Making Grid Beam Search Less Greedy

Anonymous ACL submission

Abstract

A common formalism for constraining the out-
put of autoregressive text generation models
involves lexical constraints, words or phrases
which are required to occur in the generated
text. DFA-constrained beam search and grid
beam search are two widely used paradigms
for decoding from autoregressive models while
enforcing lexical constraints. As the former
approach requires a number of forward passes
exponential in the numberof constraint tokens,
it is often dispreferred to the latter, which re-
quires only linearly many forward calls. How-
ever, while grid beam search achieves an expo-
nential speedup, it does so in a manner which
does not treat all of the constraints equally.
In this paper, we demonstrate that grid beam
search is biased to incorporate easier-to-satisfy
constraints first, leaving harder constraints to
the end of the sequence. This contrasts with
DFA-constrained beam search, which exhibits
no such bias. To address this shortcoming,
we propose fair grid beam search, a modifi-
cation to grid beam search which avoids this
bias while still requiring only linearly many for-
ward passes. Experimentally, we confirm grid
beam search’s bias on two constrained genera-
tion tasks, finding significant differences in how
it orders constraint tokens as compared to DFA-
constrained beam search and fair grid beam
search. Furthermore, we find that fair grid
beam search not only fixes grid beam search’s
bias, but finds higher-probability strings in the
process.

1 Introduction

Given the tremendous success large language mod-
els (LLMs) have had in tasks across natural lan-
guage processing (NLP), a common target of NLP
research is in understanding how to best use LLMs
for specific tasks. As language models define distri-
butions over strings of natural language, while most
tasks in NLP do not involve modeling arbitrary
natural language, techniques for applying LLMs

tend to involve conditioning the LLM distribution
such that the resulting conditional distribution over
strings can be interpreted as a distribution over task-
specific predictions. For classification tasks like
sentiment classification (e.g., Zhang et al., 2024b),
this might simply involve conditioning the LLM to
produce the name of a valid label, while for struc-
tured prediction tasks like parsing (Drozdov et al.,
2022), more sophisticated approaches may be re-
quired in order to interpret the LLM’s distribution
over strings as a distribution over valid structures.

The most common technique in this direction is
prompting, where LLLM output is conditioned on
a prompt, which usually takes the form of natural-
language instructions. However, as prompting in-
volves conditioning by natural-language instruc-
tions, its success relies on the natural-language
understanding (NLU) capabilities of the autoregres-
sive model. This is often not a problem when a) the
model exhibits strong NLU capabilities, b) the
instructions are easy-to understand and easy-to-
follow, and c) some probability of failure is accept-
able, but, when such assumptions do not hold, other
approaches to conditioning may be taken.

One such alternative is constrained decoding
(Anderson et al., 2017; Hokamp and Liu, 2017;
Post and Vilar, 2018; Lu et al., 2021). In this
paradigm, a formal language of valid strings is
defined, and the language model is conditioned on
the event that the generated string is an element of
this language. One particularly well-explored set-
ting for constrained decoding involves lexical con-
straints: constraint languages that stipulate strings
must contain a particular substring, and intersec-
tions of such languages. In other words, a lexical
constraint stipulates that a particular word or phrase
must occur in the model output, and multiple such
lexical constraints can be enforced simultaneously.

Grid beam search (Hokamp and Liu, 2017) and
DFA-constrained beam search (Anderson et al.,
2017) are two widely used methods for decoding

from autoregressive models while enforcing lex-
ical constraints. Both modifications to standard
beam search (Lowerre, 1976), these algorithms
ensure that decoding hypotheses make progress
towards fulfilling all constraints by maintaining
multiple beams of hypotheses. We will compare
these algorithms in detail in Section 2; for now,
it suffices to note that, for £ lexical constraints of
bounded length, grid beam search requires O (k) au-
toregressive forward passes per token, while DFA-
constrained beam search requires O(2%) forward
passes. As such, grid beam search enjoys signifi-
cantly more popularity.

In this paper, we draw attention to an underappre-
ciated problem with grid beam search: It is unnec-
essarily greedy, and prefers to satisfy easy lexical
constraints, i.e. common constraint words, first,
leaving harder constraints until the end. Hence,
common constraint words will occur earlier in gen-
erated sequences than rare ones. In addition to
illustrating this problem, we also present a solution:
fair grid beam search, a modification to grid beam
search which maintains the original’s efficiency
while eliminating the bias. This leads to higher-
probability strings in the end. In order for others to
easily apply our decoding method, we release our
code as an open-source python library.!

In Section 2, we discuss existing approaches to
constrained decoding, with a heavy focus on DFA-
constrained beam search and fair grid beam search,
which are particularly relevant as background to
our current work. Section 3 provides conceptual
argumentation for the greedy bias of grid beam
search. Section 4 presents fair grid beam search
as an alternative to grid beam search that avoids
this bias. In Section 5, we present two experiments
which empirically compare DFA-constrained beam
search, grid beam search, and fair grid beam search,
empirically validating our claims about grid beam
search’s ordering bias and about fair grid beam
search’s improvements. Finally, we conclude the
paper in Section 6.

2 Constrained Decoding

We now discuss previous literature on constrained
decoding in autoregressive models. We focus on
Anderson et al. (2017) and Hokamp and Liu (2017),
as we directly build on these prior works.

! Anonymized code included in the supplementary materi-
als for review, with a finalized library forthcoming.

2.1 DFA-Constrained Beam Search

We paraphrase DFA-constrained beam search as it
was introduced in Anderson et al. (2017). While
the approach was simply termed “constrained beam
search” in this original publication, we refer to it
as DFA-constrained beam search for the sake of
disambiguity.

We begin with the observation that languages
induced by sets of lexical constraints are regu-
lar. Let > be our alphabet of tokens, and let
c={c',c% -,) e X* be a lexical constraint —
a token sequence which must occur in all generated
strings. The regular expression Y*cl¢? ... 3%
describes exactly those strings which satisfy the
constraint c. As regular languages are closed under
intersection, combinations of lexical constraints are
similarly regular: For any finite set of k lexical con-
straints {c1, ¢a, - , ¢}, we can define a regular

language
L= ﬂ (2*0110? e céE*)
i

where a string s € L iff s satisfies all lexical con-
straints.

Let M = (Q,X%,0,qo, F') be a minimal DFA
for L. Without an explicit construction, it can be
seen that, in the worst case, M requires a number
of states exponential in the number of constraints,
as the automaton must “remember” at every time
step which subset of constraints has already been
satisfied.

Given such a minimal automaton M, DFA-
constrained beam search associates with each DFA
state ¢ € () a beam of hypotheses B(q) < X,
indexed by time step ¢. Conceptually, each hypoth-
esis is a token sequence which could potentially
form a prefix to the final decoded string. The beams
are initialized to B(q) = {e} for the initial state
q = qo, and B(q) = & for all other ¢ # qo.

During each decoding step ¢, new hypotheses
h € X! are built by considering every possible
continuation token « for each existing hypothesis
h'/ € ¥~1 across all beams, forming a hypothesis
set

H' = {Wa|We| JB"(g);aex}.
q

Each such h € H? can be assigned to a DFA state
0*(qo, h) € Q, where 0* is M’s extended transi-
tion function. From this, we can define state-wise
hypothesis sets

H'(q) = {h | h € H',6"(g0,h) = q}

of all hypotheses h which could be elements of the
beam B!(q). To obtain the actual beam, we simply
retain the top [hypotheses in that state-wise set
according to our autoregressive model’s probability
function P(h):

B'(q) = argtop-g P(h)
heH' (q)

Since we would only like to generate strings in L,
we only consider candidate strings originating from
accepting states’ beams as model output. As with
standard beam search, we proceed until our best
candidate string is more probable than our highest-
probability hypothesis.

2.2 Grid Beam Search

Grid beam search, as it was first presented in
Hokamp and Liu (2017), was described in terms
of an interface for building new hypotheses with
functions generate, start, and continue. We
reanalyze Hokamp and Liu’s (2017) algorithm in
terms of finite-state automata: in particular, the
algorithm describes a) a method for constructing
a non-deterministic finite-state automaton (NFA),
and b) a decoding procedure, analogous to DFA-
constrained beam search, for generating strings
accepted by this NFA. Importantly, this decoding
method, when applied to the NFA obtained from
a), leads to a time complexity linear in the num-
ber of constraint tokens, as contrasted with DFA-
constrained beam search’s exponential runtime.

In this work, we will consider b) to be the central
“essence” of grid beam search, and treat a) to be an
implementation detail. In fact, we note that grid
beam search’s decoding scheme is equally applica-
ble to the minimal DFA for the constraint language
L, with identically linear time complexity. In light
of this, we will only discuss grid beam search’s
decoding procedure here, and, for the remainder of
this paper, we will consider grid beam search to op-
erate on a minimal DFA for L. In Appendix 6, we
discuss the specific NFA constructed by Hokamp
and Liu (2017), and discuss how to map our con-
struction to nondeterministic automata.

We start with the DFA M. We assign to each
state ¢ a depth d(q) € N U {0} equal to the min-
imum number of transitions needed to reach an
accepting state starting from that state (with accept-
ing states being assigned a depth of zero, and co-
inaccessible states being assigned infinite depth).
Note that this notion of depth is equivalent to the
notion of constraint coverage presented in Hokamp

and Liu (2017), in that both measure the minimal
number of tokens which must be generated before
all constraints will be satisfied.

Decoding can then be defined similarly to with
DFA-constrained beam search, with one major dif-
ference: instead of maintaining one beam of hy-
potheses B(q) for each state, we instead maintain
one beam of hypotheses B(d) for each distinct
depth value. The beams are initialized to B%(d) =
{e} for the depth of initial state d = d(qop), and
B(d) = & for all depth values d # d(qp). Hypoth-
esis sets are defined equivalently as

H' = {Wa|We| B (d)aen}
d

However, instead of defining state-wise hypothesis
sets, we define depth-wise hypothesis sets:

H'(d) = {h | h e H',d(6"(q0, h)) = d}

Forming beams proceeds identically by selecting
the 3 best hypotheses from each of these hypothesis
sets:
B'(d) = argtop-3 P(h).

heH?(d)
While DFA-constrained beam search required we
pick our candidate strings from accepting states’
beams, in grid beam search, we select candidates
from the beam for depth zero.

This construction maps the exponentially-many
states of M to a linearly-many equivalence classes
over states, and only maintains one beam for each
equivalence class. By specifying these equivalence
classes in terms of depth, it is ensured that each par-
tial candidate from each beam will have at least one
child in a beam of lower depth, inductively ensur-
ing that some candidates satisfying all constraints
will be found.

2.3 Other work on constrained decoding

In addition to the two works presented above, a
number of other approaches have been proposed
for modifying beam search for constrained decod-
ing. Two particularly prominent examples of this
are Post and Vilar (2018), who modify grid beam
search by varying beam sizes dynamically, and Lu
et al. (2021), who present a beam-search-based al-
gorithm for decoding under unions, intersections,
and negations of lexical constraints. Apart from
beam search, other approaches for constrained de-
coding from autoregressive models include trans-
formations of the task into optimization in a con-
tinuous space (Kumar et al., 2021; Dathathri et al.)

and text generation via Metropolis-Hastings sam-
pling (Miao et al., 2019).

3 The Greedy Bias of Grid Beam Search

2

We claim that grid beam search suffers a “greedy
bias in that it prefers hypotheses which incorpo-
rate frequent constraint tokens before infrequent
ones, at the expense of average hypothesis log-
likelihood.? In this section we present a conceptual
argument as to why this occurs. We will make this
argument in terms of competition between hypothe-
ses which occurs during beam search, wherein the
retention of a given hypothesis from one step to the
next depends on the set of alternative hypotheses
present in the same beam.

Suppose for simplicity that all constraints
are single-token lexical constraints. In DFA-
constrained beam search, since a beam is main-
tained for each DFA state, there is only competi-
tion between hypotheses which have have satisfied
exactly the same set of constraints. For grid beam
search, by contrast, there is competition between
hypotheses which have completed the same num-
ber of constraints, but different hypotheses may
have completed different sets of constraints.

Figure 1 illustrates how this competition can lead
to decoding bias. As words’ frequencies vary con-
siderably in natural language (Zipf, 1949; Clauset
et al., 2007), some of our constraint words will
surely be more common than others. While specific
contexts will contribute a large amount of variance,
these word frequencies should affect the average au-
toregressive probabilities assigned to our constraint
words, with common constraint words receiving
higher mean autoregressive probabilities than rare
ones. On average, we would expect hypotheses
including rare constraint tokens to be assigned a
lower model probability than hypotheses including
only common constraint tokens.

Under grid beam search, we maintain a beam for
each depth, and within each beam there is compe-
tition between hypotheses which have completed
the same number of constraint tokens. Thus, in the
presence of constraint tokens of varying frequency,
for early (high-depth) beams, there will be direct
competition between hypotheses containing only

2This claim is not entirely novel to the present work — Lu
et al. (2021) allude to this bias “towards sequences satisfying
constraints greedily” in their discussion of grid beam search.
However, to our knowledge, no other works have investigated
this bias in depth, nor presented a direct modification to grid
beam search to account for it.

common constraint tokens, and those containing
rare constraint words. The hypotheses containing
rare constraint words will tend to lose this competi-
tion, and these early beams will preferentially fill
with hypotheses satisfying only easy constraints,
leaving rare constraint words for later beams.

Another perspective on this problem is that,
when comparing hypotheses in grid beam search,
we only account for the likelihood of the tokens that
have already been generated, and not the likelihood
of tokens that are yet to come. While this is true
of beam search in general,’ in constrained decod-
ing, we have a priori knowledge about what tokens
are yet to come, and we can take advantage of this
knowledge by rewarding hypotheses which will
likely have an easier time completing the remain-
der of their constraints. From this perspective, the
tendency of grid beam search to complete easy con-
straints first is merely a symptom of an underlying
inefficiency in finding high-likelihood candidates.

In section 5, we will demonstrate both of these
observations empirically, namely, grid beam search
does prefer to satisfy easy constraints first, and this
does lead it to finding strings with lower average
log-likelihood. But first, we will propose a simple
fix to make grid beam search less greedy.

4 Methods: Fair Grid Beam Search

In this section, we present a variant of grid beam
search which addresses the deficiencies discussed
above. As our variant shows no unfair preference
for incorporating high-frequency constraints earlier,
we term it fair grid beam search.

4.1 Construction

Our construction is largely similar to that for grid
beam search, with one key difference — we asso-
ciate with each state g of M a cost C(q), represent-
ing the expected difficulty of reaching an accepting
state from ¢, and account for this cost when compar-
ing hypotheses. We accomplish this by weighting
all arcs of M with — In P(«), the negative log un-
igram likelihood of that arc’s symbol (token) .
We then define the cost C(q) of each state ¢ to be
the minimum distance to an accepting state in the
underlying directed graph. By this construction,
accepting states have a cost of zero, and non-co-
accessible states have infinite cost. For notational
convenience, we can also define the cost of a string

3In fact, this can be seen as the central simplifying assump-

tion that separates left-to-right approximate decoding schemes
from exact decoding.

(o3 K=all BN Houl o "N el - Nou

clajleafoc|c|o|v|c |

H3(1) H*(0)
clal|b
blalc Ta q
alb]lc ba d
bad\abcd
alb|d
clal|d

Figure 1: An illustration of the greedy bias in grid beam search with beam width 3. Consider a setting with four
constraint tokens: a, b, ¢, and d, with unigram frequencies ordered p(a) > p(b) > p(c) > p(d), and with strings
starting with low-frequency tokens being slightly more probable than those starting with high-frequency tokens.
Assuming no non-constraint tokens, our highest-probability string should be “dcba.” As grid beam search discards
early hypotheses with low-frequency constraint tokens, it fails to find this global optimum, and prefers hypotheses
which save the hardest constraint ‘d’ for last. For clarity, we only illustrate the generation of constraint tokens, not
non-constraint tokens. This results in a depiction of a “diagonal slice” of the grid of beams, where time step and

beam depth vary together.

sasC(s) = C(6*(qo, s)), the cost associated with
the state reached while processing s through M.

Formally, fair grid beam search only differs from
grid beam search in the construction of beams:
Rather than comparing hypotheses h by prob-
ability P(h), we instead compare the quantity
Inp(h) —C(h):

B'(d) = argtop-B1n P(h) — C(h).
he H(d)

As with grid-beam search, we will still be making
“unfair” comparisons between hypotheses which
have completed different subsets of constraints.
However, this cost term compensates for this by
acting as a heuristic for the difficulty of completing
the remainder of the constraints. Hypotheses which
have incorporated infrequent constraint tokens will
have lower cost than hypotheses which have only
incorporated frequent ones.

Our constructions requires access to unigram
probabilities from our autoregressive model’s dis-
tribution P(¢). Importantly, these unigram proba-
bilities are conditioned on the prompt being used as
well as the constraint setting being used, meaning
we can’t rely on precomputed corpus statistics for
these unigram distributions. Luckily, these unigram
probabilities can easily be obtained in practice by
simply averaging all next-token distributions seen
so far during beam search. When many texts are

to be generated using a similar prompt and con-
straint setting, this means that the first text must
be generated with standard grid beam search, but
each subsequent text will be generated with uni-
gram probabilities obtained while generating all
previous texts. Of course, the first text may then
be re-generated using the unigram probabilities ob-
tained through the entire generation process.

4.2 Time Complexity

Assume we are interested in generating sequences
of a maximal length n, decoding with & lexical con-
straints, each of [tokens, and with a beam width
5. Treating our autoregressive model as a constant-
time oracle, grid beam search has a time complex-
ity linear in all of these quantities, i.e. O(nlSk).
This can be seen by noting that, for each of n time
steps, we maintain [x k beams, each containing (3
hypotheses, and that we carry out one autoregres-
sive call for each hypothesis that is part of a beam.
Conversely, DFA-constrained beam search has a
time complexity exponential in the number of con-
straint tokens, O(nlﬁ?k): At each time step, we
maintain one beam of 3 hypotheses for each DFA
state, but in the worst case we may have [x 2*
states — each state must remember which of the
2% subsets of constraints has already been satis-
fied, and must remember how many of the [tokens
of the currently-in-progress constraint have been

completed.

If the state costs C are precomputed, fair grid
beam search’s time complexity is identical to that
of grid beam search: the only appreciable differ-
ence is the need to obtain hypothesis costs each
time step, and this can be done in constant time if
the state associated with each hypothesis is cached
(constant-time determination of hypothesis state
from the parent’s state, and constant-time lookup of
the cost from the state). However, the precomputa-
tion of the costs C involves solving a single-source
shortest path problem on a graph of |V| = [x 2F
vertices. Using Dijkstra’s algorithm with a Fi-
bonacci heap (Fredman and Tarjan, 1987), this can
be done in O (|V]log|V]), giving the entire algo-
rithm a time complexity of

O (|V]log|V| + nlBk)

) (zz’f (k + logl) + nmk) .

This is, of course, ultimately exponential in the
number of constraints, and so appears to offer no
benefit over DFA-constrained beam search. How-
ever, only the precomputation of C is exponential-
time, and this precomputation does not involve
any calls to the autoregressive model. Thus, in
typical use cases, where GPU-based model infer-
ence capacity is the primary limiting resource, this
CPU-based precomputation step is unlikely to be a
limiting factor to model throughput for relatively
small numbers of constraints.

5 Experiments

In this section, we discuss two experiments we
carry out which validate three claims we make:

a) that grid beam search, compared to DFA-
constrained beam search, prefers to satisfy
easy constraints first,

b) that fair grid beam search corrects this bias, and

¢) that fair grid beam search finds higher-
probability strings than grid beam search.

Our first experiment, performed with a large num-
ber or randomly-generated constraint settings, di-
rectly tests and validates all three claims, albeit in a
somewhat artificial setting, while our second exper-
iment, performed at a smaller scale with manually-
curated constraint sets, compares grid beam search
to fair grid beam search in a more naturalistic con-
strained decoding setting, and further validates our
affirmative answers to claims b) and c).

5.1 LLM Generation with Many Random
Constraints

Our first experiment is designed to highlight the ten-
dency for grid beam search to incorporate common
constraint tokens before rare ones, as contrasted
with DFA-constrained beam search, which does
not exhibit this bias, and fair grid beam search,
which corrects for this bias. This experiment in-
volves generating short texts from the TinyLlama-
1.1B language model (Zhang et al., 2024a) with
randomly chosen lexical constraints. For each
generation task, five English words are selected
uniformly randomly from the 5000 most frequent
words in the Corpus of Contemporary American
English (COCA) (Davies, 2008). In order to make
the task setting conceptually simple and ease the
interpretability of results, we limit ourselves to
constraint words which map to a single model to-
ken, reselecting whenever we choose a multi-token
word. The model is then prompted to “write a
one-sentence story,” with no information about the
constraint words provided in the prompt. We select
1000 such five-word constraint sets, and, for each
set, generate a sentence using the three constrained
decoding methods. Inference is performed in four
independent “runs” of 250 generation tasks each —
this detail is of consequence for grid beam search,
where unigram statistics are collected separately
for each of these independent runs.

We are interested in the correlation between con-
straint word frequency and relative position within
the generated sentence: we hypothesize that grid
beam search should exhibit a negative correlation
(constraint tokens with high frequency should have
low average token index, and vice versa). In order
to avoid sensitivity to sentence length, we formalize
this in terms of a notion of relative index — within
each generated sentence, the first constraint token
to appear is assigned a relative index of 1, the sec-
ond a relative index of 2, and so forth, up to 5 for
the final constraint token to appear. Then, for each
constrained decoding method, we can analyze the
Spearman rank correlation p between constraint
token frequency and relative index across all 1000
generated texts.

Table 1 shows that, as hypothesized, grid beam
search exhibits a small, yet highly significant
(p < 10711) negative correlation: on average, low-
frequency constraint words come later than high-
frequency constraint words in sequences. For DFA-
constrained beam search and fair grid beam search,

Method P H
DFA-constrained (0.0180) 58.40
Grid —0.100 60.81
Fair grid (0.0271) 60.48

Table 1: Results for our experiments with random con-
straint words. For DFA-constrained beam search, grid
beam search, and fair grid beam search, we report Spear-
man correlation coefficients p between word frequency
and relative index, and decoding entropy H. Parenthe-
sized correlations are found to be statistically insignif-
icant at p < 0.05, while the correlation for grid beam
search is significant at p < 10711, A two-tailed paired ¢-
test found significant pairwise differences (p < 0.0001)
between all three methods’ decoding entropies.

we are unable to find any significant correlation at
a significance level of p < 0.05.

In addition to investigating correlations, we also
compare the model-assigned probabilities P(s) of
the decoded strings s. As all methods act as de-
coding layers for the same underlying autoregres-
sive model, we can compare these probabilities to
directly compare how well these methods do at
constrained decoding — better decoding methods
should find, on average, higher probability strings.
We quantify this in terms of decoding entropy H
over the set of all generated strings S:

He— -1 > P(s).
|S| sesS
In broad terms, methods which attain a lower de-
coding entropy do a better job at decoding with
constraints.

Decoding entropies are also listed in Table 1.
Across the three methods, DFA-constrained beam
search achieves the lowest decoding entropy. This
is to be expected, since DFA-constrained beam
search maintains a much larger set of beams, and
therefore hypotheses, than the other two methods.
However, between grid beam search and fair grid
beam search, fair grid beam search attains a lower
decoding entropy, despite maintaining the same
number of hypotheses. A two-tailed paired ¢-test
found this difference to be statistically significant
(p < 0.0001).

5.2 CommonGen

For our second experiment, we aim to test a
more natural constrained decoding setting with
a larger autoregressive model, Llama-3.1 8B In-
struct (LLama Team, 2024). Instead of using a

random set of constraint words for each genera-
tion task, we make use of CommonGen (Lin et al.,
2020), a dataset designed to challenge lexically con-
strained generation models, which specifies 400
distinct constrained generation tasks, each with
a set of semantically-related “concepts” as con-
straints. These concepts, formally specified as the
combination of a word and a part of speech, roughly
correspond to lexemes. Thus, for example, the con-
straint run_V could be satisfied by sentences con-
taining the words "run," "ran," "runs," or "running."

To allow for such varied surface realizations,
we use the LemmlInflect Python library (Jascob,
2022) to obtain a set of inflected forms for each
concept, and further expand these sets by includ-
ing variations in capitalization. In contrast to our
previous experiment, we allow for multi-token sur-
face realizations. For each concept, we construct a
regular expression for the the union of all surface
realizations, and we take the intersection of these
unions as our constraint language. We use a mini-
mal DFA for this constraint language to guide our
beam search decoders.

While the CommonGen task is typically framed
in a setting where models are explicitly told the
constraint words in a prompt, we instead choose a
constraint-blind setting, where the constraints are
only enforced by the decoding scheme, and not
known to the language model itself. Although this
setting precludes numerical comparisons to prior
work on CommonGen, and in fact makes the task
significantly harder, it allows us to better analyze
the effects of the decoding method in isolation,
without any interference by the NLU capabilities
of the language model.*

The automata we obtain with this approach have
significantly more states than those for our previous
experiment. For this reason, we do not test DFA-
constrained beam search in this setting, and only
compare grid beam search to fair grid beam search.

As with our first experiment, we compare two
values across decoding schemes: the Spearman
rank correlation p between constraint word fre-
quency and relative index, and decoding entropy
H. As we allow varied surface realizations of con-
straint words, we take as word frequencies the sum
of all surface realizations frequencies in COCA.

*Preliminary experiments showed that including constraint
concepts in the prompt significantly affected the unigram prob-
abilities of the tokens comprising those constraints, leading
to erratic performance when using fair grid beam search with
precomputed unigram probabilities.

Method) H
Grid beam search -0.28 49.22
Fair grid beam search -0.06 48.14

Table 2: Results from our experiments on the Common-
Gen dataset for grid beam search and fair grid beam
search. As before, we report Spearman correlation co-
efficients p between word frequency and relative index,
and decoding entropy H. A two-tailed paired t-test
found the difference between the two methods’ decod-
ing entropies to be statistically significant at p < 0.0001.
Both correlations were found to be statistically signif-
icant at p < 0.05, but they were also found to differ
significantly from one another via bootstrapping with a
two-tailed binomial test (p < 0.00001).

Table 2 lists our results from this experiment.
In summary, we reconfirm the two hypotheses we
sought to validate with this experiment: that grid
beam search preferentially satisfies easy constraints
before hard ones, and that fair grid beam search
achieves a lower decoding entropy than fair grid
beam search. Of note, in this setting, both grid
beam search and fair grid beam search achieve a
significant negative correlation coefficient, just of
vastly different magnitudes. This is not particu-
larly surprising, as we have no a priori reason to
expect that there should be exactly zero correlation
between frequency and sentence position in natural
language. However, the significant (p < 0.00001)
difference between the two correlation coefficients
provides clear evidence that grid beam search in-
troduces its own bias in this regard.

Surprisingly, the decoding methods’ effect on
both constraint ordering and decoding entropy ap-
pear to be much stronger in this experiment than
they had been for our setting with a smaller lan-
guage model and random constraints. Grid beam
search has a correlation coefficient of —0.28 (com-
pared to —0.10 for the previous experiment), and
fair grid beam search improves upon grid beam
search by over one nat in decoding entropy. We
had expected these effects to be more subtle in this
setting: The order of words is a consequence of
both biases introduced by the decoding method as
well as semantic effects enforced by the language
model, and, in a setting with a more competent
language model and stronger semantic relations
between constraint words, we did not expect the
decoding method’s bias to affect the results so dra-
matically. While we suspect the amplified effects

seen in this setting may result from the increased
complexity of the constraining automaton (which
includes multi-token constraints and constraints
with multiple surface realizations), further experi-
ments would be necessary to fully understand what
circumstances modulate the strength of grid beam
search’s bias. Nonetheless, this experiment pro-
vides strong evidence that the problem we point out
in grid beam search, and the solution we present
with fair grid beam search, are of practical rele-
vance in realistic constrained decoding settings.

6 Conclusion and Future Work

In this work, we discuss the greedy bias of grid
beam search and how to fix it. We present a concep-
tual argument as to why grid beam search preferen-
tially satisfies easy constraints first, and experimen-
tally demonstrate that it in fact does so in practice,
biasing the constraint orderings of generated sen-
tences. To correct for this bias, we present fair grid
beams search, a slight modification to the decoding
algorithm that rewards hypotheses for including dif-
ficult constraints. Experimentally, we demonstrate
that fair grid beam search not only fixes grid beam
search’s bias in constraint ordering, but that it finds
higher-probability strings in the process. While the
time complexity of fair grid beam search is worse
than grid beam search, all extra computation is in a
precomputation step that requires no access to the
underlying autoregressive model, meaning that the
improvements provided by fair grid beam search
essentially come “for free” in settings where model
throughput is the computational bottleneck.

A theme of this work which might lead to future
improvements in constrained decoding is the devel-
opment of a more nuanced notion of progress to-
wards completion and comparability of hypotheses.
In grid beam search, progress was measured purely
in tokens, while our present work demonstrates
the need to also account for the rarity of these to-
kens. Future work could take a more detailed view
of both how to quantify completion progress, and
under which circumstances hypotheses of varying
completion progress can be compared. This might
lead to more general approaches, where the number
of beams can be adjusted freely, and hypotheses can
be assigned to beams in a way that will maximize
the fairness of competition between candidates.

Limitations

One major limitation of this work is our inability
to explain the exaggerated strength of grid beam
search’s bias on the CommonGen experiment ver-
sus the more muted results in our experiment with
random constraints. While we expect this might be
a consequence of the more complicated automaton,
incorporating multi-token constraints and varied
surface forms, more work would need to be done
to understand how this ordering bias is affected
by automaton structure. Indeed, we also neglect
automata with Kleene stars in this work, and so
the behaviors of the different decoding algorithms
are still unknown for many types of constraint lan-
guages.

An additional limitation to this work is the lack
of clarity regarding interactions between fair grid
beam search and direct mentions of constraint
words in prompt. While preliminary experiments
showed that fair grid beam search performed poorly
when constraint words were mentioned explicitly
in prompts, we were unable to quantify this interac-
tion more precisely, nor were we able to propose an
alternative that was stable in such circumstances.

References

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 936—
945, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J.
Newman. 2007. Power-law distributions in empiri-
cal data. Cite arxiv:0706.1062Comment: 43 pages,
11 figures, 7 tables, 4 appendices; code available at
http://www.santafe.edu/ aaronc/powerlaws/.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. Plug and play language models: A
simple approach to controlled text generation. In In-
ternational Conference on Learning Representations.

Mark Davies. 2008. The corpus of contemporary
american english (coca). Online database. Avail-
able online at https://www.english-corpora.
org/coca/.

Andrew Drozdov, Nathanael Schirli, Ekin Akyiirek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier
Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. CoRR,
abs/2209.15003.

Michael L. Fredman and Robert Endre Tarjan. 1987.
Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596-615.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15351546,
Vancouver, Canada. Association for Computational
Linguistics.

Brad Jascob. 2022. LemmlInflect: A python module for
english lemmatization and inflection. Version 0.2.3.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yu-
lia Tsvetkov. 2021. Controlled text generation as
continuous optimization with multiple constraints.
Advances in Neural Information Processing Systems,
34:14542-14554.

Bill Yuchen Lin, Wangchunshu Zhou, Ming Shen, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. CommonGen: A constrained text gen-
eration challenge for generative commonsense rea-
soning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1823—1840,
Online. Association for Computational Linguistics.

LLama Team. 2024. The ILama 3 herd of models.
Preprint, arXiv:2407.21783.

Bruce T. Lowerre. 1976. The Harpy speech recognition
system. Ph.D. thesis, Carnegie-Mellon University.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-
Logic decoding: (un)supervised neural text genera-
tion with predicate logic constraints. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4288—-4299,
Online. Association for Computational Linguistics.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. Cgmh: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6834-6842.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314-1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024a. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Wenxuan Zhang, Yue Deng, Bing Liu, Sinno Pan, and
Lidong Bing. 2024b. Sentiment analysis in the era

https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.18653/v1/D17-1098
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://doi.org/10.1137/070710111
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
https://www.english-corpora.org/coca/
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-15003
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-15003
http://dblp.uni-trier.de/db/journals/corr/corr2209.html#abs-2209-15003
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://github.com/bjascob/LemmInflect
https://github.com/bjascob/LemmInflect
https://github.com/bjascob/LemmInflect
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://doi.org/10.18653/v1/2020.findings-emnlp.165
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/2021.naacl-main.339
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://doi.org/10.18653/v1/2024.findings-naacl.246
https://doi.org/10.18653/v1/2024.findings-naacl.246

of large language models: A reality check. In Find-
ings of the Association for Computational Linguis-
tics: NAACL 2024, pages 3881-3906, Mexico City,
Mexico. Association for Computational Linguistics.

George K. Zipf. 1949. Human Behavior and the Princi-
ple of Least Effort. Addison-Wesley.

A Grid beam search as a finite-state
automaton

Hokamp and Liu (2017) define grid beam search in
terms of an interface of three functions: generate,
start, and continue, and in terms of hypotheses,
which may either be open (not “working on” any
constraint) or closed (currently “working on” one
particular constraint. We reinterpret this descrip-
tion as describing the construction of a nondeter-
ministic finite-state automaton. We take the states
of our automaton to be complete answers to the
following set of questions:

a) Which subset of constraints has already been
completed?

b) Which constraint, if any, is currently being
worked on?

c¢) If applicable, how many tokens of it have al-
ready been completed?

That is, each state g; is a triple of answers to ques-
tions a), b), and c¢). For a constraint set C', the
stating state, ¢q;, answers these questions as (&,
none, not applicable), and the sole accepting state
answers these questions (C, none, not applicable).

The three functions generate, start, and
continue define the transitions of the automaton.
For any possible subset of constraints A € 2¢, and
for any symbol a € X, generate defines the self
loop transition

Finally, continue generates transitions of the
form

J

(A,ci,j—1) SR (A U {¢;}, none, not applicable)

when |¢;| = 7, and

. c .
<A7 CiyJ] — 1) - (A7Ci7])

otherwise.

This automaton is non-deterministic: for each
state not currently working on a constraint,
generate defines one outgoing transition for ev-
ery token in our vocabulary, while start defines
distinct transitions for some tokens. Thus, the con-
struction we present in Section 2.2 cannot be di-
rectly applied to this automaton. This is not a funda-
mental difficulty, but rather a notational mismatch.
In fact, the only change that needs to be made is to
modify our definition of the depth-wise hypothesis
sets to

Ht(d) ={h|he H' 3¢ : q; € 0*(qo0,) ~d(q;) = d}

in order to account for the automaton’s transition
function 9, and consequently §*, being set-valued
instead of state-valued.

Conceptually, this does change the picture, in
that hypotheses can now exist in multiple beams,
rather than just one. Concretely, when generating
the first token of a constraint, this can either be
done via the start transition (in which case that
token is “counted” as the start of a constraint, or
via the generate transition (in which case it isn’t
counted), leading to the same token sequence ap-
pearing as hypotheses for two distinct depth values.
While retaining two copies of the same hypothesis
might leave less room in a beam for other hypothe-
ses, we do not expect this to be very common or
consequential in practice.

(A, none, not applicable) %> (A, none, not applicable).

For a constraint ¢; ¢ A, start defines transitions
of the form

1

G

(A, none, not applicable) — (Au{c;}, none, not applicable)

when c; is a single token constraint, and

1
¢

(A, none, not applicable) — (A, ¢;, 1)

otherwise.

https://doi.org/10.18653/v1/2024.findings-naacl.246

	Introduction
	Constrained Decoding
	DFA-Constrained Beam Search
	Grid Beam Search
	Other work on constrained decoding

	The Greedy Bias of Grid Beam Search
	Methods: Fair Grid Beam Search
	Construction
	Time Complexity

	Experiments
	LLM Generation with Many Random Constraints
	CommonGen

	Conclusion and Future Work
	Grid beam search as a finite-state automaton

