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 A B S T R A C T

This paper presents a benchmark problem for fault diagnosis of an internal combustion engine that has been 
formulated and solved. The objective is to design a diagnosis system using and incomplete model information 
training data that only contains a limited set of fault realizations. Six different solutions to the benchmark, that 
were presented at the IFAC Safeprocess symposium 2024, are described and evaluated. The contribution of 
this paper is the benchmark and the presentation of six different solutions in one paper. The paper is intended 
to provide a starting point for engineers and researchers who work with fault diagnosis and monitoring of 
technical systems.
1. Introduction

Diagnosis systems are designed to monitor the health of a technical 
system by detecting abnormal behavior and identifying its cause. Based 
on observations from the system, e.g., sensor and actuator signals, 
the diagnosis system computes diagnoses, i.e., fault hypotheses. The 
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diagnoses computed by the diagnosis system give important infor-
mation about system degradation and faulty components, which is 
then used by, e.g., the control system to select suitable countermea-
sures (Blanke, Kinnaert, Lunze, & Staroswiecki, 2016). It is therefore 
important to identify the faulty component as fast and accurately as 
possible. Misclassifications and falsely rejecting a true diagnosis can 
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result in unnecessary costs and increased hazards since the correct 
action is not taken and may also reduce the operator’s trust in the 
diagnosis system.

Developing a diagnosis system is non-trivial and the design must 
satisfy several performance requirements, e.g.:

• missed detection and false alarm rate,
• time before detection, and
• fault isolation accuracy.

Selecting a suitable diagnosis system solution for a given application 
depends on the properties of the system and the faults to be monitored 
but also available information, e.g., models and training data. Fault 
diagnosis is complicated by, e.g., model inaccuracies, measurement 
noise, and limited training data from relevant fault scenarios (Dai & 
Gao, 2013; Theissler, Pérez-Velázquez, Kettelgerdes, & Elger, 2021). 
Engineers that are designing diagnosis systems must handle these com-
plicating factors to fulfill the desired performance requirements (Zio, 
2022).

To address these challenges, a benchmark problem has been devel-
oped and provided to the scientific community. The purpose of the 
benchmark is to have an industrially relevant system with realistic 
conditions for designing a diagnosis system, focusing on aspects not 
included in previously published benchmarks. In particular:

• Faults are rare events. It is costly, and sometimes not even pos-
sible, to conduct experiments to collect data from relevant fault 
realizations. This means that training data consists of a limited 
number of realizations of each fault type. Thus, the available 
training data is not representative of the actual data distribution 
of the different fault classes.

• There is access to some engineering knowledge about the sys-
tem to be monitored, e.g., schematics or basic model structures 
derived from physical insights. The available models can be in-
complete, e.g. parameter values are not available, or have been 
derived for different purposes than fault diagnosis, e.g., control 
design.

Because of the different types of uncertainties, the developer must use 
all available information about the system to design a diagnosis system 
that fulfills the performance requirements.

1.1. Related research

Different fault diagnosis approaches have been proposed in the 
scientific community, such as model-based diagnosis and data-driven 
diagnosis, e.g., Gao, Cecati, and Ding (2015), Tidriri, Chatti, Verron, 
and Tiplica (2016). Several survey papers present the current state 
of the art with a focus on either a specific design approach — such 
as model-based diagnosis and signal-based fault diagnosis (Gao et al., 
2015), data-driven fault diagnosis (Abid, Khan, & Iqbal, 2021; Xu 
& Saleh, 2021) — or a specific application area, such as vibration-
based condition monitoring (Stetco et al., 2019), batteries (Xiong, Sun, 
Yu, & Sun, 2020), traction systems in high-speed trains (Chen, Jiang, 
Ding, & Huang, 2020), HVAC systems (Mirnaghi & Haghighat, 2020), 
automotive systems (Theissler et al., 2021), and wind turbines (Liu & 
Zhang, 2020; Stetco et al., 2019). While these surveys give an overview 
of existing fault diagnosis methods it is necessary to understand when 
it is suitable to use a specific fault diagnosis solution.

One approach to address this need is the use of academic and 
industrial benchmarks to evaluate and compare different fault diag-
nosis methods. Melo, Câmara, Clavijo, and Pinto (2022) provide a 
summary of existing open benchmarks for process monitoring and 
fault diagnosis. Their survey discusses realistic simulators such as the 
Tennessee Eastman Process (TEP), which models an industrial chemical 
process (Downs & Vogel, 1993). A simulation-based windmill bench-
mark for fault-tolerant control was proposed by Odgaard, Stoustrup, 
2 
and Kinnaert (2013). A review and comparison of six different di-
agnosis system designs submitted to an FDI competition based on 
this benchmark is presented in Odgaard and Stoustrup (2012). While 
such benchmarks are useful for comparing diagnostic solutions, they 
may not fully capture the challenges associated with limited training 
data and incomplete model information, since the provided simulation 
model can be leveraged to generate new training data or extract the 
underlying model of the simulated system.

Other benchmarks provide measurements from real systems — e.g. 
the DAMADICS benchmark (Bartyś, Patton, Syfert, de las Heras, & 
Quevedo, 2006) and the Case Western Reserve University (CWRU) data 
(see Wu, 2024). The PHM society has also organized various fault 
diagnosis and prognostics related data challenges (see Jia, Huang, Feng, 
Cai, & Lee, 2018; Su & Lee, 2024). The DAMADICS benchmark offers 
both a simulation model and real data from an industrial actuator 
system used in a sugar factory, along with a set of defined performance 
criteria. The CWRU dataset is widely used for bearing diagnostics and 
provides experimental vibration data from both nominal and faulty 
bearings — making it a popular benchmark for condition monitoring 
research (see, e.g., Smith & Randall, 2015). Feiyi and Jinsong (2015) 
reviewed several fault diagnosis system designs developed for the 
NASA Advanced Diagnostics and Prognostics Test-bed (ADAPT), which 
simulates an electrical power system in an aerospace vehicle (see Poll 
et al., 2007).

To address challenges such as lack of representative data and limited 
model information, a new industrial benchmark has been proposed. 
The case study focuses on the air path of a four-cylinder spark-ignited 
internal combustion engine (Jung, Frisk, & Krysander, 2024). The 
system is characterized by nonlinear dynamic behavior, including both 
fast and slow dynamics as well as feedback loops. Data from the engine 
test bench has been used previously, see, e.g., Jung (2022). Building on 
this previous work, the benchmark includes a detailed definition and 
motivation, along with a comparison of different diagnostic solutions.

To encourage the development and comparison of fault diagnosis 
solutions, the benchmark provides both operational data from nom-
inal and faulty operation and a mathematical model of the system 
without known parameters. The available actuator and sensor signals 
correspond to the standard signals found in commercial vehicles. The 
benchmark includes faults such as leakages and sensor faults. The 
primary challenge is to develop a diagnosis system capable of identi-
fying abnormal system behavior using limited model information and 
training data that may not represent all relevant fault scenarios.

1.2. Contributions

The contributions of this paper are as follows: The first contribu-
tion is the formulation of a benchmark problem that illustrates the 
complicating factors of many industrial applications. The benchmark 
is described and how its formulation relates to the challenges when 
designing a diagnosis system. The benchmark provides a mathemati-
cal model of the system with unknown parameters and a number of 
datasets representing different fault scenarios. All material is available 
online.3 The model is implemented using the Fault Diagnosis Toolbox, 
available in Matlab and Python (Frisk, Krysander, & Jung, 2017).

The second contribution is a presentation, comparison, and dis-
cussion of the different solutions to the benchmark problem and the 
conclusions that can be drawn from that. This paper provides a compi-
lation of the six contributions submitted to the benchmark challenge 
at the 12th IFAC Symposium on Fault Detection, Supervision and 
Safety for Technical Processes (Safeprocess), 2024. These solutions are 
collected and compared in this paper with respect to the criteria that 
are provided in the benchmark description. Although there was a single 
problem formulation, the provided solutions show a big variation in 
solution strategies and how to address the complicating factors and 
compute reliable diagnoses. This can provide an initial reference for 
practicing engineers and researchers in fault diagnosis.

3 https://vehsys.gitlab-pages.liu.se/diagnostic_competition/

https://vehsys.gitlab-pages.liu.se/diagnostic_competition/


D. Jung et al. Control Engineering Practice 164 (2025) 106427 
Fig. 1. Engine test bench used for data collection.

1.3. Content of paper

The outline of the paper is as follows. Section 2 describes the 
benchmark including the provided data. In Sections 3–8 the solutions 
are described in detail. In Section 9 the different solutions are com-
pared and discussed. Finally, conclusions and discussions about future 
activities are presented in Sections 10 and 11.

2. The LiU-ICE benchmark

The benchmark is based on a commercial four-cylinder internal 
combustion engine from Volvo Cars, operated on a test bench using 
MATLAB/Simulink (Jung et al., 2024), see Fig.  1. A Simulink-based 
vehicle and driver model provides reference speed trajectories from 
standardized driving cycles to create both static and dynamic operating 
conditions. Data collection and real-time fault injection are handled via 
an ETAS INCA system.

2.1. System description

Fig.  2 shows a schematic of the engine air path. The engine uses a 
throttle to regulate intake air, which mixes with fuel in the cylinders 
to generate torque. Exhaust gases drive the turbocharger via a turbine, 
with a wastegate controlling the flow. The engine control unit (ECU) 
manages torque output and maintains optimal air–fuel ratios to reduce 
emissions, making this subsystem key for emission control.

The engine’s complex, nonlinear dynamics — featuring both fast 
and slow modes, feedback loops, and coupled intake/exhaust flows — 
make it well-suited for fault diagnosis studies, especially fault isola-
tion. Fault effects are typically non-local and can influence multiple 
subsystems depending on operating conditions.

The dataset includes the following eight sensor signals:

• 𝑦pic — intercooler pressure
• 𝑦pim — intake manifold pressure
• 𝑦pamb — ambient pressure
• 𝑦Tic — intercooler temperature
• 𝑦Tamb — ambient temperature
• 𝑦Waf — air mass flow after air filter
• 𝑦𝜔 — engine speed
• 𝑦  — throttle position
xpos

3 
Fig. 2. A schematic of the model of the air flow through the engine.

and the two actuator signals:

• 𝑢𝑤𝑔 — wastegate position
• 𝑢𝑚𝑓  — injected fuel mass into the cylinders

2.2. Data description

A number of datasets have been collected from the engine test 
bench representing different fault scenarios. Sensor and actuator signals 
have been collected from realistic operating conditions. An example is 
shown in Fig.  3. Here, the realistic driving scenario is represented by 
the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) (Eu-
ropean Community, Japan, & United States of America, 2009) that 
is approximately 30 min long and include both urban and highway 
driving patterns, see Fig.  4. Data is sampled at 20 Hz and stored in 
a CSV-format.

Training data include one fault-free and seven faulty scenarios 
where each file contains data from one full WLTP driving cycle. The 
training set covers four hours of data. Faults are introduced at ∼ 120
seconds into each dataset and remain for the duration. The considered 
faults are:

• 𝑓ypic — fault in intercooler pressure (𝑦pic) sensor
• 𝑓ypim — fault the intake manifold pressure (𝑦pim) sensor
• 𝑓yWaf — fault in the air mass flow (𝑦Waf) sensor
• 𝑓iml — leakage in the intake manifold

Sensor faults are introduced in the ECU as multiplicative factors: 𝑦 =
(1 + 𝑓𝑦)𝑥 where 𝑦 is the sensor signal, 𝑥 is the measured quantity, and 
the factor 𝑓𝑦 can be positive or negative. These faults may influence the 
system beyond the sensor output due to feedback loops. The leakage 
is introduced via a manually operated valve with various orifices 
connected to the intake manifold.

The fault magnitudes that are represented in training data are 
highlighted in Table  1. Note that in the training data for the fault 𝑓ypim, 
only negative faults are provided and for 𝑓yWaf only positive faults are 
provided. The remaining fault magnitudes of the different faults in the 
table have been collected in the same way and represent the test data, 
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Fig. 3. Example of nominal measurement data.

Fig. 4. WLTP driving cycle used for data generation.

in total 17 data files (including an additional fault-free scenario) or 
∼ 8.5 hours of operational data. Test datasets were released only after 
the Safeprocess 2024 challenge.

2.3. Description of the provided model

The provided model of the system is based on (Eriksson, Frei, Onder, 
& Guzzella, 2002). The model structure consists of a number of control 
volumes separated by flow restrictions as illustrated in Fig.  2. A more 
4 
Table 1
Summary of datasets with fault scenarios. The highlighted fault magni-
tudes are represented in training data, the others only in test data.
 Fault Magnitudes  
 𝑓ypic −20%, −15%,−10%, −5%, 5%, 10%, 15% 
 𝑓ypim −20%, −15%,−10%, −5%, 5%, 10%, 15% 
 𝑓yWaf −20%, −15%,−10%, −5%, 5%, 10%, 15% 
 𝑓iml 4 mm, 6 mm  

Fig. 5. A screenshot of the implemented model in the Fault Diagnosis Toolbox in 
Matlab.

detailed description of the component models is given in Eriksson et al. 
(2002). The model is formulated as a set of Differential Algebraic Equa-
tions (DAE) which consists of 94 equations of which 14 are dynamic 
equations. The known faults represented in the datasets are included 
in the model as signals. The model is implemented using the Fault 
Diagnosis Toolbox (Frisk et al., 2017) and code is provided for both 
Matlab and Python. Fig.  5 shows an example of the implemented model 
in Matlab.

A structural representation of the engine model is shown in Fig.  6 
where a mark in position (𝑖, 𝑗) denotes that the variable 𝑥𝑗 is included 
in equation 𝑒𝑖. The model variables are organized in unknown variables 
including state variables  (blue marks), known variables  (black 
marks), and fault signals  (red marks). In the structural model, state 
variables and their derivatives are treated as separate signals (Frisk 
et al., 2012). Thus, to explicitly state the relation between a state 
variable 𝑥𝑖 and its derivative �̇�𝑖, additional relations have been included 
in the structural model, see Fig.  5, 

�̇�𝑖 =
𝑑
𝑑𝑡

(𝑥𝑖), (1)

where the state variables are marked as I and their derivatives as D in 
Fig.  6.

3. Solution, first participant

Authors: Anna Sztyber-Betley
Affiliation: Warsaw University of Technology
Contact: anna.sztyber@pw.edu.pl

3.1. Introduction

This section presents the CAREngine (Classification And REsidual 
analysis for ENGINe diagnosis) algorithm. The algorithm is based on 
analyzing residuals and diagnostic signals (binary or trivalent signals 
indicating whether residuals exceed adaptive thresholds). The algo-
rithm uses classifiers to detect and isolate faults. The algorithm is 
divided into two parts: offline and online. The offline part is respon-
sible for building models, developing adaptive thresholds and training 
classifiers. The online part is responsible for computing residuals and 
diagnostic signals for the current sample and running classifiers for 
fault detection and isolation.

The offline part consists of the following steps:

mailto:anna.sztyber@pw.edu.pl
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Fig. 6. A structural representation of the LiU-ICE model provided in the benchmark. 
The blue marks represent unknown variables, the black marks are known variables, 
and the red marks are modeled fault signals.

Table 2
Output, inputs and type of the residuals.
 r Output Inputs Model  
 𝑟0 𝑦pic 𝑦pim, 𝑦Tic, 𝑢𝑚𝑓 , 𝑢𝑤𝑔 neural1 
 𝑟1 𝑦pic 𝑦pim, 𝑦Tic, 𝑦waf, 𝑢𝑤𝑔 neural2 
 𝑟2 𝑦pic 𝑢𝑚𝑓 neural1 
 𝑟3 𝑦pim 𝑢𝑚𝑓 , 𝑦pic neural1 
 𝑟4 𝑦pim 𝑦xpos, 𝑦pic neural1 
 𝑟5 𝑦pim 𝑦waf neural1 
 𝑟6 𝑦pim 𝑦xpos neural1 
 𝑟7 𝑦waf 𝑦𝜔, 𝑦xpos, 𝑦pim neural1 
 𝑟8 𝑦xpos 𝑦𝜔, 𝑦pim, 𝑦pic linear  
 𝑟9 𝑢𝑤𝑔 𝑦pim, 𝑦𝜔 neural1 
 𝑟10 𝑢𝑚𝑓 𝑦pim neural2 
 𝑟11 𝑢𝑚𝑓 𝑦waf, 𝑦𝜔, 𝑢𝑤𝑔 neural1 
 𝑟12 𝑦waf 𝑢𝑚𝑓 , 𝑦𝜔 neural1 

1. building models of process variables using normal operation 
data,

2. computing residuals for all models and all training data,
3. developing adaptive thresholds for residuals,
4. computing diagnostic signals for all data and all residuals,
5. training the Quadratic Discriminant Analysis (QDA) classifier to 
detect faults,

6. training the Linear Support Vector Classifier (LSVC) to isolate 
faults.

The online part consists of the following steps:

1. computing residuals and diagnosis signals for the current sam-
ple,

2. computing smoothed values,
3. running the fault detection classifier,
4. in the case of fault detection, running the fault isolation classi-
fier.

3.2. Residuals

Each residual is calculated using the formula: 𝑟𝑖 = 𝑦𝑖 − �̂�𝑖, where 
𝑦  represents the measured variable and �̂�  denotes the model output. 
𝑖 𝑖

5 
Fig. 7. Residual 𝑟0: modeled �̂�𝑝𝑖𝑐 and measured value 𝑦𝑝𝑖𝑐 (top) and the value of the 
residual (bottom).

Fig. 8. Bounds for residual 𝑟0.

Fig. 9. Residual 𝑟0 value with bounds for scenario 𝑓𝑝𝑖𝑐 110.

The models of the predicted values were developed using solely data 
that did not contain any faults. The residuals and corresponding model 
inputs, outputs, and types are presented in Table  2. The residuals are 
calculated using the following models:

• Linear — Ridge regression model using L2 regularization with 
regularization coefficient 𝛼 = 0.01,

• Neural1 — multilayer perceptron neural network with a hidden 
layer of 8 neurons, ReLu activation and kernel L2 regularization 
with regularization coefficient 𝛼 = 0.00001. The model was 
trained with the Adam optimiser.

• Neural2 — Multilayer perceptron neural network with two hid-
den layers and parameters analogous to Neural1.

An example of a residual 𝑟0 is shown in Fig.  7. It can be observed that 
the model fit is less precise under dynamic conditions.

Adaptive thresholding was used to determine the bounds of the 
residuals. Segment linear function was fitted to residual as a function 
of the measured variable. The bounds were calculated as the expected 
value plus or minus two standard deviations within a segment. The 
lower bound was adjusted to be always less than or equal to zero, while 
the upper bound was adjusted to always be greater than or equal to 
zero. The bounds for the residual 𝑟0 are presented in Fig.  8, while the 
residual 𝑟0 value with bounds for fault scenario 𝑓𝑝𝑖𝑐 110 is shown in Fig. 
9. It can be observed that the residual is outside the specified bounds 
during the fault.
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Table 3
Confusion matrix for fault detection.
 True ∖ Predicted Fault No fault 
 Fault 105 940 21573  
 No fault 213 16587  

3.3. Detection and isolation classifiers

Quadratic Discriminant Analysis (QDA) was used for the detection 
classifier. The features used for training were the diagnostic signals, 
which were binary or trivalent signals indicating whether the residuals 
exceeded the adaptive thresholds. The diagnostic signals were averaged 
over an exponentially weighted window with a 𝛼 = 0.002 weighting co-
efficient. The isolation classifier used a Linear Support Vector Classifier 
(LSVC) with a Nystroem nonlinear feature transformation containing 50 
components. The features used for training were the residuals, which 
were also averaged in an exponentially weighted window with 𝛼 =
0.002.

The decision function of the isolation classifier was used to de-
termine the classification results. A decision function value of less 
than zero indicates a negative classification for a given class. A zero 
value was appended to the decision function values to determine the 
probability of an unknown fault. Subsequently, the softmax function 
was applied to extract the fault probabilities. The unknown fault would 
be assigned the highest rank only if the decision function values for all 
known faults were below zero.

3.4. Remarks on structural methods

The competition data included a structural engine model. Estab-
lished structural methods, such as Structural Analysis (Blanke, Kin-
naert, Lunze, & Staroswiecki, 2015; Frisk et al., 2012; Krysander, 
Aslund, & Nyberg, 2008) and the Graph of a Process (GP) (Kościelny, 
Bartyś, Syfert, & Sztyber, 2022; Sztyber, Ostasz, & Kościelny, 2015), 
were applied to extract residual structure and fault sensitivity. An initial 
attempt to solve the benchmark by fitting residual generators to normal 
data and using theoretical fault sensitivity was unsuccessful.

Using the Fault Diagnosis Toolbox (Frisk et al., 2017), all Minimally 
Structurally Overdetermined Sets (MSO) were computed along with 
their fault sensitivities and associated measurements. However, iden-
tical measurement sets appeared in multiple MSOs with varying fault 
sensitivities, leading to ambiguous results for data-driven models. Ad-
ditionally, GP was used to construct a causal graph (assuming integral 
causality) and to identify partial models (Model Structures, MS). All 
model structures were found to be sensitive to every fault, preventing 
fault isolation. These issues were linked to feedback loops and system 
interconnections.

3.5. Results

Using the validation data (last 20% of each file), classifier types 
and hyperparameters were selected. Tables  3 and 4 show the validation 
confusion matrices for fault detection and isolation. Detection accuracy 
was 84.9% (training) and 89.6% (validation). Validation showed many 
false positives, likely from dynamic end-of-cycle conditions, which were 
reduced by training on the entire dataset. After retraining, isolation 
accuracy was 99.7% (training) and 82.5% (validation), with unknown 
fault classifications at 0.10% (training) and 12.3% (validation).

In addition, an evaluation was conducted on the test data after the 
competition. As neural networks are sensitive to parameter initializa-
tion, the offline part of the algorithm was repeated 10 times to analyze 
the distribution of results. The results for fault detection and isolation 
accuracy in the case of 𝑓pim are shown in Fig.  10. It can be observed 
that the results are positive for the fault size in the same direction as in 
the training data, while for fault sizes in different directions, the fault 
isolation results are poor. Furthermore, the results show a significant 
discrepancy between different runs.
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Table 4
Confusion matrix for fault isolation.
 True ∖ Predicted 𝑓iml 𝑓pic 𝑓pim 𝑓waf  
 𝑓iml 16639 226 0 1141  
 𝑓pic 2206 28606 1025 4256  
 𝑓pim 11 4289 26871 4947  
 𝑓waf 857 2997 126 32079 

Fig. 10. Detection and isolation accuracy for 𝑓pim.

3.6. Conclusions

The incorporation of signs of the residuals and diagnostic signal 
makes the algorithm sensitive to the coverage of different directions 
of fault magnitudes in the training data. Further research will be 
conducted to analyze augmentation techniques to alleviate this issue. 
Secondly, the results of different runs of neural network training ex-
hibited significant discrepancies. There is a need for a reliable method 
of selecting the best model. Furthermore, the structural methodologies 
employed for residual design did not yield the desired results. Fur-
ther research is required to ascertain the conditions under which the 
isolability results of structural methodologies can be relied upon.

4. Solution, second participant

Authors: Francesco Corrini, Andrea Arici, Nicolas Anselmi, Mirko 
Mazzoleni

Affiliation: University of Bergamo
Contact: francesco.corrini@unibg.it

4.1. Introduction

The challenge proposed in this competition requires to correctly de-
tect and isolate four types of fault. The solution presented in this section 
is based on four different Recursive Least Squares (RLS) models (Ljung, 
1986). Each model will produce a set of residuals, composed of two 
time varying coefficients of the respective RLS model. Each residual set 
is sensitive to a specific subset of faults. The idea is that the behavior of 
the time varying coefficients is able to capture changes in the working 
condition of the system. Fault detection and isolation are achieved 
looking to the behavior of the four residual sets. To do this, four 
anomaly detection models are developed using open-set classification 
techniques (Lundgren & Jung, 2022).

4.2. Methodologies

4.2.1. Residuals generation
The proposed residual generators are composed by four RLS models, 

each one with a constant forgetting factor 𝜇 ∈ R , 𝑖 ∈ {1,… , 4}. 
𝑖 >0

mailto:francesco.corrini@unibg.it
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Fig. 11. Residuals 𝒓1 computed on the eight data sets.

Fig. 12. Residuals 𝒓2 computed on the eight data sets.

Hereafter, 𝜗(𝑖)𝑗  will denote the 𝑗th time varying coefficient of the 𝑖th 
RLS model, where 𝑗 ∈ {0,… , 3}. The set of residuals signals 𝒓𝑖 consists 
in two of the time varying coefficients of each RLS model. Denoting 
with 𝑡 ∈ N the discrete-time index, the first model reads as 
𝑦(1)(𝑡) = 𝜗(1)0 (𝑡) + 𝑥(1)1 (𝑡)𝜗(1)1 (𝑡) + 𝑥(1)2 (𝑡)𝜗(1)2 (𝑡), (2)

where 𝑦(1) = 𝑦𝑝𝑖𝑐 , 𝑥(1)1 = 𝑦𝑥𝑝𝑜𝑠, 𝑥(1)2 = (𝑦𝑥𝑝𝑜𝑠)2. The features 𝑥(1)1  and 
𝑥(1)2  and the output 𝑦(1) are selected considering the actuator valves 
equations of the Turbocharged Spark Ignite Engine (Eriksson, 2007). 
The forgetting factor used for model (2) is 𝜇1 = 0.999, with 𝒓1 =
[

𝜗(1)0 , 𝜗(1)2

]

. Fig.  11 shows that the set of residuals 𝒓1 is sensitive only 
to the fault 𝑓ypic. Because of this, 𝒓1 can be used to detect and isolate 
the fault 𝑓ypic. The second model is 

𝑦(2)(𝑡) = 𝜗(2)0 (𝑡) + 𝑥(2)1 (𝑡)𝜗(2)1 (𝑡) + 𝑥(2)2 (𝑡)𝜗(2)2 (𝑡), (3)

with 𝑦(2) = 𝑢𝑚𝑓 , 𝑥(2)1 = (𝑦𝑝𝑖𝑚)2 and 𝑥(2)2 = 𝑦𝜔. In this case, the features 
𝑥(2)1  and 𝑥(2)2  and the output 𝑦(2) are selected according to the second 
and third state equation of the nonlinear mathematical model of the 
engine (Gagliardi, Tedesco, & Casavola, 2018). The forgetting factor 
used for model (3) is 𝜇2 = 0.9997, with 𝒓2 =

[

𝜗(2)0 , 𝜗(2)1

]

. As shown in 
Fig.  12 the residual set 𝒓2 is sensitive to the fault 𝑓ypim and sometimes 
also to the fault 𝑓 . Due to this, it is possible to use the residual set 
iml

7 
Fig. 13. Residuals 𝒓3 computed on the eight data sets.

Table 5
Isolation matrix, where a 0 means that the residual must not react to isolate the fault, 
1 that must react, and ∗ that the residual is irrelevant.
 Residual/Fault No Fault 𝑓ypic 𝑓ypim 𝑓yWaf 𝑓iml 
 𝒓1 0 1 0 0 0  
 𝒓2 0 0 1 0 *  
 𝒓3 0 0 0 1 1  
 𝒓4 0 * * 0 1  

𝒓2 to detect 𝑓ypim but not to isolate it. The third model is: 

𝑦(3)(𝑡) = 𝜗(3)0 (𝑡) + 𝑥(3)1 (𝑡)𝜗(3)1 (𝑡) + 𝑥(3)2 (𝑡)𝜗(3)2 (𝑡) + 𝑥(3)3 (𝑡)𝜗(3)3 (𝑡), (4)

with 𝑦(3) = 𝑢𝑚𝑓 , 𝑥(3)1 = log(𝑦𝜔) ⋅ 𝑦𝑊 𝑎𝑓 , 𝑥(3)2 = 𝑦𝑊 𝑎𝑓  and 𝑥(3)3 = log(𝑦𝑥𝑝𝑜𝑠). 
The variables 𝑦(3), 𝑥(3)1 , 𝑥

(3)
2  and 𝑥(3)3  in (4) are chosen by considering the 

second, third and fourth state space equation of the model in Gagliardi 
et al. (2018). The interaction between 𝑦𝑊 𝑎𝑓  and the logarithm of 𝑦𝜔
in the variable 𝑥(3)1  is obtained through data analysis. The forgetting 
factor for model (4) is 𝜇3 = 0.9997, with 𝒓3 =

[

𝜗(3)0 , 𝜗(3)2

]

. Fig.  13 shows 
that the residual set 𝒓3 allows to correctly detect the faults 𝑓yWaf and 
𝑓iml, however such faults cannot be isolated from each other. The fourth 
model is 
𝑦(4)(𝑡) = 𝜗(4)0 (𝑡) + 𝑥(4)1 (𝑡)𝜗(4)1 (𝑡) + 𝑥(4)2 (𝑡)𝜗(4)2 (𝑡), (5)

with 𝑦(4) = 𝑦𝜔, 𝑥(4)1 = 𝑦𝑝𝑖𝑚 and 𝑥(4)2 = log(𝑦𝑝𝑖𝑚). The features 𝑥(4)2  and the 
output 𝑦(4) are selected considering the first and third state equations 
of the model in Gagliardi et al. (2018). Similarly to what as been done 
for (4), the logarithmic dependence of the feature 𝑥(4)2  is derived from 
analysis performed on data. The forgetting factor used for model (5) 
is 𝜇4 = 0.9997, with 𝒓4 =

[

𝜗(4)0 , 𝜗(4)2

]

. In Fig.  14 it can be observed 
that the residual set 𝒓3 reacts only to the fault 𝑓𝑖𝑚𝑙. In this way, it is 
possible to isolate 𝑓iml from 𝑓yWaf by observing if 𝒓4 reacted. Also, it is 
possible to isolate 𝑓ypim observing when 𝒓2 reacts and 𝒓3 does not react, 
because when 𝒓3 does not react 𝑓iml is not present. Table  5 summarizes 
the isolation process.

4.2.2. Anomaly detector
Figs.  11–14 show that, when some faults are not present, the resid-

ual signals belong to a specific region of the residuals space. Because of 
this, it is possible to characterize an insensitive region for each residuals 
set, where points that are inside the region are associated with the 
nominal working condition of the system or to a fault condition which 
does not trigger the specific residual set. Instead, points outside the 
insensitive region are associated with a fault condition. According to 
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Fig. 14. Residuals 𝒓4 computed on the eight data sets.

Table  5, it is possible to detect and isolate faults by training four 
classifiers able to distinguish if a point is inside or outside the insen-
sitive region. In this work, this is done using open-set classification 
techniques proposed in Lundgren and Jung (2022). Each classifier is 
trained using all available data points that fall inside the respective 
insensitive region. Consider a data set 𝑹𝑖 of points that belong to 
the insensitive region of the residuals set 𝒓𝑖. The idea is to divide 
𝑹𝑖 in batches of fixed size 𝐵, and to estimate a probability density 
function (pdf) on each batch. In this work, the batch size is 𝐵 = 300
data points and the pdfs are assumed Gaussian, so that their estimates 
can be obtained in closed form using the sample mean and variance–
covariance matrix estimators. Consider 𝛺𝑖 the set of the estimated pdfs 
(one for each batch of data) and two pdfs 𝑝, 𝑞 ∈ 𝛺𝑖. Since 𝑝 and 𝑞
are assumed normal, the Kullback–Leibler (KL) divergence (Zhang, Liu, 
Chen, Li, & Wang, 2021) 𝐾(𝑝 ∥ 𝑞) can be defined as 

𝐾(𝑝 ∥ 𝑞) = 1
2

[

Tr
(

𝛴−1
𝑞 𝛴𝑝

)

− 𝑛 + log
(det 𝛴𝑞

det 𝛴𝑝

)

+

(

𝜇𝑞 − 𝜇𝑝
)𝑇 𝛴−1

𝑞
(

𝜇𝑞 − 𝜇𝑝
)

]

,
(6)

where 𝑛 is the dimension of 𝑝 and 𝑞, 𝜇𝑝, 𝜇𝑞 ∈ R𝑛 are the mean vectors 
and 𝛴𝑝, 𝛴𝑞 ∈ R𝑛×𝑛 are the covariance matrices. Lower the value of (6), 
higher is the similarity between 𝑝 and 𝑞. Let 𝑝′𝑖 be a new pdf estimated 
using a batch of residuals obtained online. To understand if residuals 
in the new batch belong to the insensitive region of 𝒓𝑖, the similarity 
𝐷𝑖(𝑝′𝑖) between 𝑝′𝑖 and the pdfs in 𝛺𝑖 is considered, that is: 

𝐷𝑖(𝑝′𝑖) = min𝑞∈𝛺𝑖
𝐾(𝑝′𝑖 ∥ 𝑞), 𝑖 ∈ {1,… , 4}, (7)

where 𝑝′𝑖 belongs to the insensitive region of 𝒓𝑖 if 𝐷𝑖(𝑝′𝑖) is below 
a certain threshold 𝐽𝑖. The thresholds 𝐽𝑖 are tuned according to the 
method proposed in Lundgren and Jung (2022). Training the four 
anomaly detectors for the residuals sets 𝒓𝑖, 𝑖 ∈ {1,… , 4}, consists in 
estimating the four sets of pdfs 𝛺𝑖, and the four thresholds 𝐽𝑖 using 
the eight data set provided for the competition. In particular, each 
set of pdfs 𝛺𝑖 is trained using only the data sets that belongs to 
the insensitive region of the corresponding residuals set 𝒓𝑖. When the 
anomaly detectors are employed online, four new pdfs 𝑝′𝑖 , are computed 
every time 25 new samples are collected. Then, the similarity between 
𝑝′𝑖 and 𝛺𝑖 is checked to understand if it is below the threshold 𝐽𝑖. In 
this way, the classification logic in Table  5 is achieved.

4.3. Results

Table  6 presents the validation results of the proposed solution 
on the data provided for the competition. The approach used is the
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Table 6
Performance of the fault diagnosis solution based on open-set classification in terms of 
Correct Detection and Isolation Rate (CIDR), Miss Detection Rate (MDR), False Positive 
Rate (FPR), Miss Classification Rate (MCR) and computational time evaluated on a pc 
running Matlab with CPU i7-12700KF.
 Data set CDIR MDR FPR MCR Time  
 NF 91.02% 8.98% 8.19 s 
 pic_90 93.46% 0 6.54% 9.31 s 
 pic_110 94.34% 0 5.56% 9.65 s 
 pim_90 85.81% 6.87% 7.32% 8.99 s 
 pim_80 94.57% 0.52% 4.91% 8.52 s 
 waf_105 85.95% 8.91% 5.14% 9.00 s 
 waf_110 91.75% 0 8.25% 8.34 s 
 iml_6mm 82.28% 0.53% 17.19% 9.00 s 

Fig. 15. The overall structure of the proposed method.

Leave One Data set Out Cross Validation (LODOCV), i.e. the solution 
is calibrated using seven out of the eight available data sets, and the 
performance are computed on the data set that has been left out.

4.4. Conclusions

Results in Table  6 show that the proposed solution is able to detect 
and isolate the known faults with high accuracy. This represents a 
significant result considering the low amount of data available and the 
low computational time required to online update the four RLS models 
and compute the four pdfs 𝑝′𝑖 .

5. Solution, third participant

Authors: Jiamin Xu, Siwen Mo, Zixuan Xu, Chongpan Yang, and 
Zhile Du

Affiliation: Central South University
Contact: Xujm123@csu.edu.cn

5.1. Introduction

This solution adopts a distribution-based fault diagnosis method. 
Using a sliding window, the training dataset is segmented, and each 
segment undergoes distribution fitting to generate historical ‘‘experi-
ence’’. Fault types are then matched based on distribution similarity. 
The method’s advantages align with the dataset’s characteristics and 
the principles of distribution-based diagnosis:

Measurement Noise By focusing on distribution statistics rather 
than trend data, the method is less affected by measurement noise.

Limited Training Data The sliding window and overlap strategy 
increase data utilization, mitigating the impact of limited fault samples.

Unknown Faults Distribution similarity is compared to thresholds; 
low similarity flags potential unknown faults.

5.2. Methodologies

The overall structure of the proposed method is illustrated in Fig. 
15, and each component will be detailed in the following sections.

mailto:Xujm123@csu.edu.cn


D. Jung et al. Control Engineering Practice 164 (2025) 106427 
5.2.1. The training phase
Data Preprocessing: Each dataset is normalized via min–max scal-

ing across sensor channels to prepare for training and testing: 

𝑓 (𝑥) =
𝑥 − min(𝑥)

max(𝑥) − min(𝑥)
(8)

Data Sliding Window: A sliding window with size 50 and step size 
10 is applied. For datasets 𝑋′ of length  36,000, this yields  3,600 over-
lapping feature segments 𝑋 = 𝑋0, 𝑋1,…. A smaller 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 increases 
the number of segments and extracted features, improving diagnostic 
precision but also raising computational cost: 

𝑋𝑖 = [𝑥′𝑠 × 𝑖 ∶ 𝑥′𝑠 × 𝑖 +𝑤] = [𝑥𝑖,1, 𝑥𝑖,2,…] (9)

Gaussian Distribution Fitting: Each segment (50 points) is mod-
eled as a Gaussian distribution. Using NumPy’s mean and cov,  3,600 
distributions are generated per dataset, reflecting fault characteristics: 

𝜇𝑖 =
1
𝑁

𝑁
∑

𝑙=1
𝑋𝑖(𝑙) 𝜎2𝑖 = 1

𝑁

𝑁
∑

𝑙=1
(𝑥𝑖,𝑙 − 𝜇𝑖)2 (10)

Labeling: Distributions are labeled by fault type. Data from
𝑤𝑙𝑡𝑝_𝑁𝐹  are all labeled ‘‘NF’’ (normal). For other datasets, segments 
after 120 s are labeled by their fault type; segments before 120 s are 
‘‘NF’’.

Calculating KL Divergence: KL divergence quantifies differences 
between distributions from different fault types: 

𝐷𝐾𝐿(𝑃 (𝑋𝑖) ∥ 𝑃 (𝑋𝑗 )) = log
(

𝜎𝑖
𝜎𝑗

)

+
𝜎2𝑖 + (𝜇𝑖 − 𝜇𝑗 )2

2𝜎2𝑗
− 0.5 (11)

Calculating Fault-Specific Thresholds: For each fault type, all 
𝑁𝑓  segments’ distributions are used to compute a divergence matrix 
𝑀𝑓  (𝑁𝑓 × 𝑁𝑓 ). Flattening and sorting 𝑀𝑓 , we select the value at 
int(0.01 ×𝑁𝑓 ×𝑁𝑓 ) as the threshold 𝑡ℎ𝑓 . This yields the threshold list: 

𝑡ℎ𝑙𝑖𝑠𝑡 = [𝑇ℎ𝑁𝐹 , 𝑇 ℎ𝐹1, 𝑇 ℎ𝐹2, 𝑇 ℎ𝐹3, 𝑇 ℎ𝐹4] (12)

With this, the training phase concludes.

5.2.2. The testing phase
In the testing phase, if fewer than 50 sampling values are available, 

diagnosis is skipped and no fault is assumed—this ‘‘dead zone’’ exists 
because at least 50 points are required to form a valid feature segment. 
Once 50 or more values are input, the latest 50 are used to create a 
feature segment, followed by Gaussian fitting (mean and variance).

The KL divergence between this distribution and each fault type 
(including the no-fault case) from the training set is then computed, 
yielding five KL values: 

𝐾𝐿𝑙𝑖𝑠𝑡 = [𝐾𝐿𝑁𝐹 , 𝐾𝐿𝐹1, 𝐾𝐿𝐹2, 𝐾𝐿𝐹3, 𝐾𝐿𝐹4] (13)

Each value corresponds to a specific fault type. Diagnosis is completed 
by comparing the KL list with the threshold list, using the following 
rules:

• If each element of the KL list is greater than the corresponding 
element in the threshold list, and max(𝐾𝐿𝑙𝑖𝑠𝑡) ≫ threshold list
[argmax(threshold list)], it is considered to belong to an unknown 
fault.

• Otherwise, it is directly diagnosed as the fault type corresponding 
to the minimum element in the KL list. Specifically,
argmin(𝐾𝐿𝑙𝑖𝑠𝑡) = 0 corresponds to no fault, argmin(𝐾𝐿𝑙𝑖𝑠𝑡) = 1
corresponds to 𝑤𝑙𝑡𝑝𝑓iml , argmin(𝐾𝐿𝑙𝑖𝑠𝑡) = 2 corresponds to 𝑓pic, 
and so on.

With this, the diagnostic phase of the algorithm is complete.
9 
Table 7
Hyperparameters.
 Parameters value  
 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 50  
 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 in training sets 50  
 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 in testing sets 50  
 selection criteria for thresholds top 1% 

Fig. 16. The hardware settings.

Fig. 17. Bar chart of the distribution quantity of different fault types.

Fig. 18. Bar chart of the thresholds for various types of faults.

Fig. 19. Visualization of mean distribution.

5.3. Results

The proposed fault diagnosis method is here evaluated using train-
ing data. To apply the proposed method, key hyperparameters must 
be set. The window and step sizes determine how many feature dis-
tributions are learned per fault type. A window that is too small may 
fail to capture meaningful temporal patterns. The hyperparameters and 
hardware settings are summarized in Table  7 and Fig.  16.

5.3.1. Display of distribution results from the training phase
Using the method described in Section 2, numerous distributions 

reflecting different fault types were obtained, as shown in Figs.  17, 18, 
and 19. Fig.  17 displays the number of distributions per fault type, with 
normal conditions (NF) having the most due to larger data volume. Fig. 
18 shows the KL divergence thresholds (top 1%) for each fault type; 
these represent divergence between test and empirical distributions 
and are not directly comparable across types. Fig.  19 presents a T-
SNE visualization of distribution means, illustrating their separability 
for diagnosis.
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Table 8
Experimental metrics.
 Experimental metrics Description  
 Time from fault occurrence until detection \  
 Fault alarm rate FAR = 𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 Missed detection rate MDR = 𝐹𝑁
𝐹𝑁+𝑇𝑃

 
 Fault isolation accuracy FIA = 𝑇𝑃

𝐹𝑁+𝑇𝑃
 

Fig. 20. Overall experimental results.

Fig. 21. Confusion matrix of diagnostic performance.

Fig. 22. Experimental results.

5.3.2. Experimental metrics
To verify the effectiveness of the proposed method, multiple exper-

imental metrics need to be set, as detailed in Table  8.

5.3.3. Experimental results
The experimental results are shown in Fig.  20. We first present the 

overall diagnostic evaluation of the proposed method, followed by the 
confusion matrix in Fig.  21, which details performance across five fault 
types and normal conditions.

In terms of time efficiency, the method performs well for both fault 
detection latency and computation time. For diagnostic accuracy, the 
method shows weaker performance when diagnosing faults related to 
air mass flow sensors but achieves strong results for other fault types.

Additionally, we analyzed the impact of the key hyperparameter 
𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒 in the testing phase using the dataset 𝑤𝑙𝑡𝑝_𝑓 _𝑝𝑖𝑚_090 as a case 
10 
study. As shown in Fig.  22, decreasing the step size leads to a significant 
drop in fault isolation accuracy. This suggests that very small step 
sizes reduce the variation between consecutive data segments, causing 
instability in diagnostic results.

5.4. Conclusions

In this subsection, we summarize the main contributions of the 
proposed method. Based on the primary characteristics of the ob-
tained datasets, a data-driven distribution matching-based fault diag-
nosis method is proposed. A corresponding forgetting coefficient for 
the KL divergence is utilized for each type of fault. Experiments are 
conducted to verify the effectiveness of the proposed method across a 
range of evaluation metrics.

6. Solution, fourth participant

Authors: Hossein Safaeipour1, Mehdi Forouzanfar1,2, Vahid Mirahi1, 
Anna Pinnarelli2, and Vicenç Puig3

Affiliation: 1Islamic Azad University, 2University of Calabria,
3Polytechnic University of Catalonia-BarcelonaTech

Contact: mehdi.forouzanfar@iau.ac.ir

6.1. Introduction

This solution presents a statistical method for extracting features 
from sensor signals, emphasizing deviations indicative of faults (Gao 
et al., 2015). A fixed-thresholding approach based on residual analysis 
is adopted to detect abnormalities without requiring full model knowl-
edge (Blanke et al., 2016). Fault detection and isolation are performed 
using Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Brahimi, 
Hadroug, Iratni, Hafaifa, & Colak, 2024; Salahshoor, Kordestani, & 
Khoshro, 2010), addressing challenges due to incomplete modeling 
and limited fault realizations (Li & Yu, 2022; Rojas, Rojas, & 
Cortés-Romero, 2022).

Early detection of abnormal behavior remains critical to prevent 
undesirable consequences and economic losses (Jafari, Ramezani, & 
Forouzanfar, 2022). The proposed solution combines AI-based model-
ing and signal processing to enhance robustness, with evaluation based 
on the benchmark criteria.

6.2. Solution strategy

Data-driven models based on ANFIS are developed to character-
ize the engine dynamics. Feature selection from available signals en-
sures model simplicity and robustness. The model training strategy is 
developed under the following assumptions:

Assumption 1.  Faults remain active long enough to be detected.

Assumption 2.  Multiple faults can occur sequentially after an initial 
fault.

To improve training efficiency and diagnosis accuracy, feature selec-
tion identifies the most relevant input–output variables from sensor and 
actuator data. Since not all collected measurements aid fault diagnosis, 
selecting appropriate features enhances computational efficiency and 
system robustness.

6.2.1. Healthy system model
During monitoring, anomalies are initially treated as unknown 

faults. A normal operating model (Model_fx), trained on healthy data, 
characterizes fault-free dynamics and distinguishes normal from abnor-
mal conditions.

mailto:mehdi.forouzanfar@iau.ac.ir
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Table 9
Applied residual signals.
 Fault Class 𝑅𝑖 𝑅𝑖 
 Anomaly Detection √ √ 
 ‘𝑓ypic ’ Isolation √

×  
 ‘𝑓ypim ’ Isolation √

×  
 ‘𝑓yWaf ’ Isolation ×

√ 
 ‘𝑓iml ’ Isolation √

×  

6.2.2. Isolation models
Four distinct models (Model_pic, Model_pim, Model_waf, Model_iml) 

are trained to isolate specific known faults. Each model uses all datasets 
except the one corresponding to its target fault. After anomaly detec-
tion, the isolation module analyzes historical data and monitors new 
samples within the allowed window.

Remark 1.  If no known fault is isolated within the permitted steps, 
the anomaly is labeled as an unknown fault (‘fx’ flag).

6.2.3. Residual generation and filtering
Residual signals are generated by comparing measured outputs and 

model estimates: 
�̂�𝑖(𝑘) = 𝑦𝑖(𝑘) − �̂�𝑖(𝑘), (𝑖 = 1, 2,… , 𝑞) (14)

where 𝑦𝑖(𝑘) and �̂�𝑖(𝑘) denote the measured and estimated values of the 
𝑖th feature at time 𝑘.

Under nominal conditions, residuals oscillate around zero within 
an uncertainty band [𝛾−, 𝛾+] caused by system uncertainties. Faults 
induce deviations beyond this range. To enhance detection sensitivity, 
a moving window averaging is applied:

𝑊𝑖,𝑘 = 1
𝑙

𝑘
∑

𝑗=𝑘−𝑙
�̂�𝑖,𝑗 ⋅ �̂�

2
𝑖,𝑘, (15)

𝑅𝑖,𝑘 = 1
𝑚

𝑘
∑

𝑗=𝑘−𝑚
𝑊𝑖,𝑗 ⋅𝑊

2
𝑖,𝑘 (16)

where 𝑙 and 𝑚 are the moving window lengths.
If necessary, an alternative residual enhancement method is applied 

based on moving standard deviation:
𝜎𝑖 = std(�̂�𝑖,𝑘−𝑏,… , �̂�𝑖,𝑘), (17)

𝑊 𝑖,𝑘 = 1
𝜏

𝑘
∑

𝑗=𝑘−𝜏
�̂�𝑖,𝑗 ⋅ 𝜎𝑖, (18)

𝜎𝑖 = std(𝑊 𝑖,𝑘−𝑏,… ,𝑊 𝑖,𝑘), (19)

𝑅𝑖,𝑘 = 1
𝑚

𝑘
∑

𝑗=𝑘−𝑚
𝑊 𝑖,𝑗 ⋅ 𝜎𝑖 (20)

where 𝑏, 𝜏, and 𝑚 define the respective window sizes. The residual 
signals used for anomaly detection and isolation are summarized in 
Table  9.

6.2.4. Residual evaluation
To reliably detect faults, a fixed thresholding approach is employed, 

based on the statistical properties of residuals during fault-free op-
eration (Safaeipour, Forouzanfar, Puig, & Birgani, 2023). The fixed 
thresholds are determined by scaling the maximum observed residual 
magnitudes as follows: 
𝛾𝑖 = 𝐴𝑖 max

𝑘
|𝑅𝑖,𝑘|, 𝛾 𝑖 = 𝐴𝑖 max

𝑘
|𝑅𝑖,𝑘|, (21)

where 𝐴𝑖, 𝐴𝑖 < 1 are tuning parameters set to balance detection 
sensitivity and false alarm rate.

Under nominal conditions, residuals 𝑅𝑖(𝑘) and 𝑅𝑖(𝑘) fluctuate within 
bounded intervals primarily due to modeling uncertainties and mea-
surement noise. Fixed thresholds 𝛾  and 𝛾  are determined as scaled 
𝑖 𝑖

11 
maxima of residual signals, providing static decision boundaries for 
anomaly detection.

The detection logic activates when residuals exceed their corre-
sponding thresholds. If the cumulative number of alarms 𝑁𝑖 within the 
window from the alarm start time 𝐴𝑆𝑇  to the current sampling time 
𝐶𝑆𝑇  satisfies: 

𝑁𝑖
𝐶𝑆𝑇 − 𝐴𝑆𝑇

> 𝛽 and 𝑁𝑖 > 𝛼, (22)

where 𝛽 ∈ (0, 1] defines the minimum acceptable alarm density over 
the window, and 𝛼 ∈ N represents the minimum number of alarms 
required to confirm a fault. If both conditions are met, the detection 
flag is raised; otherwise, the event is classified as a false alarm.

The alarm counter is reset if the following condition holds without 
raising a detection flag: 
𝐶𝑆𝑇 − 𝐴𝑆𝑇

𝑁𝑖
> 𝛼, (23)

indicating that the frequency of alarms is insufficient for fault confir-
mation over the monitoring interval.

6.3. Fault isolation

Upon detection, the dedicated ANFIS isolation models described in 
Section 6.2.2 are activated. These models apply the detection logic of 
Section 6.2.4 to outputs estimated for fault identification. Faults are 
classified based on: 
Faultisolated = 𝑓 (𝑟(𝑡), 𝜃), (24)

where 𝑟(𝑡) is the filtered residual vector, and 𝜃 summarizes the mem-
bership functions, rule bases, and tuned parameters of each model.

A segment of historical residuals is initially analyzed. If isolation 
fails, the window is updated with new samples until a fault is isolated or 
the isolation window expires. Once isolated, the corresponding model 
is deactivated, while others remain active according to Assumption  2 
in Section 6.2. If no known fault is identified within the permitted 
window, the anomaly is classified as unknown (‘fx’ flag) following
Remark  1 in Section 6.2.2. After expiration, all models reset except 
those that flagged faults.

6.4. Robustness to noise

Following the residual evaluation in Section 6.2.4, a cumulative 
alarm mechanism enhances robustness by requiring sustained alarm 
activity over a monitoring window. This approach increases resilience 
against transient disturbances, measurement noise, and isolated thresh-
old crossings, improving fault detection under normal and unknown 
operating conditions.

Using sustained deviation logic, the method remains robust to tran-
sient noise. While noise can amplify residual energy and facilitate early 
fault detection, it may occasionally cause missed alarms for small-
magnitude faults (Blanke et al., 2016; Gao et al., 2015). The cumulative 
evaluation mitigates such risks, ensuring a balanced trade-off between 
sensitivity and specificity.

6.5. Results

The detection strategy in Section 6.2 is applied for both anomaly 
detection and isolation, adhering to the competition structure. Simula-
tion parameters are: 𝑙 = 200, 𝑚 = 500, 𝜏 = 50, 𝑏 = 25, 𝛼 = 6, 𝛽 = 0.7, 
with moving average windows selected by trial and error to optimize 
performance.

Remark 2.  After the first fault isolation, 𝛼 is doubled to apply a more 
conservative logic for subsequent faults.

Remark 3.  If no known fault is isolated within 2000 samples after 
anomaly detection, the fault is classified as unknown (‘fx’), based on 
experimental evaluation of worst-case isolation delays.
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Table 10
Simulation results for 8 Datasets.
 Faultdescription Type Simulation

time (s)
Detection time
(Sample)

Isolation time
(Sample)

 NF None 13.9 – –  
 waf_105 Sensor 28.8 2835 (435) 3239 (839)  
 waf_110 Sensor 25.1 2942 (542) 3262 (862)  
 iml_6mm Leakage 26.4 2687 (287) 2774 (374)  
 pic_090 Sensor 27.0 2500 (100) 2506 (106)  
 pic_110 Sensor 26.8 2476 (076) 2523 (123)  
 pim_080 Sensor 26.9 2799 (399) 2805 (405)  
 pim_090 Sensor 26.8 3180 (780) 4271 (871)  
* Actual fault occurrence at sample 2400.
Simulation results are summarized in Table  10.

6.6. Conclusions

The proposed approach integrates adaptive neuro-fuzzy modeling, 
residual analysis, and fixed thresholding for fault detection and iso-
lation in complex nonlinear systems. By combining healthy-system 
modeling with fault-specific isolation modules, early anomaly detection 
and accurate fault identification are achieved, while unknown scenarios 
are flagged. Moving-window residual enhancement and cumulative 
alarm logic improve robustness against noise and transient deviations. 
Simulation results on the LiU-ICE benchmark confirm the method’s di-
agnostic accuracy, efficiency, and adaptability to multi-fault industrial 
conditions.

7. Solution, fifth participant

Authors: Qiao Deng, Yufei Liu, Jiakun Liu, Haobin Ke and Wanting 
Zhu

Academic Advisor: Zhiwen Chen
Affiliation: Central South University
Contact: zhiwen.chen@csu.edu.cn

7.1. Introduction

The strong coupling and nonlinear interactions between the ten sig-
nals in the LiU-ICE benchmark complicates conventional feature-based 
methods. We therefore adopt Deep CCA to learn joint representations 
that maximize inter-view correlation, enhancing feature richness and 
fault discrimination (Chen, Liang, et al., 2021). However, Deep CCA’s 
reliance on multi-objective optimization, staged training, and fixed 
architectures hinders generalization. To address this, we introduce 
the Canonical Correlation-Guided Deep Neural Network (CCDNN), an 
end-to-end trainable model with integrated CCA objectives and adap-
tive structure, combining robust cross-view correlation learning with 
streamlined training (Chen et al., 2025).

7.2. Related work

Deep Canonical Correlation Analysis (DCCA) learns joint representa-
tions for two views via deep nonlinear encoders. Let view 1 input 𝑥1 ∈
R𝑛1  be mapped by a 𝑑-layer network with parameters 𝜃1 = {𝑊 1

𝑙 , 𝑏
1
𝑙 }

𝑑
𝑙=1

to output 𝑓1(𝑥1; 𝜃1) ∈ R𝑜; define 𝜃2 and 𝑓2(𝑥2; 𝜃2) similarly for view 2. 
The training objective is: 

(𝜃∗1 , 𝜃
∗
2 ) = argmax

(𝜃1 ,𝜃2)
𝑐𝑜𝑟𝑟(𝑓1(𝑋1; 𝜃1), 𝑓2(𝑋2; 𝜃2)) (25)

Given 𝑚 samples, stack top-layer outputs into 𝐻1,𝐻2 ∈ R𝑜×𝑚 and 
center them: �̄�𝑖 = 𝐻𝑖 − 1

𝑚𝐻𝑖𝟏, where 𝟏 ∈ R𝑚×𝑚 is the all-ones 
matrix. Define �̂� = 1 �̄� �̄�𝑇 , �̂� = 1 �̄� �̄�𝑇 + 𝑟 𝐼, 𝑟 > 0. Let 
12 𝑚−1 1 2 𝑖𝑖 𝑚−1 𝑖 𝑖 𝑖 𝑖

12 
𝑅 = �̂�−1∕2
11 �̂�12 �̂�

−1∕2
22 . If 𝑘 is set to the output dimensionality 𝑜, this 

corresponds to the trace of the matrix 𝑅, or 
𝑐𝑜𝑟𝑟(𝐻1,𝐻2) = ‖𝑅‖𝑡𝑟 = 𝑡𝑟(𝑅𝑇𝑅)1∕2 (26)

Subsequently, the parameters of DCCA can be optimized to maximize 
this correlation measure using gradient-based optimization techniques. 
For further details on the methodology,please refer to Andrew, Arora, 
Bilmes, and Livescu (2013).

7.3. Methodologies

Learning multi-view representations that are maximally linearly 
correlated is a longstanding goal. We propose the CCDNN framework, 
which embeds canonical correlation into a deep neural network as a 
constraint rather than the primary objective (Chen et al., 2025). Unlike 
CCA (Chen, Ding, Peng, Yang, & Gui, 2017; Chen, Ding, Zhang, Li, & 
Hu, 2016; Hotelling, 1992), kernel CCA (Fukumizu, Bach, & Gretton, 
2007) and DCCA (Chen, Liang, et al., 2021), CCDNN uses correlation 
as a constraint, allowing the main loss to be tailored (e.g. classifica-
tion loss) while still enforcing view alignment. To remove redundant 
features induced by correlation, we introduce a redundancy filter. The 
overall CCDNN architecture is illustrated in Fig.  23.

Traditional DCCA and DCCAE use linear CCA, which can only com-
pute the correlation between two features, without fully utilizing the 
potential of CCA. The CCDNN method proposed in this paper constructs 
new CCA and RF layers. This method introduces a novel mathematical 
approach, projecting onto each other’s view subspaces to remove re-
dundant features. Although our CCA is not directly used as the learning 
objective for the task, it influences the gradient backpropagation during 
training in the form of a constraint. For clarity, we have drawn the 
computation graphs of DCCAE and CCDNN for comparison, as shown 
in Fig.  24.

7.3.1. Optimization objective
In contrast to deep CCA, taking the classification task as an illustra-

tive example, the optimization objective in the proposed method can 
be formulated as follows:

argmin
(𝜃1 ,𝜃2 ,𝜃3)

−
𝑁𝑠
∑

𝑘=1

𝑁𝑐
∑

𝑎=1
𝑔𝑎𝑘 log �̂�(𝜃1, 𝜃2, 𝜃3, 𝐽 , 𝐿,𝛴, 𝑥𝑘, 𝑦𝑘)𝑎𝑘 (27)

s.t. [𝐽 , 𝐿,𝛴] = 𝐶𝐶𝐴(𝑓1(𝑋; 𝜃1), 𝑓2(𝑌 ; 𝜃2)).

where 𝑁𝑠 represents the number of training samples, 𝑁𝑐 denotes the 
number of categories, 𝑔𝑎𝑘 is the label associated with category 𝑎, and 
𝐶𝐶𝐴(⋅, ⋅) refers to the linear canonical correlation analysis operator.

Incorporating canonical correlation as a constraint in the loss func-
tion does not introduce any additional parameters or computational 
complexity. The entire network can still be trained end-to-end using 
stochastic gradient descent (SGD) with backpropagation, as proposed 
by Robbins and Monro (1951), and can be implemented easily using 
standard libraries without modifying the solvers. This approach is not 
only practical but also critical in the comparison between deep CCA 
and our proposed networks.

mailto:zhiwen.chen@csu.edu.cn
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Fig. 23.  Architectures of CCDNN (Chen et al., 2025).

The flexibility of the optimization objectives and deep network 
architectures is a key advantage. In this solution, experiments utilize 
optimization objectives such as cross-entropy, alongside deep network 
architectures like GRU. Other objectives and network structures are also 
feasible. Achieving this level of flexibility is generally more challenging 
for DCCA.

7.3.2. Redundancy filter
The rationale behind the redundancy filter is quite straightforward. 

If the correlation coefficients obtained from the CCA constraint are not 
all equal to zero, this implies that redundancy is present in the outputs 
(i.e., the learned features) of the two deep networks due to the inherent 
correlation. Therefore, we propose a redundancy filter to mitigate such 
correlation-induced redundancy. The filter consists of two components 
and can be expressed as follows:
𝐫1 = 𝐉𝐓𝐮 −Σ𝐋𝐓𝐲 (28)

𝐫2 = 𝐋𝐓𝐲 −Σ𝑇 𝐉𝐓𝐮 (29)

Taking the first part in Eq. (28) as an example, it can be rewritten 
as 
𝐫1 = 𝐉𝐓𝐮 −Σ𝐋𝐓𝐲 = Γ𝑇Σ

−1∕2
𝑢 (𝐮 −Σ𝑢𝑦Σ

−1
𝑦 𝐲) (30)

where 𝛴𝑢𝑦𝛴−1
𝑦 𝐲 represents the least-mean-squares estimation of 𝐮 using 

the data vector 𝐲.
To further clarify the correlation-induced redundancy, based on 

the properties of CCA, the covariance of the residual signal 𝐫𝟏 can be 
expressed as follows:
Σ = 𝐉𝑇 E(𝐮𝐮𝑇 )𝐉 +Σ𝐋𝑇 E(𝐲𝐲𝑇 )𝐋Σ𝑇 − 𝐉𝑇 E(𝐮𝐲𝑇 )𝐋Σ𝑇
𝑟1
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Table 11
Experimental results for fault detection and diagnosis.
 Fault FAR MDR FIA 𝑇𝑑 (s) 𝑇𝑐 (ms) 
 𝑓iml 0.1000 0.0087 0.9841 0 0.1459  
 𝑓ypic 0.0771 0.0030 0.9963 0.425 0.1581  
 𝑓ypim 0.0944 0.0109 0.9610 0.5 0.1449  
 𝑓yWaf 0.1596 0.1669 0.8045 0.025 0.1536  

−Σ𝐋𝑇 E(𝐲𝐮𝑇 )𝐉 = 𝐈𝑙 −ΣΣ𝑇

=
[

diag((1 − 𝜌21),… , (1 − 𝜌2𝜅 )) 0
0 𝐈𝑙−𝜅

]

∈ 𝑙×𝑙 (31)

It is evident that incorporating the correlation with 𝐲 (where 𝜌𝑖 ≠ 0) 
causes the covariance matrix 𝛴𝐫𝟏  to decrease.

Similar to the analysis of 𝐫𝟏, the understanding of 𝐫𝟐 is straight-
forward and will not be repeated here. From Eqs. (21) and (22), it 
can be observed that the correlation-induced redundancy is reduced 
based on the covariance of the residual signal. The filtered signals are 
then concatenated and fed into the dense layer. It is important to note 
that if diag(𝛴) = 0, this implies that the learned representations of 
both deep networks have no correlation. In this case, 𝐫𝟏 = 𝐽𝑇 𝐮 and 
𝐫𝟐 = 𝐿𝑇 𝐲, meaning that the redundancy filter passes the inputs without 
modification, indicating that no redundancy needs to be removed.

7.4. Results

The selection of variables significantly affects the experimental 
outcomes. Before training the model, we conducted a careful variable 
selection process to ensure robustness. Since some variables are more 
susceptible to environmental influences, we selected only those less 
likely to be affected. From Fig.  25, we selected our experiments’ six 
most relevant variables.

Further variable selection experiments were conducted to determine 
the optimal selection. The correlation matrix in Fig.  25 reveals that 
the four variables — ypic, ypim, ywaf, and yxpos — exhibit strong 
correlations. To maximize the correlation between the two views, we 
assigned these four variables across two separate opinions as follows:

• View 1 (X1): ypic, ypim, yw
• View 2 (X2): ywaf, yxpos, uwg

We used a sampling-based approach to split the dataset into train-
ing, validation, and test sets. The results of our experiments are pre-
sented in Table  11. The metrics evaluated include the Fault Alarm 
Rate (FAR), Miss Detection Rate (MDR), Fault Isolation Accuracy (FIA), 
Detection Time (𝑇𝑑 , in seconds), and Computation Time (𝑇𝑐 , in millisec-
onds) for each type of fault.

The experimental results show that the lowest Miss Detection Rate 
(MDR) of 0.0030 was observed for the Intercooler pressure sensor 
fault (𝑓ypic), indicating the highest fault detection accuracy. The Fault 
Alarm Rate (FAR) was minimized for 𝑓ypic, with a value of 0.0771, 
suggesting a reliable detection process. The detection time (𝑇𝑑) for 𝑓iml
was 0, indicating immediate detection, while other faults had varying 
detection times, with 𝑓ypim taking 0.5 s. The computation time (𝑇𝑐) is 
also inconsistent, with 𝑓ypim having the shortest computation time of 
0.1449 ms.

7.5. Conclusions

In this section, we proposed the Canonical Correlation Guided Deep 
Neural Network, which effectively leverages the strengths of Deep 
Canonical Correlation Analysis while addressing its limitations by in-
corporating a classification-oriented optimization objective and a re-
dundancy filter. The findings indicate that CCDNN can reliably diag-
nose multiple fault types while maintaining computation and detection 
time efficiency. Future work will focus on further optimizing the model 
and exploring its applicability to other complex systems.
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Fig. 24. Comparison of computation graphs (Chen et al., 2025).
Fig. 25. Architectures of CCDNN.

8. Solution, sixth participant

Authors: Silke Merkelbach1, Maryam Ahang2 and Homayoun
Najjaran2

Affiliation: 1Fraunhofer IEM, 2University of Victoria
Contact: silke.merkelbach@iem.fraunhofer.de

8.1. Introduction

This section introduces a hierarchical data-driven fault diagnosis 
method based on a variational autoencoder (VAE). As an accurate 
physical model of the system is hard to achieve and may change 
during the system’s lifetime, we focus on a purely data-driven approach. 
Data-driven and machine learning approaches are powerful tools for 
handling uncertainties in condition monitoring (Ahang, Charter, et al., 
2024). The proposed solution consists of three steps: (1) a VAE with 
14 
a binary classifier for fault detection, (2) another VAE with a multi-
class classifier for fault isolation, and (3) a one-class support vector 
machine (SVM) for unknown fault detection. The outputs of all these 
steps are aggregated to make the final diagnosis decision. We chose 
to use VAEs because they are robust and have been used successfully 
to analyze machine data, such as for condition monitoring (Ahang, 
Abbasi, Charter, & Najjaran, 2024). The SVM was chosen as it was 
applied effectively in the past for machine data analysis and novelty 
detection (Lundgren & Jung, 2022).

Autoencoder models consist of an encoder and a decoder. The 
encoder maps the input data to a latent space, usually of lower dimen-
sions, and the decoder reconstructs the input from the latent space. The 
encoder of a VAE maps the input data into probabilistic distributions 
instead of single points. The objective function of a VAE consists of 
two main components: reconstruction loss and Kullback–Leibler (KL) 
divergence. The reconstruction loss ensures that the generated data 
resembles the input data, while the KL divergence regularizes the 
latent space to follow a normal distribution. The loss function of a 𝛽-
Variational Autoencoder (𝛽-VAE) modifies the traditional VAE loss by 
introducing a hyperparameter 𝛽 to scale the KL divergence term. This 
allows for controlling the balance between the reconstruction loss and 
the regularization of the latent space. A higher value of 𝛽 increases 
the spread of the data in the latent space, leading to better separation 
between data clusters. Therefore, in a noisy environment, the noise 
will not have a major effect due to the distance between different 
data groups, so the classification accuracy will increase (Higgins et al., 
2017). The 𝛽-VAE objective function is expressed as: 

𝛽-VAE(𝐱, 𝐳) = E𝑞𝜙(𝐳|𝐱)
[

log 𝑝𝜃(𝐱|𝐳)
]

− 𝛽𝐷KL
(

𝑞𝜙(𝐳|𝐱) ∥ 𝑝(𝐳)
)

(32)

Where 𝐱 is the input data, 𝐳 is the latent variable, 𝑞𝜙(𝐳|𝐱) is the encoder 
distribution (posterior distribution of the latent variable), 𝑝𝜃(𝐱|𝐳) is the 
decoder distribution (likelihood of the data given the latent variable), 
𝑝(𝐳) is the prior distribution, typically a standard normal  (0, 𝐼), 
𝐷KL

(

𝑞𝜙(𝐳|𝐱) ∥ 𝑝(𝐳)
) is the Kullback–Leibler divergence between the 

posterior and the prior, and 𝛽 is a hyperparameter that controls the 
weight of the KL divergence term.

mailto:silke.merkelbach@iem.fraunhofer.de
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Fig. 26. Overview of the solution.

A One-Class Support Vector Machine (SVM) is a variation of SVM 
designed to detect anomalies and outliers within a dataset. This model 
defines a boundary around the majority class in the feature space.

8.2. Implementation

8.2.1. Data preprocessing
The dataset consists of fault-free data and four different fault sce-

narios. Faults are introduced after about 120 s in each dataset, so in 
each fault dataset, the data after 130 s is considered faulty, and the 
data before 110 s is labeled fault-free. The data is normalized with a 
MinMaxScaler over all available training data. To make the model more 
robust against noise and unseen data, a random Gaussian noise with a 
mean of 0 and a variance of 0.05 is added to all data before the start 
of the training. Train and test data are randomly selected with a ratio 
of 80% and 20%.

8.2.2. Model architecture
The architecture of our approach is shown in Fig.  26. For fault 

detection and diagnosis, a deep three-layer VAE with 10 inputs (as we 
have 10 sensors) and 64-32-16 neurons is used. This VAE is responsible 
for the sensor fusion, extracts and combines the input information, 
and maps them to distributions in its latent space. To perform fault 
detection, a two-layer MLP classifier with softmax activation is added to 
the network after the encoder part on the latent space data. Two VAEs 
with the same architecture are used: one for fault detection VAE𝑑𝑒𝑡 and 
one for fault isolation VAE𝑖𝑠𝑜𝑙. In the first step of fault detection, a 
binary classifier is added to the encoder part of VAE𝑑𝑒𝑡. If a fault is 
detected, VAE𝑖𝑠𝑜𝑙 and the SVM are responsible for fault isolation. The 
number of neurons in the last layer of the classifier after VAE𝑖𝑠𝑜𝑙 is four, 
as we have four faults. The training of both VAEs is done over 100 
epochs using the Adam optimizer with a learning rate of 5e-3 and a 
batch size of 64. VAE𝑑𝑒𝑡 is trained with all fault-free data in one class 
and with all faults in the other class. VAE𝑖𝑠𝑜𝑙 is trained with known fault 
data, and the SVM is trained to recognize all known data.4 The output 
of VAE𝑑𝑒𝑡 (𝐷𝑒𝑡), VAE𝑖𝑠𝑜𝑙 (𝐼𝑠𝑜𝑙), and the SVM (𝑈𝐹 ) are combined as 
shown in Algorithm 1. The output of the algorithm is the prediction 
(𝑃𝑟𝑒𝑑) of the probability for each class.

8.3. Results

The data distribution in the latent space of the VAE considering all 
normal and faulty data is shown in Fig.  27, where the faults are sep-
arable. Here, faults with different severities are shown, and each fault 
has a unique distribution; only fault 𝑓𝑦𝑤𝑎𝑓  has different distributions for 
different severities, making it hard to tell how the model might react 
to other severities of this fault.

4 The recognition of unknown fault types was not validated for the 
competition.
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Algorithm 1 Ensemble Fault Isolation Algorithm
1: Input: 𝐷𝑒𝑡, 𝐼𝑠𝑜𝑙, 𝑈𝐹
2: Output: 𝑃𝑟𝑒𝑑
3: 𝑃𝑟𝑒𝑑 ← []
4: for 𝑖 = 1 to 𝑙𝑒𝑛(𝑑𝑎𝑡𝑎) do
5:  𝑑𝑒𝑡 ← max(𝐷𝑒𝑡[𝑖])
6:  if 𝑑𝑒𝑡 = 1 then
7:  if 𝑈𝐹 [𝑖] = −1 and max(𝐼𝑠𝑜𝑙[𝑖]) ≥ 0.99 then
8:  𝑢𝐹𝑃𝑟𝑜𝑏 ← 0.5
9:  else if 𝑈𝐹 [𝑖] = −1 and max(𝐼𝑠𝑜𝑙[𝑖]) < 0.99 then
10:  𝑢𝐹𝑃𝑟𝑜𝑏 ← 1.0
11:  else
12:  𝑢𝐹𝑃𝑟𝑜𝑏 ← 0.0
13:  end if
14:  𝐼𝑠𝑜𝑙[𝑖] ← append(𝐼𝑠𝑜𝑙[𝑖], 𝑢𝐹𝑃𝑟𝑜𝑏)
15:  𝐼𝑠𝑜𝑙[𝑖] ← 𝐼𝑠𝑜𝑙[𝑖]∕sum(𝐼𝑠𝑜𝑙[𝑖])
16:  else
17:  𝐼𝑠𝑜𝑙[𝑖] ← 𝟎1×5
18:  end if
19:  𝑃𝑟𝑒𝑑 ← append(𝑃𝑟𝑒𝑑, argmax(𝐼𝑠𝑜𝑙[𝑖]))
20: end for

Fig. 27. Three-dimensional representation of the latent space of the VAE for training 
data.

The prediction results for all data, including the new test set with 
different severities that were not seen in the first set of data, alongside 
the primary dataset, are shown in Table  12. Since there were no 
unknown faults in the data, we only validated the true detection rate, 
the false alarm rate, and the fault isolation accuracy. The results show 
that our approach is capable of detecting faults with a reliability of 
85% but creates false alarms quite often. The isolation accuracy has 
the potential for improvement. Although the true detection rate and 
fault isolation accuracy were really good for the training data, the 
performance was weak for unseen data.

8.4. Discussion

The results show that our approach works for data similar to the 
data seen during training but is not very reliable for very different 
data. Detection works nicely, but it detects too many false alarms and 
identifies the correct fault only in 57.4% of cases. Other data-driven 
models tested during the design phase of the approach did not improve 
performance as well. The fault-free data was often confused with 𝑓𝑦𝑝𝑖𝑚
which seems to be most similar to the fault-free data. The reason for 
the bad classification of normal data is the fault detection by VAE𝑑𝑒𝑡, 
forcing VAE𝑖𝑠𝑜𝑙 to predict a fault even though there is no fault. To 
overcome this, detection and isolation could be merged into one VAE. 
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Table 12
Performance metrics of various datasets. Blue rows are the training data.
Data True detection rate False alarm rate Accuracy Fault isolation accuracy
df_output_wltp_f_pic_080 0.620 0 0.579 0.002
df_output_wltp_f_pic_085 0.951 0.000 0.888 0.950
df_output_wltp_f_pic_090 1 0 0.933 0.996
df_output_wltp_f_pic_095 0.118 1 0.177 0.003
df_output_wltp_f_pic_105 0.353 1.000 0.396 0.001
df_output_wltp_f_pic_110 0.998 1 0.998 0.998
df_output_wltp_f_pic_115 1 0.003 0.934 0
df_output_wltp_f_pim_080 0.999 0.087 0.938 0.999
df_output_wltp_f_pim_085 1 0 0.935 1.000
df_output_wltp_f_pim_090 1.000 0.002 0.933 1.000
df_output_wltp_f_pim_095 0.225 1 0.276 0
df_output_wltp_f_pim_105 0.866 0.550 0.845 0
df_output_wltp_f_pim_110 0.970 0.002 0.906 0.968
df_output_wltp_f_pim_115 1 0 0.934 0
df_output_wltp_f_waf_080 1 0 0.933 0
df_output_wltp_f_waf_085 0.966 0.068 0.906 0.962
df_output_wltp_f_waf_090 1 0 0.934 0
df_output_wltp_f_waf_095 1 0 0.933 1.000
df_output_wltp_f_waf_105 1 0 0.933 1
df_output_wltp_f_waf_110 1.000 0 0.933 0.995
df_output_wltp_f_waf_115 0.732 0.741 0.733 0.545
df_output_wltp_f_iml_4mm 0.777 0.793 0.778 0.777
df_output_wltp_f_iml_6mm 1.000 0.683 0.979 1.000
df_output_wltp_NF – 1 – –
df_output_wltp_NF_2 – 0 – –
Mean 0.851 0.413 0.815 0.574
𝑓𝑦𝑝𝑖𝑚 and 𝑓𝑦𝑤𝑎𝑓  seem to be quite similar since they were confused in 
both directions. 𝑓𝑦𝑝𝑖𝑐 was confused with the fault-free data for the lower 
amplitudes, showing that the sensitivity of our approach is too low. The 
fault that could be detected best was 𝑓𝑖𝑚𝑙, but we cannot completely 
rely on it since there were only two amplitudes. A slight improvement 
in the overall performance of our approach might be reached by 
considering multiple samples in a row rather than looking at individual 
time steps, but that does not help in handling unknown fault severities. 
We recommend incorporating domain knowledge into the model to 
achieve a more reliable prediction, using, e.g., the informed machine 
learning taxonomy by (Rueden et al., 2021) and/or the decision guid-
ance proposed by (Afroze, Merkelbach, von Enzberg, & Dumitrescu, 
2023). In cases like this, where an understanding of the domain is 
crucial, another way could be to include domain experts more closely 
in the model development process (Merkelbach, Von Enzberg, Kühn, & 
Dumitrescu, 2022).

8.5. Conclusions

We presented an approach consisting of two VAEs and an SVM, 
while one VAE was used for fault detection, and the other VAE and the 
SVM were used for fault isolation. We found that the approach works 
fine for data that is similar to the data seen during training. However, 
the system is too complex to be reliably predicted with our approach, 
especially if there is only a small amount of data available for training. 
We recommend incorporating domain knowledge in the approach to 
handle the system’s complexity better.

9. Benchmark of the solutions

The six proposed solutions employ various strategies to solve the 
same problem. The diagnosis system solutions presented in the previous 
sections are benchmarked against different fault scenarios in the test 
data, see Table  1, and compared to each other. During the evaluation 
the following metrics were assessed for each fault scenario:

• FAR — False Alarm Rate (False positives)
• TDR — True Detection Rate (True positives)
• TIR — True Isolation Rate, i.e. when a fault is correctly detected, 
how often the true fault is ranked highest among the diagnoses 
by the diagnosis system
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Table 13
Summary of evaluation performance for each solution. Values represent averages over 
the evaluation datasets.
 Solution 100% - FAR TDR TIR  
 1 92.2% 87.3% 50.1% 
 2 100.0% 83.1% 85.5% 
 3 58.4% 84.5% 48.8% 
 4 99.9% 97.2% 68.0% 
 5 30.5% 87.4% 37.2% 
 6 36.2% 78.6% 42.3% 

• UR — Unknown fault Rate, i.e. when a fault is correctly de-
tected, how often the unknown fault is ranked highest among the 
diagnoses by the diagnosis system

The UR is included as a metric because it is preferable for the diagnosis 
system to indicate an unknown fault rather than falsely identifying 
an incorrect fault mode as the most likely one. In the evaluation, 
each metric ranges between 0%–100%, where ideally, TDR and TIR 
should be 100% while FAR should be 0%. To simplify the comparison 
between different solutions, figures display 100% minus the FAR so 
that all curves ideally approach 100%. Note that the exact metrics 
were not disclosed to participants in advance to prevent cycle beating 
— i.e., tailoring diagnosis solutions specifically to maximize selected 
performance metrics.

9.1. Evaluation of the solutions

Figs.  28–33 show the evaluation results of each solution. A summary 
is presented in Table  13. Each subplot shows the diagnosis performance 
for a single fault mode as a function of fault magnitude. Gray intervals 
represent fault magnitudes used in the training data, which and ex-
cluded in the evaluation. The 0% fault magnitude represents fault-free 
test data used as a reference.

Note that each fault scenario starts with a fault-free system before 
fault injection. Thus, both false alarms and missed detections can occur 
in each fault scenario (except for the fault-free test data). The results 
show that achieving both high detection and isolation performance 
across all faults scenarios was a challenging task.
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Fig. 28. Evaluation of solution 1.

Fig. 29. Evaluation of solution 2.

Fig. 30. Evaluation of solution 3.

All solutions performance well on the fault-free test data. Solu-
tions 1, 3, 5, and 6, achieved high TDRs in the fault scenarios but also 
exhibited significant FARs. Solutions 2 and 4 had low FARs. A trend 
of increasing TDR with larger fault magnitudes is evident in Solutions 
1, 2, 3, 5, and 6, whereas Solution 4 consistently achieved a high TDR 
across all fault scenarios.

TIR performance generally declines when deviating from training 
data. The drop is more pronounced for faults 𝑓𝑦𝑝𝑖𝑚 and 𝑓𝑦𝑤𝑎𝑓  than for 
𝑓𝑦𝑝𝑖𝑐 , likely because the training data only includes either positive or 
negative magnitudes — not both, see Solutions 1, 3, and 5. In Solutions 
4 and 6, isolation performance varies even with small changes in fault 
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Fig. 31. Evaluation of solution 4.

Fig. 32. Evaluation of solution 5.

Fig. 33. Evaluation of solution 6.

magnitude, which may indicate the influence of ambient conditions 
on measurements. Solution 2 demonstrates strong overall isolation 
accuracy, while Solution 4 either isolates the fault or classifies it as 
unknown.

9.2. Discussions

Based on the prerequisites of the competition, all solutions address 
the benchmark’s key challenges, such as limited training data and 
the need to manage unknown faults. Nevertheless, several common 
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design principles are evident — many solutions implement data-driven, 
residual-based feature generation.

The primary challenge was generalizing from the limited training 
data, which led to false alarms. These alarms are likely triggered 
by out-of-distribution data resulting from varying ambient conditions. 
Engine dynamics depend on slowly changing variables such as ambient 
pressure and temperature. Fig.  34 shows the range of ambient pressures 
and temperatures measured in the datasets. One promising direction 
is the development of feature-generation techniques that are robust to 
external operating conditions but sensitive to faults. For example, So-
lution 2 uses estimated parameters of local residual models as features 
for fault classification.

When training data is limited, one approach is to explore few-shot 
learning. In few-shot learning, a classifier is trained using only data 
from a few examples of each fault (e.g., Li et al., 2023). Another strat-
egy to address the issue of limited training data in machine learning is 
the use of data augmentation techniques which generate new samples 
from existing data to enrich the training set and potentially improve the 
robustness of the trained models (see, e.g., Wen et al., 2021). Transfer 
learning is also a viable option, allowing the use of pretrained models 
from similar systems to reduce the need of extensive training data, see 
e.g. Zhang et al. (2024).

Another suggestion of exploration is the design of hybrid diagnosis 
systems that combine model-based and data-driven techniques, see 
e.g. Tidriri et al. (2016). The solutions presented here made limited 
use of the mathematical model provided in the benchmark. Designing 
data-driven residuals from structural model information has been in-
vestigated in, e.g. Mohammadi, Krysander, and Jung (2025), Pulido, 
Zamarreño, Merino, and Bregon (2019). Another approach is to design 
graph neural networks to model the interactions between signals (Chen, 
Liu, Hu, & Ding, 2021). Selecting model structures of data-driven 
models based on physical insights could enhance generalizability and 
interpretability, especially when training data is scarce.

All solutions in this work employ open-set fault isolation strategies, 
meaning they can identify unknown fault scenarios. This capability 
is valuable when training data is limited and could, e.g., be used 
to identify new cases requiring operator intervention or that could 
be used to refine the fault diagnosis models. Instead of relying on 
general-purpose classification models, one potential improvement is to 
explore data-driven models that represent the behavior of individual 
fault modes to enhance generalizability when training data from faults 
is scarce, see e.g. Jung and Säfdal (2022).

10. Conclusions

This paper presents a fault diagnosis benchmark to illustrate the 
challenges that must be addressed in many industrial applications 
and six different solutions to the benchmark. The varying solutions 
show that there are different approaches to address the same problem 
formulation.

The participants in the competition were offered both model in-
formation and data in the benchmark. All solutions try to address the 
challenges of limited training data and the ability to handle unknown 
faults. There were attempts of utilizing the model in the diagnosis 
system design. However, the main approach is the use of a data-
driven fault diagnosis. The evaluations showed that performance a 
combination of different fault diagnosis methods is needed.

The goal of the LiU-ICE benchmark is to inspire engineers and 
researchers developing new fault diagnosis solutions that aims to ad-
dress the complicating factors faced in many industrial applications. 
By providing both model and data it is possible to experiment with 
both model-based and data-driven diagnosis system designs that can 
be evaluated and compared.
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Fig. 34. The range of ambient pressures and temperatures measured in the different 
datasets.

11. Future benchmark activities

There are plans to arrange new competitions for the LiU-ICE bench-
mark. For the new competitions, there will be more datasets provided to 
the benchmark including different drive cycles and new fault scenarios. 
To help researchers who want to work with the benchmark, the differ-
ent conditions of each competition will be provided on the homepage 
such that it is possible to develop new solutions.
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