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Abstract

Real-world vision-language applications de-001
mand varying levels of perceptual granular-002
ity. However, most existing visual large lan-003
guage models (VLLMs), such as LLaVA, pre-004
assume a fixed resolution for downstream tasks,005
which leads to subpar performance. To ad-006
dress this problem, we first conduct a com-007
prehensive and pioneering investigation into008
the resolution preferences of different vision-009
language tasks, revealing a correlation between010
resolution preferences with ❶ image complex-011
ity, and ❷ uncertainty variance of the VLLM012
at different image input resolutions. Building013
on this insight, we propose an empirical for-014
mula to determine the optimal resolution for015
a given vision-language task, combining these016
two factors. Second, based on rigorous experi-017
ments, we propose a novel parameter-efficient018
fine-tuning technique to extend the visual input019
resolution of pre-trained VLLMs to the identi-020
fied optimal resolution. Extensive experiments021
on various vision-language tasks validate the022
effectiveness of our method.023

1 Introduction024

Visual Large Language Models (VLLMs) repre-025

sent a powerful class of models capable of han-026

dling vision-language tasks (Yin et al., 2023; Liu027

et al., 2023a, 2024; Alayrac et al., 2022). There is028

a growing body of research focused on the appli-029

cation of VLLMs in real-world scenarios, where030

different tasks necessitate varying levels of percep-031

tual granularity. For instance, autonomous driving032

systems require high resolution to capture multi-033

ple objects and intricate details (Zhou et al., 2023;034

Ding et al., 2023), whereas image classification035

tasks involving singular, simple objects can be ef-036

fectively performed at lower resolutions (Li et al.,037

2024a, 2023d; Zhang et al., 2024). Despite this,038

most existing VLLMs, e.g., LLaVA, pre-assume a039

fixed resolution for downstream tasks, which leads040

to sub-optimal performance (Liu et al., 2023b,a;041
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Figure 1: Resolution preference across eight tasks; ★
marks the optimal resolution for each task.

Li et al., 2023b). A direct “exhaustive training" 042

strategy to adapt current VLLMs for diverse vision- 043

language applications by training the models at 044

different resolutions during the pre-training phase 045

to create a series of checkpoints corresponding to 046

various image input resolutions, followed by the 047

selection of the most effective checkpoint for down- 048

stream tasks. While this method is viable, it incurs 049

significant training costs. Consequently, we pose 050

the first research question (RQ1): 051

For a given vision-language task, how can we ac- 052

curately determine the optimal resolution without 053

such exhaustive training for VLLMs? 054

To answer RQ1, we conduct a comprehensive 055

and pioneering investigation into the resolution 056

preferences across eight widely-studied vision- 057

language tasks, utilizing VLLMs with five varying 058

input image resolutions, as shown in Figure 1. Our 059

findings reveal that directly choosing the lowest 060

(2242) and highest (6722) resolution leads to sub- 061

par performance across tasks. On the other hand, 062

we observe diverse preferences for the intermediate 063

resolutions, with optimal choices scattered among 064

3362, 4482, and 5602. 065

To determine the resolution preference for dif- 066

ferent tasks, we propose two heuristic methods: 067
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❶ image complexity, which measures the intrin-068

sic complexity of a given image [❖ Secion 3.2.1].069

❷ uncertainty variance, which measures the vari-070

ance of uncertainty in the model predictions at dif-071

ferent image input resolutions [❖ Secion 3.2.2].072

Through empirical analysis across eight vision-073

language tasks, we find that both the complexity074

scores and model uncertainty variance exhibit a075

generally positive correlation with the preferred076

resolution for each task. Building on this insight,077

we propose an empirical formula integrating both078

heuristics to determine the optimal resolution for079

each vision-language task [❖ Secion 3.2.3]. We080

utilize three reference tasks to optimize a single081

hyperparameter of this empirical formula, and the082

fitting results across five additional tasks affirm its083

generalizability.084

Once the optimal resolution for a given vision-085

language task is identified, the next step is adapt-086

ing the current VLLM to the identified resolu-087

tion. While the training-free method exists for088

resolution extension, we empirically find it would089

lead to performance degradation, suggesting that090

training-based approaches are essential. However,091

re-training a VLLM with another resolution from092

scratch incurs significant costs. This prompts our093

second research question (RQ2):094

How can we efficiently adapt a pre-trained095

VLLM to the designated resolution without com-096

promising performance?097

To tackle this problem, we propose a post-098

training strategy that extends the image input reso-099

lution of an existing VLLM checkpoint. We con-100

duct a preliminary experiment to identify which101

parameters within the VLLM are crucial for per-102

formance enhancement. Based on the findings, we103

propose a parameter-efficient fine-tuning (PEFT)104

approach, which only requires updating a few pa-105

rameters in each VLLM component: the positional106

embedding parameters of the visual encoder, the107

projector parameters, and the LoRA adapter pa-108

rameters of the LLM backbone. Empirical studies109

demonstrate that our method achieves a compelling110

efficiency-performance trade-off. In summary, this111

paper has the following contributions:112

• Novel Discovery. Through a comprehensive and113

pioneering investigation, we discover that differ-114

ent vision-language tasks prefer distinct resolu-115

tions.116

• Empirical Formula. We find these preferences117

correlated with image complexity and model un-118

certainty variance on samples at different input 119

image resolutions. We then propose an empirical 120

formula to adaptively determine the optimal res- 121

olution for various downstream vision-language 122

tasks without exhaustively training VLLMs. 123

• Efficient Adaptation. We introduce a PEFT ap- 124

proach to extend the input image resolution of 125

LLaVA through post-training, containing three 126

components, including vision module PEFT, lan- 127

guage module PEFT, and the projector tuning. 128

2 Related Work 129

VLLMs and Resolution Sensitivity. VLLMs ex- 130

tend the capabilities of LLMs to multimodal tasks 131

by processing both text and visual inputs (Alayrac 132

et al., 2022; Liu et al., 2023a). This work fo- 133

cuses on VLLMs employing an encoder-decoder 134

architecture with a modality connector, a common 135

paradigm represented by models like LLaVA (Liu 136

et al., 2023b). However, a prevalent limitation is 137

their reliance on a fixed input resolution, which 138

can lead to suboptimal performance across di- 139

verse downstream tasks. The sensitivity of vi- 140

sual models like CNNs and ViTs to resolution is 141

well-known (Borji, 2021; Dehghani et al., 2023), 142

a challenge VLLMs inherit and which our work 143

addresses by proposing task-aware optimization. 144

Further details on VLLM architectures and the his- 145

torical context of resolution sensitivity are provided 146

in Appendix A.1. 147

Strategies for Adapting VLLMs to Varying Res- 148

olutions. To address fixed-resolution limitations, 149

various strategies exist. Many recent VLLMs na- 150

tively support dynamic resolutions via architectural 151

innovations (e.g., 2D RoPE in Qwen2VL (Wang 152

et al., 2024), efficient high-resolution processing in 153

MiniCPM (Yao et al., 2024), or varied aspect ratio 154

handling in LLaVA-UHD (Guo et al., 2025)), but 155

these typically require extensive pre-training. Other 156

techniques focus on processing high-resolution in- 157

puts through methods like image patching (Chen 158

et al., 2024; wen Dong et al., 2024), region-aware 159

mechanisms (Wu and Xie, 2023; Zhao et al., 2024; 160

Zhang et al., 2023), or by optimizing computational 161

costs (Li et al., 2024a). 162

Our approach differs significantly by enabling 163

lightweight, post-training adaptation of existing 164

VLLM checkpoints. We first determine an optimal 165

task-level resolution using interpretable heuristics 166

and then efficiently adapt the model using a PEFT 167
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Table 1: Key Distinctions: Our Task-Aware Adaptation vs. Native Dynamic Resolution VLLMs

Comparative Aspect Our Method (Task-Aware Adaptation) Native Dynamic Resolution VLLMs

Resolution Handling ✓ Task-Optimized (Post-hoc PEFT) ✓ Inherent (Architectural Design)

Optimal Resolution for Task ✓ Explicitly Selected (Heuristic-driven) ✗ Generally Implicit / Not Primary Focus

Adaptation Approach ✓ Lightweight PEFT (on existing models) ✗ Extensive Pre-training / Full Fine-Tuning

Base Model Architecture ✗ Unchanged (Adapts standard VLLMs) ✓ Often Modified (e.g., RoPE, specialized ViTs)

Resolution Decision Informed by Textual Context ✓ via model uncertainty with text ✗ Typically visual input properties only

Adaptation Cost ✓ Low (Efficient for existing checkpoints) ✗ High (Resource-intensive initial training)
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Figure 2: Our method comprises two components: the first component identifies the optimal image input resolution
for a given vision-language task (depicted in green), while the second component adapts the VLLM to the selected
image input resolution (depicted in blue).

strategy, without architectural changes or retrain-168

ing from scratch. This offers a practical pathway169

to enhance existing models. Key differences be-170

tween our method and native dynamic resolution171

VLLMs are summarized in Table 1. Further de-172

tails on these dynamic resolution models and other173

high-resolution techniques are in Appendix A.2.174

3 Methodology175

This section elaborates on our proposed method-176

ology. Section 3.1 presents an overview, followed177

by a detailed explanation of each component in178

Sections 3.2 and 3.3.179

3.1 Method Framework180

Figure 2 illustrates our proposed two-stage ap-181

proach. The first stage, task-specific resolution182

selection, aims to identify the optimal input res-183

olution for a given vision-language task. This is184

achieved by first employing two heuristic metrics:185

image complexity (detailed in Section 3.2.1) and186

model uncertainty variance across different reso-187

lutions (Section 3.2.2). Building on these heuris-188

tics, we then introduce an empirical formula (Sec-189

tion 3.2.3) to determine this optimal task-level res-190

olution. Once the optimal resolution is identified191

for a particular task, the second stage, VLLM adap-192

tation, adjusts the pre-trained VLLM to operate 193

effectively at this new resolution. This adaptation 194

is performed using a PEFT strategy (detailed in 195

Section 3.3), which involves post-training an ex- 196

isting VLLM checkpoint without requiring a full 197

retraining from scratch. Subsequently, this adapted 198

model is deployed to process all samples, including 199

previously unseen ones, for that specific task at the 200

determined optimal resolution. 201

3.2 Task-wise Optimal Resolution Selection 202

As highlighted in Section 1, different vision- 203

language tasks have varying requirements for the 204

perceptual capacity of VLLMs. Therefore, it is 205

critical to do task-wise resolution selection. While 206

tuning VLLMs at different image input resolutions 207

and obtaining the best-performing one is feasible, it 208

imposes heavy training costs, which leads to RQ1. 209

In this section, we propose a training-free method 210

for determining the optimal resolution for a spe- 211

cific vision-language task, utilizing two heuristic 212

approaches. We then derive an empirical formula 213

to guide the resolution selection process. 214

3.2.1 Measuring Image Complexity 215

The initial stage of VLLM processing involves vi- 216

sual perception. Intuitively, more complex images, 217
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requiring finer perceptual granularity, may benefit218

from higher input resolutions. Consequently, for a219

given vision-language task, the inherent complexity220

of its associated images can serve as an indicator221

of resolution preference.222

To quantitatively assess image complexity, we223

adopt the method by Mahon and Lukasiewicz224

(2023), which leverages the Minimum Description225

Length (MDL) principle for hierarchical pixel clus-226

tering to identify perceptually meaningful struc-227

tures. Key steps involve initial MDL-based pixel228

clustering, followed by constructing and recur-229

sively clustering patch signatures to capture multi-230

scale complexity, with the final score derived from231

summed entropies. For a comprehensive algorith-232

mic description, we refer the reader to the original233

publication (Mahon and Lukasiewicz, 2023) and234

their publicly available implementation1.235

In our framework, this score, averaged across236

all sampled images for a given task T , is de-237

noted as C(T ) and serves as a key heuristic (Sec-238

tion 3.2.3). We chose this recent method for its239

efficacy in capturing perceptual complexity and its240

favorable comparisons to alternatives (Khan et al.,241

2022; Machado et al., 2015; Redies et al., 2012;242

De Siqueira et al., 2013), as demonstrated in Ma-243

hon and Lukasiewicz (2023).244

3.2.2 Measuring Uncertainty Variance Across245

Resolutions246

Beyond static image complexity (Section 3.2.1),247

VLLM prediction uncertainty offers insights into248

visual-linguistic interplay and sensitivity to resolu-249

tion variations. We thus introduce a second heuris-250

tic based on model uncertainty variance.251

Specifically, consider a VLLM pre-trained at a252

fixed resolution (e.g., 3362 for LLaVA). We first253

extend its visual encoder’s capacity to handle a dif-254

ferent, typically higher, resolution by interpolating255

its positional embeddings, a technique employed256

in prior works (Bai et al., 2023; Li et al., 2023b).257

Let M1 denote the original model operating at its258

native resolution, and M2 denote the same model259

adapted to operate at the extended resolution (with-260

out further fine-tuning at this stage). To assess261

uncertainty robustness, we apply random augmen-262

tations to the input images of a given task T using263

the RandAugment algorithm (Cubuk et al., 2020).264

Inference is then performed on these augmented265

task samples using both M1 and M2, from which266

1https://github.com/Lou1sM/meaningful_image_complexity

we extract the softmax probability distributions for 267

each generated token. 268

Token uncertainty is quantified by information 269

entropy: H(p) = −
∑n

i=1 pi log pi, where pi is 270

the ith token’s softmax probability. Sample-level 271

uncertainty is the average entropy of all gener- 272

ated tokens in an output sequence (computed in- 273

dependently for M1,M2). Task-level average un- 274

certainties, U1(T ) and U2(T ), are then derived by 275

averaging these sample-level uncertainties across 276

all selected samples for task T . The uncertainty 277

variance, V (T ), for task T is the relative change: 278

V (T ) = U2(T )−U1(T )
U1(T ) . A higher V (T ) indicates 279

greater sensitivity of model uncertainty to resolu- 280

tion changes for task T . This V (T ) is the second 281

heuristic for our empirical formula (Section 3.2.3). 282

This uncertainty-based heuristic offers two main 283

advantages to complement the static image com- 284

plexity: (1) by computing entropy from tokens 285

generated by the VLLM, it inherently accounts for 286

both visual and linguistic features during inference; 287

and (2) it directly quantifies the variance induced 288

by resolution changes, thereby capturing the dy- 289

namic effects of such shifts. Notably, calculating 290

this heuristic involves extending VLLM input res- 291

olution without parameter tuning, avoiding extra 292

training costs at this stage. 293

3.2.3 Empirical Formula for Optimal 294

Resolution Estimation 295

Inspired by the intuition that tasks with more com- 296

plex imagery or higher resolution sensitivity (in 297

terms of model prediction uncertainty) might ben- 298

efit from increased input resolutions, we propose 299

an empirical formula to estimate the optimal res- 300

olution for a given vision-language task. This in- 301

tuition, regarding the positive correlation of image 302

complexity and uncertainty variance with preferred 303

resolution, is further explored and validated in Sec- 304

tion 4.2. The proposed formula is: 305

Reso(T ) = Reso0 · (1 + k · C(T ) · V (T )) (1) 306

Here, Reso0 is the VLLM’s baseline input resolu- 307

tion (e.g., 336 for LLaVA), serving as a reference 308

for scaling. C(T ) is the average normalized image 309

complexity for task T (Section 3.2.1), and V (T ) is 310

its average uncertainty variance. The term k is a 311

user-specified, non-negative hyperparameter modu- 312

lating the heuristics’ combined influence. The ex- 313

pression (1+k ·C(T ) ·V (T )) thus acts as a scaling 314

factor, adjusting Reso0 based on task characteris- 315

tics. The value of k is determined empirically using 316

reference tasks, as discussed in Section 4.3.1. 317
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Resolution SciQA-IMG VizWiz VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

224× 224 67.23 49.81 77.72 62.81 54.35 46.60 64.86 56.19
336× 336 69.56 50.39 78.53 61.98 58.25 47.95 64.60 58.76
448× 448 68.07 49.67 80.19 63.87 60.25 47.60 64.18 58.16
560× 560 68.72 47.61 78.71 61.77 58.86 50.86 67.70 61.08
672× 672 66.39 46.63 78.04 61.82 56.98 50.72 65.72 59.54

Table 2: A comprehensive investigation conducted to explore resolution preferences across eight vision-language
tasks. For each task, the accuracy scores corresponding to five different resolutions are presented.

3.3 Parameter-efficient Resolution Adaptation318

After determining the optimal resolution for a given319

task, the next step is adapting the VLLM to the320

selected resolution. To answer RQ2, We propose321

a parameter-efficient fine-tuning (PEFT) approach322

that post-train an existing VLLM checkpoint, thus323

avoiding retraining from scratch.324

As depicted in Figure 2, existing VLLMs (e.g.,325

LLaVA) consist of three main components: a vi-326

sual encoder, a projector mapping visual features327

to the text embedding space, and an LLM back-328

bone generating language tokens. Increasing input329

resolution introduces more image patches, causing330

incompatibility with the original position embed-331

dings. To address this, we interpolate the posi-332

tion embeddings from the initial number of patches333

(e.g., 242) to the extended number (e.g., 322), fol-334

lowing previous research (Bai et al., 2023; Li et al.,335

2023b). Although this allows the VLLM to process336

extended resolutions, performance degrades with-337

out further adaptation (as discussed in Secion 3.2).338

To counter this performance decline, we employ339

a PEFT method that fine-tunes three key compo-340

nents: (1) position embeddings within the visual341

encoder, essential for handling additional patches;342

(2) the lightweight projector parameters; and (3)343

the parameters of the LoRA adapters integrated344

into the LLM backbone. By keeping all other pa-345

rameters frozen, the PEFT approach offers an ef-346

ficient method for adaptation. Figure 2 provides347

a visual representation of the components that are348

fine-tuned versus those that remain frozen.349

4 Experiments350

This section presents the empirical evaluation of351

our proposed method. We first introduce the im-352

plementation details in Section 4.1, followed by353

an in-depth analysis of the results, including the354

investigation into resolution preferences, task-wise355

resolution selection, and the findings from the abla-356

tion study in Section 4.2, 4.3, and 4.4, respectively.357

4.1 Implementation Details 358

VLLM Selection. For our experiments, we select 359

the LLaVA-1.5-7B checkpoint (Liu et al., 2023b) 360

as the representative VLLM for evaluation. 361

Resolution Configurations. We explore five im- 362

age resolutions: 2242, 3362, 4482, 5602, and 6722. 363

These values cover the resolution spectrum com- 364

monly used in previous studies (Liu et al., 2023b,a). 365

Vision-Language Tasks. Our evaluation encom- 366

passes eight vision-language tasks, with details in- 367

troduced in Appendix B.1. 368

Baseline Methods. In addition to the original 369

LLaVA model, we compare our method with sev- 370

eral state-of-the-art approaches. Besides, we report 371

the performance of position embedding interpola- 372

tion as a representative of the training-free methods 373

to extend the image input resolution of VLLMs. 374

The details are introduced in Appendix B.2. 375

Post-training Details. To initialize the position em- 376

bedding parameters of the visual encoder (Vision 377

Transformer) in LLaVA during resolution adap- 378

tation, we employ extended position embeddings 379

derived through positional embedding interpola- 380

tion, as described in Appendix B.2. Following the 381

instructions provided by the LLaVA authors2, we 382

concentrate on stage 2 fine-tuning, incorporating 383

the additional parameters for position embeddings 384

in the visual encoder, alongside the LoRA adapter 385

and projector parameters. The fine-tuning process 386

utilizes images from five datasets: COCO (Lin 387

et al., 2014), GQA (Hudson and Manning, 2019), 388

OCR-VQA (Mishra et al., 2019), TextVQA (Singh 389

et al., 2019), and Visual Genome (Krishna et al., 390

2017). For more details on the construction of the 391

image-text pairs used in training, we refer readers 392

to (Liu et al., 2023a). It is crucial to note that this 393

post-training stage is designed solely to adapt the 394

VLLM to the newly selected input resolution, not 395

to specialize it for a particular task. 396

Further details regarding the overall method im- 397

2https://github.com/haotian-
liu/LLaVA/tree/main?tab=readme-ov-file#train
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Table 3: Distributions of image complexity and uncertainty variance across eight tasks.

vizwiz SciQA-IMG TextVQA GQA VQAv2 OKVQA MMBench MMBench-CN

Resolution Preference 336× 336 448× 448 560× 560

Complexity (C) 0.2191 0.1437 0.2919 0.3236 0.3017 0.3112 0.2323 0.2329
Average 0.1814 0.3058 0.2588

Uncertainty Variance (V) 1.83% 6.47% 4.88% 5.34% 5.26% 6.72% 10.79% 10.45%
Average 4.15% 5.16% 9.32%

C × V 0.0040 0.0093 0.0142 0.0173 0.0159 0.0209 0.0251 0.0243
Average 0.0067 0.0158 0.0234

Table 4: Comparison between our method and baseline approaches, highlighting the best scores in bold. ∗indicates
that the training images or annotations of the datasets were observed during training.

Method LLM Resolution Post-training VQAv2 GQA TextVQA OKVQA MMBench MMBench-CN

BLIP-2 Vicuna-13B 224× 224 - 65.00 41.00 42.50 - - -
InstructBLIP Vicuna-7B 224× 224 - - 49.20 50.10 - 36.00 23.70
InstructBLIP Vicuna-13B 224× 224 - - 49.50 50.70 - - -
Shikra Vicuna-13B 224× 224 - 77.40∗ - - - 58.80 -
IDEFICS-9B LLaMA-7B 224× 224 - 50.90 38.40 25.90 - 48.20 25.20
IDEFICS-80B LLaMA-65B 224× 224 - 60.00 45.20 30.90 - 54.50 38.10
Qwen-VL Qwen-7B 448× 448 - 78.80∗ 59.30∗ 63.80∗ - 38.20 7.40
Qwen-VL-Chat Qwen-7B 448× 448 - 78.20∗ 57.50∗ 61.50∗ - 60.60 56.70

LLaVA-1.5 Vicuna-7B 336× 336 - 78.53∗ 61.98∗ 58.25 47.95 64.60 58.76
LLaVA-1.5 Vicuna-7B 448× 448 ✗ 77.82∗ 61.29∗ 56.61 47.38 63.32 57.73
LLaVA-1.5 Vicuna-7B 448× 448 ✓ 80.19∗ 63.87∗ 60.25 47.60 64.18 58.16
LLaVA-1.5 Vicuna-7B 560× 560 ✓ 78.71∗ 61.77∗ 58.86 50.86 67.70 61.08
LLaVA-1.5 Vicuna-7B Adaptive ✓ 80.19∗ 63.87∗ 60.25 50.86 67.70 61.08

LLaVA-1.5 Vicuna-13B 336× 336 - 80.00∗ 63.30∗ 61.30 - 67.70 63.60

† Shikra, primarily a referential dialogue model, is evaluated here in a VQA instruction-following setting for broader comparison.

VisWiz SciQA-IMG TextVQA VQAv2 GQA OKVQA MMBench-CN MMBench
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Figure 3: Correlation of heuristic metrics with preferred
task resolution. The product of C(T ) and V (T ) exhibits
a more consistent correlation compared to individual
heuristics. All metrics are normalized for visualization.

plementation and our PEFT setup are provided in398

Appendix B.3 and B.4, respectively.399

4.2 Analyzing Resolution Preferences Across400

Vision-Language Tasks401

We systematically analyze resolution preferences402

across vision-language tasks (Table 2), revealing403

two key findings: ❶ Performance is suboptimal404

at very low (2242) or very high (6722) resolu-405

tions—low resolution limits visual detail capture,406

while high resolution disrupts adaptation and in-407

troduces irrelevant tokens. ❷ Optimal resolutions408

lie in the mid-range (3362, 4482, 5602), varying by409

task, which underscores the need for task-specific410

selection.411

After identifying task-specific resolution prefer- 412

ences, we explore the correlation between optimal 413

resolutions and our proposed heuristics of image 414

complexity and uncertainty variance, as shown in 415

Table 3. We can draw the following conclusions: 416

❶ No increasing trend is observed between 4482 417

and 5602 in image complexity, but a noticeable gap 418

exists between 3362 and 4482, suggesting that im- 419

age complexity differentiates tasks favoring 3362 420

from those preferring higher resolutions. ❷ There 421

is a positive correlation between preferred resolu- 422

tion and uncertainty variance across tasks, with an 423

upward trend showing that uncertainty variance re- 424

liably indicates resolution preference. ❸ Some ex- 425

ceptions exist, e.g., GQA prefers lower resolution 426

than MMbench but has higher image complexity, 427

and SciQA-IMG has higher uncertainty variance 428

but favors a lower resolution than TextVQA. Multi- 429

plying the scores of two heuristics provides a more 430

consistent correlation, as shown in Figure 3. 431

4.3 Evaluating Heuristic-Based Task-Specific 432

Resolution Selection 433

The investigation presents the correlation between 434

task-specific resolution preferences and two heuris- 435

tics. This section describes hyperparameter deter- 436

mination for our empirical formula and summarizes 437

the performance of models using this strategy. 438
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Figure 4: Applying the empirical formula to determine the optimal resolution for vision-language tasks.

4.3.1 Applying the empirical formula to439

determine the optimal resolution440

To optimize the hyperparameter in Equation 1, we441

select three reference tasks representing different442

visual perception requirements (Figure 6 in Ap-443

pendix D shows task images). Tasks with simpler444

images (e.g., Figure 6a) are considered low res-445

olution, while complex images (e.g., Figure 6c)446

require higher resolutions. Intermediate tasks (e.g.,447

Figure 6b) represent medium resolution. SciQA-448

IMG, VQAv2, and OKVQA are separately chosen449

to reflect low, medium, and high resolution needs.450

When tuning the hyperparameter k, we focus on451

3362, 4482, and 5602. The constant Reso0 is set452

to 336 (default LLaVA resolution). The formula453

selects the resolution based on the value of k. For454

example, a value of 500 leads to 4482. Figure 4a455

visualizes the relationship between hyperparameter456

values and selected resolutions. For simplicity, we457

select k = 34, which results in optimal resolution458

selection for the reference tasks. Additionally, as459

shown in Figure 4b, this value generalizes well to460

other tasks, achieving the best resolution for each.461

While the empirical formula demonstrates good462

generalization with a fixed k value, its practical463

application to a new task involves sampling a sub-464

set of data from that task to compute C(T ) and465

V (T ). Appendix C analyzes the formula’s robust-466

ness to varying sample sizes, including the relation-467

ship between sampling ratio and prediction success,468

and the influence of heuristic distributions, offering469

guidance for data-limited applications.470

4.3.2 Overall results of Task-wise Adaptive471

Model and Baselines472

Table 4 presents the performance of baseline meth-473

ods and LLaVA variants across six tasks that de-474

mand high visual perception capacity from VLLMs. 475

Among the LLaVA variants, the training-free 476

method to extend the input resolution through PE 477

interpolation shows performance degradation at 478

varying levels. This confirms that the position em- 479

beddings in the visual encoder and LLM backbone 480

in LLaVA cannot fully adapt to the increased num- 481

ber of image tokens without post-training. On the 482

other hand, the task-wise adaptive LLaVA variant, 483

which optimally selects the input resolution for 484

each task, achieves the best overall performance 485

compared to fixed-resolution LLaVA variants, re- 486

gardless of whether the resolution is 3362, 4482, 487

or 5602. Notably, the task-wise adaptive LLaVA 488

variant with a 7B backbone performs comparably 489

to the 13B variant, underscoring the importance of 490

adaptive perception capacity in VLLMs. 491

When comparing the task-wise adaptive LLaVA 492

variant with other state-of-the-art baselines, it out- 493

performs all but the TextVQA task. In the case of 494

TextVQA, the Qwen-VL and Qwen-VL-Chat meth- 495

ods have observed training images or annotations 496

of the dataset during their training. Importantly, 497

as previous studies (McKinzie et al., 2024a) have 498

highlighted, resolution plays a crucial role during 499

pretraining. The Qwen-VL series are pretrained at 500

an image resolution of 4482, while the LLaVA vari- 501

ants were fine-tuned at extended image resolutions 502

in a post-training phase with far fewer data (665K) 503

compared to Qwen’s 1.4B pretraining and 50M 504

fine-tuning samples. Nevertheless, the task-wise 505

adaptive LLaVA variant achieves better overall re- 506

sults than the Qwen-VL series. 507

The superior performance of the task-wise 508

adaptive LLaVA variant across multiple vision- 509

language tasks demonstrates that, compared to 510

fixed-resolution approaches, adaptive resolution 511
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Resolution ViT PE Projector LoRA Adapter VQAv2 GQA TextVQA

336× 336 - - - 78.53 (−2.07%) 61.98 (−2.96%) 58.25 (−3.32%)
448× 448 ✗ ✗ ✗ 77.82 (−2.96%) 61.29 (−4.04%) 56.61 (−6.04%)
448× 448 ✓ ✗ ✗ 75.32 (−6.07%) 59.98 (−6.09%) 53.44 (−11.30%)
448× 448 ✗ ✓ ✗ 72.94 (−9.04%) 55.31 (−13.40%) 51.41 (−14.67%)
448× 448 ✗ ✓ ✓ 79.47 (−0.90%) 63.41 (−0.72%) 58.06 (−3.63%)
336× 336 ✓ ✓ ✓ 79.33 (−1.07%) 63.33 (−0.85%) 58.19 (−3.42%)
448× 448 ✓ ✓ ✓ 80.19 63.87 60.25

Table 5: Ablation Analysis of PEFT Components, ✗ and ✓ indicate whether the module is post-trained.

selection is more suitable for real-world applica-512

tions. So far, we have verified the effectiveness of513

our task-wise resolution selection strategy through514

the generalization of the empirical formula and the515

overall experimental results, answering RQ1.516

4.4 Ablation Analysis of PEFT Components517

for Performance518

To evaluate the contribution of each component in519

our PEFT method, we conduct an ablation study520

(Table 5), examining the impact of tuning three key521

parameters: position embeddings in the visual en-522

coder, LoRA adapters in the LLM backbone, and523

projector parameters. We also assess whether per-524

formance gains stem from the additional training525

epoch introduced by post-training by conducting526

full training at the original resolution (3362).527

Results show that tuning each component is cru-528

cial. Tuning only position embeddings or projector529

parameters leads to significant drops, even com-530

pared to training-free positional embedding inter-531

polation. While jointly tuning projector parameters532

and LoRA adapters improves performance, it re-533

mains suboptimal without tuning position embed-534

dings. Additionally, post-training at 3362 provides535

only marginal gains over full training or projector +536

LoRA tuning at 4482. Notably, on TextVQA, post-537

training at 3362 offers no improvement over the538

original checkpoint, suggesting that gains at 4482539

primarily stem from enhanced perceptual capabil-540

ities, not extra training. Overall, our results high-541

light the importance of each component in PEFT542

and validate its effectiveness in addressing RQ2.543

5 Case Study544

Table 6 presents two illustrative case studies demon-545

strating the impact of our heuristics on VLLM per-546

formance. Visual inputs (Figs. 7a, 7b, and 7c) are547

in Appendix E.548

As shown in Table 6 (top), we present the549

VLLM with two images of differing complexities550

for the same question: "Who is standing?". At551

the 3362 resolution, the model correctly identifies552

the "woman" in the simpler image. However, for553

Table 6: Case studies: VLLM performance with varying
image complexity and question difficulty.

Case 1: Varying Image Complexity (Question: "Who is standing?")

Image C(T ) Pred. (3362) Correct Answer

Fig. 7a 11.35 woman (✓) woman
Fig. 7b 20.62 umpire (✗) batter

Case 2: Varying Question Difficulty (Image: Fig. 7c)

Question V (T ) Pred. (3362) Pred. (4482)

Q1: "Sheet material?" 0.42% plastic (✓) plastic (✓)
Q2: "Stoves near tap?" 16.51% NO (✗) YES (✓)

the more intricate image with higher complexity, 554

it fails, incorrectly predicting "umpire" instead of 555

"batter". This suggests that more visually complex 556

images may necessitate higher input resolutions for 557

accurate VLLM perception. 558

The second case (Table 6, bottom) uses a single 559

image (Fig. 7c) but poses two questions of differing 560

difficulty, leading to different uncertainty variances 561

(V (T )). For the easier question ("What is the sheet 562

made of?"), the VLLM provides the correct an- 563

swer ("plastic") at both 3362 and 4482 resolutions. 564

However, for the more complex question requir- 565

ing finer detail ("Are there stoves near the freezer 566

to the right of the tap?"), the model fails at 3362 567

but succeeds at the higher 4482 resolution. This 568

improved performance at higher resolution for the 569

more uncertain (difficult) question aligns with the 570

core intuition behind our V (T ) heuristic, as dis- 571

cussed in Section 3.2.3. 572

6 Conclusion 573

In this paper, we take a step towards adapting 574

VLLMs to real-world applications by providing an 575

in-depth investigation of resolution preferences in 576

different vision-language tasks. Based on the find- 577

ings, we introduce an empirical formula that com- 578

bines image complexity and uncertainty variance 579

to make task-specific resolution selection without 580

the need for retraining. Additionally, we propose a 581

PEFT approach, enabling extension of the image in- 582

put resolution for existing VLLM checkpoints. We 583

expect that our research will offer valuable insights 584

for the VLLM research community. 585
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Limitations & Future Work586

Our current work has several limitations. Due587

to computational constraints in an academic en-588

vironment, we were unable to conduct experiments589

with larger LLM backbones or retrain models from590

scratch. This restricts the scope of comparison, par-591

ticularly against methods requiring extensive per-592

taining. Moreover, our proposed approach focuses593

on task-level resolution selection. Future work will594

explore more granular resolution strategies, such as595

dynamic sample-level resolution adaptation, which596

could further improve performance for heteroge-597

neous tasks.598

Ethical Statement599

This study leverages publicly available datasets600

(e.g., VQAv2, GQA, TextVQA, OKVQA, MM-601

Bench) and pre-trained models (e.g., LLaVA) for602

evaluation and experimentation. These datasets603

and models are widely recognized benchmarks604

in the vision-language research community, dis-605

tributed under licenses permitting academic and606

non-commercial use. All artifacts were used in607

accordance with their intended purposes, without608

modifications or new data collection. The dataset609

creators’ documentation ensures compliance with610

ethical guidelines, including the absence of person-611

ally identifiable or offensive content.612

No ethics review board approval was required, as613

this research does not involve human subject data or614

sensitive information. However, we acknowledge615

that the underlying datasets may contain biases or616

inaccuracies, which could affect model fairness and617

generalization. Future research should explore bias618

mitigation strategies to ensure fair and responsi-619

ble deployment of vision-language models. The620

derivative findings, such as task-specific resolution621

adaptation strategies, remain compatible with the622

original licenses and intended use.623
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A Further Details on Related Work950

A.1 VLLM Architectures and Resolution951

Sensitivity952

VLLM Architectures. Vision Large Language953

Models, as one of the most capable and popular954

solutions to multimodal tasks, extend the reasoning955

and generating ability of Large Language Models956

(LLMs) beyond language modalities to encompass957

inputs such as images, video, and audio (McKinzie958

et al., 2024b; Tong et al., 2024; Xue et al., 2024).959

VLLMs can be categorized according to their ar-960

chitecture (Liu et al., 2023b; Driess et al., 2023;961

fuy; Team, 2024). The encoder-decoder VLLM962

paradigm, which is the focus of this study, intro-963

duces additional multimodal encoders (typically a964

vision encoder like ViT) and a modality connec- 965

tor to project multimodal features into the spaces 966

interpretable by language models. The implemen- 967

tations of the modality connector vary; common 968

approaches include a projector that directly maps 969

visual features to the language model’s embedding 970

space (Liu et al., 2024, 2023a,b), or a resampler that 971

compresses visual features, possibly using cross- 972

gated attention layers, before integrating them into 973

the LLM decoder (Alayrac et al., 2022; Awadalla 974

et al., 2023; Li et al., 2023a). Our work primar- 975

ily considers LLaVA-style VLLMs, which adopt 976

an encoder-decoder architecture with a projector 977

connector. 978

Further Discussion on Resolution Sensitivity in 979

Visual Models. The sensitivity of visual models 980

to input image resolution is a well-established phe- 981

nomenon. Convolutional Neural Networks (CNNs) 982

inherently leverage inductive biases like local re- 983

ceptive fields and hierarchical feature extraction, 984

tying their performance to spatial information den- 985

sity, where higher resolutions often improve ac- 986

curacy (Raghu et al., 2021; Borji, 2021; Sabottke 987

and Spieler, 2020). Techniques like dilated convo- 988

lutions were developed to manage varying recep- 989

tive field sizes (Chen et al., 2017). Vision Trans- 990

formers (ViTs), processing images as sequences 991

of patches, also exhibit distinct resolution sensi- 992

tivities influenced by patch size and pre-training 993

configurations, often struggling with resolutions 994

unseen during training (Fan et al., 2024; Dehghani 995

et al., 2023). Adapting positional embeddings is 996

a common strategy to mitigate this for ViTs (Bai 997

et al., 2023; Li et al., 2023b; Tian et al., 2023). 998

While VLLMs inherit this sensitivity, the interac- 999

tion with language understanding in multimodal 1000

tasks introduces new complexities. Our work aims 1001

to quantify and address this specific challenge by 1002

proposing a heuristic-driven optimization frame- 1003

work for VLLMs. 1004

A.2 Dynamic Resolution and High-Resolution 1005

Techniques in VLLMs 1006

Native Dynamic Resolution VLLMs. A signifi- 1007

cant line of research focuses on VLLMs with native 1008

capabilities to handle dynamic input resolutions, 1009

often through architectural innovations or special- 1010

ized pre-training. For instance, Qwen2VL (Wang 1011

et al., 2024) employs 2D RoPE for flexible posi- 1012

tional encoding. MiniCPM-V (Yao et al., 2024) fo- 1013

cuses on efficient high-resolution processing, some- 1014
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times using multi-scale vision encoders. LLaVA-1015

UHD (Guo et al., 2025) introduces strategies1016

for ultra-high-definition images and varied aspect1017

ratios, often involving intelligent image slicing.1018

InternLM-XComposer2-4KHD (wen Dong et al.,1019

2024) also demonstrates strong capabilities in han-1020

dling very high resolutions through sophisticated1021

tiling strategies. While these models offer great1022

flexibility, they typically require substantial pre-1023

training and may not explicitly optimize for a single1024

best resolution per task. Our approach, in contrast,1025

focuses on lightweight, post-hoc adaptation of ex-1026

isting VLLMs to a task-specific optimal resolution.1027

Other High-Resolution Processing Techniques.1028

Beyond models with end-to-end dynamic resolu-1029

tion, other techniques enable VLLMs to process1030

high-resolution information. Some works focus on1031

using or adapting vision encoders to directly sup-1032

port higher resolutions within a VLLM framework,1033

such as CogAgent (Hong et al., 2023) with its dense1034

feature integration, or models like MiniGemini (Li1035

et al., 2024b), Kosmos-2.5 (Lv et al., 2023), and1036

Vary (Wei et al., 2023). Patchification and tiling1037

strategies are common, where high-resolution im-1038

ages are divided into smaller patches processed1039

by standard encoders, with subsequent feature ag-1040

gregation; examples include Monkey (Li et al.,1041

2023d), mPLUG-DocOwl (Hu et al., 2024), and1042

LLaVA-NEXT (Liu et al., 2024). Region-aware1043

processing aims to focus on salient regions, with1044

methods like V* (Wu and Xie, 2023) selecting rel-1045

evant regions for fine-grained understanding, MG-1046

LLaVA (Zhao et al., 2024) using multi-grained1047

GNNs, and PS-VLLM (Zhang et al., 2023) pro-1048

gressively selecting visual tokens. To optimize1049

computational costs associated with high resolu-1050

tions, FlexAttention (Li et al., 2024a) employs1051

dual tokenization for selective processing of high-1052

resolution tokens.1053

Our work complements these techniques by first1054

providing a mechanism to determine a task-optimal1055

discrete resolution, to which a model (potentially1056

employing some of these techniques) can then be1057

adapted.1058

B More Implementation Details1059

B.1 Vision-Language Tasks1060

Science-QA (Lu et al., 2022), a multimodal sci-1061

ence question answering benchmark featuring over1062

21k multiple-choice questions on diverse topics.1063

The visual component includes natural images and1064

diagrams, testing the model’s ability to integrate 1065

both textual and visual information for coherent 1066

reasoning and explanation generation. Vizwiz (Gu- 1067

rari et al., 2018), a dataset derived from real-world 1068

images paired with spoken questions from visually 1069

impaired individuals. This task assesses a model’s 1070

ability to process low-quality, unstructured images 1071

and generate accurate responses to conversational 1072

queries. VQAv2 (Goyal et al., 2017), an expanded 1073

version of the original Visual Question Answer- 1074

ing (VQA) dataset, designed to reduce language 1075

biases. It challenges models to deeply understand 1076

visual content in order to answer questions about 1077

pairs of semantically similar yet visually distinct 1078

images. TextVQA (Singh et al., 2019), a dataset 1079

focusing on a model’s capacity to read and reason 1080

about textual elements in images, evaluating its 1081

ability to integrate Optical Character Recognition 1082

(OCR) with visual reasoning to answer questions. 1083

OKVQA (Marino et al., 2019), a benchmark that 1084

requires models to leverage external knowledge 1085

beyond image and question analysis, necessitating 1086

access to and reasoning with unstructured knowl- 1087

edge sources for accurate answers. GQA (Hudson 1088

and Manning, 2019), a dataset designed for real- 1089

world visual reasoning and compositional ques- 1090

tion answering, requiring models to demonstrate 1091

strong multi-modal understanding, logical reason- 1092

ing, and the ability to answer questions that necessi- 1093

tate connecting information across both visual and 1094

linguistic domains. MMBench (Liu et al., 2023c), 1095

a comprehensive multimodal evaluation set with 1096

over 2,974 multiple-choice questions across 20 1097

ability dimensions, providing a robust assessment 1098

of various vision-language skills, such as reason- 1099

ing, comprehension, and explanation generation. 1100

MMBench-CN, a variant of MMBench focusing 1101

on tasks involving Chinese text and images, eval- 1102

uating the model’s proficiency in processing and 1103

understanding multilingual data. 1104

B.2 Baseline Methods 1105

In addition to the original LLaVA model, we com- 1106

pare our method with several state-of-the-art ap- 1107

proaches, including BLIP-2 (Li et al., 2023c), In- 1108

structBLIP (Dai et al., 2024) (with LLM back- 1109

bones at two scales), Shikra (Chen et al., 2023), 1110

and IDEFICS (IDEFICS, 2023) (also with LLM 1111

backbones at two scales), as well as Qwen-VL and 1112

Qwen-VL-Chat (Bai et al., 2023). The results for 1113

these baseline methods, along with LLaVA with 1114

the Vicuna-13B backbone, are cited from previ- 1115
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ous work (Liu et al., 2023a). For LLaVA with a1116

Vicuna-7B backbone, we report our reproduced1117

results across different vision-language tasks.1118

As a training-free baseline to extend the im-1119

age input resolution, we apply positional embed-1120

ding interpolation to extend the position embed-1121

dings of the vision encoder in LLaVA. This tech-1122

nique, widely used for Vision Transformers in1123

VLLMs (Bai et al., 2023; Li et al., 2023b), allows1124

models to handle higher image input resolutions1125

than their original training resolution. We evalu-1126

ate the performance of this extension without any1127

additional training of the projector and the LLM1128

backbone.1129

B.3 Method details1130

Image Complexity Heuristic Approach Image1131

complexity for vision-language tasks is calculated1132

using an open-source tool3. We utilize the author-1133

recommended hyperparameters: the number of1134

clusters is set to 8, and the subsample rate is 0.8.1135

To reduce computational overhead, the input image1136

resolution is set to 112×112, and two cluster levels1137

are used, with their combined scores yielding the1138

final complexity value. The complexity scores are1139

normalized via min-max scaling, where the mini-1140

mum and maximum values are computed from 1001141

sampled images from the ImageNet dataset (Deng1142

et al., 2009).1143

RandAugment Perturbation on Image Input1144

When assessing model variance across different1145

resolutions, we apply random perturbations to each1146

input image using the RandAugment algorithm,1147

implemented via an existing tool4. For each im-1148

age, we perform three random augmentations. To1149

mitigate the effects of randomness and enhance re-1150

sult stability, we repeat the variance measurement1151

process three times, each using a different random1152

seed. The final uncertainty variance is obtained by1153

averaging the results from these three iterations.1154

B.4 More Parameter-Efficient Fine-Tuning1155

Details1156

The standard training hyperparameters are largely1157

preserved, as outlined in Table 7, with two no-1158

table adjustments for image resolutions of 5602 and1159

6722: (1) The learning rate is reduced from 2e− 51160

to 1e−5 to prevent training loss explosion observed1161

3https://github.com/Lou1sM/meaningful_image_complexity
4https://github.com/TorchSSL/TorchSSL/blob/main/datasets/

augmentation/randaugment.py

Table 7: Hyperparameters at two training stages

Hyperparameter batch size lr lr schedule weight decay epoch optimizer max tokens

Stage 1 256 1e-3
cosinie decay 0 1 AdamW 2048

Stage 2 128 2e-4

Table 8: Training time cost

Resolution 224× 224 336× 336 448× 448 560× 560 672× 672

Training Time Cost 11h 50m 16h 17m 24h 7m 32h 29min 124h 44m

with the original rate. (2) The maximum number 1162

of tokens is increased from 2048 to 3072 and 4096, 1163

respectively, to accommodate the increased number 1164

of image tokens. 1165

Post-training experiments are conducted on eight 1166

NVIDIA GeForce RTX 4090 GPUs, with training 1167

time costs detailed in Table 8. Due to GPU memory 1168

limitations, DeepSpeed ZeRO-3 was employed for 1169

training at the resolution of 6722, while ZeRO-2 1170

was used for other resolutions. This accounts for 1171

the significant increase in training time between 1172

6722 and 5602. 1173

In the ablation study (Section 4.4), we separately 1174

fine-tune only the projector and only the position 1175

embeddings, using the stage 1 setting for consis- 1176

tency with the goals of the different training stages. 1177

The corresponding hyperparameters are also de- 1178

tailed in Table 7. 1179

C Impact of Statistical Distributions on 1180

Empirical Formula Performance 1181

To evaluate the extent to which the statistical distri- 1182

butions of complexity C(T ) and uncertainty vari- 1183

ance V (T ) influence the performance of the em- 1184

pirical formula, we present the standard deviations 1185

of C(T ) and V (T ) for each vision-language task, 1186

along with their respective ratios to the mean val- 1187

ues. These statistics are detailed in Table 9. 1188

Figure 5: Relationship between sampling ratio and the
success rate of the empirical formula.
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Table 9: Statistical characteristics of C(T ) and V (T ) in each task. SD represents Standard Deviation, and Ratio
indicates the ratio of the standard deviation to the mean.

Task C(T ) SD C(T ) Ratio V (T ) SD V (T ) Ratio

ScienceQA-IMG 3.3633 0.2384 0.4398 2.5466

Vizwiz 2.4405 0.1541 0.3383 6.0196

VQAv2 2.2005 0.1242 0.7925 4.2562

GQA 1.6582 0.0910 1.2595 4.9103

TextVQA 2.3057 0.1318 0.5258 3.3405

OKVQA 2.1958 0.1224 0.5487 3.7711

MMBench 3.5426 0.2196 1.2040 2.8915

MMBench-CN 3.5482 0.2197 1.0840 2.8310

The results indicate that C(T ) exhibits relatively1189

low variance across tasks, whereas V (T ) shows1190

substantially higher variability. This observation1191

justifies our decision to adopt task-wise selection1192

instead of sample-wise selection, as the higher vari-1193

ability in V (T ) at the sample level complicates1194

consistent prediction.1195

To further assess the influence of C(T ) and1196

V (T ) variance on the effectiveness of the empirical1197

formula, we conducted an additional experiment.1198

Specifically, we randomly sampled subsets of vary-1199

ing proportions from the original dataset and com-1200

puted the average C(T ) and V (T ) values for these1201

subsets to estimate task-level statistics. We then1202

evaluated the empirical formula, previously tuned1203

using a hyperparameter k on three reference tasks,1204

to predict the optimal resolution across all tasks1205

under these conditions.1206

The sampling proportions vary from 10% to1207

50%, with each experiment repeated 10 times us-1208

ing different random seeds. The success rate was1209

defined as the percentage of instances where the1210

empirical formula accurately predicted the optimal1211

resolution for all tasks. The results, presented in1212

Figure 5, reveal the following key findings: (1) At1213

a sampling ratio of 40%, the success rate reaches1214

100%, demonstrating the empirical formula’s ro-1215

bustness in predicting the optimal resolution. (2)1216

At a sampling ratio of 10%, the success rate drops1217

to 50%, indicating that a smaller subset size intro-1218

duces variability that adversely affects prediction1219

accuracy.1220

These findings highlight that while reducing the1221

dataset size can lower computational costs, exces-1222

sively small subsets may lead to suboptimal pre-1223

dictions. Moreover, the current approach relies1224

on random sampling; future exploration of more1225

advanced sampling strategies that select representa- 1226

tive samples could potentially achieve high success 1227

rates with smaller subsets. 1228

D Reference Tasks 1229

We utilize three reference tasks to determine the 1230

hyperparameter in Equation 1. Figure 6 presents 1231

three image samples from each reference task. 1232

E Case Study Images 1233

Figure 7 provide the visual inputs referenced in the 1234

Case Study (Section 5, Table 6). 1235

F Acknowledgment of AI Assistance in 1236

Writing and Revision 1237

We utilized LLMs for revising and enhancing writ- 1238

ing of this paper. 1239
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(a) Single and simple object: Ethane
is (). A. an elementary substance B. a
compound

(b) Middle-level complexity: Are all
the animals the same?

(c) Multiple objects: What is the brand
being advertised?

Figure 6: We select three reference tasks with images in different levels of complexity to optimize the hyperparameter
in Equation 1.

(a) (b) (c)
Figure 7: Three case study images
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