
000 COOPERATIVE SHEAF NEURAL NETWORKS

001
002
003 **Anonymous authors**

004 Paper under double-blind review

005 006 007 ABSTRACT

008
009 Sheaf neural networks (SNNs) leverage cellular sheaves to induce flexible diffusion
010 processes on graphs, generalizing the diffusion mechanism of classical graph
011 neural networks. While SNNs have been shown to cope well with heterophilic
012 tasks and alleviate oversmoothing, we show that there is further room for
013 improving sheaf diffusion. More specifically, we argue that SNNs do not allow
014 nodes to independently choose how they cooperate with their neighbors, i.e.,
015 whether they convey and/or gather information to/from their neighbors. To address
016 this issue, we first introduce the notion of cellular sheaves over directed graphs and
017 characterize their in- and out-degree Laplacians. We then leverage our construction
018 to propose Cooperative Sheaf Neural Network (CSNN). Additionally, we formally
019 characterize its receptive field and prove that it allows nodes to selectively attend
020 (listen) to arbitrarily far nodes while ignoring all others in their path, which is key
021 to alleviating oversquashing. Our results on synthetic data empirically substantiate
022 our claims, showing that CSNN can handle long-range interactions **while avoiding**
023 oversquashing. We also show that CSNN performs strongly in heterophilic node
024 classification and long-range graph classification benchmarks.

025 026 1 INTRODUCTION

027
028 Graph neural networks (GNNs) have become the standard models for an array of predictive tasks
029 over networked data, with far-reaching applications in, e.g., physics simulation (Sanchez-Gonzalez
030 et al., 2020), recommender systems (Ying et al., 2018), and molecular modeling (Duvenaud et al.,
031 2015; Gilmer et al., 2017). Nonetheless, classical GNNs have well-known pitfalls. For instance, they
032 typically struggle on heterophilic tasks (Zhu et al., 2020) — i.e., cases where connected nodes often
033 belong to different classes or have dissimilar features. Furthermore, GNNs may also be susceptible to
034 oversmoothing (Oono and Suzuki, 2020) and oversquashing (Alon and Yahav, 2021). Oversmoothing
035 occurs when stacking multiple GNN layers yields increasingly similar node representations, whereas
036 oversquashing refers to the loss of information when carrying information through increasingly long
037 paths — due to the compression of exponentially growing information into fixed-size vectors.

038 A recent line of works (e.g., Hansen and Gebhart, 2020; Bodnar et al., 2022; Bamberger et al., 2025),
039 which we henceforth refer to as Sheaf Neural Networks (SNNs), proposes modeling node interactions
040 using cellular sheaves to achieve a principled solution to deal with oversmoothing and heterophilic
041 tasks. A cellular sheaf \mathcal{F} over an undirected graph associates (i) vector spaces $\mathcal{F}(i)$ and $\mathcal{F}(e)$, known
042 as *stalks*, to each vertex i and each edge e , and (ii) a linear map $\mathcal{F}_{i \leq e}$, known as a *restriction map*,
043 to each incident vertex-edge pair $i \leq e$. These mathematical constructs induce a sheaf Laplacian
044 which is governed by the restriction maps and generalizes the conventional Graph Laplacian.

045 In a parallel line of investigation, Finkelshtein et al. (2024) have recently shown that GNNs generally
046 lack the flexibility to allow for nodes to individually select how they cooperate with their neighbors,
047 i.e., choose whether they convey and/or gather information to/from their neighbors. This selective
048 communication (also called cooperative behavior) is an especially desirable trait to tackle oversquash-
049 ing, as it allows controlling the amount of information flowing between nodes. A natural question
050 ensues: *Can sheaf neural networks achieve cooperative behavior?*

051 In this paper, we provide a negative answer to this question. More precisely, for SNNs to zero out
052 all the incoming information at a node i , they must set $\mathcal{F}_{i \leq e} = 0$ for all incident edges e , which also
053 implies the information flowing from i is suppressed (see Figure 2). To circumvent this limitation, we
introduce the notion of directed cellular sheaves (Definition 3.2) and define their in- and out-degree

054 Laplacians (Definition 3.3). Leveraging these notions, we propose Cooperative Sheaf Neural
 055 Networks (CSNNs). Importantly, we show that cooperative behavior can be achieved using only a
 056 pair of restriction maps per node, which considerably increases computational efficiency compared to
 057 full sheaves — in which the amount of restriction maps increases linearly with the number of edges.
 058

059 Our theoretical results show that CSNN allows for nodes to selectively listen to other arbitrarily
 060 distant nodes, which is a desirable trait to alleviate over-squashing. Our results on synthetic data
 061 specifically designed to induce over-squashing (Alon and Yahav, 2021) substantiate our claims,
 062 showcasing CSNNs’ superior potential to handle long-range dependencies. In addition, extensive
 063 real-world experiments on 11 node-classification benchmarks and 2 long-range graph-classification
 064 tasks demonstrate that **CSNN typically outperforms** existing SNNs and cooperative GNNs.
 065

In summary, our **contributions** are:

- 066 1. We introduce the notions of in- and out-degree Laplacians for cellular sheaves over directed
 067 graphs, which can be used to model asymmetric relationships between nodes. We treat undirected
 068 edges as a pair of directed ones and leverage these constructions to propose CSNN — provably
 069 extending the flexibility of sheaf diffusion to accommodate cooperative behavior;
- 070 2. We provide a theoretical analysis of CSNN, showing that: (a) for each layer t in CSNN, nodes
 071 may be affected by information from nodes at distance up to $2t$ -hop neighbors (Proposition 4.2),
 072 instead of up to t -hop neighbors in usual GNNs; and (b) there exist restriction maps which make
 073 the embedding of a node i at layer t highly sensitive to the initial feature of a node j , where t is
 074 also the distance between i and j (Proposition 4.3).
- 075 3. We carry an extensive experimental campaign to validate the effectiveness of CSNNs, encom-
 076 passing both synthetic and real-world tasks. Our experiments on synthetic data show that
 077 CSNNs is remarkably capable of mitigating over-squashing and modeling long-range dependen-
 078 cies. Meanwhile, results on over 13 real-world tasks show CSNNs **typically outperform** prior
 079 sheaf-based models and cooperative GNNs.

080 2 BACKGROUND

081 For the sake of completeness, here we provide a summary of core concepts concerning cellular
 082 sheaves over undirected graphs. We also briefly discuss neural sheaf diffusion and cooperative GNNs.
 083

084 In this work, we denote an undirected graph by a tuple $G = (V, E)$ where V is a set of vertices
 085 (or nodes) and E is a set of unordered pairs of (distinct) vertices, called edges, with $n = |V|$ and
 086 $m = |E|$. We denote the neighbors of a node i in G by $N(i) = \{j : \{i, j\} \in E\}$. Next, Definition 2.1
 087 introduces the notion of cellular sheaves over undirected graphs.
 088

089 **Definition 2.1.** A **cellular sheaf** (G, \mathcal{F}) over a (undirected) graph $G = (V, E)$ associates:

- 090 1. Vector spaces $\mathcal{F}(i)$ to each vertex $i \in V$ and $\mathcal{F}(e)$ to each edge $e \in E$, called **stalks**.
- 091 2. Linear maps $\mathcal{F}_{i \trianglelefteq e} : \mathcal{F}(i) \rightarrow \mathcal{F}(e)$ to each incident vertex-edge pair $i \trianglelefteq e$, called **restriction maps**.

092 Hereafter, we assume all vertex and edge stalks are isomorphic to \mathbb{R}^d . If all restriction maps are equal
 093 to the identity map, we say the cellular sheaf is constant. Moreover, if $d = 1$, the sheaf is said trivial.
 094

095 Given the importance of the Laplacian operator for graph representation learning, it is instrumental to
 096 define the Laplacian for undirected cellular sheaves — a key concept in the design of SNNs. Towards
 097 this end, we introduce in Definition 2.2 the spaces of 0- and 1-cochains.
 098

099 **Definition 2.2.** The **space of 0-cochains**, denoted by $C^0(G, \mathcal{F})$, and the **space of 1-cochains**,
 100 $C^1(G, \mathcal{F})$, of a cellular sheaf (G, \mathcal{F}) are given by

$$101 C^0(G, \mathcal{F}) = \bigoplus_{i \in V} \mathcal{F}(i) \text{ and } C^1(G, \mathcal{F}) = \bigoplus_{e \in E} \mathcal{F}(e). \quad (1)$$

102 where \bigoplus denotes the (external) direct sum.
 103

104 Now, for each $e \in E$ choose an orientation $e = i \rightarrow j$ and consider the coboundary operator
 105 $\delta : C^0(G, \mathcal{F}) \rightarrow C^1(G, \mathcal{F})$ defined by $(\delta \mathbf{X})_e = \mathcal{F}_{j \trianglelefteq e} \mathbf{x}_j - \mathcal{F}_{i \trianglelefteq e} \mathbf{x}_i$. Then, the sheaf Laplacian is
 106 defined by $L_{\mathcal{F}} = \delta^T \delta$. If \mathcal{F} is the trivial sheaf, δ^T can be seen as the incidence matrix, recovering
 107 the $n \times n$ graph Laplacian. A more explicit way to describe the Laplacian is the following:

108 **Definition 2.3.** The **sheaf Laplacian** of a cellular sheaf (G, \mathcal{F}) is the linear operator $L_{\mathcal{F}} : 109$
 $C^0(G, \mathcal{F}) \rightarrow C^0(G, \mathcal{F})$ that, for a 0-cochain $\mathbf{X} \in C^0(G, \mathcal{F})$, outputs
110

$$111 \quad L_{\mathcal{F}}(\mathbf{X})_i := \sum_{i,j \leq e} \mathcal{F}_{i \leq e}^{\top} (\mathcal{F}_{i \leq e} \mathbf{x}_i - \mathcal{F}_{j \leq e} \mathbf{x}_j) \quad \forall i \in V. \quad (2)$$

113 The Laplacian $L_{\mathcal{F}}$ can also be seen as a positive semidefinite matrix with diagonal blocks
114 $L_{ii} = \sum_{i \leq e} \mathcal{F}_{i \leq e}^{\top} \mathcal{F}_{i \leq e}$ and non-diagonal blocks $L_{ij} = L_{ij}^{\top} = -\mathcal{F}_{i \leq e}^{\top} \mathcal{F}_{j \leq e}$.
115

116 To build intuition around Definition 2.1, we may interpret the node stalks $\mathcal{F}(i)$ as the space of private
117 opinions held by an individual i , following the perspective of Hansen and Ghrist (2021). For an edge e
118 connecting nodes i and j , the stalk $\mathcal{F}(e)$ corresponds to the public opinions exchanged between them.

119 That being said, note that $\ker L_{\mathcal{F}} = \{\mathbf{X} \in C^0(G, \mathcal{F}) \mid \mathcal{F}_{i \leq e} \mathbf{x}_i = \mathcal{F}_{j \leq e} \mathbf{x}_j \forall e = \{i, j\} \in E(G)\}$.
120 This can be understood as the space of public agreement between all pairs of neighboring nodes i
121 and j . Note that i and j can have distinct opinions about the same topic on their respective private
122 opinion spaces $\mathcal{F}(i)$ and $\mathcal{F}(j)$; however, when they publicly discuss this topic, they may prefer to
123 not manifest their true opinion. **Alternatively, since the edge stalks may be different from the node**
124 **stalks, some topics of the private opinion spaces do not need to be discussed at all.** In both cases, the
125 apparent consensus lies in $\ker L_{\mathcal{F}}$.

126 **Vector bundles.** When restriction maps are orthogonal, we call the sheaf a vector bundle. In this
127 case, $L_{\mathcal{F}}(\mathbf{X})_i := \sum_{i,j \leq e} (\mathbf{x}_i - \mathcal{F}_{i \leq e}^{\top} \mathcal{F}_{j \leq e} \mathbf{x}_j)$, for any $i \in V$. Flat vector bundles are special cases
128 of vector bundles in which we assign an orthogonal map \mathbf{O}_i to each node i and set $\mathcal{F}_{i \leq e} = \mathbf{O}_i$ for all
129 e incident to i . This entails $L_{\mathcal{F}}(\mathbf{X})_i := \sum_{i,j \leq e} (\mathbf{x}_i - \mathbf{O}_i^{\top} \mathbf{O}_j \mathbf{x}_j)$, for any $i \in V$. Note that flat vector
130 bundles only comprise n restriction maps as opposed to $2m$ maps in general cellular sheaves. Prior
131 works (Bodnar et al., 2022; Bamberger et al., 2025) have leveraged these simpler constructions to
132 propose computationally efficient sheaf-based neural networks.

133 **Neural Sheaf Diffusion (NSD).** Bodnar et al. (2022) introduce NSD building on Euler iterations of
134 the heat equation induced by $\Delta_{\mathcal{F}}$, i.e., $\dot{\mathbf{X}} = -\Delta_{\mathcal{F}} \mathbf{X}$. First, we project the initial node features \mathbf{X}
135 into h channels using an MLP η , i.e., $\mathbf{X}_0 = \eta(\mathbf{X}) \in \mathbb{R}^{nd \times h}$. Then, NSD recursively computes
136

$$137 \quad \mathbf{X}_{t+1} = (1 + (\mathbf{1}_{n \times h} \otimes \varepsilon)) \odot \mathbf{X}_t - \sigma(\Delta_{\mathcal{F}(t)}(\mathbf{I} \otimes \mathbf{W}_{1,t}) \mathbf{X}_t \mathbf{W}_{2,t}), \quad (3)$$

138 where $\mathbf{1}_{n \times h}$ is an $n \times h$ matrix of ones, $\Delta_{\mathcal{F}(t)}$ is the sheaf Laplacian at layer t , $\varepsilon \in [-1, 1]^d$ is a
139 (learned) vector scaling the features along each stalk dimension, σ is an element-wise non-linearity,
140 and $\mathbf{W}_{1,t} \in \mathbb{R}^{d \times d}$, $\mathbf{W}_{2,t} \in \mathbb{R}^{h \times h}$ are weight matrices. Importantly, the restriction maps which govern
141 $\Delta_{\mathcal{F}(t)}$ are learned in an end-to-end fashion, alongside $\mathbf{W}_{1,t}$ and $\mathbf{W}_{2,t}$.

142 **Cooperative GNNs.** Finkelshtein et al. (2024) recently proposed flexibilizing message-passing
143 GNNs by treating nodes as players that can choose how they cooperate with their neighbors. More
144 specifically, cooperative GNNs employ an auxiliary GNN, called the *action* network, that decides
145 individually how each node partakes in the message passing of the base GNN, or *environment* network.
146 The action network decides whether each node only propagates information (PROPAGATE), only
147 gathers information from neighbors (LISTEN), does none (ISOLATE) or does both (STANDARD).
148 Cooperative GNNs learn the action and environment GNNs simultaneously, using the straight-through
149 Gumbel-Softmax estimator to propagate gradients through the discrete actions of the action network.

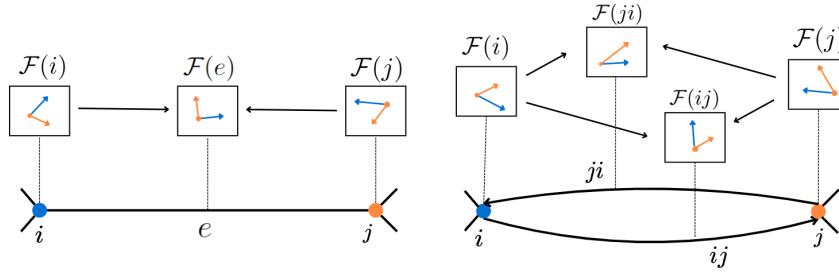
151 3 CELLULAR SHEAVES FOR DIRECTED GRAPHS

153 We kick off this section addressing our initial research question: Can SNNs achieve cooperative behav-
154 ior? Recall that communication between nodes in an SNN is governed by its sheaf Laplacian, which
155 is induced by the restriction maps. Thus, in SNNs, picking a state among PROPAGATE, LISTEN,
156 ISOLATE, and STANDARD node i translates to choosing a suitable configuration for its respective
157 restriction maps. The following result says that SNNs cannot fully alternate between these action.

158 **Proposition 3.1.** Let $i \in V$. If $L_{\mathcal{F}}(\mathbf{X})_i$ does not depend on \mathbf{x}_j for any $j \in V$ neighbor of i , then
159 $L_{\mathcal{F}}(\mathbf{X})_j = 0$ or $L_{\mathcal{F}}(\mathbf{X})_j = \sum_{j,i \leq e} \mathcal{F}_{j \leq e}^{\top} \mathcal{F}_{j \leq e} \mathbf{x}_j$.

160 Put plainly, Proposition 3.1 states that the sheaf diffusion provides a framework where a node i that
161 does not LISTEN (since it does depend on j) must not PROPAGATE (since the update of j does

162
163
164
165
166
167
168
169
170



171 Figure 1: On the left, a cellular sheaf shown for a single edge of an undirected graph with stalks
172 isomorphic to \mathbb{R}^2 . The restriction maps $\mathcal{F}_{i \leq e}, \mathcal{F}_{j \leq e}$ move the vector features between these spaces.
173 On the right, the analogous situation for a sheaf on a single pair of directed edges. Then there are
174 four, possibly distinct, restriction maps $\mathcal{F}_{i \leq ij}, \mathcal{F}_{i \leq ji}, \mathcal{F}_{j \leq ij}, \mathcal{F}_{j \leq ji}$.

175 not depend on i), independently of the action that j takes. In other words, PROPAGATE implies
176 LISTEN, which means it collapses to ISOLATE (see Figure 2).
177

178 We can circumvent this limitation by treating undirected edges as a pair of directed ones, creating
179 an additional channel of communication between nodes. To accommodate directed edges (i.e.,
180 $E \subseteq V \times V$), we propose using cellular sheaves over directed graphs.

181 Cellular sheaves over directed graphs must distinguish the restriction map where i is the source node
182 of an edge from the restriction map where i is the target node of an edge. Therefore, we change the
183 edge notation from e to ij and ji to make this distinction explicit. See Figure 1 for an illustration.

184 **Definition 3.2.** A **cellular sheaf** (G, \mathcal{F}) over a (directed) graph $G = (V, E)$ associates:

- 185 1. Vector spaces $\mathcal{F}(i)$ to each vertex $i \in V$ and $\mathcal{F}(ij)$ to each edge $ij \in E$, called **stalks**.
- 186 2. A linear map $\mathcal{F}_{i \leq ij} : \mathcal{F}(i) \rightarrow \mathcal{F}(ij)$ for each incident vertex-edge pair $i \leq ij$ and a linear map
187 $\mathcal{F}_{i \leq ji} : \mathcal{F}(i) \rightarrow \mathcal{F}(ji)$ for each incident vertex-edge pair $i \leq ji$, called **restriction maps**.

188 For simplicity, again, we henceforth assume all node and edge stalks are d -dimensional.
189

190 We are now left with the task of defining sheaf Laplacians that can be used for information diffusion
191 in directed graphs. For directed graphs, it is common to define both in- and out-degree Laplacians
192 (Agaev and Chebotarev, 2005). Given a directed graph with possibly asymmetric adjacency matrix
193 A , the out-degree Laplacian is $L^{\text{out}} := D^{\text{out}} - A$ and the in-degree Laplacian is $L^{\text{in}} := D^{\text{in}} - A$,
194 with D^{in} and D^{out} denoting the diagonal matrices containing in- and out-degree of nodes in $V(G)$.
195 Definition 3.3 below generalizes these notions to sheaves over directed graphs.

196 **Definition 3.3.** The **out-degree sheaf Laplacian** of a cellular sheaf (G, \mathcal{F}) is the linear operator
197 $L_{\mathcal{F}}^{\text{out}} : C^0(G, \mathcal{F}) \rightarrow C^0(G, \mathcal{F})$ that, for a 0-cochain $\mathbf{X} \in C^0(G, \mathcal{F})$, outputs

$$198 L_{\mathcal{F}}^{\text{out}}(\mathbf{X})_i := \sum_{j \in N(i)} (\mathcal{F}_{i \leq ij}^{\top} \mathcal{F}_{i \leq ij} \mathbf{x}_i - \mathcal{F}_{i \leq ji}^{\top} \mathcal{F}_{i \leq ji} \mathbf{x}_j), \quad \forall i \in V. \quad (4)$$

200 The **in-degree sheaf Laplacian** of a cellular sheaf (G, \mathcal{F}) is the linear operator $L_{\mathcal{F}}^{\text{in}} : C^0(G, \mathcal{F}) \rightarrow$
201 $C^0(G, \mathcal{F})$ that, for a 0-cochain $\mathbf{X} \in C^0(G, \mathcal{F})$, outputs

$$202 L_{\mathcal{F}}^{\text{in}}(\mathbf{X})_i := \sum_{j \in N(i)} (\mathcal{F}_{i \leq ji}^{\top} \mathcal{F}_{i \leq ji} \mathbf{x}_i - \mathcal{F}_{i \leq ij}^{\top} \mathcal{F}_{i \leq ij} \mathbf{x}_j), \quad \forall i \in V. \quad (5)$$

205 We note that if (G, \mathcal{F}) is the trivial sheaf, then $L_{\mathcal{F}}^{\text{out}} = (L^{\text{out}})^{\top}$ and $L_{\mathcal{F}}^{\text{in}} = L^{\text{in}}$.
206

207 **Flat vector bundles over directed graphs.** We can also improve the parameter efficiency of cellular
208 sheaves over directed graphs using flat vector bundles. Since the graphs are directed, we need to
209 distinguish between edges with identical endpoints but with different orientations. Thus, for each
210 node i , we assign a source conformal map \mathbf{S}_i and a target conformal map \mathbf{T}_i , and set $\mathcal{F}_{i \leq ij} = \mathbf{S}_i$
211 and $\mathcal{F}_{i \leq ji} = \mathbf{T}_i$ for all neighbors j of i .

212 4 COOPERATIVE SHEAF NEURAL NETWORKS

213 In this section, we leverage the sheaf Laplacians in Definition 3.3 to propose Cooperative Sheaf Neural
214 Networks (CSNNs), an SNN which allows nodes to independently to decide how they participate in

216 message diffusion, choosing whether to broadcast their information and/or to listen from the neighbors.
 217 To exploit the asymmetric communication induced by sheaves over directed graphs, we convert our
 218 input undirected graph into a directed one by replacing undirected edges with a pair of directed ones.
 219

220 We design CSNN's diffusion mechanism by composing the out-degree and the transposed in-degree
 221 sheaf Laplacians. In practice, we use their normalized versions

$$222 \quad \Delta_{\mathcal{F}}^{\text{out}} = D_{\text{out}}^{-\frac{1}{2}} L_{\mathcal{F}}^{\text{out}} D_{\text{out}}^{-\frac{1}{2}} \quad \text{and} \quad (\Delta_{\mathcal{F}}^{\text{in}})^{\top} = D_{\text{in}}^{-\frac{1}{2}} (L_{\mathcal{F}}^{\text{in}})^{\top} D_{\text{in}}^{-\frac{1}{2}},$$

223 where D_{in} , D_{out} are the block-diagonals of the in and out Laplacians, respectively.
 224

225 We define a CSNN layer by augmenting the Euler discretization of our novel heat equation
 226 $\dot{\mathbf{X}} = (\Delta_{\mathcal{F}}^{\text{in}})^{\top} \Delta_{\mathcal{F}}^{\text{out}} \mathbf{X}$ with linear transformations and a nonlinear activation function σ :
 227

$$228 \quad \mathbf{X}_{t+1} = (1 + (\mathbf{1}_{n \times h} \otimes \varepsilon)) \odot \mathbf{X}_t - \sigma((\Delta_{\mathcal{F}(t)}^{\text{in}})^{\top} \Delta_{\mathcal{F}(t)}^{\text{out}} (\mathbf{I}_n \otimes \mathbf{W}_{1,t}) \mathbf{X}_t \mathbf{W}_{2,t}), \quad (6)$$

230 where $\mathbf{1}_{n \times h}$ is an n -by- h matrix of ones, $\varepsilon \in [-1, 1]^{d \times 1}$, and $\mathbf{W}_{1,t} \in \mathbb{R}^{d \times d}$ and $\mathbf{W}_{2,t} \in$
 231 $\mathbb{R}^{h \times h}$ are learned matrices responsible for mixing node features and channels, respectively.
 232

233 **Efficient implementation.** For computational efficiency, we use flat vector bundles to define
 234 both the in- and out-degree sheaf Laplacians. More precisely, for each node i , we define a source
 235 conformal map \mathbf{S}_i and a target conformal map \mathbf{T}_i for all neighbor j of i . Thus, out-degree sheaf
 236 Laplacian simplifies to

$$237 \quad L_{\mathcal{F}}^{\text{out}}(\mathbf{X})_i := \sum_{j \in N(i)} (\mathbf{S}_i^{\top} \mathbf{S}_i \mathbf{x}_i - \mathbf{T}_i^{\top} \mathbf{S}_j \mathbf{x}_j), \quad (7)$$

239 while the transpose of the in-degree sheaf Laplacian is

$$240 \quad ((L_{\mathcal{F}}^{\text{in}})^{\top}(\mathbf{X}))_i := \sum_{j \in N(i)} (\mathbf{T}_i^{\top} \mathbf{T}_i \mathbf{x}_i - \mathbf{T}_i^{\top} \mathbf{S}_j \mathbf{x}_j). \quad (8)$$

242 Note these matrices have a block structure, with diagonals $(L_{\mathcal{F}}^{\text{in}})^{\top}_{ii} = \sum \mathbf{T}_i^{\top} \mathbf{T}_i$, $(L_{\mathcal{F}}^{\text{out}})_{ii} = \sum \mathbf{S}_i^{\top} \mathbf{S}_i$,
 243 and remaining blocks $(L_{\mathcal{F}}^{\text{in}})^{\top}_{ij} = (L_{\mathcal{F}}^{\text{out}})_{ij} = -\mathbf{T}_i^{\top} \mathbf{S}_j$. We point out that, since conformal maps are of
 244 the form $\mathbf{S}_i = C_{\mathbf{S}_i} Q_i$ and $\mathbf{T}_i = C_{\mathbf{T}_i} R_i$, for some orthogonal matrices Q_i, R_i and scalars $C_{\mathbf{S}_i}, C_{\mathbf{T}_i}$,
 245 **computing their inverses and normalizing the Laplacian becomes trivial. In this case, block scaling**
 246 **simplifies to a block matrix of scalars time identity and** the normalization is both numerically stable
 247 and computationally efficient.

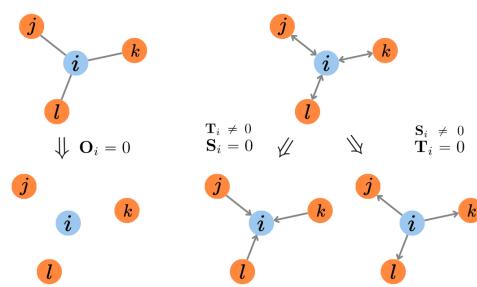
248 The first step of each layer t consists of computing the conformal maps $\mathbf{T}_{i,t}$ and $\mathbf{S}_{i,t}$. We do this
 249 through learnable functions $\mathbf{S}_{i,t} = \eta(G, \mathbf{X}_t, i)$ and $\mathbf{T}_{i,t} = \phi(G, \mathbf{X}_t, i)$, $\forall i \in V$. As in prior works on
 250 SNNs Bodnar et al. (2022); Bamberger et al. (2025), we use neural networks to learn the restriction
 251 maps. In addition, we use Householder reflections (Mhammedi et al., 2017; Obukhov, 2021) to
 252 compute orthogonal maps and multiply them by a learned positive constant for each node.
 253

254 4.1 ANALYSIS

255 We now show that CSNN can achieve cooperative
 256 behavior, characterize its receptive field, and prove
 257 that appropriate conformal maps can help CSNNs
 258 handle long-range interactions.
 259

260 We note that CSNN allows each node i drift from
 261 the STANDARD behavior ($\mathbf{S}_i, \mathbf{T}_i \neq 0$) by zeroing-
 262 out its conformal maps. Setting $\mathbf{T}_i \neq 0$ drives
 263 i to LISTEN. Setting $\mathbf{S}_i \neq 0$ corresponds to
 264 PROPAGATE. Finally, $\mathbf{S}_i = \mathbf{T}_i = 0$ implies
 265 ISOLATE.

266 We highlight the importance of considering the
 267 directions: for undirected graphs, there is a single
 268 map \mathbf{O}_i for each node i , where $\mathbf{O}_i = 0$ could only
 269 mean that i does not communicate at all. In other
 words, the possible actions are only STANDARD and ISOLATE.



266 Figure 2: $\mathbf{O}_i = 0$ creates the effect of isolating
 267 the node i . Directed edges provide the possibil-
 268 ity of performing LISTEN and PROPAGATE,
 269 separately. We illustrate this in Figure 2.

270 Thus, to show a model achieves cooperative behavior, we must ensure the following: (a) if i does
 271 not listen, then its update cannot depend on \mathbf{x}_j , $\forall j \in V, j \neq i$; and (b) if i has a non-propagating
 272 neighbor k , then its update cannot depend on \mathbf{x}_k . Proposition 4.1 shows that CSNN satisfies these
 273 conditions, while Figure 3 illustrates them and delineates limitations of the NSD model.

274 **Proposition 4.1.** *If the target map \mathbf{T}_i is zero, then $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_i = 0$. If the source map $\mathbf{S}_k = 0$
 275 for some neighbor k of i , then $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_i$ does not depend on \mathbf{x}_k .*

276 Moreover, our model has the ability to reach longer
 277 distances. In most GNNs, if t is the distance between
 278 two nodes i and j , then they can only communicate
 279 after t layers. CSNN enables communication between
 280 these nodes after $\lceil t/2 \rceil$ layers.

281 **Proposition 4.2.** *In each layer t , the features of a node
 282 can be affected by the features of nodes up to $2t$ -hops.*

283 We also show in Proposition 4.3 that CSNNs with t
 284 layers are capable of making i and j communicate
 285 while ignoring all the other nodes on a path from i to j
 286 such that $|j - i| \leq t$. This feature is an asset to handle
 287 over-squashing in long range tasks, allowing CSNN
 288 to selectively tend to information from distant nodes.
 289 Example 4.4 illustrates this result in a four-node graph.
 290

291 **Proposition 4.3.** *Let i and j be nodes at a distance t . In CSNN, i can learn to ignore all the $t - 1$
 292 nodes in the shortest path from i to j while receiving the information from j in the t -layer. Moreover,
 293 if we choose a path with $n > t - 1$ nodes between i and j , then i receives the information from j in
 294 the $(n + 1)$ -layer.*

295 **Example 4.4.** *Consider a directed graph with vertex set $V = \{1, 2, 3, 4\}$ and edge set $E = \{(1, 2),$
 296 $(2, 3), (3, 4), (4, 3), (3, 2), (2, 1)\}$. We follow the proof of Proposition 4.3 to show we can propagate
 297 a message from node 4 to node 1, while the latter ignores all remaining nodes. We denote the
 298 target/source map of node i at layer t by $\mathbf{T}_{i,t}$ and $\mathbf{S}_{i,t}$ respectively. To achieve our desired result:*

300 a. *In the first layer, must have zero source and target maps except for $\mathbf{T}_{3,1}$ and $\mathbf{S}_{4,1}$. A simple
 301 verification gives that $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_k = 0$, for all $k \neq 3$. So $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_k = 0$, for
 302 all $k \neq 3$. If $k = 3$, then $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_3 = -2\mathbf{T}_{4,1}^{\top} \mathbf{S}_{4,1} \mathbf{x}_4^{(0)}$, with $\mathbf{x}_k^{(t)}$ denoting the feature
 303 vector of k at layer t , thus $\mathbf{x}_4^{(0)}$ will be the only feature vector to influence $\mathbf{x}_3^{(1)}$;*

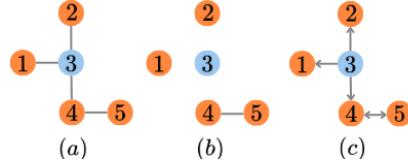
305 b. *In the second layer, we must have that all source and target maps are zero except for $\mathbf{T}_{2,2}$ and
 306 $\mathbf{S}_{3,2}$. Then $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_k = 0$, for all $k \neq 2$ and $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_2 = -2\mathbf{T}_{2,2}^{\top} \mathbf{S}_{3,2} \mathbf{x}_3^{(1)}$.
 307 Thus $\mathbf{x}_3^{(1)}$ will be the only feature vector to influence $\mathbf{x}_2^{(2)}$;*

309 c. *In the third layer, all source and target maps must be zero except for $\mathbf{T}_{1,3}$ and $\mathbf{S}_{2,3}$. Then
 310 $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_k = 0$, for all $k \neq 1$ and $((L_{\mathcal{F}}^{\text{in}})^{\top} L_{\mathcal{F}}^{\text{out}}(\mathbf{X}))_1 = -2\mathbf{T}_{1,3}^{\top} \mathbf{S}_{2,3} \mathbf{x}_2^{(3)}$. Thus $\mathbf{x}_1^{(3)}$ is
 311 influenced only by $\mathbf{x}_2^{(2)}$, which was influenced only by $\mathbf{x}_3^{(1)}$, which is influenced only by $\mathbf{x}_4^{(0)}$.*

313 Consequently, $\mathbf{x}_1^{(3)}$ is affected by $\mathbf{x}_4^{(0)}$ while ignoring the features of all other nodes in all other layers.

314 *This configuration shows that although CSNN can achieve 2-hop neighbors, it can also refrain from
 315 this behavior to only access 1-hop neighbors per layer. Moreover, this flexibility indicates there are
 316 multiple forms to establish communication between two distant nodes while ignoring others.*

317 Observe that the derivative of $\mathbf{x}_1^{(3)}$ in relation to $\mathbf{x}_4^{(0)}$ can be as high as the values of the non-zero
 318 \mathbf{T}_i and \mathbf{S}_i permit. This shows our model can mitigate over-squashing, which refers to the failure
 319 of an information propagating to distance nodes. Di Giovanni et al. (2023) and Topping et al.
 320 (2022), studied over-squashing in message passing neural networks through a bound on the Jacobian
 321 $\left| \frac{\partial \mathbf{x}_i^{(t)}}{\partial \mathbf{x}_j^{(0)}} \right| \leq c^t \hat{A}_{ij}^t$, where t is the layer, c is a constant that depends on the architecture of the model,
 322 and \hat{A} the normalized adjacency matrix. Moreover, over-squashing occurs when we have a small
 323



277 Figure 3: Given a graph (a) we illustrate
 278 the consequences of preventing node 3 from
 279 listening. For NSD (b), this means $L_{\mathcal{F}}(\mathbf{X})_3$
 280 must not depend on \mathbf{x}_j , for $j = 1, 2, 4$
 281 implying $\mathcal{F}_{j \leq e} = 0$ and leading to $L_{\mathcal{F}}(\mathbf{X})_j$
 282 not depending on \mathbf{x}_3 , preventing node 3
 283 from propagating information. In CSNN
 284 (c), we can set $\mathbf{T}_3 = 0$. Provided $\mathbf{S}_3 \neq 0$,
 285 outbound communication is possible.

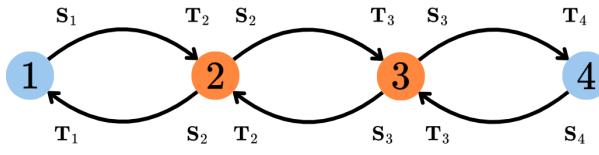


Figure 4: Illustration of Example 4.4. At layer t , we consider that all maps but $\mathbf{T}_{4-t,t}$ and $\mathbf{S}_{4-(t-1),t}$ are 0, enabling the flow of information from right to left following the bottom edges.

derivative $\partial \mathbf{x}_i^{(t)} / \partial \mathbf{x}_j^{(0)}$, since it means that after t layers, the feature at i is mostly insensitive to the information initially contained at j , i.e., the information was not propagated properly. Proposition 4.3 states that the feature at node i can be sensitive to the information initially contained at node j , independently of the distance, given enough layers and an appropriate configuration of restriction maps. **Consequently, Proposition 4.3 suggests that the restriction maps regulating the sensibility between distant nodes can provide higher upper bounds to $\partial \mathbf{x}_i^{(t)} / \partial \mathbf{x}_j^{(0)}$ while decreasing the value of $\partial \mathbf{x}_i^{(t)} / \partial \mathbf{x}_k^{(0)}$ for other nodes k .**

5 RELATED WORKS

Cooperative GNNs. Finkelshtein et al. (2024) were the first to propose flexibilizing message passing by allowing nodes to choose how they cooperate with each other. Each layer of their model, CO-GNN, employs an additional GNN **that chooses an action for each node**. While CO-GNNs can be employed with arbitrary base and action networks, their main caveat is that training can become increasingly difficult as these networks become more complex — the grid of hyper-parameters grows considerably and the stochastic nature of the action network may affect model selection. Different from CO-GNN, our CSNN does not rely on discrete actions and can smoothly modulate between cooperative behavior patterns.

Sheaf Neural Networks. Besides works on SNNs for graph data with real-valued node features, recent works have expanded the literature to accommodate heterogeneous edge types (Braithwaite et al., 2024), hypergraphs (Duta et al., 2023), **nonlinear Sheaf Laplacians** (Zaghen et al., 2024), and node features living on Riemann manifolds (Battiloro et al., 2024). While recent works on SNNs learn restriction maps in an end-to-end fashion, there are also prior works in which they are manually constructed (Hansen and Ghrist, 2019) or computed as a pre-processing step (Barbero et al., 2022).

Quiver Laplacians. Sumray et al. (2024) propose sheaf Laplacians over quivers **(directed graphs w/ self-loops) to improve feature selection on tabular data, with no learning component involved**. The in- and out-Laplacians we defined here are not particular cases of the Laplacians over quivers. The former are positive semi-definite matrices, while our Laplacians may have complex eigenvalues with negative real parts.

6 EXPERIMENTS

We provide both synthetic and real-world experiments to evaluate the performance of CSNN, including node- and graph-level prediction tasks. Section 6.1 assess CSNN’s capacity to circumvent over-squashing using the NeighborsMatch benchmark proposed by Alon and Yahav (2021). Section 6.2 presents experiments on eleven node classification tasks, showcasing the effectiveness of CSNN for heterophilic graphs. Finally, Section 6.3 consider the Peptides datasets from the Long Range Graph Benchmark (Dwivedi et al., 2022) to substantiate the capability of our model to mitigate under-reaching and over-squashing on real-world graph classification. **We also provide additional experiments in Appendix B.**

6.1 OVER-SQUASHING

In order to verify our theoretical results on the capacity of CSNN to alleviate over-squashing, we reproduce the NeighborsMatch problem proposed by Alon and Yahav (2021), using the same framework. The datasets consist of binary trees of depth r , with the root node as the target, the leaves

378 containing its possible labels, and the leaf with the same number of neighbors as the target node
 379 containing its true label. We provide the parameters used for this task in Appendix C.
 380

381 Figure 5 shows GCN (Kipf and Welling, 2017) and GIN (Xu et al., 2019) fail to fit the datasets
 382 starting from $r = 4$ and GAT (Veličković et al., 2018) and GGNN (Li et al., 2016) fail to fit the
 383 datasets starting from $r = 5$. These models suffer from over-squashing and are not able to distinguish
 384 between different training examples, while the CSNN model reaches perfect accuracy for all tested r .
 385

386 Alon and Yahav (2021) argue that the difference in performance for the GNNs are related to how
 387 node features are updated: on one hand, GCN and GIN aggregate all neighbor information before
 388 combining it with the representation of the target node, forcing them to compress all incoming
 389 information into a single vector. On the other hand, GAT uses attention to selectively weigh messages
 390 based on the representation of the target node, allowing it (to some degree) to filter out irrelevant
 391 edges and only compress information from a subset of the neighbors. So models like GAT (and
 392 GGNN) that compress less information per step can handle higher r better than GCN and GIN.
 393

394 This experiment shows that CSNN is more
 395 efficient in ignoring irrelevant nodes and can
 396 avoid loosing relevant information. Moreover,
 397 Proposition 4.3 provides theoretical support for
 398 this result, as it states that there are choices of
 399 parameters for which the model can listen *only*
 400 to the nodes along a path between distant nodes
 401 i and j , enabling selective communication to
 402 diminish noise impact.
 403

404 **Comparison against other sheaf models.** Notably, CSNN outperforms other sheaf methods
 405 in this task. BuNN reports 100% accuracy until
 406 $r = 6$. Then it drops to 71% and 42% for $r = 7$
 407 and $r = 8$, respectively, as reported in Bamberger et al. (2025). For NSD with orthogonal maps, we
 408 obtained 100% accuracy when $r = 2$, 91% for $r = 3$, and then a sharp drop to 5% when $r = 4$.
 409

410 6.2 NODE CLASSIFICATION

411 **Datasets.** We evaluate our model on the five recently proposed heterophilic graphs from Platonov et al.
 412 (2023), and also on six classical ones for which benchmarking results can be found in Pei et al. (2020);
 413 Rozemberczki et al. (2021); Tang et al. (2009). As pointed out in Platonov et al. (2023), the datasets
 414 Squirrel and Chameleon have many duplicate nodes, which may lead to data leakage. Following
 415 their guidelines, we use their cleaned version of these datasets to ensure a meaningful evaluation. For
 416 binary classification datasets, we report AUROC, while for multiclass datasets we report accuracy.
 417

418 Table 1: Performance comparison on datasets from Platonov et al. (2023). AUROC is reported for
 419 minesweeper, tolokers and questions, accuracy is reported for the remaining datasets. CSNN is the
 420 best-performing method in 6 out of 7 datasets.
 421

Model Edge Homophily	roman-empire 0.05	amazon-ratings 0.38	minesweeper 0.68	tolokers 0.59	questions 0.84	squirrel 0.20	chameleon 0.23
GCN	73.69 ± 0.74	48.70 ± 0.63	89.75 ± 0.52	83.64 ± 0.67	76.09 ± 1.27	39.47 ± 1.47	40.89 ± 4.12
SAGE	85.74 ± 0.67	53.63 ± 0.39	93.51 ± 0.57	82.43 ± 0.44	76.44 ± 0.62	36.09 ± 1.99	37.77 ± 4.14
GAT	80.87 ± 0.30	49.09 ± 0.63	92.01 ± 0.68	83.70 ± 0.47	77.43 ± 1.20	35.62 ± 2.06	39.21 ± 3.08
GAT-sep	88.75 ± 0.41	52.70 ± 0.62	93.91 ± 0.35	83.78 ± 0.43	76.79 ± 0.71	35.46 ± 3.10	39.26 ± 2.50
GT	86.51 ± 0.73	51.17 ± 0.66	91.85 ± 0.76	83.23 ± 0.64	77.95 ± 0.68	36.30 ± 1.98	38.87 ± 3.66
GT-sep	87.32 ± 0.39	52.18 ± 0.80	92.29 ± 0.47	82.52 ± 0.92	78.05 ± 0.93	36.66 ± 1.63	40.31 ± 3.01
CO-GNN	89.44 ± 0.50	54.20 ± 0.34	97.35 ± 0.63	84.84 ± 0.96	75.97 ± 0.89	39.39 ± 2.76	41.14 ± 5.40
O(d)-NSD	80.41 ± 0.72	42.76 ± 0.54	92.15 ± 0.84	78.83 ± 0.76	69.69 ± 1.46	35.79 ± 3.34	37.93 ± 2.24
BuNN	91.75 ± 0.39	53.74 ± 0.51	98.99 ± 0.16	84.78 ± 0.80	78.75 ± 1.09	-	-
CSNN	92.63 ± 0.50	52.07 ± 1.00	99.07 ± 0.25	85.45 ± 0.53	79.31 ± 1.22	41.18 ± 2.23	43.09 ± 3.17

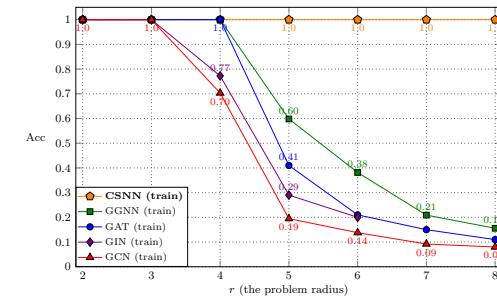


Figure 5: Accuracy for increasing tree depths in the NeighborsMatch task. CSNN consistently achieves 100% accuracy for all values of r .

430 **Experimental setting.** As baselines for benchmarks in Platonov et al. (2023), we use GCN (Kipf
 431 and Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al., 2018) and GT (Shi
 432 et al., 2021), together with the variations GAT-sep and GT-sep, which concatenate the representation
 433

432 Table 2: Accuracy for node classification datasets on the fixed splits of Pei et al. (2020). CSNN
433 achieves the best results in 3 out of 4 datasets.

Model Edge Homophily	Texas 0.11	Wisconsin 0.21	Film 0.22	Cornell 0.30
GGCN	84.86 \pm 4.55	86.86 \pm 3.29	37.54 \pm 1.56	85.68 \pm 6.63
H2GCN	84.86 \pm 7.23	87.65 \pm 4.98	35.70 \pm 1.00	82.70 \pm 5.28
GPRGNN	78.38 \pm 4.36	82.94 \pm 4.21	34.63 \pm 1.22	80.27 \pm 8.11
FAGCN	82.43 \pm 6.89	82.94 \pm 7.95	34.87 \pm 1.25	79.19 \pm 9.79
MixHop	77.84 \pm 7.73	75.88 \pm 4.90	32.22 \pm 2.34	73.51 \pm 6.34
GCNII	77.57 \pm 3.83	80.39 \pm 3.40	37.44 \pm 1.30	77.86 \pm 3.79
Geom-GCN	66.76 \pm 2.72	64.51 \pm 3.66	31.59 \pm 1.15	60.54 \pm 3.67
PairNorm	60.27 \pm 4.34	48.43 \pm 6.14	27.40 \pm 1.24	58.92 \pm 3.15
GraphSAGE	82.43 \pm 6.14	81.18 \pm 5.56	34.23 \pm 0.99	75.95 \pm 5.01
GCN	55.14 \pm 5.16	51.76 \pm 3.06	27.32 \pm 1.10	60.54 \pm 5.30
GAT	52.16 \pm 6.63	49.41 \pm 4.09	27.44 \pm 0.89	61.89 \pm 5.05
MLP	80.81 \pm 4.75	85.29 \pm 3.31	36.53 \pm 0.70	81.89 \pm 6.40
FSGNN	87.57 \pm 4.86	87.65 \pm 3.51	35.62 \pm 0.87	87.30 \pm 4.53
GloGNN	84.32 \pm 4.15	87.06 \pm 3.53	37.35 \pm 1.30	83.51 \pm 4.26
ACMGCN	87.84 \pm 4.40	88.43 \pm 3.22	36.28 \pm 1.09	85.14 \pm 6.07
CO-GNN	77.57 \pm 5.41	83.73 \pm 4.03	36.26 \pm 3.74	72.70 \pm 5.47
Diag-NSD	85.67 \pm 6.95	88.63 \pm 2.75	37.79 \pm 1.01	86.49 \pm 7.35
O(d)-NSD	85.95 \pm 5.51	89.41 \pm 4.74	37.81 \pm 1.15	84.86 \pm 4.71
Gen-NSD	82.97 \pm 5.13	89.21 \pm 3.84	37.80 \pm 1.22	85.68 \pm 6.51
CSNN	87.30 \pm 5.93	90.00 \pm 2.83	38.03 \pm 1.12	81.62 \pm 4.32

453 of a node to the mean of its neighbors instead of summing them (Zhu et al., 2020). These are all
454 classical baselines used in Platonov et al. (2023) to compare against GNN architectures specifically
455 developed for heterophilic settings, and that achieve the best performance in most cases. We also
456 compare CSNN against recent models such as CO-GNN, NSD, and BuNN (Bamberger et al., 2025).
457 Results for BuNN on [Squirrel](#), [Chameleon](#), and the datasets in Table 2 are not available, since we
458 do not have access to their code.

459 For the remaining datasets, we compare against the classical GCN, GAT and SAGE; the models
460 specifically tailored for heterophilic data GGCN (Yan et al., 2022), Geom-GCN (Pei et al., 2020),
461 H2GCN (Zhu et al., 2020), GPRGNN (Chien et al., 2020), FAGCN (Bo et al., 2021), **FSGNN** (Maurya
462 et al., 2022), **GloGNN** Li et al. (2022), **ACMGCN** (Luan et al., 2022), and MixHop (Abu-El-Haija
463 et al., 2019); and the models GCNII (Chen et al., 2020) and PairNorm (Zhao and Akoglu, 2020)
464 designed to alleviate oversmoothing. We use the 10 fixed splits proposed by Platonov et al. (2023)
465 and Pei et al. (2020). We refer to Appendix C for further implementation details.

466 **Results.** Table 1 and Table 2 show that CSNN is the best-performing method in 9 out of 11 datasets.
467 These results highlight our model’s capacity to deal with heterophilic graphs of different sizes and
468 heterophily levels. We note CSNN often outperforms both NSD and CO-GNN in Table 1. While we
469 report the results in Table 2 for completeness, we note they exhibit high variance — in accordance
470 to the findings of Platonov et al. (2023), which highlight that the small scale of these datasets may
471 incur unstable and statistically insignificant results.

472 6.3 GRAPH CLASSIFICATION

474 To assess the effectiveness of CSNNs on long-
475 range tasks, we evaluate it on the peptides
476 dataset from the Long Range Graph Benchmark
477 Dwivedi et al. (2022). It is a dataset containing
478 15k graphs and two different tasks: peptides-
479 func is a graph classification task, while
480 peptides-struct is a regression one. We report
481 average precision (AP) for peptides-func and
482 mean absolute error (MAE) for peptides-struct.

483 **Setup.** We follow the experimental setup of
484 Tönshoff et al. (2024), and tune the network
485 hyperparameters keeping the $\sim 500k$ parameter
486 budget proposed by Dwivedi et al. (2022) for

471 Table 3: Performance comparison of models on
472 the peptides datasets.

Model	peptides-func \uparrow	peptides-struct \downarrow
GCN	68.60 \pm 0.50	24.60 \pm 0.07
GINE	66.21 \pm 0.67	24.73 \pm 0.17
GatedGCN	67.65 \pm 0.47	24.77 \pm 0.09
DReW	71.50 \pm 0.44	25.36 \pm 0.15
SAN	64.39 \pm 0.75	25.45 \pm 0.12
GPS	65.34 \pm 0.91	25.09 \pm 0.14
G-ViT	69.42 \pm 0.75	24.49 \pm 0.16
Exphormer	65.27 \pm 0.43	24.81 \pm 0.07
BuNN	72.76 \pm 0.65	24.63 \pm 0.12
CSNN	71.58 \pm 0.80	24.32 \pm 0.04

486 fair comparison. We run the model using four different seeds and report mean and standard deviation
487 of the evaluation metrics. The baselines are taken from Tönshoff et al. (2024) and we also compare
488 against the results reported for BuNN by Bamberger et al. (2025).

489 **Results.** Our model achieves the best performance in the peptides-struct dataset, and second-best in
490 the peptides-func, as shown in Table 3. These results further strengthen our claims on the capacity
491 of CSNNs to mitigate over-squashing and perform better in scenarios where long-range and under-
492 reaching are known issues.

494 7 CONCLUSION

497 This work proposed Cooperative Sheaf Neural Networks, a novel SNN architecture that incorporates
498 directionality in order to increase its efficiency by learning sheaves with conformal maps, allowing
499 nodes to choose the optimal behavior in terms of information propagation with respect to its neighbors.
500 We provided theoretical insights on how CSNN can alleviate over-squashing due to its capacity to
501 smoothly modulate node behavior in information diffusion. We also validated its effectiveness on
502 node and graph classification experiments on heterophilic graphs and long-range tasks.

503 **Limitations and Future Works.** While CSNN is not computationally more taxing than other SNNs, it
504 is worth pointing that developing strategies to scale sheaf-based networks is a major research challenge.
505 While we have used conformal maps to reduce the parameter complexity of restriction maps, we leave
506 open the possibility that there are further ways to improve the scalability of CSNN. We also believe
507 that efficient message-passing implementations could represent a step towards large-scale SNNs.

508 Another promising direction for future works is extending SNNs to cope with high-order structures
509 like cell- and simplicial complexes, possibly allowing for more expressive models and promoting
510 long-range communication with fewer layers.

512 8 ETHICS AND REPRODUCIBILITY STATEMENTS

514 **Ethics Statement.** We do not foresee immediate negative societal or ethical impacts at this stage of
515 the work.

517 **Reproducibility Statement.** Aiming to secure reproducibility of our work, we provide proofs of
518 our theoretical results and in experiment detail in Appendix A and Appendix C. Moreover, we will
519 provide a public code once the review process is complete.

521 REFERENCES

523 Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
524 Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
525 chitectures via sparsified neighborhood mixing. In *International Conference on Machine Learning*,
526 pages 21–29. PMLR, 2019.

527 Rafiq Agaev and Pavel Chebotarev. On the spectra of nonsymmetric laplacian matrices. *Linear*
528 *Algebra and its Applications*, 399:157–168, 2005. Special Issue devoted to papers presented at the
529 International Meeting on Matrix Analysis and Applications, Ft. Lauderdale, FL, 14-16 December
530 2003.

531 Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
532 In *International Conference on Learning Representations*, 2021.

534 Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural net-
535 works for message diffusion on graphs. In *The Thirteenth International Conference on Learning*
536 *Representations*, 2025.

538 Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar Veličković,
539 and Pietro Liò. Sheaf neural networks with connection laplacians. In *ICML Topological, Algebraic
and Geometric Learning Workshop 2022*, 2022.

540 Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent
541 bundle convolutional learning: From manifolds to cellular sheaves and back. *IEEE Transactions*
542 *on Signal Processing*, 2024.

543 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
544 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 35,
545 pages 3950–3957, 2021.

546 Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
547 Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
548 *Advances in Neural Information Processing Systems*, 35:18527–18541, 2022.

549 Luke Braithwaite, Iulia Duta, and Pietro Lió. Heterogeneous sheaf neural networks. In *arXiv preprint*
550 *arXiv:2409.08036*, 2024.

551 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
552 convolutional networks. In *International conference on machine learning*, pages 1725–1735.
553 PMLR, 2020.

554 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
555 graph neural network. *arXiv preprint arXiv:2006.07988*, 2020.

556 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
557 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
558 and topology. In *International Conference on Machine Learning*, pages 7865–7885. PMLR, 2023.

559 Iulia Duta, Giulia Cassarà, Fabrizio Silvestri, and Pietro Lió. Sheaf hypergraph networks. In *Advances*
560 *in Neural Information Processing Systems (NeurIPS)*, 2023.

561 David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
562 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
563 fingerprints. *Advances in neural information processing systems (NeurIPS)*, 2015.

564 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
565 and Dominique Beaini. Long range graph benchmark. *Advances in Neural Information Processing*
566 *Systems*, 35:22326–22340, 2022.

567 Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
568 neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
569 Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, *Proceedings of the 41st International*
570 *Conference on Machine Learning*, volume 235 of *Proceedings of Machine Learning Research*,
571 pages 13633–13659. PMLR, 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/finkelshtein24a.html>.

572 Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
573 message passing for quantum chemistry. In *International conference on machine learning (ICML)*,
574 2017.

575 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
576 *Advances in neural information processing systems*, 30, 2017.

577 Jakob Hansen and Thomas Gebhart. Sheaf neural networks. *NeurIPS Workshop on Topological Data*
578 *Analysis and Beyond*, 2020.

579 Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. *Journal of Applied*
580 *and Computational Topology*, 2019.

581 Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. *SIAM Journal on Applied*
582 *Mathematics*, 2021.

583 T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
584 *International Conference on Learning Representations (ICLR)*, 2017.

594 Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
595 Finding global homophily in graph neural networks when meeting heterophily. In *International*
596 *conference on machine learning*, pages 13242–13256. PMLR, 2022.

597

598 Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
599 networks. In *International Conference on Learning Representations (ICLR)*, 2016.

600

601 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
602 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in neural*
603 *information processing systems*, 35:1362–1375, 2022.

604

605 Sitao Luan, Chenqing Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
606 Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks,
607 models, theoretical analysis, applications and challenges. *CoRR*, 2024.

608

609 Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
610 graph neural networks. *Journal of Computational Science*, 62:101695, 2022.

611

612 Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
613 parametrisation of recurrent neural networks using householder reflections. In *International*
614 *Conference on Machine Learning*, pages 2401–2409. PMLR, 2017.

615

616 Anton Obukhov. Efficient householder transformation in pytorch, 2021. URL www.github.com/toshas/torch-householder. Version: 1.0.1, DOI: 10.5281/zenodo.5068733.

617

618 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
619 classification. In *International Conference on Learning Representations (ICLR)*, 2020.

620

621 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
622 graph convolutional networks. *arXiv preprint arXiv:2002.05287*, 2020.

623

624 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
625 A critical look at the evaluation of gnns under heterophily: Are we really making progress? *The*
626 *Eleventh International Conference on Learning Representations*, 2023.

627

628 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal*
629 *of Complex Networks*, 9(2):cnab014, 2021.

630

631 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
632 Battaglia. Learning to simulate complex physics with graph networks. In *International conference*
633 *on machine learning (ICML)*, 2020.

634

635 Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
636 prediction: Unified message passing model for semi-supervised classification. In *Proceedings of the*
637 *Thirtieth International Joint Conference on Artificial Intelligence*, pages 1548–1554. International
638 Joint Conferences on Artificial Intelligence Organization, 2021.

639

640 Otto Sumray, Heather A Harrington, and Vudit Nanda. Quiver laplacians and feature selection. *arXiv*
641 *preprint arXiv:2404.06993*, 2024.

642

643 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
644 *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data*
645 *mining*, pages 807–816, 2009.

646

647 Jan Tönshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
648 the long-range graph benchmark. *Transactions on Machine Learning Research*, 2024.

649

650 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
651 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International*
652 *Conference on Learning Representations*, 2022.

653

654 Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
655 Bengio. Graph attention networks. *International Conference on Learning Representations*, 2018.

648 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
649 networks? In *International Conference on Learning Representations*, 2019.
650

651 Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
652 same coin: Heterophily and oversmoothing in graph convolutional neural networks. In *2022 IEEE
653 International Conference on Data Mining (ICDM)*, pages 1287–1292. IEEE, 2022.

654 Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
655 Graph convolutional neural networks for web-scale recommender systems. In *ACM SIGKDD
656 international conference on knowledge discovery & data mining (KDD)*, 2018.
657

658 Olga Zaghen, Antonio Longa, Steve Azzolin, Lev Telyatnikov, Andrea Passerini, and Pietro Lio.
659 Sheaf diffusion goes nonlinear: Enhancing gnns with adaptive sheaf laplacians. In *ICML 2024
660 Workshop on Geometry-grounded Representation Learning and Generative Modeling*, 2024.

661 Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. *International
662 Conference on Learning Representations.*, 2020.
663

664 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
665 homophily in graph neural networks: Current limitations and effective designs. *Advances in neural
666 information processing systems (NeurIPS)*, 2020.
667

668 A PROOFS

669 A.1 PROOF OF PROPOSITION 3.1

670 *Proof.* Suppose $L_{\mathcal{F}}(\mathbf{X})_i$ does not depend of \mathbf{x}_j for any j neighbor of i . Since $L_{\mathcal{F}}(\mathbf{X})_i =$
671 $\sum_{i,j \leq e} \mathcal{F}_{i \leq e}^\top (\mathcal{F}_{i \leq e} \mathbf{x}_i - \mathcal{F}_{j \leq e} \mathbf{x}_j)$, this means $\mathcal{F}_{i \leq e}^\top \mathcal{F}_{j \leq e} \mathbf{x}_j = 0$. Therefore, $\mathcal{F}_{j \leq e} \mathbf{x}_j \in \ker(\mathcal{F}_{i \leq e}^\top)$,
672 for any j neighbor of i . Thus, $\mathcal{F}_{i \leq e} \mathbf{x}_i = 0$ or $\mathcal{F}_{j \leq e} \mathbf{x}_j = 0$, for every j .
673

674 Note that, $\mathcal{F}_{i \leq e} \mathbf{x}_i = 0$ implies that $L_{\mathcal{F}}(\mathbf{X})_j = \sum_{j,i \leq e} \mathcal{F}_{j \leq e}^\top \mathcal{F}_{j \leq e} \mathbf{x}_j$.
675

676 If $\mathcal{F}_{j \leq e} \mathbf{x}_j = 0$ for every j , then $L_{\mathcal{F}}(\mathbf{X})_j = 0$. \square
677

680 A.2 REMARK REGARDING PROPOSITION 3.1 AND NONLINEAR SHEAF LAPLACIAN

681 If the sheaf Laplacian is nonlinear as in Zaghen et al. (2024), i.e., $L_{\mathcal{F}}(\mathbf{X})_i =$
682 $\sum_{i,j \leq e} \mathcal{F}_{i \leq e}^\top \phi_e(\mathcal{F}_{i \leq e} \mathbf{x}_i - \mathcal{F}_{j \leq e} \mathbf{x}_j)$, where $\phi_e : \mathcal{F}(e) \rightarrow \mathcal{F}(e)$ is a continuous function for each
683 edge e , then saying that $L_{\mathcal{F}}(\mathbf{X})_i$ does not depend of \mathbf{x}_j means $\mathcal{F}_{i \leq e}^\top \phi_e \mathcal{F}_{j \leq e} \mathbf{x}_j = 0$. Then the proof
684 holds similarly to the above.
685

687 A.3 PROOF OF PROPOSITION 4.1

688 *Proof.* We have that $(L_{\mathcal{F}}^{\text{in}})^\top L^{\text{out}}$ valued at a given vertex i is:
689

$$690 \sum_{j \in N(i)} \left(\mathbf{T}_i^\top \mathbf{T}_i \left(\sum_{j \in N(i)} (\mathbf{S}_i^\top \mathbf{S}_i \mathbf{x}_i - \mathbf{T}_i^\top \mathbf{S}_j \mathbf{x}_j) \right) - \mathbf{T}_i^\top \mathbf{S}_j \left(\sum_{u \in N(j)} (\mathbf{S}_j^\top \mathbf{S}_j \mathbf{x}_j - \mathbf{T}_j^\top \mathbf{S}_u \mathbf{x}_u) \right) \right) \quad (9)$$

691

692 So $\mathbf{T}_i = 0$ (i.e. i does not listen) implies $((L_{\mathcal{F}}^{\text{in}})^\top L^{\text{out}}(\mathbf{X}))_i = 0$. If i listens, but a certain neighbor k
693 does not broadcast, i.e., $\mathbf{T}_k = 0$, then $((L_{\mathcal{F}}^{\text{in}})^\top L^{\text{out}}(\mathbf{X}))_i$ is
694

$$695 \sum_{j \in N(i) \setminus k} \left(\mathbf{T}_i^\top \mathbf{T}_i \left(\sum_{j \in N(i) \setminus k} (\mathbf{S}_i^\top \mathbf{S}_i \mathbf{x}_i - \mathbf{T}_i^\top \mathbf{S}_j \mathbf{x}_j) \right) - \mathbf{T}_i^\top \mathbf{S}_j \left(\sum_{u \in N(j) \setminus k} (\mathbf{S}_j^\top \mathbf{S}_j \mathbf{x}_j - \mathbf{T}_j^\top \mathbf{S}_u \mathbf{x}_u) \right) \right)$$

696

697 Since the sum does not go through the index k , \mathbf{x}_k is not a component in $((L_{\mathcal{F}}^{\text{in}})^\top L^{\text{out}}(\mathbf{X}))_i$. \square
698

702 A.4 PROOF OF PROPOSITION 4.2
703

704 *Proof.* Let $t = 1$, and fix a node i . Then we are essentially just using the composition described in
705 Equation (9) (up to normalization and learnable weights). In the equation we have a sum running
706 over all neighbors j of i and another sum running over all neighbors u of each j . So u can be a 2-hop
707 neighbor of i and we have that i was updated with information from up to 2-hop neighbors. Similarly,
708 the node u is updated by up to 2-hop neighbors. Therefore, in the second layer $t = 2$, i was updated
709 with information from up to 4-hop neighbors.

710 If $t = n$, assume by induction that each node i receives information from its $2n$ -hop neighbors. In
711 the next layer $n + 1$, i will be updated by its n -update of its 2-hop neighbors. Let j be a node in
712 the 2-hop neighborhood of i . By the inductive hypothesis, j receives information from its $2n$ -hop
713 neighbors, whose distance to i is up to $2n + 2 = 2(n + 1)$, concluding the proof by induction. \square

714 A.5 PROOF OF PROPOSITION 4.3
715

716 *Proof.* Choose a path from i to j . So there are $t - 1$ vertices between i and j , say v_1, \dots, v_{t-1} . In the
717 first layer, let \mathbf{S}_j and $\mathbf{T}_{v_{t-1}}$ be different of zero and all other source and target maps equal zero.
718

719 This results in $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_k = 0$ for every $k \neq v_{t-1}$ and $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_{v_{t-1}}$ depends only of x_j .
720 So, except for $x_{v_{t-1}}$, the values x_k are not updated.

721 In the second layer, let $\mathbf{S}_{v_{t-1}}$ and $\mathbf{T}_{v_{t-2}}$ different of zero, and all other maps equal zero. This results
722 in $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_k = 0$ for every $k \neq v_{t-1}$, where $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_{v_{t-1}}$ depends only of the $x_{v_{t-1}}^{(1)}$ that
723 was updated in the previous layer and depends only of x_j .

724 We continue this reasoning until the t -layer, in which we make \mathbf{S}_{v_1} and \mathbf{T}_i different of zero, and
725 all other source maps equal zero. This results in $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_k = 0$ for every $k \neq i$, where
726 $((\Delta_{\mathcal{F}}^{in})^\top \Delta_{\mathcal{F}}^{out})_{v_1}$ depend only of the $x_{v_1}^{(t-1)}$, which going backwards depends only of the original x_j ,
727 up to transformations given by the target and source maps. \square

729 B ADDITIONAL EXPERIMENTS
730

732 In this section, we provide other two experiments. The first is a real-world large dataset and the
733 second is a noisy implementation of Example 4.4, to illustrate how Proposition 4.3 may work in
734 practice.

735 Table 4: Results on the Penn94 dataset.

736

Models	Penn94
Edge Homophily	0.47
MLP	73.61 ± 0.40
GCN	82.47 ± 0.27
GAT	81.53 ± 0.55
MixHop	83.47 ± 0.71
GCNII	82.92 ± 0.59
H2GCN	81.31 ± 0.60
WRGAT	74.32 ± 0.53
GPR-GNN	81.38 ± 0.16
ACM-GCN	82.52 ± 0.96
LINKX	84.71 ± 0.52
GloGNN	85.57 ± 0.35
CSNN	86.00 ± 0.39

753 **Real-world.** We run CSNN on the Penn94, a dataset with 41,554 nodes, 1,362,229 edges, and whose
754 feature dimension is 5, against multiple baselines as reported in Li et al. (2022) to illustrate CSNN's
755 performance in a larger *ambiguous* heterophilic (Luan et al., 2024) dataset. We highlight that CSNN
also outperform baselines on Squirrel, another dataset classified as ambiguous heterophilic.

756 **Synthetic.** In the following, we consider a path graph with four nodes as in Example 4.4 where
 757 the features are initialized in a similar fashion of the TreeNeighborsMatch task, but we consider
 758 that all nodes have a number of “blue neighbors” to add noisy information along the path, while the
 759 source and target (nodes 3 and 0) have the same number of these neighbors. The goal is to transfer
 760 information from node 3 to node 0.

761 Figure 6 shows an actual run of CSNN in such graph: if the norm of \mathbf{T}_i is close to zero, then the
 762 arrow pointing to i is not drawn. Analogously to \mathbf{S}_i . If both are close to zero, the node is isolated, but
 763 if none of them are we consider the following:

764

- 765 • If $\mathbf{T}_i \mathbf{S}_j$ (in the in-Laplacian) and $\mathbf{T}_i \mathbf{S}_j$ (in the out-Laplacian) are both close to 0, then the
 766 edge (j, i) does not exist
- 767 • If $\mathbf{T}_i \mathbf{S}_j$ (in the out-Laplacian) and $\mathbf{T}_i^\top \mathbf{T}_i$ are both close to 0, then edge (j, i) does not exist.

768

769 We observe restriction maps going to zero in a different configuration than the one exhibited in
 770 Example 4.4 but still sending $x_3^{(0)}$ to node 0 in the second layer, while suppressing other node
 771 features.

772 Technically, the significance of a node i over j
 773 in a given layer t is measured by the norm of the
 774 the term that multiplies $x_i^{(t)}$ in the expression
 775 of $((\Delta_{\mathcal{F}(t)}^{in})^\top \Delta_{\mathcal{F}(t)}^{out})_j$. For instance, in Figure 6,
 776 the restriction maps provided that 1 listens to
 777 0 and no one else, so it can be affected only
 778 by $x_1^{(0)}$ and by $x_0^{(0)}$. A calculation shows that
 779 $x_1^{(0)}$ is multiplied by a quantity about 0.7 while
 780 $x_0^{(0)}$ is multiplied by 132, approximately. This
 781 guarantees that in layer 2, when the message
 782 goes from node 1 to 0, the feature $x_1^{(0)}$ is not
 783 relevant and, in practice, is ignored.

784 C EXPERIMENT DETAILS

785 In this section, we provide the grid of hyperparameters used in the experiments. If the number of
 786 GNN layers is set to 0, we use an MLP with two layers to learn the restriction maps. Otherwise, we
 787 adopt a GraphSAGE architecture with the specified number of layers.

788 We also trained CO-GNN using the hyperparameter table from Finkelshtein et al. (2024), considering
 789 μ and Σ as explicit hyperparameters instead of treating $CO\text{-}GNN(\mu, \mu)$ and $CO\text{-}GNN(\Sigma, \Sigma)$ as
 790 separate model variants.

791 All datasets except for roman-empire were treated as undirected graphs. For the roman-empire
 792 dataset, we found that using the stored list of edges was preferable to doubling the edges, since the
 793 graphs from Platonov et al. (2023) are stored as “directed” lists where elements as (0,2) and (2,0) are
 794 regarded as equivalent, for example.

795 All experiments were conducted on a cluster equipped with NVIDIA V100, A100, and H100 GPUs.
 796 The choice of GPU depended on the availability at the time of the experiments. Each machine was
 797 provisioned with at least 80 GB of RAM.

802 We also present some statistics of the heterophilic benchmarks.

804 D COMPLEXITY AND RUNTIME OF CSNN

805 Using d for dimension of the stalks, h as the number of channels and $c = dh$, the complexity of our
 806 model is as follows:

807

- 808 • $O(d^2|V|)$ for the embedding of graph features into the sheaf stalks;

810
 811
 812 Table 5: Hyperparameter configurations used across heterophilic benchmarks.
 813
 814

Parameter	roman-empire, amazon-ratings	minesweeper, tolokers, questions
sheaf dimension	3, 4, 5	3, 4, 5
# layers	2–5	2–5
# hidden channels	32, 64	32, 64
# of GNN layers	0–5	0–5
GNN dimension	32, 64	32, 64
dropout	0.2	0.2
input dropout	0.2	0.2
# epochs	2000	2000
activation	GELU	GELU
left weights	true, false	true, false
right weights	true, false	true, false
learning rate	0.02	0.002, 0.02
weight decay	$10^{-7}, 10^{-8}$	$10^{-7}, 10^{-8}$

816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833 Table 6: Hyperparameter configuration used for NeighborsMatch.
 834

Parameter	NeighborsMatch
sheaf dimension	2
# layers	$r + 1$
# hidden channels	32
# of GNN layers	$r + 1$
GNN dimension	32
dropout	0.0
input dropout	0.0
activation	Id
left weights	true
right weights	true
layer norm	true

847
 848
 849
 850
 851
 852 Table 7: Statistics of the heterophilous datasets
 853

	roman-empire	amazon-ratings	minesweeper	tolokers	questions
nodes	22662	24492	10000	11758	48921
edges	32927	93050	39402	519000	153540
avg degree	2.91	7.60	7.88	88.28	6.28
node features	300	300	7	10	301
classes	18	5	2	2	2
edge homophily	0.05	0.38	0.68	0.59	0.84
adjusted homophily	-0.05	0.14	0.01	0.09	0.02
metric	acc	acc	roc auc	roc auc	roc auc

864 • $O(|V|d^2h) = O(|V|cd)$ when applying W_1 ;
 865 • $O(|V|dh^2) = O(|V|ch)$ when applying W_2 ;
 866 • $O(2|E|d^2h) = O(|E|cd)$ for the two sparse Laplacian-vector multiplication;
 867 • $O(2d^3(|V| + |E|)) = O(d^3(|V| + |E|))$ for constructing the blocks of the Laplacians.

870 This gives a total of $O(|V|(c(d+h)+d^3)+|E|(cd+d^3))$. Since we use $1 \leq d \leq 5$, the stalk dimension
 871 contribution is small. We highlight that our code also contains a completely message-passing based
 872 implementation, that does not need constructing the Laplacian. This cheaper implementation yields a
 873 complexity of $O(c|V|(d + h) + |E|cd)$.

874 In the following we report the runtime of CSNN and the non-sheaf models on datasets of Table 1, as
 875 well as the improvement compared to the best baseline method.

877 Table 8: Runtime comparison on datasets from Platonov et al. (2023). We report the mean time in
 878 seconds per epoch, averaged over 10 epochs. CSNN has a similar runtime compared to these simple
 879 baselines, and presents a positive improvement on accuracy in general. The baselines achieving the
 880 best accuracy are highlighted **bold**.

Model	roman-empire	amazon-ratings	minesweeper	tolokers	questions	squirrel	chameleon
GCN	0.05s	0.04s	0.03s	0.04s	0.07s	0.01s	0.02s
SAGE	0.07s	0.04s	0.03s	0.06s	0.16s	0.01s	0.02s
GAT-sep	0.09s	0.05s	0.05s	0.12s	0.21s	0.01s	0.02s
GT-sep	0.14s	0.16s	0.07s	0.14s	0.32s	0.02s	0.01s
CSNN	0.05s	0.10s	0.06s	0.14s	0.16s	0.05s	0.03s
Improvement	↑ 4.37%	↓ 2.90%	↑ 5.50%	↑ 2.00%	↑ 1.61%	↑ 4.33%	↑ 5.38%

889 We can see that sometimes CSNN is quicker than SAGE, and sometimes it is equal to GCN in terms
 890 of runtime. This might look counter-intuitive, but CSNN achieves its best performance with fewer
 891 parameters. For instance, for the roman-empire dataset, GCN has 2,269,714 parameters, while CSNN
 892 has 339,900, i.e. GCN has about 668% more parameters.

893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917