer t “ 2, i was updated
with information from up to 4-hop neighbors.

If t “ n, assume by induction that each node i receives information from it 2n-hop neighbors. In
the next layer n ` 1, i will be updated by its n-update of its 2-hop neighbors. Let j be a node in
the 2-hop neighborhood of i. By the inductive hypothesis, j receives information from its 2n-hop
neighbors, whose distance to i is up to 2n ` 2 “ 2pn ` 1q, concluding the proof by induction.

A.5 PROOF OF PROPOSITION 4.3

Proof. Choose a path from i to j. So there are t ´ 1 vertices between i an j, say v1, ..., vt´1. In the
first layer, let Sj and Tvt´1

be different of zero and all other source and target maps equal zero.

This results in pp∆in
F qJ∆out

F qk “ 0 for every k ‰ vt´1 and pp∆in
F qJ∆out

F qvt´1 depends only of xj .
So, except for xvt´1

, the values xk are not updated.

In the second layer, let Svt´1
and Tvt´2

different of zero, and all other maps equal zero. This results
in pp∆in

F qJ∆out
F qk “ 0 for every k ‰ vt´1, where pp∆in

F qJ∆out
F qvt´1

depends only of the xp1q
vt´1 that

was updated in the previous layer and depends only of xj .

We continue this reasoning until the t-layer, in which we make Sv1 and Ti different of zero, and
all other source maps equal zero. This results in pp∆in

F qJ∆out
F qk “ 0 for every k ‰ i, where

pp∆in
F qJ∆out

F qv1 depend only of the xpt´1q
v1 , which going backwards depends only of the original xj ,

up to transformations given by the target and source maps.

B ADDITIONAL EXPERIMENTS

In this section, we provide other two experiments. The first is a real-world large dataset and the
second is a noisy implementation of Example 4.4, to illustrate how Proposition 4.3 may work in
practice.

Table 4: Results on the Penn94 dataset.

Models Penn94
Edge Homophily 0.47

MLP 73.61 ˘ 0.40
GCN 82.47 ˘ 0.27
GAT 81.53 ˘ 0.55
MixHop 83.47 ˘ 0.71
GCNII 82.92 ˘ 0.59
H2GCN 81.31 ˘ 0.60
WRGAT 74.32 ˘ 0.53
GPR-GNN 81.38 ˘ 0.16
ACM-GCN 82.52 ˘ 0.96
LINKX 84.71 ˘ 0.52
GloGNN 85.57 ˘ 0.35

CSNN 86.00 ˘ 0.39

Real-world. We run CSNN on the Penn94, a dataset with 41.554 nodes, 1.362.229 edges, and whose
feature dimension is 5, against multiple baselines as reported in Li et al. (2022) to illustrate CSNN’s
performance in a larger ambiguous heterophilic (Luan et al., 2024) dataset. We highlight that CSNN
also outperform baselines on Squirrel, another dataset classified as ambiguous heterophilic.
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Synthetic. In the following, we consider a path graph with four nodes as in Example 4.4 where
the features are initialized in a similar fashion of the TreeNeighborsMatch task, but we consider
that all nodes have a number of “blue neighbors" to add noisy information along the path, while the
source and target (nodes 3 and 0) have the same number of these neighbors. The goal is to transfer
information from node 3 to node 0.

Figure 6 shows an actual run of CSNN in such graph: if the norm of Ti is close to zero, then the
arrow pointing to i is not draw. Analogously to Si. If both are close to zero, the node is isolated, but
if none of them are we consider the following:

• If TiSj (in the in-Laplacian) and TiSj (in the out-Laplacian) are both close to 0, then the
edge pj, iq does not exist

• If TiSj (in the out-Laplacian) and TJ
i Ti are both close to 0, then edge pj, iq does not exist.

We observe restriction maps going to zero in a different configuration than the one exhibited in
Example 4.4 but still sending x

p0q

3 to node 0 in the second layer, while suppressing other node
features.

Figure 6: Illustration of running CSNN in a path
graph with four nodes along three layers.

Technically, the significance of a node i over j
in a given layer t is measured by the norm of the
the term that multiplies x

ptq
i in the expression

of pp∆in
FptqqJ∆out

Fptqqj . For instance, in Figure 6,
the restriction maps provided that 1 listens to
0 and no one else, so it can be affected only
by x

p0q

1 and by x
p0q

0 . A calculation shows that
x

p0q

1 is multiplied by a quantity about 0.7 while
x

p0q

0 is multiplied by 132, approximately. This
guarantees that in layer 2, when the message
goes from node 1 to 0, the feature x

p0q

1 is not
relevant and, in practice, is ignored.

C EXPERIMENT DETAILS

In this section, we provide the grid of hyperparameters used in the experiments. If the number of
GNN layers is set to 0, we use an MLP with two layers to learn the restriction maps. Otherwise, we
adopt a GraphSAGE architecture with the specified number of layers.

We also trained CO-GNN using the hyperparameter table from Finkelshtein et al. (2024), considering
µ and Σ as explicit hyperparameters instead of treating CO-GNNpµ, µq and CO-GNNpΣ,Σq as
separate model variants.

All datasets except for roman-empire were treated as undirected graphs. For the roman-empire
dataset, we found that using the stored list of edges was preferable to doubling the edges, since the
graphs from Platonov et al. (2023) are stored as "directed" lists where elements as (0,2) and (2,0) are
regarded as equivalent, for example.

All experiments were conducted on a cluster equipped with NVIDIA V100, A100, and H100 GPUs.
The choice of GPU depended on the availability at the time of the experiments. Each machine was
provisioned with at least 80 GB of RAM.

We also present some statistics of the heterophilic benchmarks.

D COMPLEXITY AND RUNTIME OF CSNN

Using d for dimension of the stalks, h as the number of channels and c “ dh, the complexity of our
model is as follows:

• Opd2|V |q for the embedding of graph features into the sheaf stalks;
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Table 5: Hyperparameter configurations used across heterophilic benchmarks.

Parameter roman-empire, amazon-ratings minesweeper, tolokers, questions

sheaf dimension 3, 4, 5 3, 4, 5
# layers 2–5 2–5
# hidden channels 32, 64 32, 64
# of GNN layers 0–5 0–5
GNN dimension 32, 64 32, 64
dropout 0.2 0.2
input dropout 0.2 0.2
# epochs 2000 2000
activation GELU GELU
left weights true, false true, false
right weights true, false true, false
learning rate 0.02 0.002, 0.02
weight decay 10´7, 10´8 10´7, 10´8

Table 6: Hyperparameter configuration used for NeighborsMatch.

Parameter NeighborsMatch

sheaf dimension 2
# layers r ` 1
# hidden channels 32
# of GNN layers r ` 1
GNN dimension 32
dropout 0.0
input dropout 0.0
activation Id
left weights true
right weights true
layer norm true

Table 7: Statistics of the heterophilous datasets

roman-empire amazon-ratings minesweeper tolokers questions

nodes 22662 24492 10000 11758 48921
edges 32927 93050 39402 519000 153540
avg degree 2.91 7.60 7.88 88.28 6.28
node features 300 300 7 10 301
classes 18 5 2 2 2
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily -0.05 0.14 0.01 0.09 0.02
metric acc acc roc auc roc auc roc auc
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• Op|V |d2hq “ Op|V |cdq when applying W1;
• Op|V |dh2q “ Op|V |chq when applying W2;
• Op2|E|d2hq “ Op|E|cdq for the two sparse Laplacian-vector multiplication;
• Op2d3p|V | ` |E|qq “ Opd3p|V | ` |E|qq for constructing the blocks of the Laplacians.

This gives a total of Op|V |pcpd`hq`d3q`|E|pcd`d3qq. Since we use 1 ď d ď 5, the stalk dimension
contribution is small. We highlight that our code also contains a completely message-passing based
implementation, that does not need constructing the Laplacian. This cheaper implementation yields a
complexity of Opc|V |pd ` hq ` |E|cdq.

In the following we report the runtime of CSNN and the non-sheaf models on datasets of Table 1, as
well as the improvement compared to the best baseline method.

Table 8: Runtime comparison on datasets from Platonov et al. (2023). We report the mean time in
seconds per epoch, averaged over 10 epochs. CSNN has a similar runtime compared to these simple
baselines, and presents a positive improvement on accuracy in general. The baselines achieving the
best accuracy are highlighted bold.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon

GCN 0.05s 0.04s 0.03s 0.04s 0.07s 0.01s 0.02s
SAGE 0.07s 0.04s 0.03s 0.06s 0.16s 0.01s 0.02s
GAT-sep 0.09s 0.05s 0.05s 0.12s 0.21s 0.01s 0.02s
GT-sep 0.14s 0.16s 0.07s 0.14s 0.32s 0.02s 0.01s

CSNN 0.05s 0.10s 0.06s 0.14s 0.16s 0.05s 0.03s

Improvement Ò 4.37% Ó 2.90% Ò 5.50% Ò 2.00% Ò 1.61% Ò 4.33% Ò 5.38%

We can see that sometimes CSNN is quicker than SAGE, and sometimes it is equal to GCN in terms
of runtime. This might look counter-intuitive, but CSNN achieves its best performance with fewer
parameters. For instance, for the roman-empire dataset, GCN has 2,269,714 parameters, while CSNN
has 339,900, i.e. GCN has about 668% more parameters.
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