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Abstract

Efficiently identifying the right trajectories for training remains an open problem
in GFlowNets. To address this, it is essential to prioritize exploration in regions of
the state space where the reward distribution has not been sufficiently learned. This
calls for uncertainty-driven exploration, in other words, the agent should be aware
of what it does not know. This attribute can be measured by joint predictions, which
are particularly important for combinatorial and sequential decision problems. In
this research, we integrate epistemic neural networks (ENN) with the conventional
architecture of GFlowNets to enable more efficient joint predictions and better
uncertainty quantification, thereby improving exploration and the identification of
optimal trajectories. Our proposed algorithm, ENN-GFN-Enhanced, is compared
to the baseline method in GFlownets and evaluated in grid environments and
structured sequence generation in various settings, demonstrating both its efficacy
and efficiency.

1 Introduction

Effectively exploring high-dimensional search spaces remains one of the key challenges in mod-
ern machine learning, particularly in scientific discovery applications where the space of possible
molecules, materials, or experimental conditions is vast and complex. Estimating reducible uncer-
tainty (epistemic uncertainty) has historically played a critical role in enabling efficient exploration
in these domains [20, 5, 6], where expensive experiments and simulations make sample efficiency
important. Therefore, techniques for quantifying uncertainty and generating diverse, informative
sets of experiments are of paramount importance for accelerating scientific discovery. This mo-
tivation underlies the development of a relatively new probabilistic machine learning framework
called Generative Flow Networks (GFlowNets) [2, 3]. GFlowNets are generative models that
sequentially construct objects from a discrete (and more recently [9, 7], continuous) space X by
taking a series of actions sampled from a learned policy PF . The policy is trained such that, at
convergence, the probability of generating an object x ∈ X is proportional to a reward R(x) assigned
to that object. This property enables GFlowNets to sample diverse, high-reward candidates. This is
a crucial capability for scientific applications where we seek not just the single best solution, but a
diverse set of promising candidates for further investigation.

GFlowNets are generally trained by sampling trajectories either on-policy (from the learned policy)
or off-policy (from a mixture of the learned policy and random noise). Each trajectory terminates at a
final object x ∈ X , which is associated with a reward R(x), and a gradient update is performed using
this reward signal. Although GFlowNets have shown promise in sampling complex unnormalized dis-
tributions and solving combinatorial optimization problems, their training process remains vulnerable
to well-known challenges in reinforcement learning (RL), notably slow temporal credit assignment
[21, 12] and difficulties in balancing exploration and exploitation. A key advantage often attributed
to GFlowNets is their relative stability under off-policy training, which enables the discovery of
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multiple modes in the target distribution. This stability stems from their underlying connection to
variational inference(VI): recent work has shown formal equivalences between GFlowNet training
objectives and hierarchical variational inference, with GFlowNets offering key advantages over
traditional VI approaches through their amenability to off-policy training without the high gradient
variance typically induced by importance sampling [13]. However, in practice, they frequently be-
come trapped in early-discovered modes, resulting in mode collapse, a particularly problematic issue
in scientific discovery applications where diverse candidate solutions are essential for comprehensive
exploration of chemical, biological, or materials design spaces. This problem is more common in
large, sparse-reward environments. This issue highlights the critical need for improved exploration
strategies. Without effective exploration, the agent fails to sufficiently interact with the environment,
resulting in a suboptimal policy. Since GFlowNets performance is heavily dependent on the quality
of the sampled trajectories, devising strategies to encourage more diverse and targeted exploration
is essential to achieve better learning outcomes. Despite its importance, the exploration problem in
GFlowNets has received comparatively less attention than that given to credit assignment to improve
GFlowNet training [10, 18]. As in RL, efficient exploration in GFlowNets involves prioritizing
regions of the state space where the learning of the reward distribution is incomplete. However,
such exploration must be cost-effective, that is, the benefits of future learning should outweigh the
immediate cost of exploratory actions [20, 19]. Achieving this balance requires uncertainty-driven
exploration, where the agent is guided by an awareness of its own uncertainty about the environment.
This uncertainty can be effectively captured by focusing on joint predictions. In many combinatorial
and sequential decision-making tasks, accurate marginal predictions are insufficient; rather, robust
joint predictive distributions are necessary for effective decision-making [22]. To address this, recent
work has proposed Epistemic Neural Networks (ENNs) as a principled framework for producing
high-quality joint predictions [16]. Empirical results have shown a strong correlation between the
quality of joint predictions and improved decision performance. In particular, the epinet architecture
has been introduced as a way to augment any conventional neural network (including large pretrained
models) with minimal computational overhead, while providing calibrated estimates of epistemic
uncertainty [16, 15].

In this paper, we explore the crucial role of joint predictions in enabling uncertainty-driven exploration
within the GFlowNet framework. To this end, we propose a novel architecture, ENN-GFN, which
integrates ENNs into standard GFlowNet training to enhance the quality of joint predictions. Further-
more, we introduce an improved variant, ENN-GFN-Enhanced, designed to further boost exploration
efficiency by refining the integration of Thompson sampling inspired techniques as in multi-armed
bandits [1]. We evaluate the effectiveness of our proposed methods in two distinct settings. First,
we benchmark them against conventional GFlowNet training and a Thompson sampling-inspired
approach in the Hypergrid environment. Second, we compare the epinet-enhanced model with
the baseline GFlowNet in a structured sequence generation task. In both scenarios, our models
consistently outperform the baselines, clearly demonstrating their advantages in tasks that demand
efficient and informed exploration.

2 Related Work

Exploration in RL remains an active area of research, with various strategies being proposed, particu-
larly in uncertainty-based exploration methods. A common approach involves using ensembles of
multiple independent neural networks, or partially shared architectures, as in [14]. While effective,
these methods often come with increased memory and computational costs. Other techniques rely on
heuristics, such as those employed in [4], which use the prediction error of a random target function
as an exploration bonus. Intrinsically motivated exploration methods also form a prominent class
of approaches, one notable example being Random Network Distillation (RND). In this line, [17]
proposed augmenting GFlowNets with RND-based intrinsic rewards to foster improved exploration.
Our work draws inspiration from research that adapts a variant of Thompson Sampling in RL, where
the agent maintains a posterior distribution over policies and value functions, and selects actions
based on samples drawn from this posterior [19]. Additionally, a key influence on our method comes
from the work leveraging approximate Thompson Sampling to generate effective actions by learning
reasonably accurate joint predictive distributions using ENNs [15].
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3 Preliminaries and Problem Setup

This section introduces the notations and problem formulation for GFlowNets, beginning with a
concise overview. A GFlowNet can be represented as a directed acyclic graph G = (S,A), where
nodes s ∈ S denote states and directed edges (u → v) ∈ A represent actions. If there exists an
edge (u→ v), then v is said to be a child of u, and u is a parent of v. The graph contains a unique
initial state s0 ∈ S, which has no parent. States with no outgoing edges are considered terminal,
and the set of all terminal states is denoted by X . A trajectory τ = (sm → sm+1 → · · · → sn) is a
sequence of transitions where each pair (si → si+1) corresponds to an action. A trajectory is said to
be complete if it starts at the initial state s0 and ends at a terminal state sn ∈ X . The collection of all
such complete trajectories is denoted by T .

The central objective in GFlowNet learning is to discover a forward policy PF that allows sampling
of terminal states with probabilities proportional to a given reward function associated with it. A
forward policy is defined as a set of conditional distributions PF (· | s) over the children of every
non-terminal state s ∈ S, and it induces a distribution over complete trajectories as PF (τ = (s0 →
· · · → sn)) =

∏n−1
i=0 PF (si+1 | si). In addition to the forward policy, a backward policy PB is

introduced, which is a set of distributions PB(· | s) over the parents of every non-initial state s.
Sampling a terminal state x ∈ X can be accomplished by starting from s0 and repeatedly sampling
actions using PF until a terminal state is reached. The marginal likelihood of reaching a terminal
state x is then given by summing the likelihoods of all complete trajectories that terminate at x. Given
a reward function R : X → R≥0 which is nonnegative and nontrivial, the GFlowNet aims to learn a
policy PF such that:

R(x) = Z
∑
τ∈T

τ=(s0→···→sn=x)

PF (τ), ∀x ∈ X (1)

where Z is a normalizing constant equal to
∑

x∈X R(x). Since directly computing the summation
in Equation (1) is typically infeasible, training procedures involve estimating auxiliary components
alongside the forward policy. A prominent training method used is the Trajectory Balance (TB)
objective [12]. It involves learning not only the forward policy and normalization constant Z, but
also a backward policy PB(s | s′), which approximates the posterior distribution over predecessor
states s given a successor state s′ within a trajectory. The TB loss for a trajectory τ is defined as:

LTB(τ ; θ) =

(
log

Zθ

∏n−1
t=0 PF (st+1 | st; θ)

R(sn)
∏n−1

t=0 PB(st | st+1; θ)

)2

(2)

where θ represents the parameters of the learned forward policy PF , backward policy PB , and
the partition function Z. When the trajectory balance loss LTB(τ ; θ) is minimized to zero for all
trajectories τ , the forward policy PF ensures that terminal states x ∈ X are sampled in proportion to
the reward R(x), thereby satisfying Equation (1) [12, 19].

The goal of this work is to enhance exploration in GFlowNets, thereby improving the effi-
ciency of trajectory selection. Our work is structured to align with this objective. Previous exploration
strategies in GFlowNets include On-Policy methods, Tempering, ε-noisy exploration, Generative
augmented flow networks [GAFN; 17], and Thompson Sampling-based approaches [19]. Algorithm 1
(Appendix A) is a simplified version of the Thompson sampling-based approach in GFlowNets [19],
and is referred to as TS-GFN, to study the importance of uncertainty-aware exploration. TS-GFN
illustrates how an agent, equipped with an estimate of its own uncertainty, can more effectively
explore less certain regions of the state space, thereby improving chance of sampling trajectories with
higher rewards. In this work, we implement three different algorithms to compare their effectiveness
in exploration and in selecting appropriate trajectories for training.

3.1 TS-GFN

This is a simplified version of the algorithm described in [19]. An approximate posterior over forward
policies PF is maintained by treating the final layer of the policy network as an ensemble. To
construct an ensemble of size K ∈ Z+, the final layer of the policy network is extended to have K · ℓ
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heads, where ℓ denotes the maximum number of valid actions for any state s ∈ S. All ensemble
members share weights across the layers that precede the final layer. During parameterization of the
ensemble of forward policies K, a single backward policy PB is shared between all members of the
ensemble PF,k. Sharing a common PB ensures convergence of all PF,k to the same optimal forward
policy P ∗

F . The remaining procedure is as follows: an ensemble member PF,k is sampled uniformly
at random with k ∼ Uniform{1, . . . ,K}, and a trajectory τ ∼ PF,k is generated. This trajectory is
then used to update the selected ensemble member using the trajectory balance loss. The TS-GFN
algorithm used in our research is presented in Algorithm 1 (Appendix A).

3.2 Joint predictive distributions

Thompson sampling-based work in GFlownets [19] has approached the selection of trajectories for
training as an active learning problem, leveraging Bayesian techniques inspired by multi-armed
bandits. In particular, TS-GFN maintains an approximate posterior over policies and samples
trajectories from this posterior, achieved by interpreting the final layer of the policy network as
an ensemble. In decision-making contexts where actions influence future data, the agent’s ability
to predict outcomes over multiple time steps is critical. Notably, the quality of joint predictions,
those that go beyond simple marginal distributions, plays a vital role in striking a balance between
exploration and exploitation, as emphasized by [22]. Knowing what they don’t know is a key factor
in determining the intelligence of an agent. This is best evaluated through the quality of joint
predictions [16]. While ensemble methods are capable of providing meaningful joint predictions,
their computational demands make them impractical for large models. Conventional GFlowNet
algorithms are not inherently suited for efficient joint prediction. Although ensemble-based variants
of GFlowNets, offer potential in this direction, they still require evaluation across a broader range of
experimental settings [19]. Moreover, ensemble-based approaches come with their own limitations
[16]. To better understand Joint predictive distributions an example from [16] is provided in the
Appendix F.

3.3 ENN and epinet

Given parameters θ and input x, a conventional neural network output fθ(x) where f is a param-
eterized function class. In epistemic neural networks [ENN; 16] the output additionally depends
on z, which is called an epistemic index sampled from a reference distribution PZ . So an ENN is
specified by a parameterized function class f and a reference distribution PZ . Thus, if the output
varies with z it indicates the uncertainty which can be resolved with future data, and we can call this
epistemic uncertainty. Although all standard neural networks can be represented as ENNs, this more
general framework allows for richer modeling capabilities, especially in sequential decision-making
scenarios [22].

A key strength of ENNs lies in their capacity for joint prediction. In a classification task, for instance,
given a sequence of inputs x1, . . . , xτ , a joint prediction assigns a probability P̂1:τ (y1:τ ) to each
class combinations y1, . . . , yτ . Using ENNs, one can express such joint predictions via integration
over the epistemic index:

P̂ ENN
1:τ (y1:τ ) =

∫
z

PZ(dz)

τ∏
t=1

softmax(fθ(xt, z))yt (3)

This approach to joint prediction shares similarities with Bayesian Neural Networks (BNNs), which
capture uncertainty by maintaining a posterior distribution over model parameters. Notably, all BNNs
can be represented as special cases of ENNs; however, the converse does not necessarily hold and
epinet is one such example. The epinet is a special neural network module designed specifically to
capture epistemic uncertainty [15]. It is integrated with a base neural network, which is a conventional
model parameterized by ζ . Given an input x, the base network produces an output µζ(x). In addition
to the base prediction, the epinet operates on selected features ϕζ(x), which are typically derived
from the final layers of the base model, and z ∈ RDZ called the epistemic index, sampled from a
standard normal distribution. The parameters of the epinet are denoted by η, and the overall output of
the ENN is expressed as:

fθ(x, z) = µζ(x)︸ ︷︷ ︸
base net

+ση(sg[ϕζ(x)], z)︸ ︷︷ ︸
epinet

(4)

4



where θ = (ζ, η) , and sg denotes the stop-gradient operation applied to the features. The epinet
output ση(x̃, z), where x̃ := sg[ϕζ(x)], is modeled as the sum of two components: ση(x̃, z) =
σL
η (x̃, z) + σP (x̃, z), where σL

η is a learnable network, typically a small multilayer perceptron
(MLP), that adapts to training data, and σP is a fixed prior function used to encode initial variation
across the index z, with no trainable parameters. This modular design enables the ENN to express
rich epistemic uncertainty while maintaining computational efficiency [15, 16]. The ENN-GFN
algorithm used in our research is summarized in Algorithm 2 (Appendix B)

To delve deeper into the fixed prior σP as explained in [16], the output layer can be interpreted
as an ensemble of DZ networks. Each member of this ensemble is a MLP that takes input x and
produces logits for the target classes. Let pi(x) ∈ RC denote the output of the i-th ensemble member.
The final output is computed by taking a weighted sum of the ensemble outputs,

∑DZ

i=1 pi(x)zi, and
scaling the result by a tunable factor α. This technique is inspired by ensemble-based methods.
To further leverage uncertainty awareness and enhance exploration, we introduce a modification
of this strategy and refer to the resulting algorithm as ENN-GFN-Enhanced. The algorithm is
similar to the strategy explained in [16], with the key difference being that, instead of combining
the outputs of the ensemble members using a weighted sum, an alternative strategy is employed: an
ensemble member from the prior network is randomly taken and this results in the problem setup
similar to maintaining an approximate posterior over forward policies as in Thompson sampling
inspired exploration algorithms[19] with a hope that this strategy will exploit uncertainty to promote
exploration. Algorithm 3 (Appendix C) summarizes the ENN-GFN-Enhanced algorithm employed in
our research.

4 Experiments

4.1 Hypergrid Environment

We conduct experiments on the HyperGrid environment as described in [2, 12, 13, 8]. HyperGrid
is a n-dimensional hypercube grid with side length H . The reward function is parametrized with a
scalar R0 that determines the difficulty of the exploration problem: a smaller R0 leads to a more
challenging target distribution to learn, as it introduces a large region in the state space where rewards
are negligible. More details on the environment, along with illustrations of the target reward function
(Figure 4), are provided in Appendix D.

We use torchgfn [8] for our experiments. For comparison purposes, we define a baseline
model, referred to as Default-GFN, which corresponds to on-policy TB loss. To ensure a fair
comparison, the same loss function and a common base network architecture are used in all
algorithms. Specifically, the base network consists of two hidden layers, each with 256 units, and all
experiments utilize a uniform backward policy. To evaluate the performance of each method, we
measure the L1 distance between the empirical distribution and the target distribution (which can
be calculated in closed form in this toy task) over the course of training on the HyperGrid environment.

2D Hypergrid Environment : The first experiment is conducted on
an 8 × 8 grid with R0 = 10−4. We train the GFlowNet using four
different variants: Default-GFN, TS-GFN, ENN-GFN, and ENN-
GFN-Enhanced, as described in Section 3. The learned distributions
for each algorithm after 105 training trajectories are shown in Fig-
ure 2. We illustrate in Figure 1 the evolution of the L1 distance
between the target distribution and the empirical distribution. Mod-
els trained using ENN-GFN-Enhanced and ENN-GFN perform
significantly better than the other two variants. More details and
discussion are provided in Appendix E.1. Figure 1: L1 distance evolu-

tion during training.

Sample efficiency: In many interesting settings, querying the reward function is costly.
We thus further study the ability of our approach to discover the 4 modes of 8× 8 and 16× 16 grid
environments with R0 = 10−3, using 16, 000 and 32, 000 sampled trajectories respectively. We find
that Default-GFN and TS-GFN struggle to find the 4 modes of the target distributions with such a
limited budget, whereas ENN-GFN-Enhanced consistently demonstrates superior performance
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over the other algorithms, effectively identifying all modes within fewer iterations. The learned
distributions and the evolution of the L1 distances are illustrated in Figures 5 and 6 of Appendix E.1.
Interestingly, ENN-GFN shows relatively poor performance on the 16× 16 grid within the limited
number of iterations and converges to a higher L1, similar to the default GFN. This serves as practical
evidence of the enhanced effectiveness of ENN-GFN-Enhanced in more complex environments.

(a) Default-GFN (b) TS-GFN (c) ENN-GFN (d) ENN-GFN-Enhanced (e) Target distribution

Figure 2: Visualization of the learned hypergrid distributions by different methods after sampling 105

trajectories on an 8× 8 grid with R0 = 10−4.

4D Hypergrid Environment : The experimental setup follows a configuration similar to the work [2],
where a 4D hypergrid environment is used with rewards R0 ∈ {10−1, 10−2, 10−3}, dimensionality
n = 4, and height H = 8. In our experiments, we explore a slightly more challenging setting by
using R0 = 10−3 with H = 16, and an even more difficult case with R0 = 10−4 and H = 8. The
results are shown in Figure 3. We find that both ENN-GFN and ENN-GFN-Enhanced learn the
target distribution more accurately and faster than other algorithms. We discuss these results in
Appendix E.2.
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Figure 3: L1 distance between the learned and target distributions over the course of training on the
4D hypergrid environment.

Environment with Increased Complexity : The environment size plays a critical role in a model’s
ability to avoid mode collapse. We study this phenomenon in larger 2D HyperGrid environments
with highly sparse rewards, setting R0 = 10−5 to increase the likelihood of collapse. A baseline
GFlowNet is trained using the Detailed Balance (DB) objective [3] which we refer to as DB-GFN
throughout this work. In the foundational ENN paper, it is noted that the training of specific ENN
variants depends on the algorithm developer [16]. This observation motivates our exploration of an
alternative loss function. As in prior experiments, all methods use the same loss function and share a
common base network architecture to ensure a fair comparison. Specifically, both ENN-GFN and
ENN-GFN-Enhanced are trained using the DB objective, and the ENN parameters θ = (ζ, η) are
updated accordingly, as described in Section 3.3. We discuss the results in Appendix E.3

4.2 Valid bit sequences

The BITSEQUENCES environment, introduced in [12], serves as a testbed for exploring structured
binary sequence generation. In this environment, each state corresponds to a binary sequence, and the
agent constructs the sequence by appending either individual bits or blocks of bits. The process begins
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with an empty sequence and terminates once a predefined length is reached. However, in our work,
we adopt a different reward structure, as proposed in [11] to address a key limitation identified in the
original formulation: namely, that structurally similar sequences not selected as modes are unfairly
assigned significantly lower rewards, despite exhibiting the same underlying structure. The new
reward structure follows, a valid sequence is defined recursively: it starts with the empty sequence,
allows concatenation, and remains valid when a 0 is added to the beginning and a 1 to the end. If 0 is
treated as an opening parenthesis and 1 as a closing one, these valid sequences represent balanced
parentheses. Sequences reaching the maximum length of 2N are called complete. The goal is to
train a GFlowNet to generate all such complete, valid sequences. To assess algorithm performance in
this setting, 16,000 sequences are sampled and evaluated using the metrics: diversity. The diversity
metric is defined as the fraction of distinct, complete, and valid sequences sampled during generation.
For sequences of length 2N , the total number of valid bit sequences corresponds to the N th Catalan
number, which is given by

CN =
1

N + 1

(
2N

N

)
=

(2N)!

(N + 1)!N !
.

For this task, we use the GPT2Model from Hugging Face’s transformers library , configured with
3 hidden layers, 8 attention heads, and an embedding dimension of 64, following the setup as in [11].
We compare the performance of the default Transformer architecture with a modified version that
incorporates an epinet. The results, presented in Table 1, demonstrate that integrating epinet into the
Transformer significantly enhances its performance.

Table 1: Comparison of the number of valid balanced parentheses strings generated by transformer-
based models with and without epinet integration across varying sequence lengths.

Model Len 16 Len 24 Len 32
Div ↑ Div ↑ Div ↑

With Epinet 260 216 135
Without Epinet 207 189 120

5 Conclusion

This paper demonstrates that principled uncertainty quantification through joint predictions signifi-
cantly improves exploration efficiency in GFlowNets. By integrating Epistemic Neural Networks
with standard GFlowNet architectures, our ENN-GFN variants consistently outperform baseline
methods across challenging sparse-reward environments, effectively discovering multiple modes and
achieving lower L1 distances to target distributions.

Our work establishes a foundation for uncertainty-driven exploration in sequential construction
tasks, with promising implications for scientific discovery applications where diverse, high-quality
candidates are essential. The demonstrated improvements in mode discovery and exploration effi-
ciency suggest this approach could enable more effective search in complex structured spaces, from
molecular design to materials discovery.

Future work should explore applications in real-world scientific domains and investigate how these
uncertainty-aware exploration strategies scale to larger, more complex combinatorial spaces.
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A TS-GFN algorithm

Algorithm 1 TS-GFN

1: Input: Family of K forward policies {PF,k}Kk=1, shared backward policy PB , loss function
L(τ ;PF , PB)

2: for each iteration do
3: Initialize batch of initial states from environment
4: Initialize an empty batch of trajectories
5: Sample k ∼ Uniform{1, . . . ,K} to select forward policy PF,k

6: while not in exit state do
7: Use PF,k to sample next actions and states for the batch
8: end while
9: Add rewards to the batch of trajectories

10: Compute loss L(τ ;PF,k, PB)
11: Take gradient step on the loss
12: end for

B ENN-GFN Algorithms

Algorithms 2 and 3 show both algorithms we developed.

Algorithm 2 ENN-GFN

1: Input: Output dimension: dout, epinet-train, epinet-prior, base-net, base-head, reference distri-
bution PZ , initialization θ0, initialize dZ ensemble layers, forward policy PF , backward policy
PB , total number of trajectories N , loss function: L(τ ;PF , PB)

2: for n = 1 . . . N do
3: Initialize state x← s0, and trajectory τ = [s0]

4: Sample indices Z̃ = {z1, . . . , zdZ
} ∼ PZ

5: while x not terminal do
6: Compute shared features: h← base-net(x)
7: Compute base output : base-head(h)
8: Compute: epinet-train-output = epinet-train(h)
9: epinet-train-output =

∑dz

j=1 epinet-train-outputdout,j
· zj

10: Compute: epinet-prior-output = epinet-prior(h)
11: epinet-prior-output =

∑dz

j=1 epinet-prior-outputdout,j
· zj

12: Compute final output: base output + epinet-train-output + epinet-prior-output
13: PF (. | x)← final output
14: Sample next state x′ ∼ PF (. | x)
15: x← x′ and τ ← [τ, x]
16: end while
17: Compute loss L(τ ;PF , PB)
18: Update θ: Take gradient step on the loss
19: end for
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C ENN-GFN Algorithms

Algorithms 2 and 3 show both algorithms we developed.

Algorithm 3 ENN-GFN-Enhanced

1: Input: Output dimension: dout, epinet-train, epinet-prior, base-net, base-head, reference distri-
bution PZ , initialization θ0, initialize dZ ensemble layers, forward policy PF , backward policy
PB , total number of trajectories N , loss function: L(τ ;PF , PB)

2: for n = 1 . . . N do
3: Initialize state x← s0, and trajectory τ = [s0]

4: Sample indices Z̃ = {z1, . . . , zdZ
} ∼ PZ

5: while x not terminal do
6: Compute shared features: h← base-net(x)
7: Compute base output : base-head(h)
8: Compute: epinet-train-output = epinet-train(h)
9: epinet-train-output =

∑dz

j=1 epinet-train-outputdout,j
· zj

10: Compute: epinet-prior-output for dZ ensemble layers
11: epinet-prior-output = output from random ensemble layer
12: Compute final output: base output + epinet-train-output + epinet-prior-output
13: PF (. | x)← final output
14: Sample next state x′ ∼ PF (. | x)
15: x← x′ and τ ← [τ, x]
16: end while
17: Compute loss L(τ ;PF , PB)
18: Update θ: Take gradient step on the loss
19: end for

D Details on the HyperGrid environment

The environment is modeled as a Markov Decision Process (MDP), where the states correspond
to the cells of an n-dimensional hypercube grid with side length H . The agent starts at coordinate
x = (0, 0, . . . , 0) and is allowed to increment coordinate i by 1 using action ai (up to a maximum
of H , at which point the episode terminates). A special stop action can also be chosen to end the
trajectory. Since multiple action sequences can lead to the same final state, the resulting MDP forms
a Directed Acyclic Graph (DAG). The reward for terminating the trajectory in state s is defined as:

R(x) = R0 +R1

∏
i

I
(
0.25 <

∣∣∣xi

H
− 0.5

∣∣∣)+R2

∏
i

I
(
0.3 <

∣∣∣xi

H
− 0.5

∣∣∣ < 0.4
)

(5)

where 0 < R0 < R1 < R2. In our experiments, we set R1 = 1 and R2 = 3. By varying R0 and
setting it closer to zero, the exploration problem becomes more challenging, as it introduces a large
region of the state space where rewards are negligible, discouraging exploration [12, 10, 11].

E Additional Experimental details and discussion

In all our experiments, we use a batch size of 16. All other hyperparameters are set to their default
values of the torchgfn library.

E.1 2D Hypergrid environment

In the 8× 8 setting, with R0 = 10−4, and using 100, 000 training trajectories, models trained using
ENN-GFN-Enhanced and ENN-GFN perform significantly better than the other two variants.
Even with such a low number of trajectories sampled, both algorithms are able to capture all the
modes located in the four corners of the grid. In contrast, the default GFN model, tends to only
discover modes near the starting corner and fails to adequately explore other regions of the state
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(a) (b)

Figure 4: True distribution of the reward on the 2D hypergrid environment of size (a) 8× 8 and (b)
16× 16

space. It should be noted that Default-GFN and TS-GFN are able to learn the target distribution in
these small grids but require more samples.

For the simpler R0 = 10−3 setting, but with a more constrained budget, we show in Figure 5 the
learned distributions by the four algorithms, for both 8× 8 and 16× 16 settings. Figure 6 shows the
evolution of the L1 distance between the empirical distribution defined by the terminal states sampled
and the target distribution.

(a) Default-GFN (b) TS-GFN (c) ENN-GFN (d) ENN-GFN-Enhanced

(e) Default-GFN (f) TS-GFN (g) ENN-GFN (h) ENN-GFN-Enhanced

Figure 5: Visualization of the learned hypergrid distributions by different algorithms, illustrating how
quickly they approximate the true distribution within 16,000 and 32,000 iterations for grid sizes of
8× 8 (top row) and 16× 16 (bottom row), respectively.

E.2 4D Hypergrid environment

For the case of R0 = 10−3 and H = 16, the default GFlowNet algorithm struggles to discover more
number of modes, resulting in the identification of only a subset of them and a correspondingly high
L1 distance. Although TS-GFN improves over the default, both ENN-GFN and ENN-GFN-Enhanced
perform significantly better in terms of identifying more modes.
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Figure 6: L1 distance between the learned and true distributions over the course of training on the
given hypergrid environments. Left: Performance of the algorithms within 16000 iterations on the
8 × 8 grid task, with R0 = 10−3. Right: Performance of the algorithms within 32000 iterations
on the 16 × 16 grid task, with R0 = 10−3. Across both cases, ENN-GFN-Enhanced consistently
demonstrates superior performance.

In the more challenging scenario with R0 = 10−4 and H = 8, the task becomes artificially harder as
R0 approaches zero. Nevertheless, both ENN-based algorithms are able to recover all modes more
effectively and achieve lower L1 distances compared to the other methods.

E.3 Environment with Increased Complexity

The experiment is conducted on a 64 × 64 and 128 × 128 HyperGrid environment with a sparse
reward setting of R0 = 10−5. We train GFlowNets using three variants of the Detailed Balance
objective: DB-GFN, ENN-GFN, and ENN-GFN-Enhanced. Due to the large size and extreme sparsity
of the environment, exploration becomes particularly challenging, increasing the likelihood of mode
collapse. Nonetheless, ENN-GFN-Enhanced is able to approximate the target distribution better than
DB-GFN, as shown in Table 2.

Table 2: L1 distance comparison across different algorithms on 2-Dimensional Grid environments
(values in ×10−5). L1 distances are obtained after sampling 2× 105 trajectories

Size DB-GFN ENN-GFN ENN-GFN-Enhanced
64 40.00 38.00 36.00

128 9.74 9.14 9.13

F Joint predictive distributions

To understand the difference between marginal and joint prediction, consider the following example
from [16]. Suppose a conventional neural network is trained to predict whether a randomly selected
person would classify a given drawing as a ‘rabbit’ or a ‘duck’. Given a single image, the network
produces a marginal prediction, assigning probabilities to each class. If it outputs 0.5 for both ‘rabbit’
and ‘duck’, it is unclear whether this uncertainty arises from genuine perceptual ambiguity across
individuals (i.e., some people see a rabbit while others see a duck), or if the model simply lacks
sufficient data to learn a definitive classification. Conventional neural networks do not distinguish
between these two cases. However, joint predictions—which model the distribution over pairs of
labels (e.g., (y1, y2)) for the same image—can provide this insight. From any such joint distribution,
Bayes’ rule allows us to compute the conditional distribution, which reveals how one label influences
another. By analyzing this conditional, we can assess whether additional training data would reduce
uncertainty, or whether ambiguity would persist.
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