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Abstract. This work explores self-supervised learning (SSL) for auto-
mated ECG signal quality assessment, a crucial task since low-quality sig-
nals can trigger false alarms in medical monitoring and weaken disease-
detection algorithms. Existing approaches rely on annotated datasets,
which are often limited in availability and inconsistent in their defined
quality classes. Those limitations can be addressed by using SSL models
to learn high-quality representations of ECG signals without requiring
annotated data. The effectiveness of these representations for signal qual-
ity assessment is examined by evaluating three SSL models, SimCLR,
BYOL, and SwAV. The Brno University of Technology ECG Quality
Database is used, a single-lead dataset annotated for ECG signal qual-
ity. A comprehensive set of augmentations and parameters is explored for
pre-training the SSL models and their performance is compared to su-
pervised (KNN) and unsupervised (k-means) baselines. The results show
that all SSL models outperform the baselines, with SwAV achieving the
highest macro F1 on the test set with 81.85%. However, divergence be-
tween validation and test performance for low-quality signals reflects
dataset limitations; nonetheless, the results demonstrate that SSL has
great potential for ECG signal quality assessment.

Keywords: Self-supervised learning (SSL) · electrocardiogram (ECG) ·
signal quality assessment.

1 Introduction

The electrocardiogram (ECG) is a widely used, non-invasive method for captur-
ing the electrical activity of the heart. It is integral to diagnosing various cardio-
vascular conditions, including arrhythmias, myocardial ischemia, and myocardial
infarction [23, 20]. Due to its low cost and accessibility, the ECG is regularly
applied in hospitals, intensive care, and ambulatory environments [20, 14].

Although ECG recordings are widely applied, they are frequently corrupted
by physiological and technical noise sources. Typical types of noise include base-
line wander, electrode motion, powerline interference, and muscle artifacts, which
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can spectrally overlap with diagnostically relevant features such as the QRS
complex or T wave [23, 18]. Consequently, distorted, low-quality ECG signals
compromise both clinical interpretation and automated classification pipelines,
leading to false alarms in continuous monitoring systems and reduced perfor-
mance in machine learning models trained for cardiovascular classification tasks
[25, 19].

The field of ECG signal quality assessment can be broadly divided into rule-
based methods and machine learning approaches. Rule-based methods estimate
quality by extracting signal quality indices, such as the detectable heart rate, RR
interval duration, and QRS morphology indicators, and comparing these against
predefined thresholds or morphology templates [16, 19]. The effectiveness of rule-
based methods strongly depends on manually defined thresholds to assign classes
to signals, and is therefore not robust across diverse settings and different noise
types [18].

In contrast, machine learning methods learn to predict a quality class auto-
matically from data. In the supervised setting, feature-based approaches extract
statistical features from ECG signals [3] or from their decomposition, for exam-
ple using wavelets that capture both temporal and spectral characteristics [2],
and use them to train classifiers to distinguish between quality classes. More
recently, supervised deep learning models have been applied to learn represen-
tations directly from raw ECG signals, capturing low-level characteristics that
reflect signal quality and are therefore suitable for signal quality assessment
without the need for explicit feature extraction [8, 22].

However, these existing approaches to ECG signal quality assessment have
significant limitations. Supervised learning methods depend on labeled datasets
to train models, which are scarce due to privacy constraints and the high cost
of expert annotation [22]. Moreover, recordings are often of long duration, while
signal quality must be assessed with high precision to identify even brief distor-
tions. Noise and artifacts can manifest in various forms, and the responsibility
falls on the annotator to correctly identify these interferences according to the
defined quality classes, which makes the process prone to human error [22]. Fur-
thermore, these datasets often differ in recording duration, acquisition protocols,
and lead configurations, limiting the generalizability of trained models [8]. An-
notated datasets specifically for ECG signal quality suffer from an additional
challenge: there is no universally accepted definition of ECG signal quality, with
differences in class granularity and annotation criteria between datasets [26, 15].
These inconsistencies limit model transferability and increase the risk of mis-
classification when applied outside the training domain [13].

Self-supervised learning (SSL) provides a promising alternative by enabling
representation learning from unlabeled ECG signals. This eliminates the depen-
dency on manual annotation and allows models to learn generalizable features.
Recent work by Soltanieh et al. demonstrated that SSL models trained on unla-
beled ECG data perform competitively on the downstream task of arrhythmia
detection, even under distributional shifts [22]. These findings suggest that SSL
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may also be effective in assessing the quality of ECG signals and therefore the
method developed in our study is closely based on their approach.

This research aims to evaluate the effectiveness of self-supervised models for
automated ECG signal quality assessment. To avoid the reliance on manually
annotated quality labels, we explore whether SSL can capture representations
that distinguish diagnostically useful signals from distorted ones. This approach
has practical implications for both clinical monitoring, by reducing false alarms,
and for machine learning applications, by improving the reliability of algorithms
for disease detection.

2 Method

2.1 Dataset

The dataset used for this research is the Brno University of Technology ECG
Quality Database (BUT-QDB) [15], which provides annotations on the signal
quality of ECG recordings. This dataset consists of 18 single-lead ECG recordings
collected with a Bittium Faros 180 Holter device. The recordings were acquired
from 15 subjects (9 male, 6 female, aged 21–83 years) during daily activities
with a sampling frequency of 1000 Hz. Each recording spans at least 24 hours,
with three annotated for their full duration, and the remaining containing only
two 20-minute annotated segments each. In addition, the dataset includes five
supplementary annotated segments, including four of 20 minutes and one of 2
minutes, to increase the representation of low-quality signals in the dataset.

The annotation process was conducted manually by three ECG experts, and
the dataset includes both their individual annotations and the consensus. They
classify the quality of the ECG signals into three classes that are used throughout
this research. Class 1: all significant waveforms (P wave, T wave, QRS complex)
are clearly visible and detectable reliably, class 2: an increased noise level makes
significant points unclear, but QRS complexes are still clearly visible and can
be detected reliably, class 3: QRS complexes cannot be reliably detected, and
the signal is unsuitable for further analysis. The consensus label was used as the
true quality label. Examples of ECG signals belonging to each class are shown
in Figure 1.

2.2 Data Preparation

The raw ECG signals were downsampled from 1000 Hz to 100 Hz and seg-
mented into 2.5-second windows, following the method of Soltanieh et al., to
reduce computational and memory requirements while retaining the relevant
ECG bandwidth [22].

The dataset was divided into three sets: training, validation, and test. An
additional labeled subset of the training set was used for supervised fine-tuning
and linear evaluation, while the complete unlabeled training set was used for
pre-training. The unlabeled training set was constructed by randomly sampling



4 D. de Graaf et al.

(a)

0 1 2
−0.5

0

0.5

1

1.5

2 Class 1

Train Signal – Index 5567 (Class 1)

time (s)
am

pl
itu

de
 (m

V)

(b)

0 1 2
−1

0

1

2 Class 2

Train Signal – Index 31649 (Class 2)

time (s)

am
pl

itu
de

 (m
V)

(c)

0 1 2

−2

−1

0

1

2
Class 3

Test Signal – Index 39216 (Class 3)

time (s)

am
pl

itu
de

 (m
V)

Fig. 1: Example ECG signals from BUT-QDB for the three defined signal quality
classes: class 1 (a), class 2 (b) and class 3 (c).

windows from the training records. The labeled training subset and the labeled
validation and test sets were sampled from the annotated segments within the
recordings assigned to each split, using a sliding-window approach that respected
class boundaries and excluded incomplete segments.

To prevent data leakage, the records were split by patient ID, which guar-
antees that all recordings of a single patient appeared in only one subset. The
validation and test sets each comprise about 15% of annotated data, with patient
assignments determined through an optimization procedure to balance both class
size and proportion. Smaller evaluation sets resulted in unbalanced sets with too
few class 3 samples, primarily due to the uneven recording durations, as only
three recordings were fully annotated for 24 hours. A single patient, patient 105,
contains nearly 90% of class 3 annotations and consists mainly of background
measurements, therefore, it was exclusively assigned to the training set to avoid
imbalance in the evaluation sets. The train, validation and test splits contained
7, 4 and 4 patients, respectively. The number of samples per data split are given
in Table 1.
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Table 1: Class distribution of the training, validation, and test splits. The com-
plete train set for self-supervised pre-training includes the unannotated seg-
ments.

Data Split # Samples Class 1 Class 2 Class 3

Train - Complete 269346 - - -
Train - Annotated subset 60434 27405 14090 18939
Validation 39760 18661 19606 1493
Test 39380 26000 12250 1130

2.3 Baseline Methods

To benchmark the self-supervised models, two baseline methods without repre-
sentation learning were implemented: supervised k-nearest neighbors (KNN) and
unsupervised k-means clustering. Both are applied to cluster manually extracted
features obtained through discrete wavelet transform (DWT), an established ap-
proach for creating features to cluster ECG signals [1, 10, 22].

DWT Feature Extraction Wavelet decomposition serves as an effective ap-
proach for analyzing non-stationary signals such as ECG. It enables the extrac-
tion of localized features that reflect both the timing and the spectral content
of the signal, effectively isolating cardiac activity from noise components [10].
In this work, a four-level discrete wavelet transform is applied using the Symlet
5 (sym5 ) wavelet, shown in Figure 2. Its near-symmetry, in combination with
structural similarity to ECG waveforms, provides a balanced resolution in the
time and frequency domains [11], which makes it suitable for ECG analysis. Fol-
lowing Maleki and Haeri [10], each of the resulting five subbands is characterized
by eight statistical features: entropy, number of zero crossings, number of mean
crossings, median, mean, standard deviation, variance and root mean square.
This results in 40-dimensional feature vectors for each 2.5-second ECG segment,
which form the input for both baseline classifiers. The signals are decomposed
using PyWavelets [9].

Baseline Classifiers The unsupervised k-means algorithm from scikit-learn
[17] groups unlabeled DWT feature vectors into k = 12 clusters, where k is chosen
by achieving the highest macro F1 score on the validation set over the range
3 ≤ k ≤ 20. Centroids are initialized using the k-means++ method and fit on the
unlabeled training data. Since cluster labels are initially unknown, each cluster
centroid is assigned to a quality class by computing its Euclidean distance to class
centroids of the validation set. This approach avoids bias towards overrepresented
classes.

The supervised k-nearest neighbors (KNN) classifier assigns class labels to
ECG segments based on the majority vote among the k nearest neighbors in
the 40-dimensional DWT feature space [7]. The value of k = 3 was selected to
maximize the macro F1 score on the validation set over the range 1 ≤ k ≤ 20.
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Fig. 2: The Symlet 5 wavelet function plotted over time. The signal is generated
by using PyWavelets [9].

2.4 SSL Methods

Three SSL models were evaluated: SimCLR [5], BYOL [6], and SwAV [4].
SimCLR (Figure 3a) is a contrastive learning method which learns by distin-

guishing between positive pairs (augmented variants of the same input sample)
and negative pairs (augmented variants of different samples). Its performance
depends on the availability of proper negatives and carefully chosen augmenta-
tions, to ensure that the separation task is sufficiently challenging.

BYOL (Figure 3b) circumvents SimCLR’s limitations as it eliminates the
need for negative samples by training an online network to predict the represen-
tation of a target network, which encodes a different augmentation of the same
input. The target network is updated as an exponential moving average of the
online weights, making it a stable objective. This approach avoids reliance on
large batches of negatives and reduces sensitivity to the augmentation choice.

SwAV (Figure 3c) takes an alternative approach by combining contrastive
learning with clustering, instead of contrasting representation pairs, it groups
similar representations with a codebook and uses these codes for solving a con-
trastive learning problem. This allows for stable and efficient representation
learning, without depending on traditional instance comparison.

Augmentations The performance of the SSL models depends on the choice
of augmentations applied to the ECG signal. Soltanieh et al. evaluated seven
augmentations specifically for ECG representation learning [21, 22]. They also
tested combining multiple augmentations but reported a decrease in perfor-
mance; therefore, this is not repeated in our approach.

Each augmentation is tested with three parameter settings, ordered by in-
creasing strength (i.e., intensity), except for Negation, which has no adjustable
parameters and is applied once per model. The augmentations and their param-
eters are the following:

1. Gaussian Noise (GN) adds zero-mean Gaussian noise N(t) with standard
deviations σG = [0.01, 0.1, 1] to the ECG signal.
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(a) SimCLR [5] (b) BYOL [6]

(c) SwAV [4]

Fig. 3: Architectures of the SSL models: (a) SimCLR, (b) BYOL, and (c) SwAV.

2. Channel Resize (ChR) scales each ECG channel by a factor s uniformly
sampled from ranges [0.33, 1], [0.5, 2], and [0.33, 3].

3. Negation (Neg) vertically flips the signal at each timestep t: x̃(t) = −x(t).
4. Baseline Wander (BlW) adds a low-frequency sinusoid scaled by Sbw =

[0.1, 0.7, 1] to simulate baseline drift.
5. Electromyographic Noise (EM) simulates muscle noise with zero-mean

Gaussian noise of standard deviation σEMG = [0.01, 0.5, 1].
6. Time Out (TO) masks a segment of the signal by zeroing a percentage

uniformly sampled from ranges [10%, 20%], [0%, 50%], and [40%, 50%].
7. Dynamic Time Warping (DTW) splits the signal into 2w segments,

stretching half by r% and compressing the other half by the same amount.
Tested parameter pairs are (w, r) = (1, 10), (3, 5), and (3, 10).

Training details The xResNet1d50 backbone model was used during both the
pre-training and fine-tuning stages of the SSL models; it is a one-dimensional
adaptation of the ResNet50 architecture and is known for its reliability and
consistent effectiveness in ECG representation learning [22].

For each augmentation and parameter combination, a model was pre-trained
three times and both linearly evaluated and fine-tuned with a different seed. The
reported scores are the average of the three runs.

During pre-training, the complete training set was used and the correspond-
ing loss function for each model was optimized. The best model was selected
based on achieving the lowest loss on the validation set. The models were trained
for 150 epochs using the Adam optimizer with a batch size of 4096 for SimCLR



8 D. de Graaf et al.

and BYOL, and 1024 for SwAV due to computational constraints. The learning
rate was set to 5× 10−4 and a weight decay of 1× 10−3. A linear warm-up of 10
epochs was followed by cosine annealing, gradually decreasing the learning rate
to a final value of 5× 10−5.

During downstream evaluation through linear evaluation and fine-tuning, the
labeled subset of the training data was used to train for 50 epochs. Optimization
was carried out using cross-entropy loss with softmax activation. Like in pre-
training, the linear warm-up was followed by cosine decay, and the same learning
rate was used for the classification head, while for fine-tuning a lower learning
rate of 5 × 10−5 was used for the backbone to prevent overwriting pre-trained
parameters. Furthermore, discriminative learning rate was applied where the
learning rate is halved in the consecutive deeper layers of the backbone.

2.5 Evaluation Metrics

The performance evaluation of the SSL models and baselines was carried out
using standard classification metrics: precision, recall, and the F1 score. When
evaluating across classes, macro-averaged scores are reported. This unweighted
average of the per-class scores is necessary when handling the minority class of
low-quality signals, as reflected in the class distributions of the different data
splits in Table 1. Accuracy is omitted because it is dominated by the majority
class and provides no additional information beyond the reported recall. The
metrics are reported with the standard deviations over three runs, each initialized
with a different random seed.

Finally, to qualitatively evaluate the structure of the learned representation
space of the SSL models, UMAP was applied for dimensionality reduction, pro-
jecting the high-dimensional representations into two dimensions for visualiza-
tion [12]. This approach was also used by Soltanieh et al., for detecting distri-
butional shifts between datasets through analyzing the representation spaces of
self-supervised models [22].

2.6 Hardware and Codebase

All experiments were conducted on the Dutch National Supercomputer Snel-
lius [24], using two NVIDIA A100 GPUs and 36 CPU cores per job. Multiple
jobs were executed in parallel. Since the codebase of Soltanieh et al. [22] was
not available, we extensively adapted the 1D implementation of self-supervised
models for ECG by Mehari and Strodthoff [13] to follow the method of Soltanieh
et al. The complete codebase is available on GitHub.4

4 https://github.com/diekodegraaf/ssl-ecg-quality

https://github.com/diekodegraaf/ssl-ecg-quality
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Table 2: Test performance of fine-tuned SSL models compared to the baselines.
Reported values are macro averaged F1, precision, and recall (%, mean ± std
over 3 seeds), along with per-class results for class 3. SSL augmentations are
selected based on the highest macro F1 after fine-tuning.

Augmentation Macro average Class 3

Method Parameters F1 Precision Recall F1 Precision Recall

SimCLR Channel Resize 80.74 ± 1.57 88.57 ± 0.91 75.99 ± 1.52 77.03 ± 4.85 99.82 ± 0.16 62.89 ± 6.62
[0.33, 1.0]

BYOL Channel Resize 80.56 ± 1.50 88.80 ± 0.71 75.56 ± 1.60 76.23 ± 5.10 99.47 ± 0.43 61.98 ± 6.77
[0.33, 1.0]

SwAV Time Out 81.85 ± 0.97 88.94 ± 0.67 77.27 ± 0.96 79.56 ± 3.24 97.87 ± 2.74 67.20 ± 5.20
[0.1, 0.2]

KMeans - 41.88 ± 1.29 42.56 ± 0.53 43.92 ± 2.32 16.74 ± 3.87 13.18 ± 2.36 23.13 ± 7.57

KNN - 64.76 71.68 60.91 82.48 100.00 70.18

Table 3: Validation performance of fine-tuned SSL models compared to the base-
lines. Reported values are macro-averaged F1, precision, and recall (%, mean ±
std over 3 seeds), along with per-class results for class 3. Validation results are
reported using the same augmentations identified as optimal on the test set.

Augmentation Macro average Class 3

Method Parameters F1 Precision Recall F1 Precision Recall

SimCLR Channel Resize 53.89 ± 0.75 73.98 ± 5.94 54.29 ± 0.59 8.06 ± 2.01 63.42 ± 16.96 4.33 ± 1.15
[0.33, 1.0]

BYOL Channel Resize 54.77 ± 2.87 78.67 ± 2.69 55.11 ± 2.33 8.35 ± 4.62 75.40 ± 4.97 4.49 ± 2.64
[0.33, 1.0]

SwAV Time Out 58.41 ± 1.31 69.94 ± 8.39 58.54 ± 1.54 15.47 ± 4.92 46.45 ± 24.07 12.46 ± 9.34
[0.1, 0.2]

KMeans - 48.22 ± 0.38 48.20 ± 0.34 59.74 ± 0.31 26.56 ± 0.86 16.67 ± 0.83 65.57 ± 2.46

KNN - 39.08 49.01 40.78 1.31 27.78 0.67

3 Results

3.1 Performance Overview

The performance of the fine-tuned SSL models and the supervised (KNN) and
unsupervised (k-means) baselines on the test and validation sets is presented
in Table 2 and Table 3, respectively. The SSL augmentation is selected by the
highest macro F1 on the test set and is reported identically for validation. The
reported performance metrics (F1, precision, and recall) are expressed as per-
centages with standard deviations computed over three random seeds. KNN is
deterministic and therefore reported without standard deviations. Both macro
averages and per-class scores for class 3 are included. Expanded tables that in-
clude the performance on classes 1 and 2 can be found in Appendix A.1, and
comprehensive SSL results for each augmentation and parameter, both for fine-
tuning and linear evaluation, are provided in Appendix A.2 and A.3.
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3.2 Augmentation Performance after Linear Evaluation and
Fine-Tuning

The performance on the test set for all SSL augmentations under linear eval-
uation is illustrated in Figure 4a and after fine-tuning in Figure 4b. Each fig-
ure presents 19 configurations per model architecture, with every configuration
representing a model pre-trained using a specific augmentation and parameter
setting. The F1 score for class 3 is plotted against the macro combined F1 score
of class 1 and class 2. This highlights the model’s ability to distinguish between
both low-quality ECG signals from class 3 and more informative signals from
class 1 and class 2. Performance is reported on the test set as the mean across
three random seeds, analogous illustrations for the validation set can be found
in Appendix B.

3.3 Low-Quality Signals in the SSL Representation Space

To visualize how the self-supervised models encode the ECG signals from the
training, validation and test data, UMAP projections of the representation space
of BYOL are shown in Figure 5a. It illustrates the distribution of class 3 signals
for the validation and test sets. These are overlaid on the representation of the
annotated training subset, where classes 1 and 2 are shown together, and class
3 is plotted separately. An additional projection is shown in Figure 5b, where
validation and test samples are colored based on correct or incorrect predictions
under linear evaluation. BYOL is selected due to its largest performance gap
between validation and test in terms of class 3 F1, analogous figures for SimCLR
and SwAV are provided in Appendix C.

The evaluation result of BYOL after linear evaluation is expanded by in-
specting the signals of the different clusters in the representation space. This
is presented in Figure 6, where the plotted class 3 signals correspond to the
highlighted points in the UMAP projection of the representation space, based
on their shared color.

4 Discussion

4.1 Performance Across Validation and Test Sets

On the test set, the SSL models achieve high F1 scores above 80%, with SwAV
performing best at 81.85%, followed by SimCLR (80.74%) and BYOL (80.56%).
All three models show higher precision than recall, caused by their class 3 per-
formance. For this class, the SSL models reach near perfect precision, ranging
from 97.87% to 99.82%, but lower recall in the range of 61.98-67.20%, indicating
that they very reliably detect only a subset of class 3 signals in the test data.
The recall of all models shows considerable variation across seeds, suggesting
that class 3 detection is sensitive to stochastic training effects. The SSL mod-
els achieve similar competitive scores for classes 1 and 2 signals, as shown in
Appendix A.1.
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Fig. 4: Comparison of testing performance for SSL models and different augmen-
tations through plotting the macro F1 score for class 1 and 2 (x-axis) against
the F1 score for class 3 (y-axis) after linear (a) and fine-tuned (b) evaluation.
The marker size indicates the augmentation strength while the marker shape
encodes the augmentation type. The dotted lines and values plotted on the axis
are the average scores for each model across the different configurations.
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Fig. 5: 2D UMAP projections of class 3 representations for BYOL. Validation
and test signals are overlaid on the annotated training subset to show overlap,
with results (b) based on linear evaluation.

Interestingly, KNN outperforms all SSL models on class 3, reaching an F1
of 82.48% with perfect precision and recall of 70.18%. This can be attributed
to its reliance on neighborhood similarity, indicating that class 3 test signals
have DWT features closely aligned with the training distribution. In contrast, k-
means similarly uses the DWT feature vectors but performs poorly, with a class
3 F1 of only 16.74%. This discrepancy arises from the label assignment procedure
in k-means, which maps clusters to classes based on the class centroids in the
validation data.

This misalignment of low-quality signals is reflected in the validation per-
formance, where macro F1 remains below 60% for all SSL models, caused by
particularly weak class 3 recall. KNN faces similar difficulties, reporting a class
3 F1 of only 1.31%. The exception is k-means, which achieves 26.56% F1 with
a recall of 65.57%, suggesting overfitting to the validation distribution through
cluster assignment, however, the low precision indicates that this does not re-
sult in good class separation. Collectively, these results conflict with the class 3
scores on the test set and suggest that the test samples are more representative
of the training data. In contrast, the validation set likely contains class 3 signals
with different characteristics than those in the test set. This could explain why
the class 3 signals in the validation set are more difficult to detect, and this
distribution shift is further analyzed in Section 4.3 of the Discussion.

4.2 Influence of Augmentation and Evaluation Strategy on SSL

Compared to linear evaluation, fine-tuning reduces the difference between aug-
mentations, resulting in similar means across the models. Although fine-tuning
consistently improves the class 1 and 2 macro F1 across models, it lowers the
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best-performing class 3 results compared to linear evaluation. This can be at-
tributed to model selection being based on the validation set, where the class
3 content differs from the test distribution; consequently, all validation metrics
increased after fine-tuning (Appendix B). BYOL shows tightly grouped results
under linear evaluation, suggesting low sensitivity to augmentation choice, while
still achieving competitive performance across augmentations. In contrast, SwAV
demonstrates the strongest sensitivity to augmentation choice, with results rang-
ing from the least to the most successful. The linear evaluation results indicate
that the most effective augmentation on the test set is Channel Resize (ChR),
with Time Out (TO) achieving strong performance on class 3. No consistent
relationship is observed between augmentation strength and performance, indi-
cating that the type of augmentation is of higher importance than its intensity.

4.3 Representation Space and Distribution Shifts

The 2D UMAP projections of the learned representation space in Figure 5 show
similar trends across models and reveal that the class 3 validation and test sam-
ples form clusters mostly isolated from the class 3 training distribution. It should
be noted that visualized training data represent only the annotated subset; un-
labeled training data may also contain low-quality signals, but these would not
add interpretive value to the plot given the absence of labels. The greater over-
lap of the test set with the class 3 training representations suggests that similar
low-quality signals were encountered during pre-training, allowing the models
to distinguish them more effectively from the other classes during evaluation.
Furthermore, the test samples are positioned in multiple unique clusters in the
representation space, which are correctly associated with class 3 as shown for
BYOL in Figure 5b, while the validation set overlaps with the training repre-
sentations of classes 1 and 2, leading to more incorrect predictions. The higher
separation of the test representations and its increased overlap with the class 3
training distribution help explain the improved performance on test data com-
pared to the validation data.

Inspection of the signals corresponding to the learned representations shows
that the smaller elongated clusters of test samples primarily consist of low-
amplitude background measurements (Figure 6b), which match the content of
class 3 signals in the annotated training subset (Figure 6d). The test set also
contains more complex low-quality signals that overlap with training classes
1 and 2, but are often misclassified, as illustrated in Figure 6f. In contrast,
validation signals are located more frequently in regions with a stronger overlap
with training classes 1 and 2, as seen in Figures 6c and 6e, both of which are
misclassified. However, in the case of Figure 6g, a validation signal is correctly
identified as class 3 despite overlapping with training classes 1 and 2. Overall,
relating the BYOL representation to the others, these observations suggest that
the SSL models detect background measurements as belonging to class 3 but are
less able to separate more nuanced low-quality signals from the other classes.
The performance on the test set is therefore overestimated by the high presence
of homogeneous low-quality signals.
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(a) BYOL linear evaluation result: six signals highlighted in the representation space
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(b) Test class 3 signal correctly classified, from a
separated cluster of test signals
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(c) Validation class 3 signal misclassified as class
1, overlapping with train classes 1 and 2
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(d) Test class 3 signal correctly classified, over-
lapping with train class 3

0 1 2
−1

0

1

2

Class 3

time (s)

am
pl

itu
de

 (m
V)

(e) Validation class 3 signal misclassified as class
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(f) Test class 3 signal misclassified as class 2,
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(g) Validation class 3 signal correctly classified,
overlapping with train classes 1 and 2

Fig. 6: Six class 3 ECG signals are shown in BYOL’s 2D UMAP space, including three
test and three validation examples. The colors of the highlighted points in (a) corre-
spond to the colored frames of the signal plots.
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5 Conclusion

This work showed that self-supervised learning models can learn representations
suited for ECG signal quality assessment without requiring labeled data during
pre-training. On the test set, all SSL models achieved macro F1 scores above
80%, with SwAV performing best. Their performance derives from near-perfect
precision on low-quality signals, although recall remained lower, indicating that
the SSL models very reliably detect a specific subset of class 3 signals in the
test set. In contrast, validation results showed weaker performance, particularly
for class 3, revealing that model reliability is strongly dependent on the repre-
sentativeness of the evaluation data. For both evaluation sets, the SSL models
consistently distinguished between class 1 and class 2 signals, suggesting that
their learned representations encode the subtle differences necessary for their
separation, which highlights the potential of these models.

Analysis of the representation space confirmed that test data contained more
homogeneous low-quality signals resembling those seen during pre-training, while
the validation set included more complex class 3 signals that overlapped with the
other classes and are therefore more difficult to detect. This discrepancy reflects a
distribution shift resulting from the dataset itself: class 3 is defined as a residual
class which covers a wide range of noise sources, is sparsely represented and
unevenly distributed across patients. The imbalance between patients makes that
this issue cannot be resolved by merely reassigning patients between splits while
preventing data leakage. These limitations of the dataset lead to overestimated
class 3 performance on the test set.

Therefore, while the representation learning of the SSL models shows poten-
tial, the current performance on class 3 is unreliable due to the predominance
of homogeneous low-quality signals in the test set and their lower frequency in
the validation set. A reliable estimate of performance on low-quality signals will
require more recordings from different patients in the evaluation data. Mainly,
the inclusion of more low-quality recordings would make the evaluation process
less biased toward specific occurrences of noise and background measurements.
Alternatively, the synthesis of low-quality signals can be explored to artificially
increase their variety in the evaluation data. Although the results are promis-
ing, further research is needed before these models can be confidently applied in
clinical settings for the detection of low-quality signals.
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A Complete Experimental Results

A.1 Per-Class Performance

Table 4: Test performance of fine-tuned SSL models compared to the baselines.
Reported values are macro-averaged F1, precision, and recall (%, mean ± std
over 3 seeds). SSL augmentations are selected based on the highest macro F1
after fine-tuning.

M
et

ho
d

A
ug

m
en

ta
ti

on
M

ac
ro

av
er

ag
e

C
la

ss
1

C
la

ss
2

C
la

ss
3

F1
P

re
ci

si
on

R
ec

al
l

F1
P

re
ci

si
on

R
ec

al
l

F1
P

re
ci

si
on

R
ec

al
l

F1
P

re
ci

si
on

R
ec

al
l

Si
m

C
L
R

C
ha

nn
el

R
es

iz
e

80
.7

4
±

1.
57

88
.5

7
±

0.
91

75
.9

9
±

1.
52

89
.7

4
±

0.
46

88
.0

5
±

1.
54

91
.5

6
±

2.
67

75
.4

4
±

0.
64

77
.8

5
±

4.
33

73
.5

2
±

4.
75

77
.0

3
±

4.
85

99
.8

2
±

0.
16

62
.8

9
±

6.
62

[0
.3
3,
1.
0]

B
Y

O
L

C
ha

nn
el

R
es

iz
e

80
.5

6
±

1.
50

88
.8

0
±

0.
71

75
.5

6
±

1.
60

90
.0

2
±

0.
24

87
.5

3
±

1.
27

92
.6

9
±

1.
66

75
.4

4
±

0.
87

79
.4

0
±

2.
95

72
.0

2
±

3.
73

76
.2

3
±

5.
10

99
.4

7
±

0.
43

61
.9

8
±

6.
77

[0
.3
3,
1.
0]

Sw
A
V

T
im

e
O

ut
81

.8
5

±
0.

97
88

.9
4

±
0.

67
77

.2
7

±
0.

96
90

.3
6

±
0.

26
87

.3
5

±
2.

31
93

.6
6

±
2.

40
75

.6
4

±
2.

47
81

.5
9

±
3.

88
70

.9
6

±
6.

92
79

.5
6

±
3.

24
97

.8
7

±
2.

74
67

.2
0

±
5.

20
[0
.1
,0
.2
]

K
M

ea
ns

-
41

.8
8

±
1.

29
42

.5
6

±
0.

53
43

.9
2

±
2.

32
77

.1
7

±
0.

51
71

.9
4

±
1.

28
83

.2
4

±
1.

13
31

.7
5

±
0.

43
42

.5
6

±
2.

50
25

.3
9

±
1.

28
16

.7
4

±
3.

87
13

.1
8

±
2.

36
23

.1
3

±
7.

57

K
N

N
-

64
.7

6
71

.6
8

60
.9

1
76

.9
4

71
.3

1
83

.5
4

34
.8

7
43

.7
2

29
.0

0
82

.4
8

10
0.

00
70

.1
8



20 D. de Graaf et al.

Table 5: Validation performance of fine-tuned SSL models compared to the base-
lines. Reported values are macro-averaged F1, precision, and recall (%, mean ±
std over 3 seeds). Validation results are reported using the same augmentations
identified as optimal on the test set.
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A.2 Performance of SSL Models on Validation Set

Table 6: Validation Macro and Class 3 performance under linear evaluation, with
abbreviations augmentation, parameters and strength. Each cell shows F1 (%)
/ Precision (%) / Recall (%) with standard deviation over 3 random seeds.
# Model Aug. Param. Str. Macro Class 3

1 Simclr BlW C=0.1 1 46.31 ± 1.16 / 53.40 ± 3.57 / 47.96 ± 1.22 4.66 ± 0.76 / 11.13 ± 8.99 / 3.86 ± 1.74
2 Simclr BlW C=0.7 2 46.42 ± 0.93 / 54.51 ± 5.09 / 48.12 ± 0.93 4.91 ± 0.84 / 14.24 ± 13.19 / 3.71 ± 1.42
3 Simclr BlW C=1.0 3 46.66 ± 1.08 / 55.01 ± 6.81 / 48.18 ± 1.07 4.87 ± 1.13 / 16.12 ± 18.17 / 3.46 ± 0.25
4 Simclr ChR cr=[0.33,1.0] 1 47.98 ± 3.19 / 55.30 ± 2.28 / 51.99 ± 1.58 13.93 ± 7.69 / 11.81 ± 10.74 / 28.18 ± 8.18
5 Simclr ChR cr=[0.5,2.0] 2 46.72 ± 3.60 / 54.53 ± 3.93 / 49.07 ± 2.84 11.13 ± 9.12 / 12.90 ± 12.67 / 14.98 ± 10.83
6 Simclr ChR cr=[0.33,3.0] 3 46.04 ± 2.11 / 54.60 ± 2.45 / 48.80 ± 2.68 8.44 ± 3.76 / 13.29 ± 9.25 / 13.28 ± 14.24
7 Simclr DTW w=1,r=10 1 45.69 ± 1.81 / 56.51 ± 8.15 / 47.54 ± 1.26 4.74 ± 2.32 / 22.16 ± 22.70 / 2.75 ± 1.14
8 Simclr DTW w=3,r=5 2 46.58 ± 0.27 / 52.27 ± 1.39 / 48.21 ± 0.36 4.25 ± 0.96 / 8.01 ± 4.07 / 3.04 ± 0.40
9 Simclr DTW w=3,r=10 3 46.10 ± 1.53 / 56.01 ± 7.95 / 47.94 ± 0.98 4.49 ± 3.11 / 18.81 ± 23.19 / 2.92 ± 1.84
10 Simclr EM var=0.01 1 46.08 ± 1.32 / 52.89 ± 4.27 / 47.82 ± 1.27 3.41 ± 0.75 / 10.31 ± 10.18 / 2.39 ± 0.73
11 Simclr EM var=0.5 2 45.95 ± 1.15 / 53.29 ± 4.73 / 47.65 ± 1.20 4.10 ± 1.63 / 11.38 ± 12.19 / 3.46 ± 2.34
12 Simclr EM var=1.0 3 46.23 ± 1.72 / 53.22 ± 3.81 / 47.89 ± 1.53 4.98 ± 0.20 / 11.13 ± 9.34 / 3.82 ± 0.77
13 Simclr GN var=0.01 1 46.05 ± 1.59 / 53.44 ± 4.65 / 47.78 ± 1.42 4.26 ± 1.89 / 11.46 ± 11.74 / 3.39 ± 2.33
14 Simclr GN var=0.1 2 46.15 ± 1.17 / 51.53 ± 1.16 / 47.78 ± 1.19 4.25 ± 0.71 / 6.16 ± 2.22 / 3.68 ± 1.34
15 Simclr GN var=1.0 3 45.57 ± 1.16 / 51.95 ± 2.43 / 47.42 ± 1.10 3.83 ± 1.17 / 7.87 ± 5.44 / 2.84 ± 1.22
16 Simclr Neg True 2 45.97 ± 0.36 / 58.56 ± 4.38 / 48.02 ± 0.33 2.37 ± 1.46 / 27.08 ± 11.22 / 1.27 ± 0.81
17 Simclr TO mr=[0.1,0.2] 1 46.47 ± 1.43 / 61.42 ± 4.32 / 48.40 ± 1.07 3.69 ± 1.66 / 36.76 ± 11.32 / 1.94 ± 0.89
18 Simclr TO mr=[0.0,0.5] 2 48.38 ± 1.27 / 62.85 ± 2.93 / 49.99 ± 1.13 3.67 ± 0.50 / 36.36 ± 7.17 / 1.94 ± 0.31
19 Simclr TO mr=[0.4,0.5] 3 46.99 ± 1.16 / 54.30 ± 4.31 / 48.76 ± 0.73 2.51 ± 1.50 / 11.42 ± 12.78 / 1.83 ± 1.56
20 Byol BlW C=0.1 1 42.36 ± 1.07 / 48.78 ± 0.31 / 44.26 ± 1.68 1.74 ± 1.04 / 2.05 ± 0.44 / 2.39 ± 2.04
21 Byol BlW C=0.7 2 42.38 ± 1.06 / 48.78 ± 0.31 / 44.27 ± 1.67 1.74 ± 1.05 / 2.02 ± 0.41 / 2.39 ± 2.08
22 Byol BlW C=1.0 3 42.36 ± 1.11 / 48.79 ± 0.31 / 44.26 ± 1.71 1.75 ± 1.05 / 2.05 ± 0.44 / 2.41 ± 2.08
23 Byol ChR cr=[0.33,1.0] 1 44.90 ± 0.85 / 50.58 ± 0.65 / 46.44 ± 0.53 2.93 ± 0.74 / 2.51 ± 0.26 / 4.04 ± 2.12
24 Byol ChR cr=[0.5,2.0] 2 45.02 ± 1.18 / 51.32 ± 1.22 / 46.91 ± 1.08 2.97 ± 1.17 / 4.58 ± 2.98 / 4.00 ± 3.85
25 Byol ChR cr=[0.33,3.0] 3 46.88 ± 1.18 / 51.65 ± 0.32 / 48.50 ± 0.93 3.79 ± 0.49 / 3.93 ± 0.42 / 3.95 ± 1.58
26 Byol DTW w=1,r=10 1 42.38 ± 1.15 / 48.71 ± 0.37 / 44.09 ± 1.76 2.10 ± 1.02 / 2.31 ± 0.72 / 3.24 ± 2.72
27 Byol DTW w=3,r=5 2 42.21 ± 0.89 / 48.64 ± 0.18 / 44.09 ± 1.51 1.77 ± 0.98 / 1.87 ± 0.17 / 2.41 ± 1.89
28 Byol DTW w=3,r=10 3 42.31 ± 0.98 / 48.63 ± 0.27 / 44.12 ± 1.60 1.98 ± 1.22 / 2.03 ± 0.28 / 3.04 ± 2.72
29 Byol EM var=0.01 1 42.38 ± 1.04 / 48.83 ± 0.38 / 44.27 ± 1.65 1.77 ± 0.98 / 2.20 ± 0.72 / 2.39 ± 2.05
30 Byol EM var=0.5 2 42.36 ± 1.07 / 48.76 ± 0.32 / 44.26 ± 1.67 1.72 ± 1.04 / 2.03 ± 0.46 / 2.37 ± 2.08
31 Byol EM var=1.0 3 42.34 ± 1.06 / 48.77 ± 0.32 / 44.24 ± 1.67 1.76 ± 1.05 / 2.08 ± 0.47 / 2.41 ± 2.08
32 Byol GN var=0.01 1 42.34 ± 1.03 / 48.73 ± 0.22 / 44.26 ± 1.65 1.72 ± 1.13 / 1.91 ± 0.16 / 2.39 ± 2.11
33 Byol GN var=0.1 2 42.35 ± 1.05 / 48.73 ± 0.24 / 44.26 ± 1.66 1.70 ± 1.11 / 1.86 ± 0.14 / 2.37 ± 2.11
34 Byol GN var=1.0 3 42.35 ± 1.11 / 48.75 ± 0.32 / 44.26 ± 1.69 1.73 ± 1.04 / 2.05 ± 0.45 / 2.34 ± 1.98
35 Byol Neg True 2 42.28 ± 0.43 / 48.73 ± 0.32 / 44.11 ± 1.12 2.22 ± 1.06 / 2.26 ± 0.44 / 3.33 ± 2.92
36 Byol TO mr=[0.1,0.2] 1 44.39 ± 1.54 / 49.79 ± 0.38 / 45.85 ± 1.30 3.14 ± 0.89 / 2.95 ± 0.38 / 4.49 ± 3.41
37 Byol TO mr=[0.0,0.5] 2 46.03 ± 1.01 / 52.37 ± 3.25 / 47.65 ± 0.92 4.09 ± 1.46 / 8.46 ± 8.42 / 3.53 ± 1.85
38 Byol TO mr=[0.4,0.5] 3 46.17 ± 1.08 / 51.99 ± 2.36 / 47.96 ± 0.64 2.36 ± 1.67 / 6.39 ± 6.55 / 1.56 ± 0.99
39 Swav BlW C=0.1 1 47.18 ± 1.77 / 64.12 ± 4.17 / 48.48 ± 1.57 5.94 ± 2.20 / 47.27 ± 10.08 / 3.19 ± 1.24
40 Swav BlW C=0.7 2 45.73 ± 1.45 / 59.89 ± 9.20 / 47.55 ± 1.36 4.05 ± 2.95 / 34.34 ± 28.18 / 2.17 ± 1.55
41 Swav BlW C=1.0 3 46.95 ± 0.67 / 63.80 ± 3.85 / 48.28 ± 0.73 6.04 ± 2.92 / 46.73 ± 10.59 / 3.28 ± 1.65
42 Swav ChR cr=[0.33,1.0] 1 46.26 ± 3.67 / 58.79 ± 6.98 / 48.11 ± 2.78 3.51 ± 2.75 / 29.68 ± 16.18 / 1.88 ± 1.48
43 Swav ChR cr=[0.5,2.0] 2 45.99 ± 1.56 / 63.51 ± 9.01 / 47.80 ± 1.24 4.78 ± 1.64 / 43.27 ± 25.22 / 2.57 ± 0.94
44 Swav ChR cr=[0.33,3.0] 3 48.17 ± 1.07 / 66.71 ± 4.48 / 49.42 ± 1.01 6.79 ± 1.21 / 50.81 ± 13.78 / 3.68 ± 0.81
45 Swav DTW w=1,r=10 1 44.47 ± 1.01 / 58.84 ± 1.43 / 46.36 ± 0.77 4.62 ± 0.53 / 35.19 ± 4.63 / 2.48 ± 0.31
46 Swav DTW w=3,r=5 2 45.67 ± 1.46 / 53.95 ± 3.15 / 47.40 ± 0.96 3.32 ± 2.00 / 17.64 ± 9.70 / 1.99 ± 1.26
47 Swav DTW w=3,r=10 3 45.95 ± 1.32 / 62.27 ± 6.75 / 47.58 ± 1.14 4.09 ± 1.04 / 42.81 ± 20.72 / 2.19 ± 0.59
48 Swav EM var=0.01 1 46.26 ± 0.98 / 66.84 ± 12.17 / 47.93 ± 0.87 4.25 ± 1.54 / 54.99 ± 37.75 / 2.23 ± 0.73
49 Swav EM var=0.5 2 45.99 ± 1.03 / 70.61 ± 3.87 / 47.65 ± 0.97 5.48 ± 3.53 / 66.92 ± 8.45 / 2.90 ± 1.97
50 Swav EM var=1.0 3 45.85 ± 1.17 / 60.42 ± 8.42 / 47.41 ± 0.92 5.36 ± 2.82 / 38.18 ± 23.75 / 2.92 ± 1.60
51 Swav GN var=0.01 1 46.18 ± 1.16 / 68.59 ± 3.61 / 47.77 ± 1.25 5.11 ± 2.84 / 61.76 ± 11.07 / 2.68 ± 1.52
52 Swav GN var=0.1 2 46.64 ± 0.61 / 65.92 ± 0.44 / 48.09 ± 0.73 5.87 ± 3.51 / 52.86 ± 2.49 / 3.15 ± 1.93
53 Swav GN var=1.0 3 45.16 ± 0.40 / 60.75 ± 0.59 / 46.97 ± 0.34 4.71 ± 2.61 / 39.41 ± 2.43 / 2.55 ± 1.51
54 Swav Neg True 2 46.89 ± 1.77 / 76.12 ± 2.18 / 48.43 ± 1.23 5.46 ± 1.83 / 80.84 ± 5.44 / 2.84 ± 0.98
55 Swav TO mr=[0.1,0.2] 1 51.26 ± 3.08 / 54.77 ± 2.11 / 52.71 ± 3.20 9.47 ± 1.34 / 8.50 ± 0.81 / 11.43 ± 4.50
56 Swav TO mr=[0.0,0.5] 2 50.18 ± 1.32 / 57.10 ± 2.95 / 51.06 ± 1.17 8.84 ± 4.30 / 17.95 ± 11.44 / 5.96 ± 2.69
57 Swav TO mr=[0.4,0.5] 3 51.71 ± 1.65 / 59.11 ± 4.20 / 52.58 ± 1.38 7.52 ± 2.27 / 20.73 ± 12.33 / 5.78 ± 3.82
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Table 7: Validation Class 1 and Class 2 performance under linear evaluation.
Each cell shows F1 (%) / Precision (%) / Recall (%) with standard deviation
over 3 random seeds.
# Model Aug. Param. Str. Class 1 Class 2

1 Simclr BlW C=0.1 1 74.66 ± 1.74 / 61.60 ± 1.19 / 94.77 ± 2.80 59.60 ± 2.35 / 87.46 ± 0.84 / 45.24 ± 2.60
2 Simclr BlW C=0.7 2 74.94 ± 1.27 / 61.58 ± 0.94 / 95.74 ± 2.14 59.39 ± 2.45 / 87.72 ± 1.40 / 44.93 ± 2.63
3 Simclr BlW C=1.0 3 74.96 ± 1.17 / 61.86 ± 0.49 / 95.13 ± 2.92 60.14 ± 1.03 / 87.04 ± 1.90 / 45.95 ± 0.84
4 Simclr ChR cr=[0.33,1.0] 1 75.61 ± 0.30 / 66.53 ± 3.98 / 88.31 ± 8.01 54.41 ± 1.71 / 87.55 ± 0.72 / 39.49 ± 1.87
5 Simclr ChR cr=[0.5,2.0] 2 74.56 ± 0.79 / 62.73 ± 4.27 / 92.78 ± 8.20 54.47 ± 0.96 / 87.96 ± 1.14 / 39.46 ± 0.99
6 Simclr ChR cr=[0.33,3.0] 3 74.65 ± 1.41 / 62.81 ± 5.47 / 93.00 ± 7.32 55.04 ± 1.57 / 87.69 ± 0.70 / 40.12 ± 1.73
7 Simclr DTW w=1,r=10 1 74.47 ± 0.72 / 60.70 ± 1.19 / 96.37 ± 1.45 57.85 ± 2.91 / 86.67 ± 1.74 / 43.49 ± 3.37
8 Simclr DTW w=3,r=5 2 75.39 ± 0.35 / 62.25 ± 0.29 / 95.57 ± 1.48 60.09 ± 0.65 / 86.56 ± 0.36 / 46.02 ± 0.84
9 Simclr DTW w=3,r=10 3 75.10 ± 0.37 / 61.35 ± 0.80 / 96.81 ± 1.23 58.72 ± 1.21 / 87.88 ± 0.66 / 44.10 ± 1.29
10 Simclr EM var=0.01 1 74.95 ± 1.39 / 61.76 ± 1.07 / 95.29 ± 2.18 59.89 ± 2.01 / 86.60 ± 1.67 / 45.78 ± 1.92
11 Simclr EM var=0.5 2 74.43 ± 1.60 / 61.40 ± 1.03 / 94.49 ± 2.73 59.31 ± 2.14 / 87.10 ± 1.30 / 44.99 ± 2.33
12 Simclr EM var=1.0 3 74.70 ± 1.73 / 61.49 ± 1.59 / 95.14 ± 1.90 59.02 ± 3.26 / 87.03 ± 0.83 / 44.72 ± 3.67
13 Simclr GN var=0.01 1 74.56 ± 1.73 / 61.34 ± 1.31 / 95.04 ± 2.54 59.33 ± 2.40 / 87.50 ± 1.37 / 44.91 ± 2.61
14 Simclr GN var=0.1 2 74.67 ± 1.74 / 61.83 ± 1.56 / 94.23 ± 1.95 59.54 ± 2.50 / 86.60 ± 0.69 / 45.42 ± 3.05
15 Simclr GN var=1.0 3 74.51 ± 1.28 / 61.12 ± 1.03 / 95.42 ± 1.76 58.38 ± 2.10 / 86.85 ± 1.21 / 43.99 ± 2.33
16 Simclr Neg True 2 75.26 ± 0.58 / 61.62 ± 0.29 / 96.66 ± 1.30 60.28 ± 0.56 / 86.98 ± 2.26 / 46.13 ± 0.18
17 Simclr TO mr=[0.1,0.2] 1 76.01 ± 0.84 / 62.39 ± 0.98 / 97.24 ± 0.51 59.71 ± 2.08 / 85.10 ± 1.22 / 46.01 ± 2.15
18 Simclr TO mr=[0.0,0.5] 2 77.27 ± 1.28 / 64.01 ± 1.72 / 97.50 ± 0.38 64.19 ± 2.97 / 88.18 ± 0.91 / 50.53 ± 3.61
19 Simclr TO mr=[0.4,0.5] 3 76.02 ± 0.48 / 62.85 ± 0.97 / 96.24 ± 2.12 62.43 ± 1.80 / 88.63 ± 0.22 / 48.22 ± 2.21
20 Byol BlW C=0.1 1 71.67 ± 2.19 / 59.07 ± 1.15 / 91.18 ± 5.08 53.66 ± 2.11 / 85.23 ± 0.64 / 39.20 ± 2.40
21 Byol BlW C=0.7 2 71.68 ± 2.19 / 59.09 ± 1.13 / 91.16 ± 5.10 53.73 ± 2.05 / 85.22 ± 0.61 / 39.27 ± 2.33
22 Byol BlW C=1.0 3 71.66 ± 2.22 / 59.07 ± 1.18 / 91.14 ± 5.09 53.68 ± 2.19 / 85.26 ± 0.68 / 39.21 ± 2.49
23 Byol ChR cr=[0.33,1.0] 1 74.65 ± 0.85 / 62.55 ± 1.97 / 92.69 ± 2.75 57.11 ± 1.07 / 86.68 ± 1.12 / 42.59 ± 1.26
24 Byol ChR cr=[0.5,2.0] 2 75.02 ± 1.03 / 62.41 ± 2.29 / 94.24 ± 4.07 57.05 ± 2.50 / 86.98 ± 0.29 / 42.49 ± 2.73
25 Byol ChR cr=[0.33,3.0] 3 76.70 ± 0.82 / 64.11 ± 1.47 / 95.48 ± 1.14 60.16 ± 2.76 / 86.90 ± 0.57 / 46.07 ± 3.44
26 Byol DTW w=1,r=10 1 71.44 ± 2.20 / 59.42 ± 1.11 / 89.71 ± 5.92 53.62 ± 2.23 / 84.41 ± 1.14 / 39.33 ± 2.54
27 Byol DTW w=3,r=5 2 71.51 ± 2.01 / 58.92 ± 0.90 / 91.00 ± 4.87 53.35 ± 1.71 / 85.13 ± 0.56 / 38.87 ± 1.93
28 Byol DTW w=3,r=10 3 71.50 ± 2.12 / 59.28 ± 1.06 / 90.21 ± 5.78 53.47 ± 1.91 / 84.59 ± 1.11 / 39.12 ± 2.14
29 Byol EM var=0.01 1 71.69 ± 2.15 / 59.08 ± 1.10 / 91.22 ± 5.11 53.68 ± 1.96 / 85.22 ± 0.66 / 39.21 ± 2.24
30 Byol EM var=0.5 2 71.68 ± 2.18 / 59.08 ± 1.15 / 91.19 ± 5.11 53.67 ± 2.07 / 85.18 ± 0.64 / 39.21 ± 2.36
31 Byol EM var=1.0 3 71.65 ± 2.18 / 59.05 ± 1.15 / 91.16 ± 5.10 53.61 ± 2.08 / 85.17 ± 0.65 / 39.15 ± 2.37
32 Byol GN var=0.01 1 71.67 ± 2.18 / 59.05 ± 1.14 / 91.22 ± 5.11 53.63 ± 2.07 / 85.22 ± 0.62 / 39.16 ± 2.34
33 Byol GN var=0.1 2 71.67 ± 2.18 / 59.08 ± 1.15 / 91.18 ± 5.11 53.69 ± 2.09 / 85.25 ± 0.57 / 39.22 ± 2.36
34 Byol GN var=1.0 3 71.68 ± 2.18 / 59.05 ± 1.18 / 91.26 ± 4.87 53.62 ± 2.19 / 85.16 ± 0.66 / 39.17 ± 2.49
35 Byol Neg True 2 71.51 ± 1.60 / 59.29 ± 0.94 / 90.30 ± 6.08 53.12 ± 0.69 / 84.63 ± 1.41 / 38.72 ± 0.86
36 Byol TO mr=[0.1,0.2] 1 72.83 ± 1.73 / 61.40 ± 2.60 / 89.84 ± 6.07 57.20 ± 3.45 / 85.02 ± 1.57 / 43.23 ± 4.21
37 Byol TO mr=[0.0,0.5] 2 74.63 ± 1.15 / 61.80 ± 0.74 / 94.28 ± 4.25 59.37 ± 1.36 / 86.84 ± 1.52 / 45.13 ± 1.82
38 Byol TO mr=[0.4,0.5] 3 75.14 ± 0.31 / 61.97 ± 1.05 / 95.48 ± 2.34 61.00 ± 2.32 / 87.61 ± 0.86 / 46.84 ± 2.96
39 Swav BlW C=0.1 1 74.86 ± 1.67 / 62.13 ± 2.28 / 94.21 ± 0.68 60.74 ± 4.96 / 82.96 ± 1.53 / 48.02 ± 5.60
40 Swav BlW C=0.7 2 74.47 ± 1.59 / 61.06 ± 1.88 / 95.44 ± 0.75 58.68 ± 4.07 / 84.28 ± 2.10 / 45.06 ± 4.27
41 Swav BlW C=1.0 3 74.72 ± 1.10 / 61.93 ± 1.94 / 94.26 ± 1.15 60.08 ± 3.68 / 82.75 ± 1.21 / 47.31 ± 4.81
42 Swav ChR cr=[0.33,1.0] 1 75.21 ± 2.40 / 61.95 ± 3.02 / 95.78 ± 0.76 60.07 ± 5.94 / 84.74 ± 2.10 / 46.68 ± 6.43
43 Swav ChR cr=[0.5,2.0] 2 74.64 ± 1.17 / 60.87 ± 1.61 / 96.50 ± 0.14 58.54 ± 3.57 / 86.39 ± 0.42 / 44.34 ± 4.02
44 Swav ChR cr=[0.33,3.0] 3 75.99 ± 1.28 / 62.63 ± 1.46 / 96.60 ± 0.96 61.74 ± 2.52 / 86.67 ± 1.39 / 47.99 ± 2.86
45 Swav DTW w=1,r=10 1 73.10 ± 0.69 / 59.68 ± 0.87 / 94.33 ± 1.13 55.68 ± 2.06 / 81.66 ± 1.37 / 42.27 ± 2.36
46 Swav DTW w=3,r=5 2 74.15 ± 0.60 / 61.36 ± 1.15 / 93.70 ± 0.87 59.53 ± 2.05 / 82.85 ± 1.09 / 46.51 ± 2.82
47 Swav DTW w=3,r=10 3 74.16 ± 1.29 / 61.30 ± 1.86 / 93.88 ± 0.45 59.59 ± 3.46 / 82.69 ± 0.27 / 46.66 ± 4.10
48 Swav EM var=0.01 1 74.80 ± 1.02 / 61.69 ± 1.88 / 95.06 ± 1.18 59.73 ± 3.46 / 83.84 ± 1.20 / 46.51 ± 4.46
49 Swav EM var=0.5 2 74.31 ± 1.30 / 60.82 ± 1.58 / 95.52 ± 0.43 58.18 ± 3.59 / 84.08 ± 1.62 / 44.52 ± 3.77
50 Swav EM var=1.0 3 73.95 ± 0.90 / 60.89 ± 1.34 / 94.15 ± 0.65 58.24 ± 3.18 / 82.20 ± 1.08 / 45.17 ± 3.64
51 Swav GN var=0.01 1 74.52 ± 1.70 / 61.43 ± 2.31 / 94.74 ± 0.62 58.91 ± 4.48 / 82.58 ± 1.43 / 45.90 ± 5.20
52 Swav GN var=0.1 2 74.63 ± 1.14 / 61.53 ± 1.82 / 94.86 ± 0.81 59.42 ± 3.65 / 83.37 ± 1.00 / 46.26 ± 4.53
53 Swav GN var=1.0 3 73.77 ± 0.60 / 60.39 ± 0.97 / 94.80 ± 0.42 56.99 ± 2.04 / 82.47 ± 0.85 / 43.58 ± 2.50
54 Swav Neg True 2 75.07 ± 0.80 / 61.59 ± 1.42 / 96.13 ± 0.79 60.13 ± 2.99 / 85.93 ± 0.78 / 46.31 ± 3.68
55 Swav TO mr=[0.1,0.2] 1 78.83 ± 3.04 / 67.72 ± 4.65 / 94.49 ± 0.28 65.47 ± 4.94 / 88.11 ± 1.74 / 52.19 ± 5.63
56 Swav TO mr=[0.0,0.5] 2 76.99 ± 1.51 / 64.19 ± 2.55 / 96.26 ± 1.20 64.70 ± 4.85 / 89.15 ± 0.72 / 50.95 ± 5.89
57 Swav TO mr=[0.4,0.5] 3 78.63 ± 1.21 / 66.64 ± 1.89 / 95.95 ± 2.27 68.99 ± 2.60 / 89.97 ± 0.77 / 56.02 ± 3.69
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Table 8: Validation Macro and Class 3 performance of SSL models after fine-
tuning. Each cell shows F1 (%) / Precision (%) / Recall (%) with standard
deviation over 3 random seeds.
# Model Aug. Param. Str. Macro Class 3

1 Simclr BlW C=0.1 1 52.97 ± 0.55 / 70.69 ± 4.22 / 53.06 ± 0.57 13.48 ± 4.61 / 55.95 ± 12.06 / 7.81 ± 3.15
2 Simclr BlW C=0.7 2 54.07 ± 0.61 / 71.82 ± 2.32 / 53.86 ± 0.44 13.76 ± 0.90 / 58.91 ± 7.29 / 7.81 ± 0.65
3 Simclr BlW C=1.0 3 53.47 ± 1.44 / 76.20 ± 1.68 / 53.53 ± 0.97 11.55 ± 4.07 / 72.01 ± 5.83 / 6.34 ± 2.39
4 Simclr ChR cr=[0.33,1.0] 1 53.89 ± 0.75 / 73.98 ± 5.94 / 54.29 ± 0.59 8.06 ± 2.01 / 63.42 ± 16.96 / 4.33 ± 1.15
5 Simclr ChR cr=[0.5,2.0] 2 54.18 ± 1.50 / 74.05 ± 4.17 / 54.28 ± 1.16 10.19 ± 1.96 / 64.67 ± 10.97 / 5.54 ± 1.09
6 Simclr ChR cr=[0.33,3.0] 3 54.75 ± 1.11 / 76.12 ± 3.92 / 54.39 ± 0.63 14.59 ± 4.29 / 71.08 ± 11.70 / 8.22 ± 2.62
7 Simclr DTW w=1,r=10 1 52.97 ± 1.37 / 70.78 ± 4.23 / 52.98 ± 0.87 14.58 ± 4.12 / 55.90 ± 11.89 / 8.57 ± 2.95
8 Simclr DTW w=3,r=5 2 52.46 ± 1.53 / 76.74 ± 5.32 / 53.17 ± 0.72 6.93 ± 5.51 / 73.42 ± 14.44 / 3.75 ± 3.17
9 Simclr DTW w=3,r=10 3 52.55 ± 1.68 / 74.42 ± 5.02 / 53.13 ± 0.73 8.39 ± 6.57 / 66.05 ± 15.48 / 4.55 ± 3.69
10 Simclr EM var=0.01 1 52.67 ± 0.72 / 73.90 ± 2.92 / 53.10 ± 0.52 8.82 ± 1.11 / 65.10 ± 8.12 / 4.73 ± 0.61
11 Simclr EM var=0.5 2 53.36 ± 0.76 / 71.55 ± 1.28 / 53.41 ± 0.37 12.48 ± 4.49 / 58.07 ± 3.91 / 7.08 ± 2.90
12 Simclr EM var=1.0 3 53.65 ± 0.71 / 72.51 ± 0.40 / 53.48 ± 0.68 14.36 ± 3.72 / 61.26 ± 0.45 / 8.19 ± 2.44
13 Simclr GN var=0.01 1 53.79 ± 0.30 / 73.97 ± 4.23 / 53.67 ± 0.10 13.78 ± 5.11 / 65.53 ± 11.83 / 7.95 ± 3.62
14 Simclr GN var=0.1 2 52.78 ± 0.21 / 70.23 ± 4.52 / 53.27 ± 0.55 9.55 ± 7.81 / 54.07 ± 11.12 / 5.67 ± 5.06
15 Simclr GN var=1.0 3 53.97 ± 1.03 / 72.96 ± 4.70 / 53.88 ± 0.56 13.49 ± 6.15 / 62.36 ± 13.31 / 7.88 ± 4.33
16 Simclr Neg True 2 53.12 ± 2.19 / 77.08 ± 9.09 / 53.88 ± 1.07 9.60 ± 13.98 / 73.66 ± 26.17 / 6.61 ± 10.11
17 Simclr TO mr=[0.1,0.2] 1 54.88 ± 0.45 / 73.43 ± 6.27 / 55.12 ± 0.49 8.31 ± 1.62 / 60.87 ± 18.49 / 4.51 ± 1.01
18 Simclr TO mr=[0.0,0.5] 2 56.35 ± 1.68 / 73.74 ± 3.62 / 56.18 ± 0.89 11.30 ± 7.25 / 60.45 ± 11.47 / 6.39 ± 4.34
19 Simclr TO mr=[0.4,0.5] 3 54.64 ± 1.18 / 72.14 ± 5.94 / 54.71 ± 0.66 10.35 ± 5.32 / 58.11 ± 16.98 / 5.89 ± 3.20
20 Byol BlW C=0.1 1 51.07 ± 1.66 / 65.56 ± 10.69 / 51.71 ± 0.76 7.60 ± 7.41 / 44.07 ± 29.92 / 4.31 ± 4.34
21 Byol BlW C=0.7 2 50.48 ± 1.69 / 70.01 ± 5.94 / 51.55 ± 0.85 6.99 ± 7.83 / 54.89 ± 18.18 / 4.13 ± 4.97
22 Byol BlW C=1.0 3 51.78 ± 2.09 / 65.25 ± 5.43 / 52.30 ± 1.01 8.93 ± 7.82 / 42.01 ± 15.18 / 5.18 ± 4.60
23 Byol ChR cr=[0.33,1.0] 1 54.77 ± 2.87 / 78.67 ± 2.69 / 55.11 ± 2.33 8.35 ± 4.62 / 75.40 ± 4.97 / 4.49 ± 2.64
24 Byol ChR cr=[0.5,2.0] 2 53.89 ± 1.06 / 69.75 ± 8.10 / 53.88 ± 0.76 15.74 ± 5.63 / 51.97 ± 22.56 / 10.09 ± 4.40
25 Byol ChR cr=[0.33,3.0] 3 55.90 ± 0.84 / 76.11 ± 3.10 / 56.34 ± 0.66 6.46 ± 5.93 / 65.85 ± 10.56 / 3.48 ± 3.22
26 Byol DTW w=1,r=10 1 51.50 ± 2.72 / 68.03 ± 7.73 / 52.54 ± 1.95 8.78 ± 9.14 / 48.82 ± 23.47 / 6.65 ± 8.11
27 Byol DTW w=3,r=5 2 51.59 ± 0.85 / 65.63 ± 3.25 / 52.10 ± 0.96 8.31 ± 1.55 / 43.93 ± 7.56 / 4.64 ± 1.08
28 Byol DTW w=3,r=10 3 51.09 ± 1.89 / 73.49 ± 5.88 / 52.15 ± 1.34 5.25 ± 2.71 / 64.47 ± 16.88 / 2.77 ± 1.51
29 Byol EM var=0.01 1 51.39 ± 0.45 / 69.79 ± 9.31 / 52.06 ± 0.45 10.55 ± 3.38 / 53.41 ± 26.85 / 6.43 ± 3.07
30 Byol EM var=0.5 2 50.97 ± 0.91 / 68.33 ± 3.61 / 51.72 ± 0.22 10.25 ± 8.58 / 50.57 ± 10.43 / 6.23 ± 5.86
31 Byol EM var=1.0 3 51.50 ± 1.03 / 71.74 ± 7.27 / 52.07 ± 0.75 8.91 ± 2.79 / 60.96 ± 19.80 / 4.93 ± 1.81
32 Byol GN var=0.01 1 51.98 ± 1.17 / 67.73 ± 3.93 / 52.18 ± 1.09 14.04 ± 4.16 / 49.40 ± 9.51 / 8.42 ± 2.98
33 Byol GN var=0.1 2 51.46 ± 1.79 / 67.36 ± 1.38 / 52.17 ± 1.05 8.25 ± 5.76 / 46.65 ± 4.37 / 4.64 ± 3.34
34 Byol GN var=1.0 3 50.34 ± 2.11 / 75.54 ± 4.92 / 51.45 ± 1.09 5.49 ± 5.90 / 72.09 ± 15.49 / 2.95 ± 3.25
35 Byol Neg True 2 51.43 ± 1.66 / 71.11 ± 7.82 / 52.14 ± 0.80 8.65 ± 7.35 / 58.69 ± 22.76 / 5.14 ± 4.81
36 Byol TO mr=[0.1,0.2] 1 52.48 ± 3.91 / 70.53 ± 3.51 / 53.17 ± 2.49 9.53 ± 12.23 / 55.00 ± 10.76 / 6.07 ± 8.31
37 Byol TO mr=[0.0,0.5] 2 52.27 ± 0.94 / 70.04 ± 0.69 / 52.63 ± 0.84 11.02 ± 1.24 / 54.20 ± 3.23 / 6.14 ± 0.74
38 Byol TO mr=[0.4,0.5] 3 53.80 ± 1.65 / 70.09 ± 5.47 / 54.08 ± 1.33 16.73 ± 12.25 / 53.13 ± 15.53 / 11.65 ± 9.58
39 Swav BlW C=0.1 1 53.97 ± 0.73 / 78.09 ± 2.02 / 54.20 ± 0.47 8.28 ± 1.96 / 77.50 ± 5.42 / 4.38 ± 1.07
40 Swav BlW C=0.7 2 53.47 ± 0.53 / 78.54 ± 3.55 / 53.79 ± 0.30 8.52 ± 3.37 / 78.89 ± 10.31 / 4.55 ± 1.95
41 Swav BlW C=1.0 3 53.09 ± 1.20 / 72.12 ± 7.21 / 53.40 ± 0.92 9.21 ± 1.52 / 60.21 ± 20.78 / 5.02 ± 0.91
42 Swav ChR cr=[0.33,1.0] 1 55.49 ± 0.20 / 74.01 ± 12.73 / 55.43 ± 0.30 10.54 ± 1.26 / 63.11 ± 38.74 / 6.14 ± 0.94
43 Swav ChR cr=[0.5,2.0] 2 54.76 ± 1.12 / 75.22 ± 4.79 / 55.03 ± 0.56 7.87 ± 4.08 / 66.86 ± 14.74 / 4.29 ± 2.45
44 Swav ChR cr=[0.33,3.0] 3 54.39 ± 0.34 / 73.29 ± 8.69 / 54.77 ± 0.36 7.44 ± 2.82 / 60.89 ± 26.05 / 4.06 ± 1.65
45 Swav DTW w=1,r=10 1 52.10 ± 0.24 / 78.76 ± 1.99 / 52.87 ± 0.09 6.09 ± 0.99 / 80.22 ± 6.04 / 3.17 ± 0.54
46 Swav DTW w=3,r=5 2 53.35 ± 0.11 / 77.95 ± 4.22 / 53.54 ± 0.18 9.89 ± 1.49 / 77.19 ± 12.14 / 5.29 ± 0.82
47 Swav DTW w=3,r=10 3 53.75 ± 0.36 / 74.47 ± 2.24 / 53.70 ± 0.33 11.43 ± 1.40 / 67.60 ± 5.76 / 6.25 ± 0.84
48 Swav EM var=0.01 1 53.21 ± 0.35 / 78.69 ± 2.63 / 53.62 ± 0.23 8.22 ± 4.32 / 79.33 ± 6.59 / 4.40 ± 2.48
49 Swav EM var=0.5 2 52.82 ± 0.40 / 78.86 ± 4.74 / 53.26 ± 0.10 8.16 ± 3.75 / 80.25 ± 13.84 / 4.35 ± 2.08
50 Swav EM var=1.0 3 52.67 ± 0.27 / 77.21 ± 2.74 / 53.16 ± 0.38 7.72 ± 1.76 / 75.52 ± 8.05 / 4.09 ± 0.99
51 Swav GN var=0.01 1 53.37 ± 0.40 / 76.64 ± 1.09 / 53.52 ± 0.41 10.06 ± 0.68 / 73.69 ± 3.53 / 5.40 ± 0.39
52 Swav GN var=0.1 2 53.35 ± 0.39 / 78.27 ± 1.93 / 53.64 ± 0.28 9.22 ± 2.97 / 77.61 ± 5.06 / 4.93 ± 1.72
53 Swav GN var=1.0 3 53.74 ± 1.23 / 76.49 ± 3.60 / 53.97 ± 0.84 8.92 ± 2.17 / 72.51 ± 10.27 / 4.76 ± 1.18
54 Swav Neg True 2 54.57 ± 0.57 / 79.93 ± 2.76 / 54.59 ± 0.51 10.09 ± 1.69 / 81.83 ± 7.35 / 5.38 ± 0.95
55 Swav TO mr=[0.1,0.2] 1 58.41 ± 1.31 / 69.94 ± 8.39 / 58.54 ± 1.54 15.47 ± 4.92 / 46.45 ± 24.07 / 12.46 ± 9.34
56 Swav TO mr=[0.0,0.5] 2 56.99 ± 0.79 / 66.01 ± 4.24 / 56.82 ± 1.33 16.93 ± 4.69 / 37.82 ± 12.76 / 12.37 ± 6.20
57 Swav TO mr=[0.4,0.5] 3 55.75 ± 0.93 / 66.66 ± 1.50 / 55.59 ± 0.78 11.94 ± 1.46 / 40.47 ± 6.25 / 7.06 ± 1.09
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Table 9: Validation Class 1 and Class 2 performance of SSL models after fine-
tuning. Each cell shows F1 (%) / Precision (%) / Recall (%) with standard
deviation over 3 random seeds.
# Model Aug. Param. Str. Class 1 Class 2

1 Simclr BlW C=0.1 1 78.45 ± 1.53 / 65.40 ± 2.37 / 98.08 ± 0.77 66.98 ± 3.85 / 90.71 ± 1.55 / 53.27 ± 5.26
2 Simclr BlW C=0.7 2 79.15 ± 0.31 / 66.68 ± 0.54 / 97.37 ± 0.88 69.29 ± 0.81 / 89.85 ± 1.02 / 56.41 ± 1.30
3 Simclr BlW C=1.0 3 79.28 ± 0.81 / 66.85 ± 1.32 / 97.41 ± 0.45 69.57 ± 1.72 / 89.72 ± 0.86 / 56.85 ± 2.55
4 Simclr ChR cr=[0.33,1.0] 1 80.90 ± 0.72 / 69.33 ± 1.21 / 97.13 ± 0.31 72.71 ± 1.55 / 89.19 ± 0.62 / 61.41 ± 2.37
5 Simclr ChR cr=[0.5,2.0] 2 80.44 ± 1.01 / 68.81 ± 1.17 / 96.81 ± 0.62 71.91 ± 1.53 / 88.67 ± 0.83 / 60.49 ± 1.77
6 Simclr ChR cr=[0.33,3.0] 3 79.66 ± 0.15 / 67.27 ± 0.63 / 97.66 ± 0.94 70.00 ± 0.83 / 90.01 ± 1.39 / 57.30 ± 1.69
7 Simclr DTW w=1,r=10 1 78.05 ± 0.62 / 64.64 ± 0.84 / 98.48 ± 0.43 66.29 ± 1.63 / 91.82 ± 0.56 / 51.89 ± 2.03
8 Simclr DTW w=3,r=5 2 79.86 ± 0.83 / 67.73 ± 0.75 / 97.29 ± 1.29 70.60 ± 1.06 / 89.08 ± 1.36 / 58.48 ± 1.20
9 Simclr DTW w=3,r=10 3 79.54 ± 0.56 / 66.93 ± 0.69 / 98.00 ± 0.26 69.74 ± 1.04 / 90.28 ± 0.34 / 56.82 ± 1.37
10 Simclr EM var=0.01 1 79.36 ± 0.42 / 66.96 ± 0.60 / 97.38 ± 0.31 69.82 ± 0.67 / 89.63 ± 0.62 / 57.19 ± 0.98
11 Simclr EM var=0.5 2 78.96 ± 0.80 / 66.25 ± 1.41 / 97.72 ± 0.68 68.66 ± 2.04 / 90.34 ± 1.32 / 55.45 ± 3.11
12 Simclr EM var=1.0 3 78.65 ± 1.31 / 65.83 ± 2.11 / 97.75 ± 0.69 67.92 ± 3.16 / 90.46 ± 1.47 / 54.51 ± 4.48
13 Simclr GN var=0.01 1 78.87 ± 1.23 / 66.28 ± 1.93 / 97.41 ± 0.53 68.73 ± 3.08 / 90.12 ± 1.06 / 55.66 ± 4.33
14 Simclr GN var=0.1 2 79.27 ± 2.33 / 67.03 ± 3.44 / 97.08 ± 0.25 69.54 ± 4.86 / 89.60 ± 1.05 / 57.07 ± 6.88
15 Simclr GN var=1.0 3 79.15 ± 1.12 / 66.73 ± 1.71 / 97.29 ± 0.25 69.28 ± 2.42 / 89.81 ± 0.96 / 56.47 ± 3.57
16 Simclr Neg True 2 79.67 ± 2.12 / 67.53 ± 3.39 / 97.27 ± 0.91 70.10 ± 5.29 / 90.06 ± 2.33 / 57.77 ± 7.74
17 Simclr TO mr=[0.1,0.2] 1 81.72 ± 0.76 / 71.01 ± 1.57 / 96.26 ± 0.87 74.62 ± 1.68 / 88.42 ± 0.97 / 64.61 ± 3.01
18 Simclr TO mr=[0.0,0.5] 2 82.20 ± 1.26 / 71.89 ± 3.13 / 96.14 ± 2.76 75.56 ± 3.51 / 88.87 ± 2.64 / 66.03 ± 6.53
19 Simclr TO mr=[0.4,0.5] 3 80.65 ± 1.05 / 69.39 ± 1.97 / 96.33 ± 1.32 72.93 ± 2.21 / 88.92 ± 1.79 / 61.90 ± 3.65
20 Byol BlW C=0.1 1 77.68 ± 0.66 / 66.01 ± 2.48 / 94.59 ± 3.92 67.93 ± 2.56 / 86.58 ± 4.56 / 56.22 ± 5.58
21 Byol BlW C=0.7 2 78.00 ± 0.75 / 64.84 ± 1.32 / 97.89 ± 0.64 66.44 ± 2.32 / 90.29 ± 1.49 / 52.64 ± 3.39
22 Byol BlW C=1.0 3 78.18 ± 0.53 / 66.01 ± 0.83 / 95.87 ± 1.59 68.22 ± 1.11 / 87.74 ± 2.66 / 55.86 ± 2.06
23 Byol ChR cr=[0.33,1.0] 1 81.78 ± 2.54 / 70.44 ± 4.07 / 97.62 ± 0.48 74.17 ± 4.56 / 90.18 ± 0.46 / 63.22 ± 6.97
24 Byol ChR cr=[0.5,2.0] 2 78.62 ± 2.00 / 65.64 ± 3.02 / 98.10 ± 0.60 67.31 ± 4.90 / 91.65 ± 1.59 / 53.45 ± 6.77
25 Byol ChR cr=[0.33,3.0] 3 83.53 ± 1.78 / 73.98 ± 3.43 / 96.05 ± 1.18 77.71 ± 3.08 / 88.50 ± 1.51 / 69.47 ± 5.68
26 Byol DTW w=1,r=10 1 78.25 ± 1.02 / 65.67 ± 1.22 / 96.80 ± 0.81 67.49 ± 2.04 / 89.61 ± 0.84 / 54.18 ± 2.92
27 Byol DTW w=3,r=5 2 78.13 ± 1.55 / 66.27 ± 1.77 / 95.20 ± 2.20 68.32 ± 2.58 / 86.69 ± 2.66 / 56.45 ± 3.43
28 Byol DTW w=3,r=10 3 79.02 ± 0.95 / 66.47 ± 1.67 / 97.45 ± 0.67 69.01 ± 2.45 / 89.52 ± 0.94 / 56.21 ± 3.45
29 Byol EM var=0.01 1 77.89 ± 1.20 / 64.49 ± 1.69 / 98.34 ± 0.28 65.73 ± 3.52 / 91.47 ± 0.77 / 51.40 ± 4.46
30 Byol EM var=0.5 2 77.50 ± 1.62 / 64.26 ± 2.41 / 97.69 ± 0.55 65.16 ± 4.53 / 90.15 ± 1.50 / 51.23 ± 5.88
31 Byol EM var=1.0 3 78.15 ± 0.82 / 65.49 ± 0.44 / 96.88 ± 1.57 67.45 ± 0.91 / 88.78 ± 2.15 / 54.39 ± 0.46
32 Byol GN var=0.01 1 77.29 ± 1.89 / 64.10 ± 2.72 / 97.42 ± 0.94 64.60 ± 5.21 / 89.69 ± 1.68 / 50.70 ± 6.47
33 Byol GN var=0.1 2 78.42 ± 0.85 / 65.60 ± 1.38 / 97.49 ± 0.45 67.71 ± 2.19 / 89.83 ± 0.64 / 54.38 ± 3.02
34 Byol GN var=1.0 3 78.13 ± 0.35 / 65.30 ± 0.18 / 97.24 ± 1.11 67.40 ± 0.68 / 89.22 ± 0.77 / 54.17 ± 0.99
35 Byol Neg True 2 78.18 ± 0.63 / 65.48 ± 0.93 / 96.98 ± 0.51 67.47 ± 1.95 / 89.15 ± 0.60 / 54.31 ± 2.63
36 Byol TO mr=[0.1,0.2] 1 79.13 ± 0.12 / 66.42 ± 0.31 / 97.84 ± 0.35 68.77 ± 0.60 / 90.18 ± 1.03 / 55.60 ± 1.18
37 Byol TO mr=[0.0,0.5] 2 78.59 ± 1.03 / 65.52 ± 1.52 / 98.20 ± 0.26 67.21 ± 2.36 / 90.41 ± 0.48 / 53.54 ± 3.08
38 Byol TO mr=[0.4,0.5] 3 78.46 ± 2.24 / 65.30 ± 3.52 / 98.43 ± 0.87 66.21 ± 5.82 / 91.85 ± 2.07 / 52.15 ± 8.14
39 Swav BlW C=0.1 1 80.47 ± 0.35 / 69.72 ± 0.16 / 95.15 ± 0.69 73.16 ± 0.31 / 87.06 ± 0.81 / 63.09 ± 0.14
40 Swav BlW C=0.7 2 80.03 ± 0.70 / 68.56 ± 1.26 / 96.11 ± 0.70 71.87 ± 1.56 / 88.17 ± 1.16 / 60.71 ± 2.54
41 Swav BlW C=1.0 3 79.57 ± 0.76 / 67.66 ± 1.16 / 96.59 ± 0.26 70.48 ± 1.65 / 88.50 ± 0.24 / 58.59 ± 2.30
42 Swav ChR cr=[0.33,1.0] 1 81.58 ± 0.68 / 71.12 ± 1.13 / 95.65 ± 0.96 74.37 ± 0.41 / 87.80 ± 1.10 / 64.51 ± 0.71
43 Swav ChR cr=[0.5,2.0] 2 81.51 ± 0.32 / 71.17 ± 0.52 / 95.39 ± 1.24 74.89 ± 0.67 / 87.63 ± 1.04 / 65.42 ± 1.56
44 Swav ChR cr=[0.33,3.0] 3 81.33 ± 0.92 / 70.58 ± 1.51 / 95.96 ± 0.83 74.41 ± 1.59 / 88.41 ± 0.98 / 64.28 ± 2.72
45 Swav DTW w=1,r=10 1 79.58 ± 0.13 / 67.63 ± 0.18 / 96.67 ± 0.25 70.61 ± 0.17 / 88.45 ± 0.34 / 58.76 ± 0.35
46 Swav DTW w=3,r=5 2 79.49 ± 0.48 / 67.43 ± 0.85 / 96.81 ± 0.74 70.66 ± 1.00 / 89.22 ± 0.97 / 58.51 ± 1.71
47 Swav DTW w=3,r=10 3 79.31 ± 0.61 / 67.47 ± 0.60 / 96.19 ± 0.59 70.50 ± 0.83 / 88.34 ± 0.76 / 58.66 ± 0.84
48 Swav EM var=0.01 1 79.96 ± 1.19 / 68.28 ± 1.68 / 96.48 ± 0.08 71.46 ± 2.14 / 88.45 ± 0.32 / 59.99 ± 3.03
49 Swav EM var=0.5 2 79.50 ± 0.77 / 67.64 ± 1.61 / 96.46 ± 1.09 70.78 ± 1.81 / 88.69 ± 1.61 / 58.98 ± 3.25
50 Swav EM var=1.0 3 79.46 ± 0.73 / 67.63 ± 1.15 / 96.32 ± 1.07 70.82 ± 1.37 / 88.48 ± 1.47 / 59.07 ± 2.23
51 Swav GN var=0.01 1 79.40 ± 0.52 / 67.48 ± 0.88 / 96.46 ± 0.62 70.65 ± 1.36 / 88.74 ± 0.70 / 58.70 ± 1.97
52 Swav GN var=0.1 2 79.72 ± 0.76 / 67.70 ± 1.18 / 96.96 ± 0.39 71.10 ± 1.60 / 89.50 ± 0.61 / 59.01 ± 2.35
53 Swav GN var=1.0 3 80.19 ± 0.54 / 68.77 ± 0.88 / 96.16 ± 0.66 72.10 ± 1.03 / 88.17 ± 0.51 / 61.01 ± 1.67
54 Swav Neg True 2 80.61 ± 0.78 / 69.31 ± 0.92 / 96.33 ± 0.46 73.01 ± 1.17 / 88.65 ± 0.50 / 62.06 ± 1.45
55 Swav TO mr=[0.1,0.2] 1 83.68 ± 1.61 / 73.80 ± 3.00 / 96.69 ± 0.80 76.10 ± 4.74 / 89.59 ± 1.27 / 66.46 ± 7.84
56 Swav TO mr=[0.0,0.5] 2 81.40 ± 1.54 / 70.07 ± 2.32 / 97.16 ± 0.35 72.63 ± 2.88 / 90.13 ± 0.57 / 60.92 ± 4.33
57 Swav TO mr=[0.4,0.5] 3 81.51 ± 0.67 / 70.43 ± 0.56 / 96.72 ± 1.02 73.80 ± 0.72 / 89.07 ± 1.39 / 63.00 ± 0.69
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A.3 Performance of SSL Models on Test Set

Table 10: Test Macro and Class 3 performance under linear evaluation. Each
cell shows F1 (%) / Precision (%) / Recall (%) with standard deviation over 3
random seeds.
# Model Aug. Param. Str. Macro Class 3

1 Simclr BlW C=0.1 1 73.87 ± 1.39 / 81.04 ± 1.20 / 69.46 ± 1.45 68.69 ± 1.64 / 84.97 ± 2.47 / 57.64 ± 1.18
2 Simclr BlW C=0.7 2 74.24 ± 1.28 / 82.00 ± 1.85 / 69.62 ± 0.99 70.24 ± 2.20 / 87.02 ± 4.11 / 58.94 ± 2.30
3 Simclr BlW C=1.0 3 73.96 ± 1.09 / 81.66 ± 1.36 / 69.31 ± 1.04 68.53 ± 0.72 / 87.00 ± 2.49 / 56.55 ± 0.71
4 Simclr ChR cr=[0.33,1.0] 1 76.87 ± 1.44 / 84.60 ± 2.25 / 72.39 ± 0.93 81.24 ± 1.69 / 95.27 ± 4.53 / 70.86 ± 0.18
5 Simclr ChR cr=[0.5,2.0] 2 76.26 ± 1.08 / 85.68 ± 0.40 / 71.35 ± 1.26 82.35 ± 0.38 / 98.69 ± 1.19 / 70.65 ± 0.37
6 Simclr ChR cr=[0.33,3.0] 3 76.25 ± 0.42 / 84.87 ± 1.19 / 71.59 ± 0.80 81.53 ± 1.04 / 96.52 ± 3.12 / 70.59 ± 0.34
7 Simclr DTW w=1,r=10 1 72.81 ± 1.87 / 82.54 ± 2.39 / 67.74 ± 2.58 71.06 ± 8.12 / 92.38 ± 5.90 / 58.26 ± 10.72
8 Simclr DTW w=3,r=5 2 72.12 ± 5.70 / 78.54 ± 2.70 / 68.40 ± 6.45 62.26 ± 16.70 / 77.80 ± 8.86 / 52.86 ± 18.68
9 Simclr DTW w=3,r=10 3 74.28 ± 1.48 / 83.18 ± 3.49 / 69.28 ± 0.91 72.22 ± 6.88 / 91.41 ± 9.89 / 59.79 ± 6.01
10 Simclr EM var=0.01 1 73.53 ± 1.04 / 81.56 ± 0.40 / 68.76 ± 1.23 66.57 ± 1.66 / 86.47 ± 0.17 / 54.13 ± 2.13
11 Simclr EM var=0.5 2 73.35 ± 1.24 / 80.93 ± 0.78 / 68.83 ± 1.48 66.94 ± 1.84 / 84.39 ± 2.61 / 55.58 ± 3.17
12 Simclr EM var=1.0 3 72.98 ± 1.23 / 79.40 ± 0.39 / 69.02 ± 1.60 66.98 ± 0.51 / 80.48 ± 1.98 / 57.37 ± 0.26
13 Simclr GN var=0.01 1 73.23 ± 1.07 / 81.42 ± 0.45 / 68.48 ± 1.31 66.83 ± 1.01 / 85.80 ± 1.72 / 54.78 ± 1.98
14 Simclr GN var=0.1 2 73.82 ± 0.72 / 79.46 ± 2.91 / 70.19 ± 0.82 68.60 ± 4.32 / 81.28 ± 8.53 / 59.44 ± 1.96
15 Simclr GN var=1.0 3 72.65 ± 0.18 / 80.20 ± 0.58 / 68.16 ± 0.48 65.78 ± 1.77 / 82.84 ± 2.27 / 54.60 ± 2.54
16 Simclr Neg True 2 73.09 ± 0.99 / 81.86 ± 4.12 / 68.21 ± 0.28 64.63 ± 3.46 / 85.69 ± 12.15 / 52.18 ± 1.14
17 Simclr TO mr=[0.1,0.2] 1 70.24 ± 1.39 / 82.98 ± 0.58 / 64.48 ± 1.84 71.54 ± 5.65 / 98.94 ± 0.47 / 56.25 ± 7.11
18 Simclr TO mr=[0.0,0.5] 2 68.65 ± 3.48 / 83.27 ± 1.28 / 63.00 ± 3.35 68.02 ± 0.87 / 96.91 ± 2.94 / 52.45 ± 1.77
19 Simclr TO mr=[0.4,0.5] 3 72.80 ± 2.76 / 85.50 ± 0.12 / 67.26 ± 3.22 77.06 ± 5.79 / 99.29 ± 0.50 / 63.19 ± 7.49
20 Byol BlW C=0.1 1 73.09 ± 1.30 / 83.97 ± 0.78 / 67.55 ± 1.33 75.22 ± 1.56 / 97.86 ± 0.92 / 61.09 ± 1.72
21 Byol BlW C=0.7 2 73.12 ± 1.23 / 83.97 ± 0.69 / 67.58 ± 1.29 75.24 ± 1.50 / 97.87 ± 0.76 / 61.12 ± 1.73
22 Byol BlW C=1.0 3 73.11 ± 1.25 / 83.98 ± 0.73 / 67.58 ± 1.30 75.31 ± 1.63 / 97.87 ± 0.92 / 61.21 ± 1.82
23 Byol ChR cr=[0.33,1.0] 1 77.73 ± 0.80 / 84.56 ± 1.33 / 73.26 ± 0.85 80.46 ± 1.41 / 96.14 ± 3.04 / 69.20 ± 1.56
24 Byol ChR cr=[0.5,2.0] 2 76.91 ± 1.57 / 83.60 ± 3.36 / 72.83 ± 1.53 79.88 ± 4.19 / 93.04 ± 10.54 / 70.24 ± 0.22
25 Byol ChR cr=[0.33,3.0] 3 78.96 ± 0.55 / 84.19 ± 1.59 / 75.21 ± 0.16 80.32 ± 2.13 / 93.70 ± 5.43 / 70.35 ± 0.18
26 Byol DTW w=1,r=10 1 72.45 ± 1.32 / 82.21 ± 2.51 / 67.42 ± 1.72 73.84 ± 2.11 / 93.48 ± 6.24 / 61.15 ± 2.38
27 Byol DTW w=3,r=5 2 73.02 ± 1.68 / 83.85 ± 0.72 / 67.52 ± 1.73 75.01 ± 1.76 / 97.53 ± 0.77 / 60.94 ± 2.03
28 Byol DTW w=3,r=10 3 72.69 ± 1.37 / 82.62 ± 2.26 / 67.58 ± 1.75 74.40 ± 1.72 / 94.38 ± 5.68 / 61.50 ± 1.92
29 Byol EM var=0.01 1 73.13 ± 1.37 / 83.98 ± 0.80 / 67.59 ± 1.39 75.24 ± 1.56 / 97.86 ± 0.92 / 61.12 ± 1.73
30 Byol EM var=0.5 2 73.08 ± 1.36 / 83.92 ± 0.79 / 67.56 ± 1.39 75.21 ± 1.54 / 97.77 ± 0.86 / 61.12 ± 1.73
31 Byol EM var=1.0 3 73.08 ± 1.27 / 83.95 ± 0.76 / 67.54 ± 1.31 75.22 ± 1.56 / 97.86 ± 0.92 / 61.09 ± 1.72
32 Byol GN var=0.01 1 73.11 ± 1.27 / 83.98 ± 0.73 / 67.57 ± 1.31 75.28 ± 1.60 / 97.91 ± 0.86 / 61.15 ± 1.80
33 Byol GN var=0.1 2 73.16 ± 1.24 / 84.04 ± 0.67 / 67.61 ± 1.30 75.30 ± 1.55 / 98.01 ± 0.76 / 61.15 ± 1.80
34 Byol GN var=1.0 3 72.98 ± 1.18 / 83.94 ± 0.76 / 67.42 ± 1.19 75.03 ± 1.63 / 97.90 ± 0.91 / 60.83 ± 1.79
35 Byol Neg True 2 72.00 ± 1.96 / 81.97 ± 2.22 / 67.08 ± 2.59 74.25 ± 1.56 / 93.58 ± 6.99 / 61.71 ± 1.97
36 Byol TO mr=[0.1,0.2] 1 74.94 ± 1.06 / 85.26 ± 1.32 / 69.38 ± 1.29 75.82 ± 1.87 / 98.63 ± 1.64 / 61.59 ± 2.15
37 Byol TO mr=[0.0,0.5] 2 74.50 ± 1.40 / 85.90 ± 0.80 / 68.90 ± 1.65 77.30 ± 1.85 / 98.91 ± 0.59 / 63.48 ± 2.66
38 Byol TO mr=[0.4,0.5] 3 75.60 ± 2.95 / 86.42 ± 0.20 / 69.99 ± 3.59 76.99 ± 4.90 / 99.28 ± 0.49 / 63.07 ± 6.68
39 Swav BlW C=0.1 1 66.18 ± 7.59 / 75.73 ± 6.82 / 61.68 ± 6.87 54.36 ± 18.78 / 81.50 ± 17.09 / 41.33 ± 16.57
40 Swav BlW C=0.7 2 65.84 ± 11.63 / 80.30 ± 5.99 / 61.66 ± 9.06 48.74 ± 32.56 / 90.92 ± 13.38 / 36.25 ± 26.21
41 Swav BlW C=1.0 3 63.67 ± 14.14 / 73.38 ± 14.26 / 60.13 ± 12.15 47.07 ± 35.27 / 74.73 ± 41.22 / 35.40 ± 27.63
42 Swav ChR cr=[0.33,1.0] 1 76.60 ± 1.75 / 82.23 ± 2.00 / 72.80 ± 1.42 81.33 ± 0.85 / 98.74 ± 0.76 / 69.14 ± 0.97
43 Swav ChR cr=[0.5,2.0] 2 76.74 ± 1.40 / 83.45 ± 1.03 / 72.29 ± 1.61 79.93 ± 2.96 / 97.46 ± 2.15 / 67.76 ± 3.26
44 Swav ChR cr=[0.33,3.0] 3 78.88 ± 0.66 / 84.29 ± 0.75 / 75.16 ± 0.46 80.78 ± 2.53 / 97.56 ± 2.18 / 68.94 ± 2.72
45 Swav DTW w=1,r=10 1 67.07 ± 1.88 / 79.69 ± 2.18 / 61.42 ± 1.50 64.09 ± 3.61 / 94.32 ± 6.28 / 48.55 ± 2.79
46 Swav DTW w=3,r=5 2 70.56 ± 6.18 / 79.27 ± 3.13 / 66.04 ± 6.51 66.93 ± 18.13 / 90.86 ± 8.80 / 53.98 ± 19.26
47 Swav DTW w=3,r=10 3 69.39 ± 1.75 / 80.04 ± 3.71 / 63.99 ± 1.20 65.46 ± 4.76 / 93.77 ± 8.65 / 50.29 ± 3.20
48 Swav EM var=0.01 1 71.30 ± 0.22 / 82.16 ± 0.61 / 65.95 ± 0.32 64.34 ± 0.62 / 96.21 ± 3.28 / 48.35 ± 0.45
49 Swav EM var=0.5 2 70.12 ± 1.14 / 81.96 ± 2.98 / 64.45 ± 0.65 62.96 ± 0.61 / 95.61 ± 5.45 / 46.99 ± 0.96
50 Swav EM var=1.0 3 68.36 ± 2.38 / 78.43 ± 4.58 / 63.34 ± 1.54 62.65 ± 2.77 / 92.22 ± 6.27 / 47.49 ± 2.33
51 Swav GN var=0.01 1 72.72 ± 2.08 / 82.12 ± 1.85 / 67.86 ± 2.35 70.39 ± 6.27 / 99.17 ± 0.87 / 54.84 ± 7.57
52 Swav GN var=0.1 2 70.77 ± 0.37 / 81.04 ± 1.05 / 65.66 ± 0.05 64.85 ± 2.11 / 95.91 ± 4.23 / 49.00 ± 1.51
53 Swav GN var=1.0 3 70.14 ± 3.16 / 80.47 ± 1.10 / 64.94 ± 3.69 66.42 ± 6.88 / 96.50 ± 3.37 / 50.80 ± 7.33
54 Swav Neg True 2 68.23 ± 4.62 / 83.86 ± 0.70 / 62.16 ± 4.55 58.70 ± 11.13 / 99.30 ± 0.90 / 42.18 ± 10.65
55 Swav TO mr=[0.1,0.2] 1 76.56 ± 2.57 / 86.76 ± 1.79 / 71.10 ± 2.94 75.09 ± 9.91 / 97.82 ± 1.62 / 61.53 ± 12.29
56 Swav TO mr=[0.0,0.5] 2 71.78 ± 2.20 / 84.47 ± 2.64 / 66.23 ± 2.34 69.34 ± 11.19 / 94.57 ± 6.90 / 55.22 ± 12.75
57 Swav TO mr=[0.4,0.5] 3 72.22 ± 1.41 / 84.67 ± 0.62 / 66.21 ± 1.74 67.40 ± 2.71 / 96.73 ± 2.38 / 51.83 ± 3.81
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Table 11: Test Class 1 and Class 2 performance under linear evaluation. Each
cell shows F1 (%) / Precision (%) / Recall (%) with standard deviation over 3
random seeds.
# Model Aug. Param. Str. Class 1 Class 2

1 Simclr BlW C=0.1 1 87.21 ± 0.44 / 82.46 ± 1.47 / 92.56 ± 0.83 65.71 ± 2.64 / 75.68 ± 0.99 / 58.18 ± 4.43
2 Simclr BlW C=0.7 2 87.29 ± 0.55 / 81.96 ± 0.92 / 93.36 ± 0.07 65.21 ± 2.07 / 77.00 ± 0.87 / 56.57 ± 2.71
3 Simclr BlW C=1.0 3 87.18 ± 0.65 / 82.68 ± 1.09 / 92.23 ± 1.91 66.17 ± 2.43 / 75.32 ± 2.10 / 59.16 ± 4.41
4 Simclr ChR cr=[0.33,1.0] 1 86.91 ± 0.65 / 80.71 ± 0.78 / 94.14 ± 0.47 62.47 ± 2.08 / 77.81 ± 1.59 / 52.19 ± 2.19
5 Simclr ChR cr=[0.5,2.0] 2 86.63 ± 0.30 / 79.65 ± 1.40 / 94.99 ± 1.38 59.80 ± 3.36 / 78.70 ± 1.81 / 48.42 ± 5.14
6 Simclr ChR cr=[0.33,3.0] 3 86.67 ± 0.25 / 79.95 ± 0.86 / 94.64 ± 1.05 60.56 ± 2.02 / 78.13 ± 1.51 / 49.53 ± 3.14
7 Simclr DTW w=1,r=10 1 86.45 ± 0.50 / 80.43 ± 1.08 / 93.47 ± 1.14 60.92 ± 2.18 / 74.81 ± 1.80 / 51.50 ± 3.67
8 Simclr DTW w=3,r=5 2 87.02 ± 0.06 / 83.03 ± 1.12 / 91.43 ± 1.28 67.09 ± 0.38 / 74.79 ± 2.24 / 60.90 ± 1.92
9 Simclr DTW w=3,r=10 3 87.09 ± 0.53 / 81.34 ± 1.32 / 93.74 ± 1.20 63.53 ± 2.53 / 76.81 ± 1.49 / 54.30 ± 4.16
10 Simclr EM var=0.01 1 87.27 ± 0.39 / 82.87 ± 0.57 / 92.18 ± 0.92 66.76 ± 1.43 / 75.35 ± 0.70 / 59.96 ± 2.32
11 Simclr EM var=0.5 2 87.24 ± 0.38 / 82.44 ± 1.32 / 92.66 ± 0.81 65.87 ± 2.14 / 75.97 ± 1.45 / 58.26 ± 3.86
12 Simclr EM var=1.0 3 87.02 ± 0.60 / 82.15 ± 1.99 / 92.54 ± 1.15 64.95 ± 3.41 / 75.58 ± 0.99 / 57.15 ± 5.85
13 Simclr GN var=0.01 1 87.26 ± 0.41 / 82.29 ± 1.53 / 92.89 ± 1.02 65.61 ± 2.51 / 76.19 ± 1.41 / 57.77 ± 4.56
14 Simclr GN var=0.1 2 86.84 ± 0.13 / 82.94 ± 2.09 / 91.22 ± 2.62 66.02 ± 3.35 / 74.15 ± 2.47 / 59.90 ± 7.01
15 Simclr GN var=1.0 3 87.06 ± 0.28 / 82.06 ± 0.90 / 92.72 ± 0.54 65.11 ± 1.37 / 75.71 ± 1.07 / 57.16 ± 2.56
16 Simclr Neg True 2 87.78 ± 0.23 / 82.88 ± 0.66 / 93.30 ± 1.00 66.87 ± 1.32 / 77.00 ± 0.92 / 59.14 ± 2.46
17 Simclr TO mr=[0.1,0.2] 1 85.17 ± 0.39 / 77.84 ± 0.56 / 94.04 ± 0.26 53.99 ± 1.53 / 72.16 ± 0.98 / 43.15 ± 1.81
18 Simclr TO mr=[0.0,0.5] 2 85.55 ± 0.63 / 77.61 ± 2.77 / 95.43 ± 2.92 52.38 ± 8.99 / 75.30 ± 3.28 / 41.12 ± 11.14
19 Simclr TO mr=[0.4,0.5] 3 86.01 ± 0.35 / 77.86 ± 0.94 / 96.09 ± 0.61 55.32 ± 2.21 / 79.35 ± 1.18 / 42.52 ± 2.80
20 Byol BlW C=0.1 1 85.94 ± 0.24 / 79.14 ± 0.86 / 94.04 ± 0.75 58.11 ± 2.28 / 74.93 ± 1.40 / 47.52 ± 3.11
21 Byol BlW C=0.7 2 85.94 ± 0.21 / 79.16 ± 0.81 / 94.02 ± 0.75 58.16 ± 2.14 / 74.90 ± 1.36 / 47.60 ± 2.95
22 Byol BlW C=1.0 3 85.94 ± 0.21 / 79.13 ± 0.83 / 94.05 ± 0.74 58.09 ± 2.13 / 74.94 ± 1.34 / 47.48 ± 2.97
23 Byol ChR cr=[0.33,1.0] 1 87.03 ± 0.51 / 82.52 ± 0.31 / 92.07 ± 1.12 65.72 ± 0.90 / 75.01 ± 2.27 / 58.50 ± 1.05
24 Byol ChR cr=[0.5,2.0] 2 86.91 ± 0.56 / 81.64 ± 1.79 / 92.93 ± 1.13 63.95 ± 3.92 / 76.11 ± 0.30 / 55.33 ± 5.82
25 Byol ChR cr=[0.33,3.0] 3 87.41 ± 0.69 / 84.56 ± 0.62 / 90.49 ± 2.18 69.15 ± 0.26 / 74.32 ± 3.23 / 64.79 ± 2.56
26 Byol DTW w=1,r=10 1 85.69 ± 0.26 / 79.09 ± 1.15 / 93.53 ± 1.58 57.82 ± 2.76 / 74.05 ± 2.29 / 47.57 ± 4.22
27 Byol DTW w=3,r=5 2 85.93 ± 0.31 / 79.17 ± 1.18 / 93.98 ± 1.00 58.13 ± 3.11 / 74.85 ± 1.37 / 47.64 ± 4.29
28 Byol DTW w=3,r=10 3 85.77 ± 0.24 / 79.13 ± 1.29 / 93.67 ± 1.60 57.89 ± 3.25 / 74.36 ± 2.07 / 47.58 ± 4.81
29 Byol EM var=0.01 1 85.95 ± 0.26 / 79.17 ± 0.89 / 94.02 ± 0.76 58.18 ± 2.41 / 74.91 ± 1.40 / 47.63 ± 3.24
30 Byol EM var=0.5 2 85.93 ± 0.27 / 79.14 ± 0.91 / 94.01 ± 0.78 58.10 ± 2.42 / 74.85 ± 1.45 / 47.55 ± 3.29
31 Byol EM var=1.0 3 85.93 ± 0.23 / 79.13 ± 0.86 / 94.02 ± 0.77 58.08 ± 2.24 / 74.87 ± 1.40 / 47.51 ± 3.10
32 Byol GN var=0.01 1 85.94 ± 0.22 / 79.14 ± 0.84 / 94.03 ± 0.77 58.11 ± 2.21 / 74.90 ± 1.38 / 47.53 ± 3.07
33 Byol GN var=0.1 2 85.96 ± 0.22 / 79.18 ± 0.86 / 94.03 ± 0.76 58.22 ± 2.20 / 74.93 ± 1.34 / 47.66 ± 3.07
34 Byol GN var=1.0 3 85.91 ± 0.21 / 79.09 ± 0.78 / 94.03 ± 0.73 58.00 ± 2.07 / 74.82 ± 1.45 / 47.41 ± 2.85
35 Byol Neg True 2 85.45 ± 0.56 / 78.62 ± 2.09 / 93.66 ± 1.88 56.29 ± 5.62 / 73.72 ± 2.00 / 45.89 ± 7.55
36 Byol TO mr=[0.1,0.2] 1 86.76 ± 0.32 / 80.83 ± 1.53 / 93.69 ± 2.26 62.25 ± 2.77 / 76.30 ± 3.77 / 52.87 ± 5.47
37 Byol TO mr=[0.0,0.5] 2 86.77 ± 0.21 / 79.45 ± 0.85 / 95.60 ± 1.27 59.42 ± 2.26 / 79.33 ± 2.46 / 47.61 ± 3.38
38 Byol TO mr=[0.4,0.5] 3 87.29 ± 0.36 / 80.70 ± 1.60 / 95.08 ± 1.37 62.52 ± 3.63 / 79.27 ± 1.12 / 51.81 ± 5.50
39 Swav BlW C=0.1 1 83.87 ± 0.86 / 80.54 ± 1.74 / 87.51 ± 0.78 60.32 ± 3.24 / 65.15 ± 1.80 / 56.21 ± 4.42
40 Swav BlW C=0.7 2 84.93 ± 1.72 / 81.90 ± 1.75 / 88.25 ± 3.18 63.85 ± 2.32 / 68.06 ± 4.09 / 60.47 ± 5.05
41 Swav BlW C=1.0 3 83.09 ± 0.45 / 81.32 ± 4.82 / 85.37 ± 5.40 60.85 ± 6.97 / 64.08 ± 3.33 / 59.61 ± 14.19
42 Swav ChR cr=[0.33,1.0] 1 83.74 ± 2.33 / 83.71 ± 0.44 / 83.84 ± 4.36 64.71 ± 2.44 / 64.25 ± 5.73 / 65.42 ± 1.25
43 Swav ChR cr=[0.5,2.0] 2 85.70 ± 0.81 / 82.47 ± 0.98 / 89.25 ± 2.61 64.59 ± 1.18 / 70.43 ± 3.55 / 59.86 ± 3.73
44 Swav ChR cr=[0.33,3.0] 3 86.27 ± 0.44 / 85.90 ± 1.01 / 86.68 ± 1.68 69.60 ± 0.96 / 69.42 ± 1.58 / 69.87 ± 3.16
45 Swav DTW w=1,r=10 1 83.90 ± 0.32 / 77.41 ± 1.00 / 91.59 ± 1.01 53.23 ± 2.54 / 67.34 ± 0.71 / 44.10 ± 3.68
46 Swav DTW w=3,r=5 2 83.95 ± 0.65 / 80.75 ± 1.81 / 87.51 ± 3.33 60.80 ± 2.69 / 66.20 ± 2.49 / 56.63 ± 6.72
47 Swav DTW w=3,r=10 3 84.17 ± 1.30 / 79.78 ± 0.99 / 89.14 ± 3.34 58.55 ± 2.49 / 66.55 ± 4.66 / 52.53 ± 4.53
48 Swav EM var=0.01 1 85.21 ± 0.56 / 82.77 ± 0.92 / 87.83 ± 2.17 64.35 ± 0.93 / 67.49 ± 2.36 / 61.66 ± 3.47
49 Swav EM var=0.5 2 85.31 ± 1.30 / 81.19 ± 0.58 / 89.90 ± 2.39 62.10 ± 1.54 / 69.09 ± 3.91 / 56.46 ± 1.19
50 Swav EM var=1.0 3 82.87 ± 2.53 / 80.75 ± 1.04 / 85.18 ± 4.85 59.55 ± 3.07 / 62.30 ± 6.92 / 57.35 ± 2.97
51 Swav GN var=0.01 1 83.67 ± 2.68 / 83.21 ± 0.25 / 84.22 ± 5.12 64.11 ± 1.85 / 63.97 ± 5.37 / 64.53 ± 2.00
52 Swav GN var=0.1 2 84.11 ± 0.79 / 82.67 ± 0.87 / 85.64 ± 2.42 63.35 ± 1.03 / 64.54 ± 2.46 / 62.35 ± 3.34
53 Swav GN var=1.0 3 83.57 ± 0.56 / 81.13 ± 1.90 / 86.24 ± 3.00 60.43 ± 3.01 / 63.76 ± 2.04 / 57.77 ± 6.58
54 Swav Neg True 2 85.51 ± 0.79 / 79.74 ± 1.73 / 92.23 ± 1.82 60.48 ± 2.43 / 72.55 ± 2.89 / 52.06 ± 4.43
55 Swav TO mr=[0.1,0.2] 1 88.23 ± 1.21 / 82.38 ± 1.70 / 94.98 ± 1.02 66.37 ± 3.93 / 80.08 ± 3.19 / 56.78 ± 4.95
56 Swav TO mr=[0.0,0.5] 2 86.99 ± 1.22 / 79.63 ± 2.74 / 95.92 ± 1.00 59.02 ± 6.98 / 79.20 ± 1.42 / 47.55 ± 9.28
57 Swav TO mr=[0.4,0.5] 3 87.05 ± 0.48 / 80.79 ± 0.52 / 94.37 ± 0.91 62.19 ± 1.45 / 76.47 ± 2.11 / 52.43 ± 1.65
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Table 12: Test Macro and Class 3 performance of SSL models after fine-tuning.
Each cell shows F1 (%) / Precision (%) / Recall (%) with standard deviation
over 3 random seeds.
# Model Aug. Param. Str. Macro Class 3

1 Simclr BlW C=0.1 1 75.93 ± 1.65 / 87.10 ± 0.99 / 70.05 ± 2.02 70.01 ± 2.69 / 95.71 ± 2.82 / 55.28 ± 3.55
2 Simclr BlW C=0.7 2 77.52 ± 0.54 / 87.45 ± 1.24 / 71.92 ± 1.08 71.25 ± 1.89 / 96.68 ± 2.15 / 56.49 ± 3.12
3 Simclr BlW C=1.0 3 77.65 ± 0.82 / 88.13 ± 0.48 / 71.97 ± 1.15 69.76 ± 1.58 / 98.71 ± 0.97 / 53.95 ± 1.92
4 Simclr ChR cr=[0.33,1.0] 1 80.74 ± 1.57 / 88.57 ± 0.91 / 75.99 ± 1.52 77.03 ± 4.85 / 99.82 ± 0.16 / 62.89 ± 6.62
5 Simclr ChR cr=[0.5,2.0] 2 80.29 ± 3.07 / 88.34 ± 0.97 / 75.47 ± 3.89 76.26 ± 6.16 / 99.70 ± 0.16 / 62.01 ± 8.24
6 Simclr ChR cr=[0.33,3.0] 3 80.17 ± 2.11 / 89.04 ± 0.62 / 74.80 ± 2.58 77.15 ± 5.09 / 99.13 ± 0.82 / 63.30 ± 6.66
7 Simclr DTW w=1,r=10 1 77.28 ± 0.67 / 86.87 ± 1.74 / 71.77 ± 0.25 71.42 ± 2.98 / 95.01 ± 4.54 / 57.23 ± 2.39
8 Simclr DTW w=3,r=5 2 79.03 ± 1.55 / 88.37 ± 1.20 / 73.55 ± 1.63 74.46 ± 2.65 / 99.59 ± 0.48 / 59.50 ± 3.18
9 Simclr DTW w=3,r=10 3 79.18 ± 2.72 / 88.47 ± 0.33 / 73.77 ± 3.53 75.00 ± 6.85 / 99.52 ± 0.57 / 60.47 ± 8.94
10 Simclr EM var=0.01 1 77.17 ± 0.97 / 88.00 ± 0.46 / 71.43 ± 1.23 68.48 ± 2.27 / 98.41 ± 1.33 / 52.54 ± 2.60
11 Simclr EM var=0.5 2 76.78 ± 0.01 / 87.34 ± 0.36 / 71.07 ± 0.14 69.66 ± 3.22 / 96.66 ± 1.49 / 54.51 ± 3.93
12 Simclr EM var=1.0 3 76.85 ± 1.42 / 87.85 ± 0.19 / 70.99 ± 1.86 70.74 ± 0.75 / 97.56 ± 0.65 / 55.49 ± 0.81
13 Simclr GN var=0.01 1 77.09 ± 1.45 / 87.45 ± 1.15 / 71.46 ± 1.73 68.81 ± 2.67 / 96.84 ± 3.89 / 53.42 ± 2.88
14 Simclr GN var=0.1 2 77.82 ± 0.49 / 86.77 ± 1.92 / 72.64 ± 0.55 71.89 ± 1.80 / 96.23 ± 4.04 / 57.43 ± 2.03
15 Simclr GN var=1.0 3 77.13 ± 0.20 / 87.06 ± 1.55 / 71.67 ± 0.38 68.31 ± 1.87 / 95.52 ± 3.77 / 53.22 ± 2.17
16 Simclr Neg True 2 78.23 ± 1.12 / 86.23 ± 3.59 / 73.70 ± 2.03 71.88 ± 3.16 / 93.29 ± 11.35 / 59.53 ± 8.56
17 Simclr TO mr=[0.1,0.2] 1 78.48 ± 0.50 / 87.56 ± 0.97 / 74.02 ± 0.34 70.82 ± 0.51 / 99.47 ± 0.36 / 54.99 ± 0.72
18 Simclr TO mr=[0.0,0.5] 2 78.84 ± 2.82 / 87.74 ± 2.79 / 74.58 ± 1.68 74.96 ± 6.57 / 99.03 ± 1.19 / 60.71 ± 9.29
19 Simclr TO mr=[0.4,0.5] 3 79.17 ± 1.21 / 87.95 ± 0.98 / 74.15 ± 1.84 73.47 ± 2.42 / 98.88 ± 1.02 / 58.47 ± 2.77
20 Byol BlW C=0.1 1 77.60 ± 4.01 / 86.01 ± 2.96 / 72.97 ± 3.75 71.52 ± 6.80 / 97.12 ± 2.38 / 56.78 ± 7.82
21 Byol BlW C=0.7 2 78.67 ± 1.02 / 87.71 ± 1.57 / 73.38 ± 0.90 73.28 ± 1.19 / 97.14 ± 4.42 / 58.97 ± 3.13
22 Byol BlW C=1.0 3 77.44 ± 3.07 / 85.71 ± 2.42 / 72.79 ± 3.42 70.83 ± 3.99 / 96.09 ± 3.47 / 56.11 ± 3.85
23 Byol ChR cr=[0.33,1.0] 1 80.56 ± 1.50 / 88.80 ± 0.71 / 75.56 ± 1.60 76.23 ± 5.10 / 99.47 ± 0.43 / 61.98 ± 6.77
24 Byol ChR cr=[0.5,2.0] 2 79.57 ± 2.01 / 85.71 ± 4.11 / 75.56 ± 1.35 75.42 ± 4.07 / 90.28 ± 12.65 / 65.22 ± 1.33
25 Byol ChR cr=[0.33,3.0] 3 79.77 ± 1.11 / 88.15 ± 0.84 / 75.14 ± 1.54 73.49 ± 3.07 / 99.12 ± 0.93 / 58.44 ± 3.65
26 Byol DTW w=1,r=10 1 75.95 ± 4.46 / 85.74 ± 5.05 / 70.61 ± 3.99 68.42 ± 5.28 / 93.25 ± 10.54 / 54.19 ± 4.07
27 Byol DTW w=3,r=5 2 77.39 ± 3.26 / 85.66 ± 1.48 / 72.76 ± 4.10 71.83 ± 5.48 / 96.45 ± 2.33 / 57.58 ± 7.75
28 Byol DTW w=3,r=10 3 77.89 ± 3.10 / 87.47 ± 0.26 / 72.66 ± 4.15 71.80 ± 5.91 / 98.61 ± 0.84 / 56.64 ± 7.02
29 Byol EM var=0.01 1 75.66 ± 5.95 / 85.96 ± 4.30 / 70.26 ± 6.01 70.68 ± 8.35 / 93.72 ± 8.92 / 56.90 ± 8.45
30 Byol EM var=0.5 2 77.28 ± 1.44 / 86.58 ± 2.77 / 71.96 ± 0.90 70.89 ± 2.00 / 94.37 ± 8.22 / 56.96 ± 2.20
31 Byol EM var=1.0 3 75.49 ± 2.67 / 86.72 ± 2.57 / 69.71 ± 2.97 68.07 ± 3.02 / 96.98 ± 3.39 / 52.45 ± 2.69
32 Byol GN var=0.01 1 74.90 ± 3.29 / 85.22 ± 2.07 / 69.57 ± 3.55 70.49 ± 2.64 / 93.81 ± 5.19 / 56.70 ± 4.65
33 Byol GN var=0.1 2 77.97 ± 3.59 / 87.36 ± 1.84 / 72.60 ± 3.93 72.43 ± 8.38 / 97.41 ± 3.62 / 57.88 ± 9.31
34 Byol GN var=1.0 3 78.47 ± 2.24 / 87.90 ± 1.41 / 73.30 ± 2.26 72.03 ± 4.73 / 99.67 ± 0.45 / 56.52 ± 5.79
35 Byol Neg True 2 76.50 ± 3.79 / 86.30 ± 2.17 / 71.20 ± 4.25 70.42 ± 3.00 / 97.01 ± 2.60 / 55.28 ± 2.86
36 Byol TO mr=[0.1,0.2] 1 78.42 ± 0.66 / 87.33 ± 1.81 / 73.13 ± 1.12 73.53 ± 1.30 / 96.70 ± 5.19 / 59.53 ± 3.81
37 Byol TO mr=[0.0,0.5] 2 77.89 ± 0.73 / 87.39 ± 0.15 / 72.40 ± 1.06 72.03 ± 0.29 / 95.93 ± 0.67 / 57.67 ± 0.14
38 Byol TO mr=[0.4,0.5] 3 77.74 ± 3.10 / 85.65 ± 3.96 / 73.28 ± 2.88 75.21 ± 5.00 / 90.06 ± 12.07 / 64.84 ± 1.18
39 Swav BlW C=0.1 1 74.81 ± 0.41 / 86.30 ± 1.31 / 69.55 ± 0.95 66.78 ± 3.02 / 99.77 ± 0.08 / 50.24 ± 3.46
40 Swav BlW C=0.7 2 68.27 ± 6.99 / 86.29 ± 0.65 / 63.43 ± 5.28 46.00 ± 21.49 / 98.81 ± 1.50 / 31.62 ± 17.48
41 Swav BlW C=1.0 3 74.10 ± 2.34 / 86.73 ± 0.58 / 68.27 ± 2.45 63.30 ± 6.05 / 98.84 ± 0.26 / 46.76 ± 6.44
42 Swav ChR cr=[0.33,1.0] 1 80.28 ± 1.11 / 87.84 ± 0.53 / 75.69 ± 1.41 76.58 ± 5.36 / 99.01 ± 0.94 / 62.71 ± 7.65
43 Swav ChR cr=[0.5,2.0] 2 78.80 ± 0.72 / 87.43 ± 0.12 / 74.18 ± 0.87 72.35 ± 2.53 / 99.79 ± 0.25 / 56.78 ± 3.05
44 Swav ChR cr=[0.33,3.0] 3 78.67 ± 1.42 / 87.68 ± 0.56 / 73.56 ± 1.72 72.48 ± 3.59 / 99.22 ± 1.11 / 57.17 ± 4.37
45 Swav DTW w=1,r=10 1 75.98 ± 0.66 / 87.28 ± 0.44 / 70.23 ± 0.69 67.26 ± 0.65 / 99.65 ± 0.34 / 50.77 ± 0.75
46 Swav DTW w=3,r=5 2 73.18 ± 2.07 / 87.19 ± 0.56 / 67.32 ± 2.18 58.84 ± 5.92 / 98.91 ± 0.47 / 42.04 ± 6.06
47 Swav DTW w=3,r=10 3 76.67 ± 1.20 / 86.86 ± 0.46 / 71.28 ± 1.28 68.08 ± 3.96 / 97.89 ± 1.68 / 52.24 ± 4.16
48 Swav EM var=0.01 1 76.03 ± 1.00 / 87.49 ± 0.21 / 70.09 ± 1.21 68.63 ± 3.41 / 99.71 ± 0.38 / 52.39 ± 3.94
49 Swav EM var=0.5 2 75.64 ± 0.60 / 87.52 ± 0.53 / 69.89 ± 1.12 65.61 ± 0.12 / 99.29 ± 0.62 / 49.00 ± 0.10
50 Swav EM var=1.0 3 72.60 ± 2.92 / 86.99 ± 1.05 / 66.69 ± 3.06 58.74 ± 7.08 / 99.17 ± 0.72 / 41.95 ± 6.96
51 Swav GN var=0.01 1 77.45 ± 0.53 / 87.54 ± 0.39 / 72.07 ± 0.70 69.42 ± 2.87 / 99.08 ± 0.19 / 53.48 ± 3.43
52 Swav GN var=0.1 2 74.99 ± 1.63 / 87.21 ± 0.71 / 69.51 ± 1.59 63.44 ± 4.77 / 99.53 ± 0.46 / 46.70 ± 5.28
53 Swav GN var=1.0 3 76.94 ± 2.18 / 86.76 ± 1.09 / 71.58 ± 2.56 71.40 ± 5.01 / 98.40 ± 0.62 / 56.22 ± 6.52
54 Swav Neg True 2 77.08 ± 1.51 / 86.99 ± 0.48 / 71.92 ± 2.09 69.38 ± 4.36 / 99.36 ± 0.68 / 53.42 ± 5.13
55 Swav TO mr=[0.1,0.2] 1 81.85 ± 0.97 / 88.94 ± 0.67 / 77.27 ± 0.96 79.56 ± 3.24 / 97.87 ± 2.74 / 67.20 ± 5.20
56 Swav TO mr=[0.0,0.5] 2 80.53 ± 2.19 / 88.23 ± 0.57 / 75.75 ± 2.81 75.80 ± 5.89 / 97.44 ± 1.67 / 62.18 ± 7.26
57 Swav TO mr=[0.4,0.5] 3 79.56 ± 1.14 / 87.66 ± 1.74 / 75.16 ± 1.07 74.15 ± 4.15 / 99.61 ± 0.14 / 59.17 ± 5.22
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Table 13: Test Class 1 and Class 2 performance of SSL models after fine-tuning.
Each cell shows F1 (%) / Precision (%) / Recall (%) with standard deviation
over 3 random seeds.
# Model Aug. Param. Str. Class 1 Class 2

1 Simclr BlW C=0.1 1 89.14 ± 0.22 / 83.30 ± 1.18 / 95.88 ± 1.09 68.65 ± 2.15 / 82.28 ± 1.27 / 59.00 ± 3.90
2 Simclr BlW C=0.7 2 89.35 ± 0.26 / 85.00 ± 1.32 / 94.20 ± 1.25 71.95 ± 1.42 / 80.66 ± 2.59 / 65.07 ± 3.49
3 Simclr BlW C=1.0 3 89.72 ± 0.02 / 86.24 ± 1.04 / 93.51 ± 1.25 73.48 ± 1.43 / 79.43 ± 1.48 / 68.45 ± 3.42
4 Simclr ChR cr=[0.33,1.0] 1 89.74 ± 0.46 / 88.05 ± 1.54 / 91.56 ± 2.67 75.44 ± 0.64 / 77.85 ± 4.33 / 73.52 ± 4.75
5 Simclr ChR cr=[0.5,2.0] 2 89.64 ± 0.71 / 87.75 ± 1.82 / 91.66 ± 1.99 74.97 ± 2.53 / 77.57 ± 2.87 / 72.73 ± 5.10
6 Simclr ChR cr=[0.33,3.0] 3 90.02 ± 0.32 / 85.66 ± 1.30 / 94.85 ± 0.94 73.35 ± 1.99 / 82.33 ± 1.48 / 66.24 ± 3.87
7 Simclr DTW w=1,r=10 1 89.41 ± 0.21 / 84.64 ± 0.79 / 94.76 ± 0.83 71.03 ± 1.09 / 80.96 ± 1.33 / 63.31 ± 2.40
8 Simclr DTW w=3,r=5 2 89.52 ± 0.66 / 85.97 ± 0.87 / 93.40 ± 1.82 73.10 ± 1.55 / 79.55 ± 3.46 / 67.74 ± 2.90
9 Simclr DTW w=3,r=10 3 89.62 ± 0.41 / 85.78 ± 1.11 / 93.83 ± 1.01 72.92 ± 1.92 / 80.09 ± 0.83 / 66.99 ± 3.31
10 Simclr EM var=0.01 1 89.77 ± 0.12 / 86.17 ± 0.77 / 93.69 ± 1.01 73.26 ± 0.85 / 79.41 ± 1.24 / 68.05 ± 2.37
11 Simclr EM var=0.5 2 89.36 ± 0.38 / 84.88 ± 1.83 / 94.39 ± 1.73 71.31 ± 2.88 / 80.49 ± 2.50 / 64.31 ± 5.99
12 Simclr EM var=1.0 3 89.24 ± 0.25 / 84.24 ± 2.23 / 94.96 ± 2.48 70.57 ± 3.90 / 81.73 ± 2.66 / 62.53 ± 7.93
13 Simclr GN var=0.01 1 89.62 ± 0.08 / 85.82 ± 1.11 / 93.80 ± 1.35 72.84 ± 1.68 / 79.70 ± 1.31 / 67.17 ± 3.82
14 Simclr GN var=0.1 2 89.03 ± 0.25 / 85.91 ± 1.80 / 92.46 ± 2.59 72.53 ± 2.33 / 78.16 ± 3.64 / 68.02 ± 6.04
15 Simclr GN var=1.0 3 89.75 ± 0.37 / 86.26 ± 1.37 / 93.57 ± 1.22 73.32 ± 1.74 / 79.39 ± 1.72 / 68.23 ± 3.92
16 Simclr Neg True 2 89.56 ± 0.29 / 86.48 ± 1.90 / 92.93 ± 1.97 73.25 ± 2.41 / 78.93 ± 2.71 / 68.66 ± 6.22
17 Simclr TO mr=[0.1,0.2] 1 88.87 ± 1.22 / 90.08 ± 2.17 / 87.86 ± 4.56 75.75 ± 0.21 / 73.14 ± 5.44 / 79.21 ± 6.27
18 Simclr TO mr=[0.0,0.5] 2 87.94 ± 4.13 / 88.69 ± 4.52 / 88.17 ± 11.50 73.62 ± 2.78 / 75.50 ± 13.14 / 74.87 ± 13.47
19 Simclr TO mr=[0.4,0.5] 3 89.51 ± 0.76 / 87.67 ± 2.05 / 91.54 ± 3.55 74.55 ± 1.43 / 77.29 ± 4.27 / 72.44 ± 6.10
20 Byol BlW C=0.1 1 88.19 ± 2.31 / 87.62 ± 0.86 / 88.88 ± 4.86 73.08 ± 3.04 / 73.30 ± 7.06 / 73.25 ± 2.99
21 Byol BlW C=0.7 2 89.66 ± 0.56 / 86.00 ± 1.91 / 93.70 ± 1.40 73.06 ± 2.99 / 80.00 ± 2.06 / 67.47 ± 5.92
22 Byol BlW C=1.0 3 88.46 ± 1.06 / 87.56 ± 2.70 / 89.44 ± 1.53 73.03 ± 4.22 / 73.47 ± 1.88 / 72.82 ± 7.38
23 Byol ChR cr=[0.33,1.0] 1 90.02 ± 0.24 / 87.53 ± 1.27 / 92.69 ± 1.66 75.44 ± 0.87 / 79.40 ± 2.95 / 72.02 ± 3.73
24 Byol ChR cr=[0.5,2.0] 2 89.72 ± 0.16 / 86.30 ± 1.90 / 93.48 ± 2.06 73.56 ± 2.18 / 80.55 ± 2.80 / 67.99 ± 5.94
25 Byol ChR cr=[0.33,3.0] 3 89.64 ± 0.65 / 89.33 ± 2.35 / 90.09 ± 3.66 76.19 ± 1.09 / 75.99 ± 4.20 / 76.89 ± 6.52
26 Byol DTW w=1,r=10 1 89.10 ± 1.54 / 84.69 ± 3.22 / 94.06 ± 0.91 70.33 ± 6.93 / 79.30 ± 2.15 / 63.58 ± 9.97
27 Byol DTW w=3,r=5 2 88.16 ± 1.52 / 86.92 ± 2.16 / 89.54 ± 3.58 72.17 ± 3.18 / 73.60 ± 5.50 / 71.17 ± 5.85
28 Byol DTW w=3,r=10 3 89.12 ± 0.05 / 86.54 ± 2.93 / 92.01 ± 3.36 72.74 ± 3.44 / 77.27 ± 3.21 / 69.34 ± 8.82
29 Byol EM var=0.01 1 88.81 ± 1.52 / 83.20 ± 3.66 / 95.34 ± 1.39 67.50 ± 8.35 / 80.96 ± 0.43 / 58.52 ± 11.78
30 Byol EM var=0.5 2 89.42 ± 0.39 / 85.06 ± 1.47 / 94.27 ± 0.96 71.53 ± 2.41 / 80.31 ± 1.37 / 64.64 ± 4.69
31 Byol EM var=1.0 3 88.84 ± 1.13 / 84.40 ± 2.90 / 93.88 ± 2.67 69.55 ± 4.81 / 78.78 ± 4.56 / 62.81 ± 8.79
32 Byol GN var=0.01 1 88.09 ± 1.41 / 82.72 ± 3.88 / 94.38 ± 2.38 66.11 ± 7.12 / 79.14 ± 4.58 / 57.63 ± 11.88
33 Byol GN var=0.1 2 89.33 ± 0.52 / 85.59 ± 1.26 / 93.46 ± 1.80 72.14 ± 2.09 / 79.08 ± 2.87 / 66.46 ± 4.02
34 Byol GN var=1.0 3 89.25 ± 1.03 / 87.41 ± 1.31 / 91.25 ± 3.33 74.14 ± 1.28 / 76.64 ± 4.83 / 72.12 ± 4.20
35 Byol Neg True 2 88.68 ± 1.44 / 85.44 ± 4.11 / 92.33 ± 2.03 70.39 ± 7.44 / 76.45 ± 1.25 / 65.98 ± 12.26
36 Byol TO mr=[0.1,0.2] 1 89.45 ± 0.48 / 85.46 ± 0.52 / 93.82 ± 0.50 72.28 ± 1.17 / 79.82 ± 1.26 / 66.05 ± 1.39
37 Byol TO mr=[0.0,0.5] 2 89.63 ± 0.19 / 85.21 ± 1.47 / 94.57 ± 1.51 72.01 ± 1.97 / 81.04 ± 2.04 / 64.96 ± 4.57
38 Byol TO mr=[0.4,0.5] 3 89.09 ± 0.63 / 83.60 ± 3.08 / 95.50 ± 2.52 68.91 ± 5.41 / 83.28 ± 3.68 / 59.51 ± 10.06
39 Swav BlW C=0.1 1 87.44 ± 1.70 / 86.26 ± 4.09 / 89.12 ± 6.98 70.22 ± 3.29 / 72.86 ± 6.87 / 69.30 ± 12.36
40 Swav BlW C=0.7 2 88.11 ± 0.44 / 84.93 ± 1.58 / 91.59 ± 2.30 70.70 ± 2.78 / 75.13 ± 2.40 / 67.09 ± 6.34
41 Swav BlW C=1.0 3 88.57 ± 0.37 / 84.97 ± 1.15 / 92.52 ± 1.82 70.44 ± 1.43 / 76.37 ± 2.51 / 65.52 ± 3.86
42 Swav ChR cr=[0.33,1.0] 1 89.39 ± 0.59 / 87.93 ± 1.68 / 90.95 ± 1.71 74.86 ± 1.79 / 76.60 ± 2.42 / 73.39 ± 4.68
43 Swav ChR cr=[0.5,2.0] 2 88.87 ± 0.27 / 89.12 ± 0.64 / 88.64 ± 1.03 75.19 ± 0.24 / 73.40 ± 1.15 / 77.10 ± 1.65
44 Swav ChR cr=[0.33,3.0] 3 89.33 ± 0.21 / 87.49 ± 1.28 / 91.27 ± 0.96 74.18 ± 1.55 / 76.32 ± 0.79 / 72.24 ± 3.58
45 Swav DTW w=1,r=10 1 88.90 ± 0.35 / 85.81 ± 0.51 / 92.22 ± 0.34 71.78 ± 1.00 / 76.37 ± 0.88 / 67.71 ± 1.29
46 Swav DTW w=3,r=5 2 88.57 ± 0.42 / 85.14 ± 0.89 / 92.33 ± 1.98 72.14 ± 0.93 / 77.53 ± 2.56 / 67.60 ± 3.45
47 Swav DTW w=3,r=10 3 89.08 ± 0.20 / 86.64 ± 0.46 / 91.66 ± 0.55 72.86 ± 0.52 / 76.04 ± 0.52 / 69.94 ± 1.30
48 Swav EM var=0.01 1 88.88 ± 0.25 / 84.76 ± 0.12 / 93.43 ± 0.67 70.58 ± 0.20 / 77.99 ± 1.10 / 64.46 ± 0.44
49 Swav EM var=0.5 2 89.16 ± 0.29 / 86.12 ± 1.90 / 92.51 ± 2.84 72.15 ± 1.93 / 77.17 ± 3.89 / 68.16 ± 6.14
50 Swav EM var=1.0 3 88.52 ± 0.65 / 84.78 ± 1.78 / 92.69 ± 3.04 70.54 ± 1.75 / 77.02 ± 4.02 / 65.43 ± 5.65
51 Swav GN var=0.01 1 89.31 ± 0.38 / 87.06 ± 0.90 / 91.70 ± 0.87 73.63 ± 1.13 / 76.48 ± 1.09 / 71.03 ± 2.50
52 Swav GN var=0.1 2 88.78 ± 0.61 / 86.88 ± 2.36 / 90.89 ± 3.30 72.74 ± 2.00 / 75.22 ± 4.29 / 70.96 ± 7.03
53 Swav GN var=1.0 3 88.50 ± 0.93 / 85.44 ± 1.76 / 91.89 ± 3.72 70.92 ± 1.50 / 76.44 ± 5.15 / 66.61 ± 5.85
54 Swav Neg True 2 88.71 ± 0.48 / 87.33 ± 1.01 / 90.17 ± 2.07 73.14 ± 0.62 / 74.28 ± 2.21 / 72.16 ± 3.17
55 Swav TO mr=[0.1,0.2] 1 90.36 ± 0.26 / 87.35 ± 2.31 / 93.66 ± 2.40 75.64 ± 2.47 / 81.59 ± 3.88 / 70.96 ± 6.92
56 Swav TO mr=[0.0,0.5] 2 90.14 ± 0.43 / 87.73 ± 1.16 / 92.71 ± 2.17 75.67 ± 0.88 / 79.50 ± 2.90 / 72.37 ± 3.70
57 Swav TO mr=[0.4,0.5] 3 88.91 ± 2.01 / 89.49 ± 1.13 / 88.46 ± 4.76 75.61 ± 1.79 / 73.87 ± 5.97 / 77.85 ± 3.72
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B Augmentation Figures for Validation Data
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(a) Linear evaluation.
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(b) Fine-tuned evaluation.

Fig. 7: Comparison of validation performance for SSL models and different aug-
mentations through plotting the macro F1 score for class 1and 2 (x-axis) against
the F1 score for class 3 (y-axis) after linear (a) and fine-tuned (b) evaluation.
The marker size indicates the augmentation strength while the marker shape
encodes the augmentation type. The dotted lines and values plotted on the axis
are the average scores for each model across the different configurations.
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C UMAP Projection of SSL Models’ Representation
Space
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Fig. 8: UMAP projections of class 3 representations in 2D for SimCLR. The
validation and test representations for low-quality signals are plotted on top of
all classes of the annotated train subset, to identify their overlap. The evaluation
results for SimCLR (b) are shown based on the linear evaluation performance.
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Fig. 9: UMAP projections of class 3 representations in 2D for BYOL. The vali-
dation and test representations for low-quality signals are plotted on top of all
classes of the annotated train subset, to identify their overlap. The evaluation
results for BYOL (b) are shown based on the linear evaluation performance.
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Fig. 10: UMAP projections of class 3 representations in 2D for SwAV. The val-
idation and test representations for low-quality signals are plotted on top of all
classes of the annotated train subset, to identify their overlap. The evaluation
results for SwAV (b) are shown based on the linear evaluation performance.
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