
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

COOPERATIVE SHEAF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sheaf neural networks (SNNs) leverage cellular sheaves to induce flexible diffusion
processes on graphs, generalizing the diffusion mechanism of classical graph
neural networks. While SNNs have been shown to cope well with heterophilic
tasks and alleviate oversmoothing, we show that there is further room for
improving sheaf diffusion. More specifically, we argue that SNNs do not allow
nodes to independently choose how they cooperate with their neighbors, i.e.,
whether they convey and/or gather information to/from their neighbors. To address
this issue, we first introduce the notion of cellular sheaves over directed graphs and
characterize their in- and out-degree Laplacians. We then leverage our construction
to propose Cooperative Sheaf Neural Network (CSNN). Additionally, we formally
characterize its receptive field and prove that it allows nodes to selectively attend
(listen) to arbitrarily far nodes while ignoring all others in their path, which is key
to alleviating oversquashing. Our results on synthetic data empirically substantiate
our claims, showing that CSNN can handle long-range interactions while avoiding
oversquashing. We also show that CSNN performs strongly in heterophilic node
classification and long-range graph classification benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) have become the standard models for an array of predictive tasks
over networked data, with far-reaching applications in, e.g., physics simulation (Sanchez-Gonzalez
et al., 2020), recommender systems (Ying et al., 2018), and molecular modeling (Duvenaud et al.,
2015; Gilmer et al., 2017). Nonetheless, classical GNNs have well-known pitfalls. For instance, they
typically struggle on heterophilic tasks (Zhu et al., 2020) — i.e., cases where connected nodes often
belong to different classes or have dissimilar features. Furthermore, GNNs may also be susceptible to
oversmoothing (Oono and Suzuki, 2020) and oversquashing (Alon and Yahav, 2021). Oversmoothing
occurs when stacking multiple GNN layers yields increasingly similar node representations, whereas
oversquashing refers to the loss of information when carrying information through increasingly long
paths — due to the compression of exponentially growing information into fixed-size vectors.

A recent line of works (e.g., Hansen and Gebhart, 2020; Bodnar et al., 2022; Bamberger et al., 2025),
which we henceforth refer to as Sheaf Neural Networks (SNNs), proposes modeling node interactions
using cellular sheaves to achieve a principled solution to deal with oversmoothing and heterophilic
tasks. A cellular sheaf F over an undirected graph associates (i) vector spaces Fpiq and Fpeq, known
as stalks, to each vertex i and each edge e, and (ii) a linear map Fi⊴e, known as a restriction map,
to each incident vertex-edge pair i ⊴ e. These mathematical constructs induce a sheaf Laplacian
which is governed by the restriction maps and generalizes the conventional Graph Laplacian.

In a parallel line of investigation, Finkelshtein et al. (2024) have recently shown that GNNs generally
lack the flexibility to allow for nodes to individually select how they cooperate with their neighbors,
i.e., choose whether they convey and/or gather information to/from their neighbors. This selective
communication (also called cooperative behavior) is an especially desirable trait to tackle oversquash-
ing, as it allows controlling the amount of information flowing between nodes. A natural question
ensues: Can sheaf neural networks achieve cooperative behavior?

In this paper, we provide a negative answer to this question. More precisely, for SNNs to zero out
all the incoming information at a node i, they must set Fi⊴e “ 0 for all incident edges e, which also
implies the information flowing from i is suppressed (see Figure 2). To circumvent this limitation, we
introduce the notion of directed cellular sheaves (Definition 3.2) and define their in- and out-degree

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Laplacians (Definition 3.3). Leveraging these notions, we propose Cooperative Sheaf Neural
Networks (CSNNs). Importantly, we show that cooperative behavior can be achieved using only a
pair of restriction maps per node, which considerably increases computational efficiency compared to
full sheaves — in which the amount of restriction maps increases linearly with the number of edges.

Our theoretical results show that CSNN allows for nodes to selectively listen to other arbitrarily
distant nodes, which is a desirable trait to alleviate over-squashing. Our results on synthetic data
specifically designed to induce over-squashing (Alon and Yahav, 2021) substantiate our claims,
showcasing CSNNs’ superior potential to handle long-range dependencies. In addition, extensive
real-world experiments on 11 node-classification benchmarks and 2 long-range graph-classification
tasks demonstrate that CSNN typically outperforms existing SNNs and cooperative GNNs.

In summary, our contributions are:

1. We introduce the notions of in- and out-degree Laplacians for cellular sheaves over directed
graphs, which can be used to model asymmetric relationships between nodes. We treat undirected
edges as a pair of directed ones and leverage these constructions to propose CSNN — provably
extending the flexibility of sheaf diffusion to accommodate cooperative behavior;

2. We provide a theoretical analysis of CSNN, showing that: (a) for each layer t in CSNN, nodes
may be affected by information from nodes at distance up to 2t-hop neighbors (Proposition 4.2),
instead of up to t-hop neighbors in usual GNNs; and (b) there exist restriction maps which make
the embedding of a node i at layer t highly sensitive to the initial feature of a node j, where t is
also the distance between i and j (Proposition 4.3).

3. We carry an extensive experimental campaign to validate the effectiveness of CSNNs, encom-
passing both synthetic and real-world tasks. Our experiments on synthetic data show that
CSNNs is remarkably capable of mitigating over-squashing and modeling long-range dependen-
cies. Meanwhile, results on over 13 real-world tasks show CSNNs typically outperform prior
sheaf-based models and cooperative GNNs.

2 BACKGROUND

For the sake of completeness, here we provide a summary of core concepts concerning cellular
sheaves over undirected graphs. We also briefly discuss neural sheaf diffusion and cooperative GNNs.

In this work, we denote an undirected graph by a tuple G “ pV,Eq where V is a set of vertices
(or nodes) and E is a set of unordered pairs of (distinct) vertices, called edges, with n “ |V | and
m “ |E|. We denote the neighbors of a node i in G by Npiq “ tj : ti, ju P Eu. Next, Definition 2.1
introduces the notion of cellular sheaves over undirected graphs.

Definition 2.1. A cellular sheaf pG,Fq over a (undirected) graph G “ pV,Eq associates:
1. Vector spaces Fpiq to each vertex i P V and Fpeq to each edge e P E, called stalks.
2. Linear maps Fi⊴e :Fpiq Ñ Fpeq to each incident vertex-edge pair i⊴e, called restriction maps.

Hereafter, we assume all vertex and edge stalks are isomorphic to Rd. If all restriction maps are equal
to the identity map, we say the cellular sheaf is constant. Moreover, if d“1, the sheaf is said trivial.

Given the importance of the Laplacian operator for graph representation learning, it is instrumental to
define the Laplacian for undirected cellular sheaves – a key concept in the design of SNNs. Towards
this end, we introduce in Definition 2.2 the spaces of 0- and 1-cochains.

Definition 2.2. The space of 0-cochains, denoted by C0pG,Fq, and the space of 1-cochains,
C1pG,Fq, of a cellular sheaf pG,Fq are given by

C0pG,Fq “
à

iPV

Fpiq and C1pG,Fq “
à

ePE

Fpeq. (1)

where ‘ denotes the (external) direct sum.

Now, for each e P E choose an orientation e “ i Ñ j and consider the coboundary operator
δ :C0pG,Fq Ñ C1pG,Fq defined by pδXqe “ Fj⊴exj ´ Fi⊴exi. Then, the sheaf Laplacian is
defined by LF “ δJδ. If F is the trivial sheaf, δJ can be seen as the incidence matrix, recovering
the n ˆ n graph Laplacian. A more explicit way to describe the Laplacian is the following:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Definition 2.3. The sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator LF :
C0pG,Fq Ñ C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

LF pXqi :“
ÿ

i,j⊴e

FJ
i⊴e pFi⊴exi ´ Fj⊴exjq @i P V. (2)

The Laplacian LF can also be seen as a positive semidefinite matrix with diagonal blocks
Lii “

ř

i⊴e FJ
i⊴eFi⊴e and non-diagonal blocks Lij “ LJ

ij “ ´FJ
i⊴eFj⊴e.

To build intuition around Definition 2.1, we may interpret the node stalks Fpiq as the space of private
opinions held by an individual i, following the perspective of Hansen and Ghrist (2021). For an edge e
connecting nodes i and j, the stalk Fpeq corresponds to the public opinions exchanged between them.

That being said, note that kerLF “ tX P C0pG,Fq | Fi⊴exi “ Fj⊴exj @e “ ti, ju P EpGqu.
This can be understood as the space of public agreement between all pairs of neighboring nodes i
and j. Note that i and j can have distinct opinions about the same topic on their respective private
opinion spaces Fpiq and Fpjq; however, when they publicly discuss this topic, they may prefer to
not manifest their true opinion. Alternatively, since the edge stalks may be different from the node
stalks, some topics of the private opinion spaces do not need to be discussed at all. In both cases, the
apparent consensus lies in KerLF .

Vector bundles. When restriction maps are orthogonal, we call the sheaf a vector bundle. In this
case, LF pXqi :“

ř

i,j⊴e

`

xi ´ FJ
i⊴eFj⊴exj

˘

, for any i P V . Flat vector bundles are special cases
of vector bundles in which we assign an orthogonal map Oi to each node i and set Fi⊴e “ Oi for all
e incident to i. This entails LF pXqi :“

ř

i,j⊴e

`

xi ´ OJ
i Ojxj

˘

, for any i P V . Note that flat vector
bundles only comprise n restriction maps as opposed to 2m maps in general cellular sheaves. Prior
works (Bodnar et al., 2022; Bamberger et al., 2025) have leveraged these simpler constructions to
propose computationally efficient sheaf-based neural networks.

Neural Sheaf Diffusion (NSD). Bodnar et al. (2022) introduce NSD building on Euler iterations of
the heat equation induced by ∆F , i.e., 9X “ ´∆FX. First, we project the initial node features X
into h channels using an MLP η, i.e., X0 “ ηpXq P Rndˆh. Then, NSD recursively computes

Xt`1 “ p1 ` p1nˆh b εqq d Xt ´ σp∆FptqpI b W1,tqXtW2,tq, (3)

where 1nˆh is an n ˆ h matrix of ones, ∆Fptq is the sheaf Laplacian at layer t, ε P r´1, 1sd is a
(learned) vector scaling the features along each stalk dimension, σ is an element-wise non-linearity,
and W1,t P Rdˆd,W2,t P Rhˆh are weight matrices. Importantly, the restriction maps which govern
∆Fptq are learned in an end-to-end fashion, alongside W1,t and W2,t.

Cooperative GNNs. Finkelshtein et al. (2024) recently proposed flexibilizing message-passing
GNNs by treating nodes as players that can choose how they cooperate with their neighbors. More
specifically, cooperative GNNs employ an auxiliary GNN, called the action network, that decides
individually how each node partakes in the message passing of the base GNN, or environment network.
The action network decides whether each node only propagates information (PROPAGATE), only
gathers information from neighbors (LISTEN), does none (ISOLATE) or does both (STANDARD).
Cooperative GNNs learn the action and environment GNNs simultaneously, using the straight-through
Gumbel-Softmax estimator to propagate gradients through the discrete actions of the action network.

3 CELLULAR SHEAVES FOR DIRECTED GRAPHS

We kick off this section addressing our initial research question: Can SNNs achieve cooperative behav-
ior? Recall that communication between nodes in an SNN is governed by its sheaf Laplacian, which
is induced by the restriction maps. Thus, in SNNs, picking a state among PROPAGATE, LISTEN,
ISOLATE, and STANDARD node i translates to choosing a suitable configuration for its respective
restriction maps. The following result says that SNNs cannot fully alternate between these action.
Proposition 3.1. Let i P V . If LF pXqi does not depend on xj for any j P V neighbor of i, then
LF pXqj “ 0 or LF pXqj “

ř

j,i⊴e FJ
j⊴eFj⊴exj .

Put plainly, Proposition 3.1 states that the sheaf diffusion provides a framework where a node i that
does not LISTEN (since it does depend on j) must not PROPAGATE (since the update of j does

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 1: On the left, a cellular sheaf shown for a single edge of an undirected graph with stalks
isomorphic to R2. The restriction maps Fi⊴e,Fj⊴e move the vector features between these spaces.
On the right, the analogous situation for a sheaf on a single pair of directed edges. Then there are
four, possibly distinct, restriction maps Fi⊴ij ,Fi⊴ji,Fj⊴ij ,Fj⊴ji.

not depend on i), independently of the action that j takes. In other words, PROPAGATE implies
LISTEN, which means it collapses to ISOLATE (see Figure 2).

We can circumvent this limitation by treating undirected edges as a pair of directed ones, creating
an additional channel of communication between nodes. To accommodate directed edges (i.e.,
E Ď V ˆ V), we propose using cellular sheaves over directed graphs.

Cellular sheaves over directed graphs must distinguish the restriction map where i is the source node
of an edge from the restriction map where i is the target node of an edge. Therefore, we change the
edge notation from e to ij and ji to make this distinction explicit. See Figure 1 for an illustration.
Definition 3.2. A cellular sheaf pG,Fq over a (directed) graph G “ pV,Eq associates:

1. Vector spaces Fpiq to each vertex i P V and Fpijq to each edge ij P E, called stalks.
2. A linear map Fi⊴ij : Fpiq Ñ Fpijq for each incident vertex-edge pair i⊴ ij and a linear map

Fi⊴ji : Fpiq Ñ Fpjiq for each incident vertex-edge pair i⊴ ji, called restriction maps.

For simplicity, again, we henceforth assume all node and edge stalks are d-dimensional.

We are now left with the task of defining sheaf Laplacians that can be used for information diffusion
in directed graphs. For directed graphs, it is common to define both in- and out-degree Laplacians
(Agaev and Chebotarev, 2005). Given a directed graph with possibly asymmetric adjacency matrix
A, the out-degree Laplacian is Lout :“ Dout ´ A and the in-degree Laplacian is Lin :“ Din ´ A,
with Din and Dout denoting the diagonal matrices containing in- and out-degree of nodes in V pGq.
Definition 3.3 below generalizes these notions to sheaves over directed graphs.
Definition 3.3. The out-degree sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator
Lout
F : C0pG,Fq Ñ C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

Lout
F pXqi :“

ÿ

jPNpiq

`

FJ
i⊴ijFi⊴ijxi ´ FJ

i⊴jiFj⊴jixj

˘

, @i P V. (4)

The in-degree sheaf Laplacian of a cellular sheaf pG,Fq is the linear operator Lin
F : C0pG,Fq Ñ

C0pG,Fq that, for a 0-cochain X P C0pG,Fq, outputs

Lin
F pXqi :“

ÿ

jPNpiq

`

FJ
i⊴jiFi⊴jixi ´ FJ

i⊴ijFj⊴ijxj

˘

, @i P V. (5)

We note that if pG,Fq is the trivial sheaf, then Lout
F “ pLoutqJ and Lin

F “ Lin.

Flat vector bundles over directed graphs. We can also improve the parameter efficiency of cellular
sheaves over directed graphs using flat vector bundles. Since the graphs are directed, we need to
distinguish between edges with identical endpoints but with different orientations. Thus, for each
node i, we assign a source conformal map Si and a target conformal map Ti, and set Fi⊴ij “ Si

and Fi⊴ji “ Ti for all neighbors j of i.

4 COOPERATIVE SHEAF NEURAL NETWORKS

In this section, we leverage the sheaf Laplacians in Definition 3.3 to propose Cooperative Sheaf Neural
Networks (CSNNs), an SNN which allows nodes to independently to decide how they participate in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

message diffusion, choosing whether to broadcast their information and/or to listen from the neighbors.
To exploit the asymmetric communication induced by sheaves over directed graphs, we convert our
input undirected graph into a directed one by replacing undirected edges with a pair of directed ones.

We design CSNN’s diffusion mechanism by composing the out-degree and the transposed in-degree
sheaf Laplacians. In practice, we use their normalized versions

∆out
F “ D

´ 1
2

out L
out
F D

´ 1
2

out and p∆in
F qJ “ D

´ 1
2

in pLin
F qJD

´ 1
2

in ,

where Din, Dout are the block-diagonals of the in and out Laplacians, respectively.

We define a CSNN layer by augmenting the Euler discretization of our novel heat equation
9X “ p∆in

F qJ∆out
F X with linear transformations and a nonlinear activation function σ:

Xt`1 “ p1 ` p1nˆh b εqq d Xt ´ σpp∆in
FptqqJ∆out

FptqpIn b W1,tqXtW2,tq, (6)

where 1nˆh is an n-by-h matrix of ones, ε P r´1, 1sdˆ1, and W1,t P Rdˆd and W2,t P

Rhˆh are learned matrices responsible for mixing node features and channels, respectively.

Efficient implementation. For computational efficiency, we use flat vector bundles to define
both the in- and out- degree sheaf Laplacians. More precisely, for each node i, we define a source
conformal map Si and a target conformal map Ti for all neighbor j of i. Thus, out-degree sheaf
Laplacian simplifies to

Lout
F pXqi :“

ř

jPNpiq

`

SJ
i Sixi ´ TJ

i Sjxj

˘

, (7)

while the transpose of the in-degree sheaf Laplacian is

ppLin
F qJpXqqi :“

ř

jPNpiq

`

TJ
i Tixi ´ TJ

i Sjxj

˘

. (8)

Note these matrices have a block structure, with diagonals pLin
F qJ

ii “
ř

TJ
i Ti, pLout

F qii “
ř

SJ
i Si,

and remaining blocks pLin
F qJ

ij “ pLout
F qij “ ´TJ

i Sj . We point out that, since conformal maps are of
the form Si “ CSi

Qi and Ti “ CTi
Ri, for some orthogonal matrices Qi, Ri and scalars CSi

, CTi
,

computing their inverses and normalizing the Laplacian becomes trivial. In this case, block scaling
simplifies to a block matrix of scalars time identity and the normalization is both numerically stable
and computationally efficient.

The first step of each layer t consists of computing the conformal maps Ti,t and Si,t. We do this
through learnable functions Si,t “ ηpG,Xt, iq and Ti,t “ ϕpG,Xt, iq, @i P V . As in prior works on
SNNs Bodnar et al. (2022); Bamberger et al. (2025), we use neural networks to learn the restriction
maps. In addition, we use Householder reflections (Mhammedi et al., 2017; Obukhov, 2021) to
compute orthogonal maps and multiply them by a learned positive constant for each node.

4.1 ANALYSIS

Figure 2: Oi “ 0 creates the effect of isolating
the node i. Directed edges provide the possibil-
ity of performing LISTEN and PROPAGATE,
separately.

We now show that CSNN can achieve cooperative
behavior, characterize its receptive field, and prove
that appropriate conformal maps can help CSNNs
handle long-range interactions.

We note that CSNN allows each node i drift from
the STANDARD behavior (Si,Ti ‰ 0) by zeroing-
out its conformal maps. Setting Ti ‰ 0 drives
i to LISTEN. Setting Si ‰ 0 corresponds to
PROPAGATE. Finally, Si “ Ti “ 0 implies
ISOLATE.

We highlight the importance of considering the
directions: for undirected graphs, there is a single
map Oi for each node i, where Oi “ 0 could only
mean that i does not communicate at all. In other
words, the possible actions are only STANDARD and ISOLATE. We illustrate this in Figure 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Thus, to show a model achieves cooperative behavior, we must ensure the following: (a) if i does
not listen, then its update cannot depend on xj , @j P V, j ‰ i; and (b) if i has a non-propagating
neighbor k, then its update cannot depend on xk. Proposition 4.1 shows that CSNN satisfies these
conditions, while Figure 3 illustrates them and delineates limitations of the NSD model.

Proposition 4.1. If the target map Ti is zero, then ppLin
F qJLout

F pXqqi “ 0. If the source map Sk “ 0
for some neighbor k of i, then ppLin

F qJLout
F pXqqi does not depend on xk.

Figure 3: Given a graph paq we illustrate
the consequences of preventing node 3 from
listening. For NSD pbq, this means LF pXq3
must not depend on xj, for j “ 1, 2, 4
implying Fj⊴e “ 0 and leading to LF pXqj
not depending on x3, preventing node 3
from propagating information. In CSNN
pcq, we can set T3 “ 0. Provided S3 ‰ 0,
outbound communication is possible.

Moreover, our model has the ability to reach longer
distances. In most GNNs, if t is the distance between
two nodes i and j, then they can only communicate
after t layers. CSNN enables communication between
these nodes after rt{2s layers.

Proposition 4.2. In each layer t, the features of a node
can be affected by the features of nodes up to 2t-hops.

We also show in Proposition 4.3 that CSNNs with t
layers are capable of making i and j communicate
while ignoring all the other nodes on a path from i to j
such that |j ´ i| ď t. This feature is an asset to handle
over-squashing in long range tasks, allowing CSNN
to selectively tend to information from distant nodes.
Example 4.4 illustrates this result in a four-node graph.

Proposition 4.3. Let i and j be nodes at a distance t. In CSNN, i can learn to ignore all the t ´ 1
nodes in the shortest path from i to j while receiving the information from j in the t-layer. Moreover,
if we choose a path with n ą t ´ 1 nodes between i and j, then i receives the information from j in
the pn ` 1q-layer.

Example 4.4. Consider a directed graph with vertex set V “ t1, 2, 3, 4u and edge set E “ tp1, 2q,
p2, 3q, p3, 4q, p4, 3q, p3, 2q, p2, 1qu. We follow the proof of Proposition 4.3 to show we can propagate
a message from node 4 to node 1, while the latter ignores all remaining nodes. We denote the
target/source map of node i at layer t by Ti,t and Si,t respectively. To achieve our desired result:

a. In the first layer, must have zero source and target maps except for T3,1 and S4,1. A simple
verification gives that ppLin

F qJLout
F pXqqk “ 0, for all k ‰ 3. So ppLin

F qJLout
F pXqqk “ 0, for

all k ‰ 3. If k “ 3, then ppLin
F qJLout

F pXqq3 “ ´2TJ
4,1S4,1x

p0q

4 , with x
ptq
k denoting the feature

vector of k at layer t, thus xp0q

4 will be the only feature vector to influence x
p1q

3 ;

b. In the second layer, we must have that all source and target maps are zero except for T2,2 and

S3,2. Then ppLin
F qJLout

F pXqqk “ 0, for all k ‰ 2 and ppLin
F qJLout

F pXqq2 “ ´2TJ
2,2S3,2x

p1q

3 .

Thus xp1q

3 will be the only feature vector to influence x
p2q

2 ;

c. In the third layer, all source and target maps must be zero except for T1,3 and S2,3. Then

ppLin
F qJLout

F pXqqk “ 0, for all k ‰ 1 and ppLin
F qJLout

F pXqq1 “ ´2TJ
1,3S2,3x

p3q

2 . Thus xp3q

1 is

influenced only by x
p2q

2 , which was influenced only by x
p1q

3 , which is influenced only by x
p0q

4 .

Consequently, xp3q

1 is affected by xp0q

4 while ignoring the features of all other nodes in all other layers.

This configuration shows that although CSNN can achieve 2-hop neighbors, it can also refrain from
this behavior to only access 1-hop neighbors per layer. Moreover, this flexibility indicates there are
multiple forms to stablish communication between two distant nodes while ignoring others.

Observe that the derivative of xp3q

1 in relation to x
p0q

4 can be as high as the values of the non-zero
Ti and Si permit. This shows our model can mitigate over-squashing, which refers to the failure
of an information propagating to distance nodes. Di Giovanni et al. (2023) and Topping et al.
(2022), studied over-squashing in message passing neural networks through a bound on the Jacobian
ˇ

ˇ

ˇ

Bx
ptq

i {Bx
p0q

j

ˇ

ˇ

ˇ
ď ctÂt

ij , where t is the layer, c is a constant that depends on the architecture of the model,

and Â the normalized adjacency matrix. Moreover, over-squashing occurs when we have a small

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Figure 4: Illustration of Example 4.4. At layer t, we consider that all maps but T4´t,t and S4´pt´1q,t

are 0, enabling the flow of information from right to left following the bottom edges.

derivative Bx
ptq

i {Bx
p0q

j , since it means that after t layers, the feature at i is mostly insensitive to the
information initially contained at j, i.e., the information was not propagated properly. Proposition 4.3
states that the feature at node i can be sensitive to the information initially contained at node j,
independently of the distance, given enough layers and an appropriate configuration of restriction
maps. Consequently, Proposition 4.3 suggests that the restriction maps regulating the sensibility
between distant nodes can provide higher upper bounds to Bx

ptq

i {Bx
p0q

j while decreasing the value of
Bx

ptq

i {Bx
p0q

k for other nodes k.

5 RELATED WORKS

Cooperative GNNs. Finkelshtein et al. (2024) were the first to propose flexibilizing message
passing by allowing nodes to choose how they cooperate with each other. Each layer of their model,
CO-GNN, employs an additional GNN that chooses an action for each node. While CO-GNNs can
be employed with arbitrary base and action networks, their main caveat is that training can become
increasingly difficult as these networks become more complex — the grid of hyper-parameters grows
considerably and the stochastic nature of the action network may affect model selection. Different
from CO-GNN, our CSNN does not rely on discrete actions and can smoothly modulate between
cooperative behavior patterns.

Sheaf Neural Networks. Besides works on SNNs for graph data with real-valued node features,
recent works have expanded the literature to accommodate heterogeneous edge types (Braithwaite
et al., 2024), hypergraphs (Duta et al., 2023), nonlinear Sheaf Laplacians (Zaghen et al., 2024), and
node features living on Riemann manifolds (Battiloro et al., 2024). While recent works on SNNs
learn restriction maps in an end-to-end fashion, there are also prior works in which they are manually
constructed (Hansen and Ghrist, 2019) or computed as a pre-processing step (Barbero et al., 2022).

Quiver Laplacians. Sumray et al. (2024) propose sheaf Laplacians over quivers (directed graphs
w/ self-loops) to improve feature selection on tabular data, with no learning component involved.
The in- and out-Laplacians we defined here are not particular cases of the Laplacians over quivers.
The former are positive semi-definite matrices, while our Laplacians may have complex eigenvalues
with negative real parts.

6 EXPERIMENTS

We provide both synthetic and real-world experiments to evaluate the performance of CSNN, including
node- and graph-level prediction tasks. Section 6.1 assess CSNN’s capacity to circumvent over-
squashing using the NeighborsMatch benchmark proposed by Alon and Yahav (2021). Section 6.2
presents experiments on eleven node classification tasks, showcasing the effectiveness of CSNN
for heterophilic graphs. Finally, Section 6.3 consider the Peptides datasets from the Long Range
Graph Benchmark (Dwivedi et al., 2022) to substantiate the capability of our model to mitigate
under-reaching and over-squashing on real-world graph classification. We also provide additional
experiments in Appendix B.

6.1 OVER-SQUASHING

In order to verify our theoretical results on the capacity of CSNN to alleviate over-squashing,
we reproduce the NeighborsMatch problem proposed by Alon and Yahav (2021), using the same
framework. The datasets consist of binary trees of depth r, with the root node as the target, the leaves

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

containing its possible labels, and the leaf with the same number of neighbors as the target node
containing its true label. We provide the parameters used for this task in Appendix C.

Figure 5 shows GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2019) fail to fit the datasets
starting from r “ 4 and GAT (Veličković et al., 2018) and GGNN (Li et al., 2016) fail to fit the
datasets starting from r “ 5. These models suffer from over-squashing and are not able to distinguish
between different training examples, while the CSNN model reaches perfect accuracy for all tested r.

Alon and Yahav (2021) argue that the difference in performance for the GNNs are related to how
node features are updated: on one hand, GCN and GIN aggregate all neighbor information before
combining it with the representation of the target node, forcing them to compress all incoming
information into a single vector. On the other hand, GAT uses attention to selectively weigh messages
based on the representation of the target node, allowing it (to some degree) to filter out irrelevant
edges and only compress information from a subset of the neighbors. So models like GAT (and
GGNN) that compress less information per step can handle higher r better than GCN and GIN.

2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1.0 1.0 1.0 1.0

0.60

0.38

0.21

0.16

1.0

0.41

0.77

0.29

1.0 1.0

0.70

0.19

0.14
0.09 0.08

r (the problem radius)

Acc

CSNN (train)

GGNN (train)

GAT (train)

GIN (train)

GCN (train)

Figure 5: Accuracy for increasing tree depths
in the NeighborsMatch task. CSNN consistently
achieves 100% accuracy for all values of r.

This experiment shows that CSNN is more
efficient in ignoring irrelevant nodes and can
avoid loosing relevant information. Moreover,
Proposition 4.3 provides theoretical support for
this result, as it states that there are choices of
parameters for which the model can listen only
to the nodes along a path between distant nodes
i and j, enabling selective communication to
diminish noise impact.

Comparison against other sheaf models. No-
tably, CSNN outperforms other sheaf methods
in this task. BuNN reports 100% accuracy until
r “ 6. Then it drops to 71% and 42% for r “ 7
and r “ 8, respectively, as reported in Bamberger et al. (2025). For NSD with orthogonal maps, we
obtained 100% accuracy when r “ 2, 91% for r “ 3, and then a sharp drop to 5% when r “ 4.

6.2 NODE CLASSIFICATION

Datasets. We evaluate our model on the five recently proposed heterophilic graphs from Platonov et al.
(2023), and also on six classical ones for which benchmarking results can be found in Pei et al. (2020);
Rozemberczki et al. (2021); Tang et al. (2009). As pointed out in Platonov et al. (2023), the datasets
Squirrel and Chameleon have many duplicate nodes, which may lead to data leakage. Following
their guidelines, we use their cleaned version of these datasets to ensure a meaningful evaluation. For
binary classification datasets, we report AUROC, while for multiclass datasets we report accuracy.

Table 1: Performance comparison on datasets from Platonov et al. (2023). AUROC is reported for
minesweeper, tolokers and questions, accuracy is reported for the remaining datasets. CSNN is the
best-performing method in 6 out of 7 datasets.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon
Edge Homophily 0.05 0.38 0.68 0.59 0.84 0.20 0.23

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27 39.47 ± 1.47 40.89 ± 4.12
SAGE 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62 36.09 ± 1.99 37.77 ± 4.14
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20 35.62 ± 2.06 39.21 ± 3.08
GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71 35.46 ± 3.10 39.26 ± 2.50
GT 86.51 ± 0.73 51.17 ± 0.66 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68 36.30 ± 1.98 38.87 ± 3.66
GT-sep 87.32 ± 0.39 52.18 ± 0.80 92.29 ± 0.47 82.52 ± 0.92 78.05 ± 0.93 36.66 ± 1.63 40.31 ± 3.01

CO-GNN 89.44 ± 0.50 54.20 ± 0.34 97.35 ± 0.63 84.84 ± 0.96 75.97 ± 0.89 39.39 ± 2.76 41.14 ± 5.40
O(d)-NSD 80.41 ± 0.72 42.76 ± 0.54 92.15 ± 0.84 78.83 ± 0.76 69.69 ± 1.46 35.79 ± 3.34 37.93 ± 2.24
BuNN 91.75 ± 0.39 53.74 ± 0.51 98.99 ± 0.16 84.78 ± 0.80 78.75 ± 1.09 - -

CSNN 92.63 ± 0.50 52.07 ± 1.00 99.07 ± 0.25 85.45 ± 0.53 79.31 ± 1.22 41.18 ± 2.23 43.09 ± 3.17

Experimental setting. As baselines for benchmarks in Platonov et al. (2023), we use GCN (Kipf
and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018) and GT (Shi
et al., 2021), together with the variations GAT-sep and GT-sep, which concatenate the representation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 2: Accuracy for node classification datasets on the fixed splits of Pei et al. (2020). CSNN
achieves the best results in 3 out of 4 datasets.

Model Texas Wisconsin Film Cornell
Edge Homophily 0.11 0.21 0.22 0.30

GGCN 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 85.68 ± 6.63
H2GCN 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 82.70 ± 5.28
GPRGNN 78.38 ± 4.36 82.94 ± 4.21 34.63 ± 1.22 80.27 ± 8.11
FAGCN 82.43 ± 6.89 82.94 ± 7.95 34.87 ± 1.25 79.19 ± 9.79
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 73.51 ± 6.34
GCNII 77.57 ± 3.83 80.39 ± 3.40 37.44 ± 1.30 77.86 ± 3.79
Geom-GCN 66.76 ± 2.72 64.51 ± 3.66 31.59 ± 1.15 60.54 ± 3.67
PairNorm 60.27 ± 4.34 48.43 ± 6.14 27.40 ± 1.24 58.92 ± 3.15
GraphSAGE 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 75.95 ± 5.01
GCN 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 60.54 ± 5.30
GAT 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 61.89 ± 5.05
MLP 80.81 ± 4.75 85.29 ± 3.31 36.53 ± 0.70 81.89 ± 6.40
FSGNN 87.57 ± 4.86 87.65 ± 3.51 35.62 ± 0.87 87.30 ± 4.53
GloGNN 84.32 ± 4.15 87.06 ± 3.53 37.35 ± 1.30 83.51 ± 4.26
ACMGCN 87.84 ± 4.40 88.43 ± 3.22 36.28 ± 1.09 85.14 ± 6.07

CO-GNN 77.57 ± 5.41 83.73 ± 4.03 36.26 ± 3.74 72.70 ± 5.47

Diag-NSD 85.67 ± 6.95 88.63 ± 2.75 37.79 ± 1.01 86.49 ± 7.35
O(d)-NSD 85.95 ± 5.51 89.41 ± 4.74 37.81 ± 1.15 84.86 ± 4.71
Gen-NSD 82.97 ± 5.13 89.21 ± 3.84 37.80 ± 1.22 85.68 ± 6.51

CSNN 87.30 ± 5.93 90.00 ± 2.83 38.03 ± 1.12 81.62 ± 4.32

of a node to the mean of its neighbors instead of summing them (Zhu et al., 2020). These are all
classical baselines used in Platonov et al. (2023) to compare against GNN architectures specifically
developed for heterophilic settings, and that achieve the best performance in most cases. We also
compare CSNN against recent models such as CO-GNN, NSD, and BuNN (Bamberger et al., 2025).
Results for BuNN on Squirrel, Chameleon, and the datasets in Table 2 are not available, since we
do not have access to their code.

For the remaining datasets, we compare against the classical GCN, GAT and SAGE; the models
specifically tailored for heterophilic data GGCN (Yan et al., 2022), Geom-GCN (Pei et al., 2020),
H2GCN (Zhu et al., 2020), GPRGNN (Chien et al., 2020), FAGCN (Bo et al., 2021), FSGNN (Maurya
et al., 2022), GloGNN Li et al. (2022), ACMGCN (Luan et al., 2022), and MixHop (Abu-El-Haija
et al., 2019); and the models GCNII (Chen et al., 2020) and PairNorm (Zhao and Akoglu, 2020)
designed to alleviate oversmoothing. We use the 10 fixed splits proposed by Platonov et al. (2023)
and Pei et al. (2020). We refer to Appendix C for further implementation details.

Results. Table 1 and Table 2 show that CSNN is the best-performing method in 9 out of 11 datasets.
These results highlight our model’s capacity to deal with heterophilic graphs of different sizes and
heterophily levels. We note CSNN often outperforms both NSD and CO-GNN in Table 1. While we
report the results in Table 2 for completeness, we note they exhibit high variance — in accordance
to the findings of Platonov et al. (2023), which highlight that the small scale of these datasets may
incur unstable and statistically insignificant results.

6.3 GRAPH CLASSIFICATION

Table 3: Performance comparison of models on
the peptides datasets.

Model peptides-func Ò peptides-struct Ó

GCN 68.60 ± 0.50 24.60 ± 0.07
GINE 66.21 ± 0.67 24.73 ± 0.17
GatedGCN 67.65 ± 0.47 24.77 ± 0.09
DReW 71.50 ± 0.44 25.36 ± 0.15
SAN 64.39 ± 0.75 25.45 ± 0.12
GPS 65.34 ± 0.91 25.09 ± 0.14
G-ViT 69.42 ± 0.75 24.49 ± 0.16
Exphormer 65.27 ± 0.43 24.81 ± 0.07
BuNN 72.76 ± 0.65 24.63 ± 0.12
CSNN 71.58 ± 0.80 24.32 ± 0.04

To assess the effectiveness of CSNNs on long-
range tasks, we evaluate it on the peptides
dataset from the Long Range Graph Benchmark
Dwivedi et al. (2022). It is a dataset containing
15k graphs and two different tasks: peptides-
func is a graph classification task, while
peptides-struct is a regression one. We report
average precision (AP) for peptides-func and
mean absolute error (MAE) for peptides-struct.

Setup. We follow the experimental setup of
Tönshoff et al. (2024), and tune the network
hyperparameters keeping the „500k parameter
budget proposed by Dwivedi et al. (2022) for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

fair comparison. We run the model using four different seeds and report mean and standard deviation
of the evaluation metrics. The baselines are taken from Tönshoff et al. (2024) and we also compare
against the results reported for BuNN by Bamberger et al. (2025).

Results. Our model achieves the best performance in the peptides-struct dataset, and second-best in
the peptides-func, as shown in Table 3. These results further strengthen our claims on the capacity
of CSNNs to mitigate over-squashing and perform better in scenarios where long-range and under-
reaching are known issues.

7 CONCLUSION

This work proposed Cooperative Sheaf Neural Networks, a novel SNN architecture that incorporates
directionality in order to increase its efficiency by learning sheaves with conformal maps, allowing
nodes to choose the optimal behavior in terms of information propagation with respect to its neighbors.
We provided theoretical insights on how CSNN can alleviate over-squashing due to its capacity to
smoothly modulate node behavior in information diffusion. We also validated its effectiveness on
node and graph classification experiments on heterophilic graphs and long-range tasks.

Limitations and Future Works. While CSNN is not computationally more taxing than other SNNs, it
is worth pointing that developing strategies to scale sheaf-based networks is a major research challenge.
While we have used conformal maps to reduce the parameter complexity of restriction maps, we leave
open the possibility that there are further ways to improve the scalability of CSNN. We also believe
that efficient message-passing implementations could represent a step towards large-scale SNNs.

Another promising direction for future works is extending SNNs to cope with high-order structures
like cell- and simplicial complexes, possibly allowing for more expressive models and promoting
long-range communication with fewer layers.

8 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement. We do not foresee immediate negative societal or ethical impacts at this stage of
the work.

Reproducibility Statement. Aiming to secure reproducibility of our work, we provide proofs of
our theoretical results and in experiment detail in Appendix A and Appendix C. Moreover, we will
provide a public code once the review process is complete.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning,
pages 21–29. PMLR, 2019.

Rafig Agaev and Pavel Chebotarev. On the spectra of nonsymmetric laplacian matrices. Linear
Algebra and its Applications, 399:157–168, 2005. Special Issue devoted to papers presented at the
International Meeting on Matrix Analysis and Applications, Ft. Lauderdale, FL, 14-16 December
2003.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural net-
works for message diffusion on graphs. In The Thirteenth International Conference on Learning
Representations, 2025.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar Veličković,
and Pietro Liò. Sheaf neural networks with connection laplacians. In ICML Topological, Algebraic
and Geometric Learning Workshop 2022, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent
bundle convolutional learning: From manifolds to cellular sheaves and back. IEEE Transactions
on Signal Processing, 2024.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 3950–3957, 2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:18527–18541, 2022.

Luke Braithwaite, Iulia Duta, and Pietro Lió. Heterogeneous sheaf neural networks. In arXiv preprint
arXiv:2409.08036, 2024.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725–1735.
PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pages 7865–7885. PMLR, 2023.

Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Lió. Sheaf hypergraph networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems (NeurIPS), 2015.

Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326–22340, 2022.

Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 13633–13659. PMLR, 21–27 Jul 2024. URL https://proceedings.mlr.press/
v235/finkelshtein24a.html.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning (ICML),
2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. NeurIPS Workshop on Topological Data
Analysis and Beyond, 2020.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied
and Computational Topology, 2019.

Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on Applied
Mathematics, 2021.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

11

https://proceedings.mlr.press/v235/finkelshtein24a.html
https://proceedings.mlr.press/v235/finkelshtein24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
conference on machine learning, pages 13242–13256. PMLR, 2022.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks,
models, theoretical analysis, applications and challenges. CoRR, 2024.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
graph neural networks. Journal of Computational Science, 62:101695, 2022.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In International
Conference on Machine Learning, pages 2401–2409. PMLR, 2017.

Anton Obukhov. Efficient householder transformation in pytorch, 2021. URL www.github.com/
toshas/torch-householder. Version: 1.0.1, DOI: 10.5281/zenodo.5068733.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? The
Eleventh International Conference on Learning Representations, 2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning (ICML), 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, pages 1548–1554. International
Joint Conferences on Artificial Intelligence Organization, 2021.

Otto Sumray, Heather A Harrington, and Vidit Nanda. Quiver laplacians and feature selection. arXiv
preprint arXiv:2404.06993, 2024.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 807–816, 2009.

Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. Transactions on Machine Learning Research, 2024.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

12

www.github.com/toshas/torch-householder
www.github.com/toshas/torch-householder

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pages 1287–1292. IEEE, 2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In ACM SIGKDD
international conference on knowledge discovery & data mining (KDD), 2018.

Olga Zaghen, Antonio Longa, Steve Azzolin, Lev Telyatnikov, Andrea Passerini, and Pietro Lio.
Sheaf diffusion goes nonlinear: Enhancing gnns with adaptive sheaf laplacians. In ICML 2024
Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. International
Conference on Learning Representations., 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems (NeurIPS), 2020.

A PROOFS

A.1 PROOF OF PROPOSITION 3.1

Proof. Suppose LF pXqi does not depend of xj for any j neighbor of i. Since LF pXqi “
ř

i,j⊴e FJ
i⊴e pFi⊴exi ´ Fj⊴exjq, this means FJ

i⊴eFj⊴exj “ 0. Therefore, Fj⊴exj P kerpFJ
i⊴eq,

for any j neighbor of i. Thus, Fi⊴exi “ 0 or Fj⊴exj “ 0, for every j.

Note that, Fi⊴exi “ 0 implies that LF pXqj “
ř

j,i⊴e FJ
j⊴eFj⊴exj .

If Fj⊴exj “ 0 for every j, then LF pXqj “ 0.

A.2 REMARK REGARDING PROPOSITION 3.1 AND NONLINEAR SHEAF LAPLACIAN

If the sheaf Laplacian is nonlinear as in Zaghen et al. (2024), i.e, LF pXqi “
ř

i,j⊴e FJ
i⊴eϕe pFi⊴exi ´ Fj⊴exjq, where ϕe : Fpeq Ñ Fpeq is a continuous function for each

edge e, then saying that LF pXqi does not depend of xj means FJ
i⊴eϕeFj⊴exj “ 0. Then the proof

holds similarly to the above.

A.3 PROOF OF PROPOSITION 4.1

Proof. We have that pLin
F qJLout valued at a given vertex i is:

ÿ

jPNpiq

¨

˝TJ
i Ti

¨

˝

ÿ

jPNpiq

`

SJ
i Sixi ´ TJ

i Sjxj

˘

˛

‚´ TJ
i Sj

¨

˝

ÿ

uPNpjq

`

SJ
j Sjxj ´ TJ

j Suxu

˘

˛

‚

˛

‚ (9)

So Ti “ 0 (i.e. i does not listen) implies ppLin
F qJLout

F pXqqi “ 0. If i listens, but a certain neighbor k
does not broadcast, i.e., Tk “ 0, then ppLin

F qJLout
F pXqqi is

ÿ

jPNpiqzk

¨

˝TJ
i Ti

¨

˝

ÿ

jPNpiqzk

`

SJ
i Sixi ´ TJ

i Sjxj

˘

˛

‚´ TJ
i Sj

¨

˝

ÿ

uPNpjqzk

`

SJ
j Sjxj ´ TJ

j Suxu

˘

˛

‚

˛

‚

Since the sum does not go through the index k, xk is not a component in ppLin
F qJLout

F pXqqi.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.4 PROOF OF PROPOSITION 4.2

Proof. Let t “ 1, and fix a node i. Then we are essentially just using the composition described in
Equation (9) (up to normalization and learnable weights). In the equation we have a sum running
over all neighbors j of i and another sum running over all neighbors u of each j. So u can be a 2-hop
neighbor of i and we have that i was updated with information from up to 2-hop neighbors. Similarly,
the node u is updated by up to 2-hop neighbors. Therefore, in the second layer t “ 2, i was updated
with information from up to 4-hop neighbors.

If t “ n, assume by induction that each node i receives information from it 2n-hop neighbors. In
the next layer n ` 1, i will be updated by its n-update of its 2-hop neighbors. Let j be a node in
the 2-hop neighborhood of i. By the inductive hypothesis, j receives information from its 2n-hop
neighbors, whose distance to i is up to 2n ` 2 “ 2pn ` 1q, concluding the proof by induction.

A.5 PROOF OF PROPOSITION 4.3

Proof. Choose a path from i to j. So there are t ´ 1 vertices between i an j, say v1, ..., vt´1. In the
first layer, let Sj and Tvt´1

be different of zero and all other source and target maps equal zero.

This results in pp∆in
F qJ∆out

F qk “ 0 for every k ‰ vt´1 and pp∆in
F qJ∆out

F qvt´1 depends only of xj .
So, except for xvt´1

, the values xk are not updated.

In the second layer, let Svt´1
and Tvt´2

different of zero, and all other maps equal zero. This results
in pp∆in

F qJ∆out
F qk “ 0 for every k ‰ vt´1, where pp∆in

F qJ∆out
F qvt´1

depends only of the xp1q
vt´1 that

was updated in the previous layer and depends only of xj .

We continue this reasoning until the t-layer, in which we make Sv1 and Ti different of zero, and
all other source maps equal zero. This results in pp∆in

F qJ∆out
F qk “ 0 for every k ‰ i, where

pp∆in
F qJ∆out

F qv1 depend only of the xpt´1q
v1 , which going backwards depends only of the original xj ,

up to transformations given by the target and source maps.

B ADDITIONAL EXPERIMENTS

In this section, we provide other two experiments. The first is a real-world large dataset and the
second is a noisy implementation of Example 4.4, to illustrate how Proposition 4.3 may work in
practice.

Table 4: Results on the Penn94 dataset.

Models Penn94
Edge Homophily 0.47

MLP 73.61 ˘ 0.40
GCN 82.47 ˘ 0.27
GAT 81.53 ˘ 0.55
MixHop 83.47 ˘ 0.71
GCNII 82.92 ˘ 0.59
H2GCN 81.31 ˘ 0.60
WRGAT 74.32 ˘ 0.53
GPR-GNN 81.38 ˘ 0.16
ACM-GCN 82.52 ˘ 0.96
LINKX 84.71 ˘ 0.52
GloGNN 85.57 ˘ 0.35

CSNN 86.00 ˘ 0.39

Real-world. We run CSNN on the Penn94, a dataset with 41.554 nodes, 1.362.229 edges, and whose
feature dimension is 5, against multiple baselines as reported in Li et al. (2022) to illustrate CSNN’s
performance in a larger ambiguous heterophilic (Luan et al., 2024) dataset. We highlight that CSNN
also outperform baselines on Squirrel, another dataset classified as ambiguous heterophilic.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Synthetic. In the following, we consider a path graph with four nodes as in Example 4.4 where
the features are initialized in a similar fashion of the TreeNeighborsMatch task, but we consider
that all nodes have a number of “blue neighbors" to add noisy information along the path, while the
source and target (nodes 3 and 0) have the same number of these neighbors. The goal is to transfer
information from node 3 to node 0.

Figure 6 shows an actual run of CSNN in such graph: if the norm of Ti is close to zero, then the
arrow pointing to i is not draw. Analogously to Si. If both are close to zero, the node is isolated, but
if none of them are we consider the following:

• If TiSj (in the in-Laplacian) and TiSj (in the out-Laplacian) are both close to 0, then the
edge pj, iq does not exist

• If TiSj (in the out-Laplacian) and TJ
i Ti are both close to 0, then edge pj, iq does not exist.

We observe restriction maps going to zero in a different configuration than the one exhibited in
Example 4.4 but still sending x

p0q

3 to node 0 in the second layer, while suppressing other node
features.

Figure 6: Illustration of running CSNN in a path
graph with four nodes along three layers.

Technically, the significance of a node i over j
in a given layer t is measured by the norm of the
the term that multiplies x

ptq
i in the expression

of pp∆in
FptqqJ∆out

Fptqqj . For instance, in Figure 6,
the restriction maps provided that 1 listens to
0 and no one else, so it can be affected only
by x

p0q

1 and by x
p0q

0 . A calculation shows that
x

p0q

1 is multiplied by a quantity about 0.7 while
x

p0q

0 is multiplied by 132, approximately. This
guarantees that in layer 2, when the message
goes from node 1 to 0, the feature x

p0q

1 is not
relevant and, in practice, is ignored.

C EXPERIMENT DETAILS

In this section, we provide the grid of hyperparameters used in the experiments. If the number of
GNN layers is set to 0, we use an MLP with two layers to learn the restriction maps. Otherwise, we
adopt a GraphSAGE architecture with the specified number of layers.

We also trained CO-GNN using the hyperparameter table from Finkelshtein et al. (2024), considering
µ and Σ as explicit hyperparameters instead of treating CO-GNNpµ, µq and CO-GNNpΣ,Σq as
separate model variants.

All datasets except for roman-empire were treated as undirected graphs. For the roman-empire
dataset, we found that using the stored list of edges was preferable to doubling the edges, since the
graphs from Platonov et al. (2023) are stored as "directed" lists where elements as (0,2) and (2,0) are
regarded as equivalent, for example.

All experiments were conducted on a cluster equipped with NVIDIA V100, A100, and H100 GPUs.
The choice of GPU depended on the availability at the time of the experiments. Each machine was
provisioned with at least 80 GB of RAM.

We also present some statistics of the heterophilic benchmarks.

D COMPLEXITY AND RUNTIME OF CSNN

Using d for dimension of the stalks, h as the number of channels and c “ dh, the complexity of our
model is as follows:

• Opd2|V |q for the embedding of graph features into the sheaf stalks;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Hyperparameter configurations used across heterophilic benchmarks.

Parameter roman-empire, amazon-ratings minesweeper, tolokers, questions

sheaf dimension 3, 4, 5 3, 4, 5
layers 2–5 2–5
hidden channels 32, 64 32, 64
of GNN layers 0–5 0–5
GNN dimension 32, 64 32, 64
dropout 0.2 0.2
input dropout 0.2 0.2
epochs 2000 2000
activation GELU GELU
left weights true, false true, false
right weights true, false true, false
learning rate 0.02 0.002, 0.02
weight decay 10´7, 10´8 10´7, 10´8

Table 6: Hyperparameter configuration used for NeighborsMatch.

Parameter NeighborsMatch

sheaf dimension 2
layers r ` 1
hidden channels 32
of GNN layers r ` 1
GNN dimension 32
dropout 0.0
input dropout 0.0
activation Id
left weights true
right weights true
layer norm true

Table 7: Statistics of the heterophilous datasets

roman-empire amazon-ratings minesweeper tolokers questions

nodes 22662 24492 10000 11758 48921
edges 32927 93050 39402 519000 153540
avg degree 2.91 7.60 7.88 88.28 6.28
node features 300 300 7 10 301
classes 18 5 2 2 2
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily -0.05 0.14 0.01 0.09 0.02
metric acc acc roc auc roc auc roc auc

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

• Op|V |d2hq “ Op|V |cdq when applying W1;
• Op|V |dh2q “ Op|V |chq when applying W2;
• Op2|E|d2hq “ Op|E|cdq for the two sparse Laplacian-vector multiplication;
• Op2d3p|V | ` |E|qq “ Opd3p|V | ` |E|qq for constructing the blocks of the Laplacians.

This gives a total of Op|V |pcpd`hq`d3q`|E|pcd`d3qq. Since we use 1 ď d ď 5, the stalk dimension
contribution is small. We highlight that our code also contains a completely message-passing based
implementation, that does not need constructing the Laplacian. This cheaper implementation yields a
complexity of Opc|V |pd ` hq ` |E|cdq.

In the following we report the runtime of CSNN and the non-sheaf models on datasets of Table 1, as
well as the improvement compared to the best baseline method.

Table 8: Runtime comparison on datasets from Platonov et al. (2023). We report the mean time in
seconds per epoch, averaged over 10 epochs. CSNN has a similar runtime compared to these simple
baselines, and presents a positive improvement on accuracy in general. The baselines achieving the
best accuracy are highlighted bold.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon

GCN 0.05s 0.04s 0.03s 0.04s 0.07s 0.01s 0.02s
SAGE 0.07s 0.04s 0.03s 0.06s 0.16s 0.01s 0.02s
GAT-sep 0.09s 0.05s 0.05s 0.12s 0.21s 0.01s 0.02s
GT-sep 0.14s 0.16s 0.07s 0.14s 0.32s 0.02s 0.01s

CSNN 0.05s 0.10s 0.06s 0.14s 0.16s 0.05s 0.03s

Improvement Ò 4.37% Ó 2.90% Ò 5.50% Ò 2.00% Ò 1.61% Ò 4.33% Ò 5.38%

We can see that sometimes CSNN is quicker than SAGE, and sometimes it is equal to GCN in terms
of runtime. This might look counter-intuitive, but CSNN achieves its best performance with fewer
parameters. For instance, for the roman-empire dataset, GCN has 2,269,714 parameters, while CSNN
has 339,900, i.e. GCN has about 668% more parameters.

17

	Introduction
	Background
	Cellular sheaves for directed graphs
	Cooperative Sheaf Neural Networks
	Analysis

	Related works
	Experiments
	Over-squashing
	Node Classification
	Graph Classification

	Conclusion
	Ethics and Reproducibility Statements
	Proofs
	Proof of Proposition 3.1
	Remark regarding Proposition 3.1 and nonlinear Sheaf Laplacian
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Additional Experiments
	Experiment details
	Complexity and runtime of CSNN

