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Abstract001

A common formalism for constraining the out-002
put of autoregressive text generation models003
involves lexical constraints, words or phrases004
which are required to occur in the generated005
text. DFA-constrained beam search and grid006
beam search are two widely used paradigms007
for decoding from autoregressive models while008
enforcing lexical constraints. As the former009
approach requires a number of forward passes010
exponential in the numberof constraint tokens,011
it is often dispreferred to the latter, which re-012
quires only linearly many forward calls. How-013
ever, while grid beam search achieves an expo-014
nential speedup, it does so in a manner which015
does not treat all of the constraints equally.016
In this paper, we demonstrate that grid beam017
search is biased to incorporate easier-to-satisfy018
constraints first, leaving harder constraints to019
the end of the sequence. This contrasts with020
DFA-constrained beam search, which exhibits021
no such bias. To address this shortcoming,022
we propose fair grid beam search, a modifi-023
cation to grid beam search which avoids this024
bias while still requiring only linearly many for-025
ward passes. Experimentally, we confirm grid026
beam search’s bias on two constrained genera-027
tion tasks, finding significant differences in how028
it orders constraint tokens as compared to DFA-029
constrained beam search and fair grid beam030
search. Furthermore, we find that fair grid031
beam search not only fixes grid beam search’s032
bias, but finds higher-probability strings in the033
process.034

1 Introduction035

Given the tremendous success large language mod-036

els (LLMs) have had in tasks across natural lan-037

guage processing (NLP), a common target of NLP038

research is in understanding how to best use LLMs039

for specific tasks. As language models define distri-040

butions over strings of natural language, while most041

tasks in NLP do not involve modeling arbitrary042

natural language, techniques for applying LLMs043

tend to involve conditioning the LLM distribution 044

such that the resulting conditional distribution over 045

strings can be interpreted as a distribution over task- 046

specific predictions. For classification tasks like 047

sentiment classification (e.g., Zhang et al., 2024b), 048

this might simply involve conditioning the LLM to 049

produce the name of a valid label, while for struc- 050

tured prediction tasks like parsing (Drozdov et al., 051

2022), more sophisticated approaches may be re- 052

quired in order to interpret the LLM’s distribution 053

over strings as a distribution over valid structures. 054

The most common technique in this direction is 055

prompting, where LLM output is conditioned on 056

a prompt, which usually takes the form of natural- 057

language instructions. However, as prompting in- 058

volves conditioning by natural-language instruc- 059

tions, its success relies on the natural-language 060

understanding (NLU) capabilities of the autoregres- 061

sive model. This is often not a problem when a) the 062

model exhibits strong NLU capabilities, b) the 063

instructions are easy-to understand and easy-to- 064

follow, and c) some probability of failure is accept- 065

able, but, when such assumptions do not hold, other 066

approaches to conditioning may be taken. 067

One such alternative is constrained decoding 068

(Anderson et al., 2017; Hokamp and Liu, 2017; 069

Post and Vilar, 2018; Lu et al., 2021). In this 070

paradigm, a formal language of valid strings is 071

defined, and the language model is conditioned on 072

the event that the generated string is an element of 073

this language. One particularly well-explored set- 074

ting for constrained decoding involves lexical con- 075

straints: constraint languages that stipulate strings 076

must contain a particular substring, and intersec- 077

tions of such languages. In other words, a lexical 078

constraint stipulates that a particular word or phrase 079

must occur in the model output, and multiple such 080

lexical constraints can be enforced simultaneously. 081

Grid beam search (Hokamp and Liu, 2017) and 082

DFA-constrained beam search (Anderson et al., 083

2017) are two widely used methods for decoding 084
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from autoregressive models while enforcing lex-085

ical constraints. Both modifications to standard086

beam search (Lowerre, 1976), these algorithms087

ensure that decoding hypotheses make progress088

towards fulfilling all constraints by maintaining089

multiple beams of hypotheses. We will compare090

these algorithms in detail in Section 2; for now,091

it suffices to note that, for k lexical constraints of092

bounded length, grid beam search requires Opkq au-093

toregressive forward passes per token, while DFA-094

constrained beam search requires Op2kq forward095

passes. As such, grid beam search enjoys signifi-096

cantly more popularity.097

In this paper, we draw attention to an underappre-098

ciated problem with grid beam search: It is unnec-099

essarily greedy, and prefers to satisfy easy lexical100

constraints, i.e. common constraint words, first,101

leaving harder constraints until the end. Hence,102

common constraint words will occur earlier in gen-103

erated sequences than rare ones. In addition to104

illustrating this problem, we also present a solution:105

fair grid beam search, a modification to grid beam106

search which maintains the original’s efficiency107

while eliminating the bias. This leads to higher-108

probability strings in the end. In order for others to109

easily apply our decoding method, we release our110

code as an open-source python library.1111

In Section 2, we discuss existing approaches to112

constrained decoding, with a heavy focus on DFA-113

constrained beam search and fair grid beam search,114

which are particularly relevant as background to115

our current work. Section 3 provides conceptual116

argumentation for the greedy bias of grid beam117

search. Section 4 presents fair grid beam search118

as an alternative to grid beam search that avoids119

this bias. In Section 5, we present two experiments120

which empirically compare DFA-constrained beam121

search, grid beam search, and fair grid beam search,122

empirically validating our claims about grid beam123

search’s ordering bias and about fair grid beam124

search’s improvements. Finally, we conclude the125

paper in Section 6.126

2 Constrained Decoding127

We now discuss previous literature on constrained128

decoding in autoregressive models. We focus on129

Anderson et al. (2017) and Hokamp and Liu (2017),130

as we directly build on these prior works.131

1Anonymized code included in the supplementary materi-
als for review, with a finalized library forthcoming.

2.1 DFA-Constrained Beam Search 132

We paraphrase DFA-constrained beam search as it 133

was introduced in Anderson et al. (2017). While 134

the approach was simply termed “constrained beam 135

search” in this original publication, we refer to it 136

as DFA-constrained beam search for the sake of 137

disambiguity. 138

We begin with the observation that languages 139

induced by sets of lexical constraints are regu- 140

lar. Let Σ be our alphabet of tokens, and let 141

c “ xc1, c2, ¨ ¨ ¨ , cly P Σ˚ be a lexical constraint – 142

a token sequence which must occur in all generated 143

strings. The regular expression Σ˚c1c2 ¨ ¨ ¨ clΣ˚ 144

describes exactly those strings which satisfy the 145

constraint c. As regular languages are closed under 146

intersection, combinations of lexical constraints are 147

similarly regular: For any finite set of k lexical con- 148

straints tc1, c2, ¨ ¨ ¨ , cku, we can define a regular 149

language 150

L “
č

i

´

Σ˚c1i c
2
i ¨ ¨ ¨ cliΣ

˚
¯

151

where a string s P L iff s satisfies all lexical con- 152

straints. 153

Let M “ pQ,Σ, δ, q0, F q be a minimal DFA 154

for L. Without an explicit construction, it can be 155

seen that, in the worst case, M requires a number 156

of states exponential in the number of constraints, 157

as the automaton must “remember” at every time 158

step which subset of constraints has already been 159

satisfied. 160

Given such a minimal automaton M , DFA- 161

constrained beam search associates with each DFA 162

state q P Q a beam of hypotheses Btpqq Ď Σt, 163

indexed by time step t. Conceptually, each hypoth- 164

esis is a token sequence which could potentially 165

form a prefix to the final decoded string. The beams 166

are initialized to B0pqq “ tεu for the initial state 167

q “ q0, and Bpqq “ ∅ for all other q ‰ q0. 168

During each decoding step t, new hypotheses 169

h P Σt are built by considering every possible 170

continuation token α for each existing hypothesis 171

h1 P Σt´1 across all beams, forming a hypothesis 172

set 173

Ht “ th1α | h1 P
ď

q

Bt´1pqq;α P Σu. 174

Each such h P Ht can be assigned to a DFA state 175

δ˚pq0,hq P Q, where δ˚ is M ’s extended transi- 176

tion function. From this, we can define state-wise 177

hypothesis sets 178

Htpqq “ th | h P Ht, δ˚pq0,hq “ qu 179
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of all hypotheses h which could be elements of the180

beam Btpqq. To obtain the actual beam, we simply181

retain the top β hypotheses in that state-wise set182

according to our autoregressive model’s probability183

function P phq:184

Btpqq “ arg top-β
hPHtpqq

P phq185

Since we would only like to generate strings in L,186

we only consider candidate strings originating from187

accepting states’ beams as model output. As with188

standard beam search, we proceed until our best189

candidate string is more probable than our highest-190

probability hypothesis.191

2.2 Grid Beam Search192

Grid beam search, as it was first presented in193

Hokamp and Liu (2017), was described in terms194

of an interface for building new hypotheses with195

functions generate, start, and continue. We196

reanalyze Hokamp and Liu’s (2017) algorithm in197

terms of finite-state automata: in particular, the198

algorithm describes a) a method for constructing199

a non-deterministic finite-state automaton (NFA),200

and b) a decoding procedure, analogous to DFA-201

constrained beam search, for generating strings202

accepted by this NFA. Importantly, this decoding203

method, when applied to the NFA obtained from204

a), leads to a time complexity linear in the num-205

ber of constraint tokens, as contrasted with DFA-206

constrained beam search’s exponential runtime.207

In this work, we will consider b) to be the central208

“essence” of grid beam search, and treat a) to be an209

implementation detail. In fact, we note that grid210

beam search’s decoding scheme is equally applica-211

ble to the minimal DFA for the constraint language212

L, with identically linear time complexity. In light213

of this, we will only discuss grid beam search’s214

decoding procedure here, and, for the remainder of215

this paper, we will consider grid beam search to op-216

erate on a minimal DFA for L. In Appendix 6, we217

discuss the specific NFA constructed by Hokamp218

and Liu (2017), and discuss how to map our con-219

struction to nondeterministic automata.220

We start with the DFA M . We assign to each221

state q a depth dpqq P N Y t8u equal to the min-222

imum number of transitions needed to reach an223

accepting state starting from that state (with accept-224

ing states being assigned a depth of zero, and co-225

inaccessible states being assigned infinite depth).226

Note that this notion of depth is equivalent to the227

notion of constraint coverage presented in Hokamp228

and Liu (2017), in that both measure the minimal 229

number of tokens which must be generated before 230

all constraints will be satisfied. 231

Decoding can then be defined similarly to with 232

DFA-constrained beam search, with one major dif- 233

ference: instead of maintaining one beam of hy- 234

potheses Bpqq for each state, we instead maintain 235

one beam of hypotheses Bpdq for each distinct 236

depth value. The beams are initialized to B0pdq “ 237

tεu for the depth of initial state d “ dpq0q, and 238

Bpdq “ ∅ for all depth values d ‰ dpq0q. Hypoth- 239

esis sets are defined equivalently as 240

Ht “ th1α | h1 P
ď

d

Bt´1pdq;α P Σu. 241

However, instead of defining state-wise hypothesis 242

sets, we define depth-wise hypothesis sets: 243

Htpdq “ th | h P Ht, dpδ˚pq0,hqq “ du 244

Forming beams proceeds identically by selecting 245

the β best hypotheses from each of these hypothesis 246

sets: 247

Btpdq “ arg top-β
hPHtpdq

P phq. 248

While DFA-constrained beam search required we 249

pick our candidate strings from accepting states’ 250

beams, in grid beam search, we select candidates 251

from the beam for depth zero. 252

This construction maps the exponentially-many 253

states of M to a linearly-many equivalence classes 254

over states, and only maintains one beam for each 255

equivalence class. By specifying these equivalence 256

classes in terms of depth, it is ensured that each par- 257

tial candidate from each beam will have at least one 258

child in a beam of lower depth, inductively ensur- 259

ing that some candidates satisfying all constraints 260

will be found. 261

2.3 Other work on constrained decoding 262

In addition to the two works presented above, a 263

number of other approaches have been proposed 264

for modifying beam search for constrained decod- 265

ing. Two particularly prominent examples of this 266

are Post and Vilar (2018), who modify grid beam 267

search by varying beam sizes dynamically, and Lu 268

et al. (2021), who present a beam-search-based al- 269

gorithm for decoding under unions, intersections, 270

and negations of lexical constraints. Apart from 271

beam search, other approaches for constrained de- 272

coding from autoregressive models include trans- 273

formations of the task into optimization in a con- 274

tinuous space (Kumar et al., 2021; Dathathri et al.) 275
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and text generation via Metropolis-Hastings sam-276

pling (Miao et al., 2019).277

3 The Greedy Bias of Grid Beam Search278

We claim that grid beam search suffers a “greedy”279

bias in that it prefers hypotheses which incorpo-280

rate frequent constraint tokens before infrequent281

ones, at the expense of average hypothesis log-282

likelihood.2 In this section we present a conceptual283

argument as to why this occurs. We will make this284

argument in terms of competition between hypothe-285

ses which occurs during beam search, wherein the286

retention of a given hypothesis from one step to the287

next depends on the set of alternative hypotheses288

present in the same beam.289

Suppose for simplicity that all constraints290

are single-token lexical constraints. In DFA-291

constrained beam search, since a beam is main-292

tained for each DFA state, there is only competi-293

tion between hypotheses which have have satisfied294

exactly the same set of constraints. For grid beam295

search, by contrast, there is competition between296

hypotheses which have completed the same num-297

ber of constraints, but different hypotheses may298

have completed different sets of constraints.299

Figure 1 illustrates how this competition can lead300

to decoding bias. As words’ frequencies vary con-301

siderably in natural language (Zipf, 1949; Clauset302

et al., 2007), some of our constraint words will303

surely be more common than others. While specific304

contexts will contribute a large amount of variance,305

these word frequencies should affect the average au-306

toregressive probabilities assigned to our constraint307

words, with common constraint words receiving308

higher mean autoregressive probabilities than rare309

ones. On average, we would expect hypotheses310

including rare constraint tokens to be assigned a311

lower model probability than hypotheses including312

only common constraint tokens.313

Under grid beam search, we maintain a beam for314

each depth, and within each beam there is compe-315

tition between hypotheses which have completed316

the same number of constraint tokens. Thus, in the317

presence of constraint tokens of varying frequency,318

for early (high-depth) beams, there will be direct319

competition between hypotheses containing only320

2This claim is not entirely novel to the present work – Lu
et al. (2021) allude to this bias “towards sequences satisfying
constraints greedily” in their discussion of grid beam search.
However, to our knowledge, no other works have investigated
this bias in depth, nor presented a direct modification to grid
beam search to account for it.

common constraint tokens, and those containing 321

rare constraint words. The hypotheses containing 322

rare constraint words will tend to lose this competi- 323

tion, and these early beams will preferentially fill 324

with hypotheses satisfying only easy constraints, 325

leaving rare constraint words for later beams. 326

Another perspective on this problem is that, 327

when comparing hypotheses in grid beam search, 328

we only account for the likelihood of the tokens that 329

have already been generated, and not the likelihood 330

of tokens that are yet to come. While this is true 331

of beam search in general,3 in constrained decod- 332

ing, we have a priori knowledge about what tokens 333

are yet to come, and we can take advantage of this 334

knowledge by rewarding hypotheses which will 335

likely have an easier time completing the remain- 336

der of their constraints. From this perspective, the 337

tendency of grid beam search to complete easy con- 338

straints first is merely a symptom of an underlying 339

inefficiency in finding high-likelihood candidates. 340

In section 5, we will demonstrate both of these 341

observations empirically, namely, grid beam search 342

does prefer to satisfy easy constraints first, and this 343

does lead it to finding strings with lower average 344

log-likelihood. But first, we will propose a simple 345

fix to make grid beam search less greedy. 346

4 Methods: Fair Grid Beam Search 347

In this section, we present a variant of grid beam 348

search which addresses the deficiencies discussed 349

above. As our variant shows no unfair preference 350

for incorporating high-frequency constraints earlier, 351

we term it fair grid beam search. 352

4.1 Construction 353

Our construction is largely similar to that for grid 354

beam search, with one key difference – we asso- 355

ciate with each state q of M a cost Cpqq, represent- 356

ing the expected difficulty of reaching an accepting 357

state from q, and account for this cost when compar- 358

ing hypotheses. We accomplish this by weighting 359

all arcs of M with ´ lnP pαq, the negative log un- 360

igram likelihood of that arc’s symbol (token) α. 361

We then define the cost Cpqq of each state q to be 362

the minimum distance to an accepting state in the 363

underlying directed graph. By this construction, 364

accepting states have a cost of zero, and non-co- 365

accessible states have infinite cost. For notational 366

convenience, we can also define the cost of a string 367

3In fact, this can be seen as the central simplifying assump-
tion that separates left-to-right approximate decoding schemes
from exact decoding.
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H0p4q H1p3q H2p2q H3p1q H4p0q

Figure 1: An illustration of the greedy bias in grid beam search with beam width 3. Consider a setting with four
constraint tokens: a, b, c, and d, with unigram frequencies ordered ppaq ą ppbq ą ppcq ą ppdq, and with strings
starting with low-frequency tokens being slightly more probable than those starting with high-frequency tokens.
Assuming no non-constraint tokens, our highest-probability string should be “dcba.” As grid beam search discards
early hypotheses with low-frequency constraint tokens, it fails to find this global optimum, and prefers hypotheses
which save the hardest constraint ‘d’ for last. For clarity, we only illustrate the generation of constraint tokens, not
non-constraint tokens. This results in a depiction of a “diagonal slice” of the grid of beams, where time step and
beam depth vary together.

s as Cpsq “ Cpδ˚pq0, sqq, the cost associated with368

the state reached while processing s through M .369

Formally, fair grid beam search only differs from370

grid beam search in the construction of beams:371

Rather than comparing hypotheses h by prob-372

ability P phq, we instead compare the quantity373

ln pphq ´ Cphq:374

Btpdq “ arg top-β
hPHtpdq

lnP phq ´ Cphq.375

As with grid-beam search, we will still be making376

“unfair” comparisons between hypotheses which377

have completed different subsets of constraints.378

However, this cost term compensates for this by379

acting as a heuristic for the difficulty of completing380

the remainder of the constraints. Hypotheses which381

have incorporated infrequent constraint tokens will382

have lower cost than hypotheses which have only383

incorporated frequent ones.384

Our constructions requires access to unigram385

probabilities from our autoregressive model’s dis-386

tribution P ptq. Importantly, these unigram proba-387

bilities are conditioned on the prompt being used as388

well as the constraint setting being used, meaning389

we can’t rely on precomputed corpus statistics for390

these unigram distributions. Luckily, these unigram391

probabilities can easily be obtained in practice by392

simply averaging all next-token distributions seen393

so far during beam search. When many texts are394

to be generated using a similar prompt and con- 395

straint setting, this means that the first text must 396

be generated with standard grid beam search, but 397

each subsequent text will be generated with uni- 398

gram probabilities obtained while generating all 399

previous texts. Of course, the first text may then 400

be re-generated using the unigram probabilities ob- 401

tained through the entire generation process. 402

4.2 Time Complexity 403

Assume we are interested in generating sequences 404

of a maximal length n, decoding with k lexical con- 405

straints, each of l tokens, and with a beam width 406

β. Treating our autoregressive model as a constant- 407

time oracle, grid beam search has a time complex- 408

ity linear in all of these quantities, i.e. Opnlβkq. 409

This can be seen by noting that, for each of n time 410

steps, we maintain l ˆ k beams, each containing β 411

hypotheses, and that we carry out one autoregres- 412

sive call for each hypothesis that is part of a beam. 413

Conversely, DFA-constrained beam search has a 414

time complexity exponential in the number of con- 415

straint tokens, Opnlβ2kq: At each time step, we 416

maintain one beam of β hypotheses for each DFA 417

state, but in the worst case we may have l ˆ 2k 418

states – each state must remember which of the 419

2k subsets of constraints has already been satis- 420

fied, and must remember how many of the l tokens 421

of the currently-in-progress constraint have been 422
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completed.423

If the state costs C are precomputed, fair grid424

beam search’s time complexity is identical to that425

of grid beam search: the only appreciable differ-426

ence is the need to obtain hypothesis costs each427

time step, and this can be done in constant time if428

the state associated with each hypothesis is cached429

(constant-time determination of hypothesis state430

from the parent’s state, and constant-time lookup of431

the cost from the state). However, the precomputa-432

tion of the costs C involves solving a single-source433

shortest path problem on a graph of |V | “ l ˆ 2k434

vertices. Using Dijkstra’s algorithm with a Fi-435

bonacci heap (Fredman and Tarjan, 1987), this can436

be done in O p|V | log |V |q, giving the entire algo-437

rithm a time complexity of438

O p|V | log |V | ` nlβkq439
440

“ O
´

l2k pk ` log lq ` nlβk
¯

.441

This is, of course, ultimately exponential in the442

number of constraints, and so appears to offer no443

benefit over DFA-constrained beam search. How-444

ever, only the precomputation of C is exponential-445

time, and this precomputation does not involve446

any calls to the autoregressive model. Thus, in447

typical use cases, where GPU-based model infer-448

ence capacity is the primary limiting resource, this449

CPU-based precomputation step is unlikely to be a450

limiting factor to model throughput for relatively451

small numbers of constraints.452

5 Experiments453

In this section, we discuss two experiments we454

carry out which validate three claims we make:455

a) that grid beam search, compared to DFA-456

constrained beam search, prefers to satisfy457

easy constraints first,458

b) that fair grid beam search corrects this bias, and459

c) that fair grid beam search finds higher-460

probability strings than grid beam search.461

Our first experiment, performed with a large num-462

ber or randomly-generated constraint settings, di-463

rectly tests and validates all three claims, albeit in a464

somewhat artificial setting, while our second exper-465

iment, performed at a smaller scale with manually-466

curated constraint sets, compares grid beam search467

to fair grid beam search in a more naturalistic con-468

strained decoding setting, and further validates our469

affirmative answers to claims b) and c).470

5.1 LLM Generation with Many Random 471

Constraints 472

Our first experiment is designed to highlight the ten- 473

dency for grid beam search to incorporate common 474

constraint tokens before rare ones, as contrasted 475

with DFA-constrained beam search, which does 476

not exhibit this bias, and fair grid beam search, 477

which corrects for this bias. This experiment in- 478

volves generating short texts from the TinyLlama- 479

1.1B language model (Zhang et al., 2024a) with 480

randomly chosen lexical constraints. For each 481

generation task, five English words are selected 482

uniformly randomly from the 5000 most frequent 483

words in the Corpus of Contemporary American 484

English (COCA) (Davies, 2008). In order to make 485

the task setting conceptually simple and ease the 486

interpretability of results, we limit ourselves to 487

constraint words which map to a single model to- 488

ken, reselecting whenever we choose a multi-token 489

word. The model is then prompted to “write a 490

one-sentence story,” with no information about the 491

constraint words provided in the prompt. We select 492

1000 such five-word constraint sets, and, for each 493

set, generate a sentence using the three constrained 494

decoding methods. Inference is performed in four 495

independent “runs” of 250 generation tasks each – 496

this detail is of consequence for grid beam search, 497

where unigram statistics are collected separately 498

for each of these independent runs. 499

We are interested in the correlation between con- 500

straint word frequency and relative position within 501

the generated sentence: we hypothesize that grid 502

beam search should exhibit a negative correlation 503

(constraint tokens with high frequency should have 504

low average token index, and vice versa). In order 505

to avoid sensitivity to sentence length, we formalize 506

this in terms of a notion of relative index – within 507

each generated sentence, the first constraint token 508

to appear is assigned a relative index of 1, the sec- 509

ond a relative index of 2, and so forth, up to 5 for 510

the final constraint token to appear. Then, for each 511

constrained decoding method, we can analyze the 512

Spearman rank correlation ρ between constraint 513

token frequency and relative index across all 1000 514

generated texts. 515

Table 1 shows that, as hypothesized, grid beam 516

search exhibits a small, yet highly significant 517

(p ă 10´11) negative correlation: on average, low- 518

frequency constraint words come later than high- 519

frequency constraint words in sequences. For DFA- 520

constrained beam search and fair grid beam search, 521
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Method ρ H

DFA-constrained (0.0180) 58.40
Grid ´0.100 60.81
Fair grid (0.0271) 60.48

Table 1: Results for our experiments with random con-
straint words. For DFA-constrained beam search, grid
beam search, and fair grid beam search, we report Spear-
man correlation coefficients ρ between word frequency
and relative index, and decoding entropy H . Parenthe-
sized correlations are found to be statistically insignif-
icant at p ă 0.05, while the correlation for grid beam
search is significant at p ă 10´11. A two-tailed paired t-
test found significant pairwise differences (p ă 0.0001)
between all three methods’ decoding entropies.

we are unable to find any significant correlation at522

a significance level of p ă 0.05.523

In addition to investigating correlations, we also524

compare the model-assigned probabilities P psq of525

the decoded strings s. As all methods act as de-526

coding layers for the same underlying autoregres-527

sive model, we can compare these probabilities to528

directly compare how well these methods do at529

constrained decoding – better decoding methods530

should find, on average, higher probability strings.531

We quantify this in terms of decoding entropy H532

over the set of all generated strings S:533

H “ ´
1

|S|

ÿ

sPS

lnP psq.534

In broad terms, methods which attain a lower de-535

coding entropy do a better job at decoding with536

constraints.537

Decoding entropies are also listed in Table 1.538

Across the three methods, DFA-constrained beam539

search achieves the lowest decoding entropy. This540

is to be expected, since DFA-constrained beam541

search maintains a much larger set of beams, and542

therefore hypotheses, than the other two methods.543

However, between grid beam search and fair grid544

beam search, fair grid beam search attains a lower545

decoding entropy, despite maintaining the same546

number of hypotheses. A two-tailed paired t-test547

found this difference to be statistically significant548

(p ă 0.0001).549

5.2 CommonGen550

For our second experiment, we aim to test a551

more natural constrained decoding setting with552

a larger autoregressive model, Llama-3.1 8B In-553

struct (LLama Team, 2024). Instead of using a554

random set of constraint words for each genera- 555

tion task, we make use of CommonGen (Lin et al., 556

2020), a dataset designed to challenge lexically con- 557

strained generation models, which specifies 400 558

distinct constrained generation tasks, each with 559

a set of semantically-related “concepts” as con- 560

straints. These concepts, formally specified as the 561

combination of a word and a part of speech, roughly 562

correspond to lexemes. Thus, for example, the con- 563

straint run_V could be satisfied by sentences con- 564

taining the words "run," "ran," "runs," or "running." 565

To allow for such varied surface realizations, 566

we use the LemmInflect Python library (Jascob, 567

2022) to obtain a set of inflected forms for each 568

concept, and further expand these sets by includ- 569

ing variations in capitalization. In contrast to our 570

previous experiment, we allow for multi-token sur- 571

face realizations. For each concept, we construct a 572

regular expression for the the union of all surface 573

realizations, and we take the intersection of these 574

unions as our constraint language. We use a mini- 575

mal DFA for this constraint language to guide our 576

beam search decoders. 577

While the CommonGen task is typically framed 578

in a setting where models are explicitly told the 579

constraint words in a prompt, we instead choose a 580

constraint-blind setting, where the constraints are 581

only enforced by the decoding scheme, and not 582

known to the language model itself. Although this 583

setting precludes numerical comparisons to prior 584

work on CommonGen, and in fact makes the task 585

significantly harder, it allows us to better analyze 586

the effects of the decoding method in isolation, 587

without any interference by the NLU capabilities 588

of the language model.4 589

The automata we obtain with this approach have 590

significantly more states than those for our previous 591

experiment. For this reason, we do not test DFA- 592

constrained beam search in this setting, and only 593

compare grid beam search to fair grid beam search. 594

As with our first experiment, we compare two 595

values across decoding schemes: the Spearman 596

rank correlation ρ between constraint word fre- 597

quency and relative index, and decoding entropy 598

H . As we allow varied surface realizations of con- 599

straint words, we take as word frequencies the sum 600

of all surface realizations frequencies in COCA. 601

4Preliminary experiments showed that including constraint
concepts in the prompt significantly affected the unigram prob-
abilities of the tokens comprising those constraints, leading
to erratic performance when using fair grid beam search with
precomputed unigram probabilities.
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Method ρ H

Grid beam search -0.28 49.22
Fair grid beam search -0.06 48.14

Table 2: Results from our experiments on the Common-
Gen dataset for grid beam search and fair grid beam
search. As before, we report Spearman correlation co-
efficients ρ between word frequency and relative index,
and decoding entropy H . A two-tailed paired t-test
found the difference between the two methods’ decod-
ing entropies to be statistically significant at p ă 0.0001.
Both correlations were found to be statistically signif-
icant at p ă 0.05, but they were also found to differ
significantly from one another via bootstrapping with a
two-tailed binomial test (p ă 0.00001).

Table 2 lists our results from this experiment.602

In summary, we reconfirm the two hypotheses we603

sought to validate with this experiment: that grid604

beam search preferentially satisfies easy constraints605

before hard ones, and that fair grid beam search606

achieves a lower decoding entropy than fair grid607

beam search. Of note, in this setting, both grid608

beam search and fair grid beam search achieve a609

significant negative correlation coefficient, just of610

vastly different magnitudes. This is not particu-611

larly surprising, as we have no a priori reason to612

expect that there should be exactly zero correlation613

between frequency and sentence position in natural614

language. However, the significant (p ă 0.00001q615

difference between the two correlation coefficients616

provides clear evidence that grid beam search in-617

troduces its own bias in this regard.618

Surprisingly, the decoding methods’ effect on619

both constraint ordering and decoding entropy ap-620

pear to be much stronger in this experiment than621

they had been for our setting with a smaller lan-622

guage model and random constraints. Grid beam623

search has a correlation coefficient of ´0.28 (com-624

pared to ´0.10 for the previous experiment), and625

fair grid beam search improves upon grid beam626

search by over one nat in decoding entropy. We627

had expected these effects to be more subtle in this628

setting: The order of words is a consequence of629

both biases introduced by the decoding method as630

well as semantic effects enforced by the language631

model, and, in a setting with a more competent632

language model and stronger semantic relations633

between constraint words, we did not expect the634

decoding method’s bias to affect the results so dra-635

matically. While we suspect the amplified effects636

seen in this setting may result from the increased 637

complexity of the constraining automaton (which 638

includes multi-token constraints and constraints 639

with multiple surface realizations), further experi- 640

ments would be necessary to fully understand what 641

circumstances modulate the strength of grid beam 642

search’s bias. Nonetheless, this experiment pro- 643

vides strong evidence that the problem we point out 644

in grid beam search, and the solution we present 645

with fair grid beam search, are of practical rele- 646

vance in realistic constrained decoding settings. 647

6 Conclusion and Future Work 648

In this work, we discuss the greedy bias of grid 649

beam search and how to fix it. We present a concep- 650

tual argument as to why grid beam search preferen- 651

tially satisfies easy constraints first, and experimen- 652

tally demonstrate that it in fact does so in practice, 653

biasing the constraint orderings of generated sen- 654

tences. To correct for this bias, we present fair grid 655

beams search, a slight modification to the decoding 656

algorithm that rewards hypotheses for including dif- 657

ficult constraints. Experimentally, we demonstrate 658

that fair grid beam search not only fixes grid beam 659

search’s bias in constraint ordering, but that it finds 660

higher-probability strings in the process. While the 661

time complexity of fair grid beam search is worse 662

than grid beam search, all extra computation is in a 663

precomputation step that requires no access to the 664

underlying autoregressive model, meaning that the 665

improvements provided by fair grid beam search 666

essentially come “for free” in settings where model 667

throughput is the computational bottleneck. 668

A theme of this work which might lead to future 669

improvements in constrained decoding is the devel- 670

opment of a more nuanced notion of progress to- 671

wards completion and comparability of hypotheses. 672

In grid beam search, progress was measured purely 673

in tokens, while our present work demonstrates 674

the need to also account for the rarity of these to- 675

kens. Future work could take a more detailed view 676

of both how to quantify completion progress, and 677

under which circumstances hypotheses of varying 678

completion progress can be compared. This might 679

lead to more general approaches, where the number 680

of beams can be adjusted freely, and hypotheses can 681

be assigned to beams in a way that will maximize 682

the fairness of competition between candidates. 683
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Limitations684

One major limitation of this work is our inability685

to explain the exaggerated strength of grid beam686

search’s bias on the CommonGen experiment ver-687

sus the more muted results in our experiment with688

random constraints. While we expect this might be689

a consequence of the more complicated automaton,690

incorporating multi-token constraints and varied691

surface forms, more work would need to be done692

to understand how this ordering bias is affected693

by automaton structure. Indeed, we also neglect694

automata with Kleene stars in this work, and so695

the behaviors of the different decoding algorithms696

are still unknown for many types of constraint lan-697

guages.698

An additional limitation to this work is the lack699

of clarity regarding interactions between fair grid700

beam search and direct mentions of constraint701

words in prompt. While preliminary experiments702

showed that fair grid beam search performed poorly703

when constraint words were mentioned explicitly704

in prompts, we were unable to quantify this interac-705

tion more precisely, nor were we able to propose an706

alternative that was stable in such circumstances.707
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A Grid beam search as a finite-state795

automaton796

Hokamp and Liu (2017) define grid beam search in797

terms of an interface of three functions: generate,798

start, and continue, and in terms of hypotheses,799

which may either be open (not “working on” any800

constraint) or closed (currently “working on” one801

particular constraint. We reinterpret this descrip-802

tion as describing the construction of a nondeter-803

ministic finite-state automaton. We take the states804

of our automaton to be complete answers to the805

following set of questions:806

a) Which subset of constraints has already been807

completed?808

b) Which constraint, if any, is currently being809

worked on?810

c) If applicable, how many tokens of it have al-811

ready been completed?812

That is, each state qi is a triple of answers to ques-813

tions a), b), and c). For a constraint set C, the814

stating state, q1, answers these questions as (∅,815

none, not applicable), and the sole accepting state816

answers these questions (C, none, not applicable).817

The three functions generate, start, and818

continue define the transitions of the automaton.819

For any possible subset of constraints A P 2C , and820

for any symbol α P Σ, generate defines the self821

loop transition822

pA, none, not applicableq
α
ÝÑ pA, none, not applicableq.823

For a constraint ci R A, start defines transitions824

of the form825

pA, none, not applicableq
c1i
ÝÑ pAYtciu, none, not applicableq826

when ci is a single token constraint, and827

pA, none, not applicableq
c1i
ÝÑ pA, ci, 1q828

otherwise.829

Finally, continue generates transitions of the 830

form 831

pA, ci, j ´ 1q
cji
ÝÑ pA Y tciu, none, not applicableq 832

when |ci| “ j, and 833

pA, ci, j ´ 1q
cji
ÝÑ pA, ci, jq 834

otherwise. 835

This automaton is non-deterministic: for each 836

state not currently working on a constraint, 837

generate defines one outgoing transition for ev- 838

ery token in our vocabulary, while start defines 839

distinct transitions for some tokens. Thus, the con- 840

struction we present in Section 2.2 cannot be di- 841

rectly applied to this automaton. This is not a funda- 842

mental difficulty, but rather a notational mismatch. 843

In fact, the only change that needs to be made is to 844

modify our definition of the depth-wise hypothesis 845

sets to 846

Htpdq “ th | h P Ht, Dqi : qi P δ˚pq0,hq^dpqiq “ du 847

in order to account for the automaton’s transition 848

function δ, and consequently δ˚, being set-valued 849

instead of state-valued. 850

Conceptually, this does change the picture, in 851

that hypotheses can now exist in multiple beams, 852

rather than just one. Concretely, when generating 853

the first token of a constraint, this can either be 854

done via the start transition (in which case that 855

token is “counted” as the start of a constraint, or 856

via the generate transition (in which case it isn’t 857

counted), leading to the same token sequence ap- 858

pearing as hypotheses for two distinct depth values. 859

While retaining two copies of the same hypothesis 860

might leave less room in a beam for other hypothe- 861

ses, we do not expect this to be very common or 862

consequential in practice. 863
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