COOPERATIVE SHEAF NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sheaf neural networks (SNNs) leverage cellular sheaves to induce flexible diffusion
processes on graphs, generalizing the diffusion mechanism of classical graph
neural networks. While SNNs have been shown to cope well with heterophilic
tasks and alleviate oversmoothing, we show that there is further room for
improving sheaf diffusion. More specifically, we argue that SNNs do not allow
nodes to independently choose how they cooperate with their neighbors, i.e.,
whether they convey and/or gather information to/from their neighbors. To address
this issue, we first introduce the notion of cellular sheaves over directed graphs and
characterize their in- and out-degree Laplacians. We then leverage our construction
to propose Cooperative Sheaf Neural Network (CSNN). Additionally, we formally
characterize its receptive field and prove that it allows nodes to selectively attend
(listen) to arbitrarily far nodes while ignoring all others in their path, which is key
to alleviating oversquashing. Our results on synthetic data empirically substantiate
our claims, showing that CSNN can handle long-range interactions while avoiding
oversquashing. We also show that CSNN performs strongly in heterophilic node
classification and long-range graph classification benchmarks.

1 INTRODUCTION

Graph neural networks (GNNs) have become the standard models for an array of predictive tasks
over networked data, with far-reaching applications in, e.g., physics simulation (Sanchez-Gonzalez
et al., |2020), recommender systems (Ying et al.,|2018)), and molecular modeling (Duvenaud et al.|
2015; Gilmer et al., [2017). Nonetheless, classical GNNs have well-known pitfalls. For instance, they
typically struggle on heterophilic tasks (Zhu et al.}[2020) — i.e., cases where connected nodes often
belong to different classes or have dissimilar features. Furthermore, GNNs may also be susceptible to
oversmoothing (Oono and Suzukil 2020) and oversquashing (Alon and Yahavl |[2021). Oversmoothing
occurs when stacking multiple GNN layers yields increasingly similar node representations, whereas
oversquashing refers to the loss of information when carrying information through increasingly long
paths — due to the compression of exponentially growing information into fixed-size vectors.

A recent line of works (e.g., [Hansen and Gebhart, 2020j Bodnar et al., 2022} Bamberger et al.,2025)),
which we henceforth refer to as Sheaf Neural Networks (SNNs), proposes modeling node interactions
using cellular sheaves to achieve a principled solution to deal with oversmoothing and heterophilic
tasks. A cellular sheaf F over an undirected graph associates (i) vector spaces (i) and F(e), known
as stalks, to each vertex ¢ and each edge e, and (ii) a linear map F;<., known as a restriction map,
to each incident vertex-edge pair ¢ < e. These mathematical constructs induce a sheaf Laplacian
which is governed by the restriction maps and generalizes the conventional Graph Laplacian.

In a parallel line of investigation, [Finkelshtein et al.|(2024) have recently shown that GNNs generally
lack the flexibility to allow for nodes to individually select how they cooperate with their neighbors,
i.e., choose whether they convey and/or gather information to/from their neighbors. This selective
communication (also called cooperative behavior) is an especially desirable trait to tackle oversquash-
ing, as it allows controlling the amount of information flowing between nodes. A natural question
ensues: Can sheaf neural networks achieve cooperative behavior?

In this paper, we provide a negative answer to this question. More precisely, for SNNs to zero out
all the incoming information at a node i, they must set F;<. = 0 for all incident edges e, which also
implies the information flowing from i is suppressed (see[Figure 2). To circumvent this limitation, we
introduce the notion of directed cellular sheaves and define their in- and out-degree

Laplacians (Definition 3.3). Leveraging these notions, we propose Cooperative Sheaf Neural
Networks (CSNNs). Importantly, we show that cooperative behavior can be achieved using only a

pair of restriction maps per node, which considerably increases computational efficiency compared to
full sheaves — in which the amount of restriction maps increases linearly with the number of edges.

Our theoretical results show that CSNN allows for nodes to selectively listen to other arbitrarily
distant nodes, which is a desirable trait to alleviate over-squashing. Our results on synthetic data
specifically designed to induce over-squashing (Alon and Yahav| [2021) substantiate our claims,
showcasing CSNNs’ superior potential to handle long-range dependencies. In addition, extensive
real-world experiments on 11 node-classification benchmarks and 2 long-range graph-classification
tasks demonstrate that CSNN typically outperforms existing SNNs and cooperative GNNS.

In summary, our contributions are:

1. We introduce the notions of in- and out-degree Laplacians for cellular sheaves over directed
graphs, which can be used to model asymmetric relationships between nodes. We treat undirected
edges as a pair of directed ones and leverage these constructions to propose CSNN — provably
extending the flexibility of sheaf diffusion to accommodate cooperative behavior;

2. We provide a theoretical analysis of CSNN, showing that: (a) for each layer ¢t in CSNN, nodes
may be affected by information from nodes at distance up to 2¢-hop neighbors (Proposition 4.2)),
instead of up to t-hop neighbors in usual GNNs; and (b) there exist restriction maps which make
the embedding of a node ¢ at layer ¢ highly sensitive to the initial feature of a node j, where ¢ is
also the distance between ¢ and j (Proposition 4.3).

3. We carry an extensive experimental campaign to validate the effectiveness of CSNNs, encom-
passing both synthetic and real-world tasks. Our experiments on synthetic data show that
CSNNss is remarkably capable of mitigating over-squashing and modeling long-range dependen-
cies. Meanwhile, results on over 13 real-world tasks show CSNNs typically outperform prior
sheaf-based models and cooperative GNNSs.

2 BACKGROUND

For the sake of completeness, here we provide a summary of core concepts concerning cellular
sheaves over undirected graphs. We also briefly discuss neural sheaf diffusion and cooperative GNNS.

In this work, we denote an undirected graph by a tuple G = (V, E') where V is a set of vertices
(or nodes) and F is a set of unordered pairs of (distinct) vertices, called edges, with n = |V| and
m = |E|. We denote the neighbors of anode i in G by N (i) = {j : {i,7} € E}. Next,
introduces the notion of cellular sheaves over undirected graphs.

Definition 2.1. A cellular sheaf (G, F) over a (undirected) graph G = (V, E) associates:

1. Vector spaces F (i) to each vertex ¢ € V and F(e) to each edge e € E, called stalks.
2. Linear maps F;<.: F (i) — F(e) to each incident vertex-edge pair i e, called restriction maps.

Hereafter, we assume all vertex and edge stalks are isomorphic to R?. If all restriction maps are equal
to the identity map, we say the cellular sheaf is constant. Moreover, if d =1, the sheaf is said trivial.

Given the importance of the Laplacian operator for graph representation learning, it is instrumental to
define the Laplacian for undirected cellular sheaves — a key concept in the design of SNNs. Towards

this end, we introduce in[Definition 2.2]the spaces of 0- and 1-cochains.

Definition 2.2. The space of 0-cochains, denoted by CO(G ,F), and the space of 1-cochains,
C1(G, F), of a cellular sheaf (G, F) are given by

C°(G,F) = P F(i)and C (G, F) = @ Fle). 1))
eV eeE

where @ denotes the (external) direct sum.

Now, for each e € E choose an orientation e = ¢ — j and consider the coboundary operator
§:C%G,F) —» CHG,F) defined by (6X). = Fjqex; — FigeX;. Then, the sheaf Laplacian is
defined by Lr = §T6. If F is the trivial sheaf, 6T can be seen as the incidence matrix, recovering
the n x n graph Laplacian. A more explicit way to describe the Laplacian is the following:

Definition 2.3. The sheaf Laplacian of a cellular sheaf (G,F) is the linear operator Ly :
C°(G, F) — C°(G, F) that, for a 0-cochain X € C°(G, F), outputs

Lr(X)i = Y. Fl. (Fiaexi — Fjaex;) VieV.)

,jle

The Laplacian Lx can also be seen as a positive semidefinite matrix with diagonal blocks
Lii = Diqe }'%e]-}ge and non-diagonal blocks L;; = L; = _fiTgefjﬂe-

To build intuition around [Definition 2.1| we may interpret the node stalks F (i) as the space of private
opinions held by an individual z, following the perspective of [Hansen and Ghrist|(2021)). For an edge e
connecting nodes i and j, the stalk F(e) corresponds to the public opinions exchanged between them.

That being said, note that ker Lr = {X € CO(G, F) | Fiaex; = Fjaex; Ve = {i,j} € E(G)}.
This can be understood as the space of public agreement between all pairs of neighboring nodes ¢
and j. Note that ¢ and j can have distinct opinions about the same topic on their respective private
opinion spaces F () and F(j); however, when they publicly discuss this topic, they may prefer to
not manifest their true opinion. Alternatively, since the edge stalks may be different from the node
stalks, some topics of the private opinion spaces do not need to be discussed at all. In both cases, the
apparent consensus lies in Ker L z.

Vector bundles. When restriction maps are orthogonal, we call the sheaf a vector bundle. In this
case, Lr(X); := Zz’,j<1e (xi —]:;,e]:jﬂexj), for any ¢ € V. Flat vector bundles are special cases
of vector bundles in which we assign an orthogonal map O, to each node ¢ and set F;<. = O; for all
e incident to ¢. This entails Lz (X); := Zi,j% (Xi — OiTijj), for any ¢ € V. Note that flat vector
bundles only comprise n restriction maps as opposed to 2/m maps in general cellular sheaves. Prior
works (Bodnar et al., 2022; | Bamberger et al., [2025)) have leveraged these simpler constructions to
propose computationally efficient sheaf-based neural networks.

Neural Sheaf Diffusion (NSD). Bodnar et al.|(2022)) introduce NSD building on Euler iterations of

the heat equation induced by Az, i.e., X = —A zX. First, we project the initial node features X
into h channels using an MLP 7, i.e., Xo = n(X) € R"¥*"_ Then, NSD recursively computes

X1 =1+ (1w ®e)) OXy — 0 (Arpy (TQ Wi ,) X;Way), 3)

where 1,,x5, 1s an n x h matrix of ones, A}-(t) is the sheaf Laplacian at layer ¢, € € [—1, 1]d is a
(learned) vector scaling the features along each stalk dimension, ¢ is an element-wise non-linearity,
and W1 ; € R4 W, € R"*" are weight matrices. Importantly, the restriction maps which govern
A F(t) are learned in an end-to-end fashion, alongside W ; and Wy, ;.

Cooperative GNNs. [Finkelshtein et al.| (2024) recently proposed flexibilizing message-passing
GNNs by treating nodes as players that can choose how they cooperate with their neighbors. More
specifically, cooperative GNNs employ an auxiliary GNN, called the action network, that decides
individually how each node partakes in the message passing of the base GNN, or environment network.
The action network decides whether each node only propagates information (PROPAGATE), only
gathers information from neighbors (LISTEN), does none (ISOLATE) or does both (STANDARD).
Cooperative GNNSs learn the action and environment GNNs simultaneously, using the straight-through
Gumbel-Softmax estimator to propagate gradients through the discrete actions of the action network.

3 CELLULAR SHEAVES FOR DIRECTED GRAPHS

We kick off this section addressing our initial research question: Can SNNs achieve cooperative behav-
ior? Recall that communication between nodes in an SNN is governed by its sheaf Laplacian, which
is induced by the restriction maps. Thus, in SNNs, picking a state among PROPAGATE, LISTEN,
ISOLATE, and STANDARD node ¢ translates to choosing a suitable configuration for its respective
restriction maps. The following result says that SNNs cannot fully alternate between these action.
Proposition 3.1. Leti € V. If Lx(X); does not depend on x; for any j € V neighbor of i, then
L]:(X)j = O()rL}-(X)j = Z ./_'.]-Tﬂe]:jﬂexj'.

j;ide

Put plainly, states that the sheaf diffusion provides a framework where a node i that
does not LISTEN (since it does depend on j7) must not PROPAGATE (since the update of j does

F (i)

i F(5)
F(0) F(e) Fo) e T
/ . — ~l— f%m — L
> L/ i Ly
% € i i __/3\

Figure 1: On the left, a cellular sheaf shown for a single edge of an undirected graph with stalks
isomorphic to R?. The restriction maps F; <., F;<. move the vector features between these spaces.
On the right, the analogous situation for a sheaf on a single pair of directed edges. Then there are
four, possibly distinct, restriction maps F;«ij, Fi<ji, Fj<ij, Fj<ji-

not depend on ¢), independently of the action that j takes. In other words, PROPAGATE implies
LISTEN, which means it collapses to ISOLATE (see [Figure 2).

We can circumvent this limitation by treating undirected edges as a pair of directed ones, creating
an additional channel of communication between nodes. To accommodate directed edges (i.e.,
E <V x V), we propose using cellular sheaves over directed graphs.

Cellular sheaves over directed graphs must distinguish the restriction map where i is the source node
of an edge from the restriction map where : is the target node of an edge. Therefore, we change the
edge notation from e to ¢j and ji to make this distinction explicit. See[Figure 1| for an illustration.
Definition 3.2. A cellular sheaf (G, F) over a (directed) graph G = (V, E)) associates:
1. Vector spaces F (i) to each vertex ¢ € V and F(ij) to each edge ij € F, called stalks.
2. A linear map F;«,; : F (i) — F(ij) for each incident vertex-edge pair ¢ < ¢j and a linear map
Fiji + F(i) — F(ji) for each incident vertex-edge pair ¢ < ji, called restriction maps.

For simplicity, again, we henceforth assume all node and edge stalks are d-dimensional.

We are now left with the task of defining sheaf Laplacians that can be used for information diffusion
in directed graphs. For directed graphs, it is common to define both in- and out-degree Laplacians
(Agaev and Chebotarev, 2005). Given a directed graph with possibly asymmetric adjacency matrix
A, the out-degree Laplacian is L := D — A and the in-degree Laplacian is L™ := D" — A,
with D™ and D" denoting the diagonal matrices containing in- and out-degree of nodes in V(G).
[Definition 3.3|below generalizes these notions to sheaves over directed graphs.

Definition 3.3. The out-degree sheaf Laplacian of a cellular sheaf (G, F) is the linear operator
L3 : C°(G,F) — C°(G, F) that, for a 0-cochain X € C°(G, F), outputs

L¥EX)i = Y, (FiayFigixi — FlajiFjapni), VieV. 4
JEN(3)
The in-degree sheaf Laplacian of a cellular sheaf (G, F) is the linear operator L't : C°(G, F) —
C°(G, F) that, for a 0-cochain X € C°(G, F), outputs
LEX)ii= . (FhapFigjixi — FlayFigix;), VieV. 5)
N (i)
We note that if (G, F) is the trivial sheaf, then L% = (L°*) " and L% = L™

Flat vector bundles over directed graphs. We can also improve the parameter efficiency of cellular
sheaves over directed graphs using flat vector bundles. Since the graphs are directed, we need to
distinguish between edges with identical endpoints but with different orientations. Thus, for each
node ¢, we assign a source conformal map S; and a target conformal map T';, and set F;<;; = S;
and F;«;; = T; for all neighbors j of .

4 COOPERATIVE SHEAF NEURAL NETWORKS

In this section, we leverage the sheaf Laplacians in[Definition 3.3]to propose Cooperative Sheaf Neural
Networks (CSNNs), an SNN which allows nodes to independently to decide how they participate in

message diffusion, choosing whether to broadcast their information and/or to listen from the neighbors.
To exploit the asymmetric communication induced by sheaves over directed graphs, we convert our
input undirected graph into a directed one by replacing undirected edges with a pair of directed ones.

We design CSNN’s diffusion mechanism by composing the out-degree and the transposed in-degree
sheaf Laplacians. In practice, we use their normalized versions

Aout _ D_%LOH[D_% d Ain T _ D Lm TD %
F out ~F ~out an (.7-') ()

m

where Dj,, Doy are the block-diagonals of the in and out Laplacians, respectively.

We define a CSNN layer by augmenting the Euler discretization of our novel heat equation
X = (A1) TA%*X with linear transformations and a nonlinear activation function o:

Xit1 =1+ 1auxn®e)) OX; — U((A?(t))TA%(i)(In OW1)XWay), (6)

where 1,,, is an n-by-h matrix of ones, ¢ € [—1,1]?*!, and W, € R%*? and W, €
R"*" are learned matrices responsible for mixing node features and channels, respectively.

Efficient implementation. For computational efficiency, we use flat vector bundles to define
both the in- and out- degree sheaf Laplacians. More precisely, for each node i, we define a source
conformal map S; and a target conformal map T'; for all neighbor j of i. Thus, out-degree sheaf
Laplacian simplifies to

LE(X)i := Yjen (8] Sixi = T/ S;x;) (7N
while the transpose of the in-degree sheaf Laplacian is
(LF) (X)) = Djensy (T Tixi — T Sjx;) . ®)

Note these matrices have a block structure, with diagonals (L) = > T/ T;, (L% = >, S/ S,
and remaining blocks (L) = (L%);; = —T,S;. We point out that, since conformal maps are of
the form S; = Cs, Q; and ’I'7 Cr, R;, for some orthogonal matrices ();, R; and scalars Cs,, Cr,,
computing their inverses and normalizing the Laplacian becomes trivial. In this case, block scaling
simplifies to a block matrix of scalars time identity and the normalization is both numerically stable
and computationally efficient.

The first step of each layer ¢ consists of computing the conformal maps T; ; and S; ;. We do this
through learnable functions S; ; = (G, Xy,) and T, ; = ¢(G, Xy, 4), Vi € V. Asin prior works on
SNNs|Bodnar et al.|(2022); Bamberger et al.|(2025)), we use neural networks to learn the restriction
maps. In addition, we use Householder reflections (Mhammedi et al., [2017; |(Obukhovl 2021) to
compute orthogonal maps and multiply them by a learned positive constant for each node.

4.1 ANALYSIS

We now show that CSNN can achieve cooperative

behavior, characterize its receptive field, and prove J N J N

that appropriate conformal maps can help CSNNs i@ gk
handle long-range interactions. / /

We note that CSNN allows each node ¢ drift from Joi-o sZ0 Y, -
the STANDARD behavior (S;, T; # 0) by zeroing-)))
out its conformal maps. Setting T; # 0 drives J\ 2 J.\
7 to LISTEN. Setting S; # 0 corresponds to i i
PROPAGATE. Finally, S; = T; = 0 implies / /
TSOLATE. ! ! !

We highlight the importance of considering the Figure 2: O; = 0 creates the effect of isolating
directions: for undirected graphs, there is a single the node i. Directed edges provide the possibil-
map O; for each node ¢, where O; = 0 could only ity of performing LISTEN and PROPAGATE,
mean that ¢ does not communicate at all. In other separately.

words, the possible actions are only STANDARD and ISOLATE. We illustrate this in[Figure 2]

Thus, to show a model achieves cooperative behavior, we must ensure the following: (a) if ¢ does
not listen, then its update cannot depend on x;, Vj € V,j # 7; and (b) if ¢ has a non-propagating
neighbor &, then its update cannot depend on x. shows that CSNN satisfies these
conditions, while illustrates them and delineates limitations of the NSD model.

Proposition 4.1. If the target map T; is zero, then (L") T L3 (X)); = 0. If the source map Sy, = 0
for some neighbor k of i, then (L) T L% (X)), does not depend on X,

Moreover, our model has the ability to reach longer 9 9 9
distances. In most GNNs, if ¢ is the distance between | i
two nodes 7 and j, then they can only communicate 1—3 1 3 D—3
after ¢ layers. CSNN enables communication between | |
these nodes after [t/2] layers. 4—5 4—5 406

Proposition 4.2. In each layer t, the features of a node (a) (b) ()
can be affected by the features of nodes up to 2t-hops. Figure 3: Given a graph (a) we illustrate
the consequences of preventing node 3 from
We also show in that CSNNs with ¢ listening. For NSD (b), this means L (X3
layers are capable of making ¢ and j communicate must not depend on x;, for j = 1,2,4
while ignoring all the other nodes on a path from i to j implying ;<. = 0 and leading to L z(X);
such that |j — 4| < ¢. This feature is an asset to handle not depending on x3, preventing node 3
over-squashing in long range tasks, allowing CSNN from propagating information. In CSNN
to selectively tend to information from distant nodes. (c), we can set T3 = 0. Provided S # 0,
illustrates this result in a four-node graph. outbound communication is possible.

Proposition 4.3. Let i and j be nodes at a distance t. In CSNN, i can learn to ignore all the t — 1
nodes in the shortest path from i to j while receiving the information from j in the t-layer. Moreover,
if we choose a path with n > t — 1 nodes between i and j, then i receives the information from j in
the (n + 1)-layer.

Example 4.4. Consider a directed graph with vertex set V = {1,2, 3,4} and edge set E = {(1,2),

(2,3),(3,4),(4,3),(3,2),(2,1)}. We follow the proof o to show we can propagate

a message from node 4 to node 1, while the latter ignores all remaining nodes. We denote the
target/source map of node i at layer t by T; ; and S; ; respectively. To achieve our desired result:

a. In the first layer, must have zero source and target maps except for T3 1 and S4 1. A simple

verification gives that ((L't)T L% (X)), = 0, for all k # 3. So ((L)" L% (X)) = 0, for

all k # 3. If k = 3, then (L) T L3 (X))3 = —2T S4,1x1(10)7 with X,(f) denoting the feature

vector of k at layer t, thus xflo) will be the only feature vector to influence xgl);

b. In the second layer, we must have that all source and target maps are zero except for T 5 and

Sao. Then (L) TLY (X)), = 0, for all k # 2 and (L) L3 (X))2 = —2TJ ,S3.2x5".
@).
2

Thus xgl) will be the only feature vector to influence x

c. In the third layer, all source and target maps must be zero except for T 3 and So 3. Then

(L) TL(X))k = O, for all k # 1 and (L) TL¥(X))1 = —2T] 582,3x5 . Thus x\¥ is
influenced only by x§2), which was influenced only by xél), which is influenced only by xflo).

Consequently, ng) is affected by xflo) while ignoring the features of all other nodes in all other layers.
This configuration shows that although CSNN can achieve 2-hop neighbors, it can also refrain from
this behavior to only access 1-hop neighbors per layer. Moreover, this flexibility indicates there are
multiple forms to stablish communication between two distant nodes while ignoring others.

Observe that the derivative of ng) in relation to xio) can be as high as the values of the non-zero
T; and S; permit. This shows our model can mitigate over-squashing, which refers to the failure
of an information propagating to distance nodes. |Di Giovanni et al.| (2023)) and [Topping et al.
(2022), studied over-squashing in message passing neural networks through a bound on the Jacobian

(t)
o5 [onel®

and A the normalized adjacency matrix. Moreover, over-squashing occurs when we have a small

< ctflfj, where ¢ is the layer, c is a constant that depends on the architecture of the model,

Tl Sz T2 SS T3 S4

Figure 4: Illustration of [Example 4.4 At layer ¢, we consider that all maps but Ty ¢ and Sy_ ;1)

are 0, enabling the flow of information from right to left following the bottom edges.

derivative 5X§t)/ax§.°), since it means that after ¢ layers, the feature at ¢ is mostly insensitive to the
information initially contained at 7, i.e., the information was not propagated properly.
states that the feature at node ¢ can be sensitive to the information initially contained at node j,
independently of the distance, given enough layers and an appropriate configuration of restriction

maps. Consequently, suggests that the restriction maps regulating the sensibility
between distant nodes can provide higher upper bounds to (7XE">/0x§°> while decreasing the value of

x{" ox® for other nodes k.

5 RELATED WORKS

Cooperative GNNs. [Finkelshtein et al. (2024) were the first to propose flexibilizing message
passing by allowing nodes to choose how they cooperate with each other. Each layer of their model,
CO-GNN, employs an additional GNN that chooses an action for each node. While CO-GNNs can
be employed with arbitrary base and action networks, their main caveat is that training can become
increasingly difficult as these networks become more complex — the grid of hyper-parameters grows
considerably and the stochastic nature of the action network may affect model selection. Different
from CO-GNN, our CSNN does not rely on discrete actions and can smoothly modulate between
cooperative behavior patterns.

Sheaf Neural Networks. Besides works on SNNs for graph data with real-valued node features,
recent works have expanded the literature to accommodate heterogeneous edge types (Braithwaite
et al., [2024), hypergraphs (Duta et al.,[2023)), nonlinear Sheaf Laplacians (Zaghen et al.,[2024)), and
node features living on Riemann manifolds (Battiloro et al.,|2024)). While recent works on SNN’s
learn restriction maps in an end-to-end fashion, there are also prior works in which they are manually
constructed (Hansen and Ghrist,2019) or computed as a pre-processing step (Barbero et al., 2022).

Quiver Laplacians. Sumray et al.|(2024) propose sheaf Laplacians over quivers (directed graphs
w/ self-loops) to improve feature selection on tabular data, with no learning component involved.
The in- and out-Laplacians we defined here are not particular cases of the Laplacians over quivers.
The former are positive semi-definite matrices, while our Laplacians may have complex eigenvalues
with negative real parts.

6 EXPERIMENTS

We provide both synthetic and real-world experiments to evaluate the performance of CSNN, including
node- and graph-level prediction tasks. assess CSNN’s capacity to circumvent over-
squashing using the NeighborsMatch benchmark proposed by |Alon and Yahav]| (202T).
presents experiments on eleven node classification tasks, showcasing the effectiveness of CSNN
for heterophilic graphs. Finally, consider the Peptides datasets from the Long Range
Graph Benchmark (Dwivedi et al., |2022) to substantiate the capability of our model to mitigate
under-reaching and over-squashing on real-world graph classification. We also provide additional

experiments in

6.1 OVER-SQUASHING

In order to verify our theoretical results on the capacity of CSNN to alleviate over-squashing,
we reproduce the NeighborsMatch problem proposed by |Alon and Yahav] (2021), using the same
framework. The datasets consist of binary trees of depth r, with the root node as the target, the leaves

containing its possible labels, and the leaf with the same number of neighbors as the target node
containing its true label. We provide the parameters used for this task in

shows GCN (Kipf and Welling, 2017)) and GIN (Xu et al., 2019) fail to fit the datasets
starting from r» = 4 and GAT (Velickovi¢ et al.l [2018)) and GGNN (Li et al., 2016)) fail to fit the
datasets starting from r = 5. These models suffer from over-squashing and are not able to distinguish
between different training examples, while the CSNN model reaches perfect accuracy for all tested 7.

Alon and Yahav| (2021)) argue that the difference in performance for the GNNs are related to how
node features are updated: on one hand, GCN and GIN aggregate all neighbor information before
combining it with the representation of the target node, forcing them to compress all incoming
information into a single vector. On the other hand, GAT uses attention to selectively weigh messages
based on the representation of the target node, allowing it (to some degree) to filter out irrelevant
edges and only compress information from a subset of the neighbors. So models like GAT (and
GGNN) that compress less information per step can handle higher r better than GCN and GIN.

This experiment shows that CSNN is more 1o : ‘ : ‘ : 9|
efficient in ignoring irrelevant nodes and can 09
avoid loosing relevant information. Moreover, os

[Proposition 4.3| provides theoretical support for o

this result, as it states that there are choices of .. ”

parameters for which the model can listen only 04 |
to the nodes along a path between distant nodes 03 .
1 and j, enabling selective communication to 025

diminish noise impact. R DEAN EE —
0

Comparison against other sheaf models. No- _. :) ' e Pm:‘“:" i) . ')
tably, CSNN outperforms other sheaf methods Flgure 5'. Accuracy for increasing tree'depths
in this task. BuNN reports 100% accuracy until in the NeighborsMatch task. CSNN consistently

7 = 6. Then it drops to 71% and 42% for r = 7 achieves 100% accuracy for all values of r.

and r = §, respectively, as reported in [Bamberger et al.[(2025). For NSD with orthogonal maps, we
obtained 100% accuracy when r = 2, 91% for r» = 3, and then a sharp drop to 5% when r = 4.

6.2 NODE CLASSIFICATION

Datasets. We evaluate our model on the five recently proposed heterophilic graphs from |Platonov et al.
(2023), and also on six classical ones for which benchmarking results can be found in|Pei et al.| (2020);
Rozemberczki et al.| (2021); Tang et al.|(2009). As pointed out in |Platonov et al.| (2023)), the datasets
Squirrel and Chameleon have many duplicate nodes, which may lead to data leakage. Following
their guidelines, we use their cleaned version of these datasets to ensure a meaningful evaluation. For
binary classification datasets, we report AUROC, while for multiclass datasets we report accuracy.

Table 1: Performance comparison on datasets from |Platonov et al.|(2023). AUROC is reported for
minesweeper, tolokers and questions, accuracy is reported for the remaining datasets. CSNN is the
best-performing method in 6 out of 7 datasets.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon
Edge Homophily 0.05 0.38 0.68 0.59 0.84 0.20 0.23
GCN 73.69 +£0.74 48.70 +£0.63 89.75+0.52 83.64+0.67 76.09+1.27 3947 +1.47 40.89+4.12
SAGE 85.74 £ 0.67 53.63£0.39 93.51+£0.57 8243+044 7644+062 36.09+199 37.77+4.14
GAT 80.87 £0.30 49.09 +0.63 9201 +0.68 83.70+0.47 77.43+1.20 35.62+2.06 39.21+3.08
GAT-sep 88.75+£0.41 52.70 £0.62 9391+£0.35 83.78+043 76.79+0.71 3546+3.10 39.26+2.50
GT 86.51+£0.73 51.17 £ 0.66 91.85+0.76 83.23+0.64 77.95+0.68 36.30+1.98 38.87+3.66
GT-sep 87.32+£0.39 52.18 £0.80 9229 +0.47 8252+0.92 78.05+093 36.66+1.63 40.31+3.01
CO-GNN 89.44 £ 0.50 54.20 + 0.34 97.35+£0.63 84.84+0.96 7597+0.89 3939+276 41.14+5.40
O(d)-NSD 80.41+0.72 42.76 £ 0.54 92.15+0.84 7883+£0.76 69.69+1.46 35.79+334 3793+224
BuNN 91.75 + 0.39 53.74 + 0.51 98.99 +0.16 84.78+£0.80 78.75 = 1.09 - -
CSNN 92.63 +0.50 52.07+£1.00 99.07£0.25 8545+0.53 79.31+1.22 41.18+2.23 43.09+3.17

Experimental setting. As baselines for benchmarks in|Platonov et al.|(2023)), we use GCN (Kipf
and Welling, [2017)), GraphSAGE (Hamilton et al.l 2017), GAT (Velickovi¢ et al.l 2018) and GT (Shi
et al.,2021), together with the variations GAT-sep and GT-sep, which concatenate the representation

Table 2: Accuracy for node classification datasets on the fixed splits of |Pei et al.| (2020). CSNN
achieves the best results in 3 out of 4 datasets.

Model Texas Wisconsin Film Cornell
Edge Homophily 0.11 0.21 0.22 0.30
GGCN 84.86+4.55 86.86+329 3754+156 85.68+6.63
H2GCN 84.86+723 87.65+498 3570+1.00 82.70+5.28
GPRGNN 7838 £4.36 8294 +4.21 34.63 £1.22 80.27 £8.11
FAGCN 8243 +6.89 8294 +7.95 3487 £1.25 79.19 £9.79
MixHop 77.84 £7.73 75.88 £490 3222 +2.34 7351 +6.34
GCNII 77.57 £3.83 80.39 £3.40 3744 +130 77.86 £3.79
Geom-GCN 66.76 +2.72 6451 £3.66 31.59 +£1.15 60.54 +3.67
PairNorm 60.27 +4.34 4843 +£6.14 2740 £1.24 5892 £3.15
GraphSAGE 8243 +6.14 81.18 £5.56 3423 £0.99 7595 £5.01
GCN 55.14 £5.16 51.76 £3.06 27.32 £1.10 60.54 £5.30
GAT 52.16 £6.63 4941 +£4.09 2744 £0.89 61.89 £5.05
MLP 80.81 +4.75 8529 +3.31 36.53 £0.70 81.89 +6.40
FSGNN 87.57+4.86 87.65+351 3562+0.87 87.30+4.53
GloGNN 8432+4.15 87.06+3.53 3735+130 83.51+4.26
ACMGCN 87.84 440 8843+322 3628+1.09 85.14+6.07
CO-GNN 77.57+541 83.73+4.03 3626+3.74 72770+5.47
Diag-NSD 85.67 £6.95 88.63 £2.75 37.79 £1.01 86.49 +7.35
O(d)-NSD 8595+£551 89.41+474 3781+1.15 84.86 £4.71
Gen-NSD 8297+5.13 89.21+384 3780+1.22 85.68+6.51
CSNN 87.30+£593 90.00+2.83 38.03+1.12 81.62+4.32

of a node to the mean of its neighbors instead of summing them (Zhu et al.,|2020). These are all
classical baselines used in |Platonov et al.| (2023) to compare against GNN architectures specifically
developed for heterophilic settings, and that achieve the best performance in most cases. We also
compare CSNN against recent models such as CO-GNN, NSD, and BuNN (Bamberger et al.| 2025).
Results for BuNN on Squirrel, Chameleon, and the datasets in are not available, since we
do not have access to their code.

For the remaining datasets, we compare against the classical GCN, GAT and SAGE; the models
specifically tailored for heterophilic data GGCN (Yan et al., 2022), Geom-GCN (Pei et al., |2020),
H2GCN (Zhu et al.,[2020), GPRGNN (Chien et al.,[2020), FAGCN (Bo et al.,|2021)), FSGNN (Maurya
et al.,|2022), GIoGNN Li et al.| (2022)), ACMGCN (Luan et al., [2022), and MixHop (Abu-El-Haija
et al.; |2019); and the models GCNII (Chen et al., [2020) and PairNorm (Zhao and Akoglul [2020)
designed to alleviate oversmoothing. We use the 10 fixed splits proposed by [Platonov et al.| (2023)
and [Pei et al| (2020). We refer to for further implementation details.

Results. [Table T|and [Table 2|show that CSNN is the best-performing method in 9 out of 11 datasets.
These results highlight our model’s capacity to deal with heterophilic graphs of different sizes and
heterophily levels. We note CSNN often outperforms both NSD and CO-GNN in While we
report the results in[Table 2| for completeness, we note they exhibit high variance — in accordance
to the findings of [Platonov et al.|(2023)), which highlight that the small scale of these datasets may
incur unstable and statistically insignificant results.

6.3 GRAPH CLASSIFICATION

To assess the effectiveness of CSNNs on long- Table 3: Performance comparison of models on
range tasks, we evaluate it on the peptides the peptides datasets.
dataset from the Long Range Graph Benchmark

Dwivedi et al| (2022). It is a dataset containing ~__V109¢! peptides-func T peptides-struct |
15k graphs and two different tasks: peptides- GCN 68.60 + 0.50 24.60 £ 0.07
func is a graph classification task, while GINE 66.21 + 0.67 24.73 £0.17
peptides-struct is a regression one. We report ~ GatedGCN 67.65 £0.47 24.77 +0.09
average precision (AP) for peptides-func and IS)./EISIW 2411 gg f 8‘7‘;‘ %gig f 83
mean absolute error (MAE) for peptides-struct. GPS 6534+ 0.91 5509 4 0.14
Setup. We follow the experimental setup of ~ G-ViT 69.42 +0.75 24.49 £0.16
Tonshoff et al.| (2024), and tune the network Exphormer ~ 65.27 +0.43 24.81 £ 0.07
hyperparameters keeping the ~500k parameter BuNN 72-26 +0.65 24.63£0.12
CSNN 71.58 + 0.80 24.32 £ 0.04

budget proposed by [Dwivedi et al.| (2022) for

fair comparison. We run the model using four different seeds and report mean and standard deviation
of the evaluation metrics. The baselines are taken from Tonshoff et al.|(2024)) and we also compare
against the results reported for BuNN by Bamberger et al.[(2025)).

Results. Our model achieves the best performance in the peptides-struct dataset, and second-best in
the peptides-func, as shown in[Table 3] These results further strengthen our claims on the capacity
of CSNNSs to mitigate over-squashing and perform better in scenarios where long-range and under-
reaching are known issues.

7 CONCLUSION

This work proposed Cooperative Sheaf Neural Networks, a novel SNN architecture that incorporates
directionality in order to increase its efficiency by learning sheaves with conformal maps, allowing
nodes to choose the optimal behavior in terms of information propagation with respect to its neighbors.
We provided theoretical insights on how CSNN can alleviate over-squashing due to its capacity to
smoothly modulate node behavior in information diffusion. We also validated its effectiveness on
node and graph classification experiments on heterophilic graphs and long-range tasks.

Limitations and Future Works. While CSNN is not computationally more taxing than other SNNGs, it
is worth pointing that developing strategies to scale sheaf-based networks is a major research challenge.
While we have used conformal maps to reduce the parameter complexity of restriction maps, we leave
open the possibility that there are further ways to improve the scalability of CSNN. We also believe
that efficient message-passing implementations could represent a step towards large-scale SNNs.

Another promising direction for future works is extending SNNs to cope with high-order structures
like cell- and simplicial complexes, possibly allowing for more expressive models and promoting
long-range communication with fewer layers.

8 ETHICS AND REPRODUCIBILITY STATEMENTS

Ethics Statement. We do not foresee immediate negative societal or ethical impacts at this stage of
the work.

Reproducibility Statement. Aiming to secure reproducibility of our work, we provide proofs of
our theoretical results and in experiment detail in[Appendix Aland [Appendix C| Moreover, we will
provide a public code once the review process is complete.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing. In International Conference on Machine Learning,
pages 21-29. PMLR, 2019.

Rafig Agaev and Pavel Chebotarev. On the spectra of nonsymmetric laplacian matrices. Linear
Algebra and its Applications, 399:157-168, 2005. Special Issue devoted to papers presented at the
International Meeting on Matrix Analysis and Applications, Ft. Lauderdale, FL, 14-16 December
2003.

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

Jacob Bamberger, Federico Barbero, Xiaowen Dong, and Michael Bronstein. Bundle neural net-
works for message diffusion on graphs. In The Thirteenth International Conference on Learning
Representations, 2025.

Federico Barbero, Cristian Bodnar, Haitz Sdez de Océriz Borde, Michael Bronstein, Petar Velickovié,

and Pietro Li0. Sheaf neural networks with connection laplacians. In ICML Topological, Algebraic
and Geometric Learning Workshop 2022, 2022.

10

Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro. Tangent
bundle convolutional learning: From manifolds to cellular sheaves and back. IEEE Transactions
on Signal Processing, 2024.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pages 3950-3957, 2021.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Chamberlain, Pietro Lio, and Michael Bronstein.
Neural sheaf diffusion: A topological perspective on heterophily and oversmoothing in gnns.
Advances in Neural Information Processing Systems, 35:18527-18541, 2022.

Luke Braithwaite, Iulia Duta, and Pietro Li6. Heterogeneous sheaf neural networks. In arXiv preprint
arXiv:2409.08036, 2024.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pages 1725-1735.
PMLR, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In International Conference on Machine Learning, pages 7865-7885. PMLR, 2023.

Tulia Duta, Giulia Cassara, Fabrizio Silvestri, and Pietro Li6. Sheaf hypergraph networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2023.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Aldn
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. Advances in neural information processing systems (NeurIPS), 2015.

Vijay Prakash Dwivedi, Ladislav RampaSek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu,
and Dominique Beaini. Long range graph benchmark. Advances in Neural Information Processing
Systems, 35:22326-22340, 2022.

Ben Finkelshtein, Xingyue Huang, Michael M. Bronstein, and Ismail Ilkan Ceylan. Cooperative graph
neural networks. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria
Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of the 41st International
Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pages 13633-13659. PMLR, 21-27 Jul 2024. URL https://proceedings.mlr.press/
v235/finkelshtein24a.htmll

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning (ICML),
2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks. NeurIPS Workshop on Topological Data
Analysis and Beyond, 2020.

Jakob Hansen and Robert Ghrist. Toward a spectral theory of cellular sheaves. Journal of Applied
and Computational Topology, 2019.

Jakob Hansen and Robert Ghrist. Opinion dynamics on discourse sheaves. SIAM Journal on Applied
Mathematics, 2021.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

11

https://proceedings.mlr.press/v235/finkelshtein24a.html
https://proceedings.mlr.press/v235/finkelshtein24a.html

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Sigiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
conference on machine learning, pages 13242-13256. PMLR, 2022.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In International Conference on Learning Representations (ICLR), 2016.

Sitao Luan, Chenging Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362—1375, 2022.

Sitao Luan, Chenging Hua, Qincheng Lu, Liheng Ma, Lirong Wu, Xinyu Wang, Minkai Xu, Xiao-Wen
Chang, Doina Precup, Rex Ying, et al. The heterophilic graph learning handbook: Benchmarks,
models, theoretical analysis, applications and challenges. CoRR, 2024.

Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to node classification in
graph neural networks. Journal of Computational Science, 62:101695, 2022.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rahman, and James Bailey. Efficient orthogonal
parametrisation of recurrent neural networks using householder reflections. In International
Conference on Machine Learning, pages 2401-2409. PMLR, 2017.

Anton Obukhov. Efficient householder transformation in pytorch, 2021. URL www.github.com/
toshas/torch—-householder. Version: 1.0.1, DOI: 10.5281/zenodo.5068733.

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In International Conference on Learning Representations (ICLR), 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
A critical look at the evaluation of gnns under heterophily: Are we really making progress? The
Eleventh International Conference on Learning Representations, 2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Infernational conference
on machine learning (ICML), 2020.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence, pages 1548—1554. International
Joint Conferences on Artificial Intelligence Organization, 2021.

Otto Sumray, Heather A Harrington, and Vidit Nanda. Quiver laplacians and feature selection. arXiv
preprint arXiv:2404.06993, 2024.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 807-816, 2009.

Jan Tonshoff, Martin Ritzert, Eran Rosenbluth, and Martin Grohe. Where did the gap go? reassessing
the long-range graph benchmark. Transactions on Machine Learning Research, 2024.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

12

www.github.com/toshas/torch-householder
www.github.com/toshas/torch-householder

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pages 1287-1292. IEEE, 2022.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In ACM SIGKDD
international conference on knowledge discovery & data mining (KDD), 2018.

Olga Zaghen, Antonio Longa, Steve Azzolin, Lev Telyatnikov, Andrea Passerini, and Pietro Lio.
Sheaf diffusion goes nonlinear: Enhancing gnns with adaptive sheaf laplacians. In ICML 2024
Workshop on Geometry-grounded Representation Learning and Generative Modeling, 2024.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. [International
Conference on Learning Representations., 2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems (NeurIPS), 2020.

A PROOFS

A.1 PROOF OF PROPOSITION[3.]]

Proof. Suppose Lr(X); does not depend of x; for any j neighbor of 7. Since Lr(X);, =

i j<e]—'i;e (Figexi — Fj<eX;), this means .F;Tﬂe./_‘.jg]er = 0. Therefore, Fjq.x; € ker(.]’-"?ge),

for any j neighbor of . Thus, F;<.x; = 0 or Fj«.x; = 0, for every j.

Note that, F;<.x; = 0 implies that Lz (X); = > F

ji<e Ll j<eX;

If Fj<cx; = 0 for every j, then Lx(X),; = 0. O

A.2 REMARK REGARDING PROPOSITION [3.J] AND NONLINEAR SHEAF LAPLACIAN

If the sheaf Laplacian is nonlinear as in [Zaghen et al| (2024), ie, Lx(X); =
i j<e]-"Z»;e@ (Fi<ex; — Fj<eX;), where ¢. : F(e) — F(e) is a continuous function for each

edge e, then saying that L »(X); does not depend of x; means F,.;,¢.Fj<cX; = 0. Then the proof
holds similarly to the above. -

A.3 PROOF OF PROPOSITION[A.1]

Proof. We have that (L%) T L valued at a given vertex i is:

Z T;rTq Z (SiTSiXi - T;rSij) - T;FSJ Z (SJTS]'X]' - TJTSuxu) (9)
JEN(9) JEN(9) ueN(5)

So T; = 0 (i.e. i does not listen) implies ((L%) T L9 (X)); = 0. If i listens, but a certain neighbor k
does not broadcast, i.e., T, = 0, then ((L'%) T L% (X)), is

Mol > (SIS —TS;x;) | -T]S; | D (S)Sx; — T, Suxu)
JEN(i)\k JEN(i)\k ueN(G)\k

Since the sum does not go through the index k, xy, is not a component in ((L%) T L% (X));. O

13

A.4 PROOF OF PROPOSITION[4.2]

Proof. Lett = 1, and fix a node ¢. Then we are essentially just using the composition described in
(up to normalization and learnable weights). In the equation we have a sum running
over all neighbors j of ¢ and another sum running over all neighbors u of each j. So u can be a 2-hop
neighbor of ¢ and we have that ¢ was updated with information from up to 2-hop neighbors. Similarly,
the node w is updated by up to 2-hop neighbors. Therefore, in the second layer ¢ = 2, « was updated
with information from up to 4-hop neighbors.

If ¢ = n, assume by induction that each node ¢ receives information from it 2n-hop neighbors. In
the next layer n + 1, 7 will be updated by its n-update of its 2-hop neighbors. Let j be a node in
the 2-hop neighborhood of ¢. By the inductive hypothesis, j receives information from its 2n-hop
neighbors, whose distance to ¢ is up to 2n + 2 = 2(n + 1), concluding the proof by induction. [J

A.5 PROOF OF PROPOSITION[4.3]

Proof. Choose a path from ¢ to j. So there are ¢ — 1 vertices between ¢ an j, say vy, ..., v;_1. In the

first layer, let S; and T, _, be different of zero and all other source and target maps equal zero.

This results in ((A%)TAG), = 0 for every k # v;—1 and ((A%R)TAGt)
So, except for z,, ,, the values z, are not updated.

v,_, depends only of ;.
In the second layer, let S,, , and T,,_, different of zero, and all other maps equal zero. This results

in ((A?)TA%W)k = 0 for every k # v;_1, where ((A?)TA%M) 1)

v,_, depends only of the x,,” , that
was updated in the previous layer and depends only of x;.

We continue this reasoning until the ¢-layer, in which we make S, and T; different of zero, and
all other source maps equal zero. This results in ((AZ)TA%), = 0 for every k # i, where

((A)TA%ut),, depend only of the xq(ffl), which going backwards depends only of the original z;,
up to transformations given by the target and source maps. O

B ADDITIONAL EXPERIMENTS

In this section, we provide other two experiments. The first is a real-world large dataset and the

second is a noisy implementation of to illustrate how [Proposition 4.3 may work in

practice.

Table 4: Results on the Penn94 dataset.

Models Penn9%4
Edge Homophily 0.47
MLP 73.61 +0.40
GCN 82.47 £ 0.27
GAT 81.53 £ 0.55
MixHop 83.47 £0.71
GCNII 82.92 £ 0.59
H2GCN 81.31 £ 0.60
WRGAT 74.32 £ 0.53
GPR-GNN 81.38 £ 0.16
ACM-GCN 82.52 £ 0.96
LINKX 84.71 £ 0.52
GloGNN 85.57 £0.35
CSNN 86.00 + 0.39

Real-world. We run CSNN on the Penn94, a dataset with 41.554 nodes, 1.362.229 edges, and whose
feature dimension is 5, against multiple baselines as reported in|Li et al.| (2022) to illustrate CSNN’s
performance in a larger ambiguous heterophilic (Luan et al.| [2024) dataset. We highlight that CSNN
also outperform baselines on Squirrel, another dataset classified as ambiguous heterophilic.

14

Synthetic. In the following, we consider a path graph with four nodes as in where
the features are initialized in a similar fashion of the TreeNeighborsMatch task, but we consider
that all nodes have a number of “blue neighbors" to add noisy information along the path, while the
source and target (nodes 3 and 0) have the same number of these neighbors. The goal is to transfer
information from node 3 to node 0.

shows an actual run of CSNN in such graph: if the norm of T; is close to zero, then the
arrow pointing to ¢ is not draw. Analogously to S;. If both are close to zero, the node is isolated, but
if none of them are we consider the following:

e If T;S; (in the in-Laplacian) and T';S; (in the out-Laplacian) are both close to 0, then the
edge (7, 1) does not exist

« If T;S; (in the out-Laplacian) and T T; are both close to 0, then edge (j, i) does not exist.

We observe restriction maps going to zero in a different configuration than the one exhibited in
Example 4.4 but still sending xéo) to node 0 in the second layer, while suppressing other node

features.

Technically, the significance of a node 7 over j
in a given layer ¢ is measured by the norm of the

o (t) I . Layer 0
the term that multiplies x;”’ in the expression X e
of ((A%,)) " A%(,);. For instance, in[Figure 6| |@—————2 1
the restriction maps provided that 1 listens to Layer 1
0 and no one else, so it can be affected only © o
by :L'go) and by :L'éo). A calculation shows that & 2 b 1 o -9
xgo) is multiplied by a quantity about 0.7 while Layer 2
xéo) is multiplied by 132, approximately. This ©
guarantees that in layer 2, when the message | @ 22— 1 = o
goes from node 1 to 0, the feature xgo) is not
relevant and, in practice, is ignored. Figure 6: Illustration of running CSNN in a path

graph with four nodes along three layers.

C EXPERIMENT DETAILS

In this section, we provide the grid of hyperparameters used in the experiments. If the number of
GNN layers is set to 0, we use an MLP with two layers to learn the restriction maps. Otherwise, we
adopt a GraphSAGE architecture with the specified number of layers.

We also trained CO-GNN using the hyperparameter table from [Finkelshtein et al.| (2024), considering
w and X as explicit hyperparameters instead of treating CO-GNN(u, 1) and CO-GNN(3, X)) as
separate model variants.

All datasets except for roman-empire were treated as undirected graphs. For the roman-empire
dataset, we found that using the stored list of edges was preferable to doubling the edges, since the
graphs from [Platonov et al.| (2023)) are stored as "directed" lists where elements as (0,2) and (2,0) are
regarded as equivalent, for example.

All experiments were conducted on a cluster equipped with NVIDIA V100, A100, and H100 GPUs.
The choice of GPU depended on the availability at the time of the experiments. Each machine was
provisioned with at least 80 GB of RAM.

We also present some statistics of the heterophilic benchmarks.

D COMPLEXITY AND RUNTIME OF CSNN

Using d for dimension of the stalks, h as the number of channels and ¢ = dh, the complexity of our
model is as follows:

« O(d?|V]) for the embedding of graph features into the sheaf stalks;

15

Table 5: Hyperparameter configurations used across heterophilic benchmarks.

Parameter roman-empire, amazon-ratings minesweeper, tolokers, questions
sheaf dimension 3,4,5 3,4,5

layers 2-5 2-5

hidden channels 32,64 32,64

of GNN layers 0-5 0-5
GNN dimension 32,64 32,64
dropout 0.2 0.2
input dropout 0.2 0.2

epochs 2000 2000
activation GELU GELU
left weights true, false true, false
right weights true, false true, false
learning rate 0.02 0.002, 0.02
weight decay 1077, 1078 1077, 1078

Table 6: Hyperparameter configuration used for NeighborsMatch.

Parameter NeighborsMatch
sheaf dimension 2
layers r+1
hidden channels 32
of GNN layers r+1
GNN dimension 32
dropout 0.0
input dropout 0.0
activation Id
left weights true
right weights true
layer norm true

Table 7: Statistics of the heterophilous datasets

roman-empire = amazon-ratings minesweeper tolokers questions

nodes 22662 24492 10000 11758 48921
edges 32927 93050 39402 519000 153540
avg degree 291 7.60 7.88 88.28 6.28
node features 300 300 7 10 301
classes 18 5 2 2 2
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily -0.05 0.14 0.01 0.09 0.02
metric acc acc roc auc roc auc roc auc

16

O
0
O
O

|V|d?h) = O(|V'|cd) when applying W7;

|V|dh?) = O(|V'|ch) when applying Wo;

2|E|d?h) = O(|E|cd) for the two sparse Laplacian-vector multiplication;

2d3(|V| + |E|)) = O(d3(|]V| + |E|)) for constructing the blocks of the Laplacians.

o °
~ o~~~

This gives a total of O(|V'|(c(d+h)+d>)+|E|(cd+d?)). Since weuse 1 < d < 5, the stalk dimension
contribution is small. We highlight that our code also contains a completely message-passing based

implementation, that does not need constructing the Laplacian. This cheaper implementation yields a
complexity of O(c|V|(d + h) + |E|cd).

In the following we report the runtime of CSNN and the non-sheaf models on datasets of as
well as the improvement compared to the best baseline method.

Table 8: Runtime comparison on datasets from Platonov et al.|(2023). We report the mean time in
seconds per epoch, averaged over 10 epochs. CSNN has a similar runtime compared to these simple
baselines, and presents a positive improvement on accuracy in general. The baselines achieving the
best accuracy are highlighted bold.

Model roman-empire amazon-ratings minesweeper tolokers questions squirrel chameleon
GCN 0.05s 0.04s 0.03s 0.04s 0.07s 0.01s 0.02s
SAGE 0.07s 0.04s 0.03s 0.06s 0.16s 0.01s 0.02s
GAT-sep 0.09s 0.05s 0.05s 0.12s 0.21s 0.01s 0.02s
GT-sep 0.14s 0.16s 0.07s 0.14s 0.32s 0.02s 0.01s
CSNN 0.05s 0.10s 0.06s 0.14s 0.16s 0.05s 0.03s
Improvement 14.37% 1 2.90% 15.50% 12.00% 11.61% 1433% 15.38%

We can see that sometimes CSNN is quicker than SAGE, and sometimes it is equal to GCN in terms
of runtime. This might look counter-intuitive, but CSNN achieves its best performance with fewer
parameters. For instance, for the roman-empire dataset, GCN has 2,269,714 parameters, while CSNN
has 339,900, i.e. GCN has about 668% more parameters.

17

	Introduction
	Background
	Cellular sheaves for directed graphs
	Cooperative Sheaf Neural Networks
	Analysis

	Related works
	Experiments
	Over-squashing
	Node Classification
	Graph Classification

	Conclusion
	Ethics and Reproducibility Statements
	Proofs
	Proof of Proposition 3.1
	Remark regarding Proposition 3.1 and nonlinear Sheaf Laplacian
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition 4.3

	Additional Experiments
	Experiment details
	Complexity and runtime of CSNN

