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ABSTRACT

Large Language Model (LLM)-driven Multi-agent systems (Mas) have recently
emerged as a powerful paradigm for tackling complex real-world tasks. How-
ever, existing Mas design strategies typically rely on manually crafted interac-
tion mechanisms or heuristic rules, introducing human biases and constraining
the autonomous ability. Even recent advances that claim to adaptively construct
Mas still fall within the paradigm of semi-autonomous patterns. In this work, we
introduce MasHost, a reinforcement learning (RL)-based framework designed
for autonomous and query-adaptive Mas generation. Firstly, we formulate the
generation of Mas as a graph search problem and propose Hierarchical Rela-
tive Policy Optimization (HRPO), a novel RL strategy that collaboratively com-
bines group-level relative advantages with fine-grained action-wise rewards. Sec-
ondly, we design MasHost to jointly sample agent roles and their interactions
through a unified probabilistic sampling mechanism, enabling adaptive and coher-
ent Mas construction. Beyond the conventional emphasis on accuracy and effi-
ciency, MasHost innovatively introduces component rationality, offering a new
perspective on the principled design of multi-agent systems. To our knowledge,
our proposed MasHost is the first RL-driven framework for autonomous Mas
graph construction. Extensive experiments on six benchmarks demonstrate that
MasHost consistently outperforms most competitive baselines, validating its ef-
fectiveness, efficiency, and structure rationality.

1 INTRODUCTION

Background. In recent years, the advent of large language models (LLMs) has fundamentally re-
shaped research paradigms across various fields Achiam ef all (Z023); Shao ef all (2024); OpenAl
(P0724). LLM-driven Multi-agent system (Mas) demonstrate remarkable potential in addressing com-
plex real-world tasks, emerging as a prominent research frontier in artificial intelligence Zhuge et al!
(2074); IZhang et all (20744;R); Wang et all (Z023); Yang et all (2073); Hong et al] (2073); Ci_ef all
(2023); Wu_ef all (2023); Yeef all (2025); Zhang et al] (2025); Hu et all (2024)); Chen et all (2023).
Mas seeks to address tasks that surpass the capabilities of a single agent through coordinated inter-
actions among multiple agents Cuo_ef all (2025); Li“efall (2074d); Guo_ef all (2024). Therefore,
designing the interaction mechanism among agents is critical to ensuring the effectiveness of Mas.
Many studies rely on manual drafting and heuristic-based approaches for constructing interaction
mechanisms Wei ef all (2027); Wang et all (2023); Du_efall (2023); Wang et al] (2027). Howeyver,
these strategies often yield suboptimal performance due to the introduction of human biases.

Motivation. This limitation has prompted recent efforts toward the development of autonomous
Mas. These works model Mas as a directed graph to achieve policy-driven Mas construction, fa-
cilitating more adaptive and flexible connections among agents Zhuge et al] (2074); [Zhang et all
(20243a;h); Hong et all (2023); Hu et all (2024); Chen ef all (2023); Yue ef all (Z023); Zhang et all
(2025). Despite these advances, full autonomous Mas remains elusive. @ Candidate Pool Sam-
pling strategy is followed by many existing approaches Zhang et all (2025); Yue ef all (2075); Chen
efall (2023)), where Mas are constructed by sampling or composing from a predefined structure pool.
This candidate pool inevitably introduces human biases, limiting the flexibility of model in Mas de-
sign. ® Agentic Workflow is also a widely adopted strategy in prior works Zhang et al] (2(074h;a);
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/huge et all (2074); Hu et all (Z024), aiming at the design of task-level workflows through an adap-
tive method. These workflows exhibit limited adaptability across varying in-task queries, which
often results in suboptimal trade-offs between performance and cost-efficiency. Therefore, existing
methods remain within the realm of semi-autonomous design.

Insight. We argue that the constrained search spaces in recent practices fundamentally restrict
the autonomous ability of Mas. Candidate pool sampling limits the search space of Mas due to
predefined structure pool, whereas agentic workflows inherently constrain the Mas search to a coarse
granularity at the task level. To overcome these limitations, we aim to model the Mas construct
process over the full-scale graph search space, enabling fully autonomous and query-adaptive Mas
design. However, implementing a full-scale graph search to construct autonomous Mas presents
significant challenges. The primary challenge stems from the non-Euclidean nature of the Mas graph,
where the expansive combinatorial space of node feature sampling and edge learning complicates
the modeling and optimization process.

Methodology. In this work, we propose an

autonomous Mas hosting framework (MasHost)
based on Reinforcement Learning (RL) algorithm. =) ‘y
This design is motivated by the recognition that RL. ~ Candidate pool Static workflow

strategy can effectively optimize the exploration of _
vast search spaces, supported by numerous success- 6‘@

ful applications Sun_ef-all (2(024); Kaelbling et all
(M996); Ci (20T7). Specifically, we model the de-
sign of Mas as a graph construction process from
scratch under RL guidance. Firstly, the challenge
lies in the dual-decision nature of the Mas construc-
tion process, which involves both node role genera-
tion and connectivity decision. This differs funda-
mentally from conventional RL algorithms designed
for single-step or sequential actions. Discretizing
this dual-action process not only introduces convergence difficulties in high-dimensional combinato-
rial spaces but also disrupts gradient flow. To address this, we propose a joint probabilistic sampling
mechanism that simultaneously models the distribution over agent attributes and their connectivity
patterns. Technically, we sample agent roles from the full-scale role space, and subsequently guide
the connectivity decisions using joint residual probabilities derived from the role assignments. This
mechanism not only ensures efficient representation of the Mas design process but also enables the
optimization of differentiable sampling. Secondly, the next challenge remains in formulating an
effective RL objective that aligns with the autonomous Mas construction paradigm. This difficulty
arises from the fact that our Mas construction is driven by three objectives. Beyond the performance
and efficiency goals emphasized in prior Mas works, we place additional attention on ensuring the
structure rationality of the constructed systems. To achieve this, we propose a novel RL optimiza-
tion pipeline, Hierarchical Relative Policy Optimization (HRPO), which enables policy-driven Mas
to respond to queries accurately, efficiently, and rationally. Inspired by GRPO Shao ef-all (20174),
HRPO incorporates a hierarchical reward structure that combines group-relative advantages with
action-wise absolute rewards. The group-relative advantage strategy compares the relative perfor-
mance of different Mas, guiding the policy network to prioritize accuracy and efficiency in query
responses from well-performing Mas. The step-wise absolute reward emphasizes the rationality of
each action, ensuring that the addition or removal of each agent aligns with the overall objective.
Finally, we conduct comprehensive experiments focusing on three aspects, i.e., performance, cost-
efficiency, and rationality. Empirical comparisons of accuracy and cost-effectiveness with existing
methods verify the effectiveness of MasHost. Our contributions can be summarized as:

s

Figure 1: (left) Candidate Pool Sampling
Mas. (right) Agentic Workflow.

* We introduce a reinforcement learning-enhanced framework for multi-agent system design, en-
abling fully autonomous agent generation from scratch.

* We propose a joint probabilistic sampling mechanism to realize the dual-action process in Mas
construction, along with a hierarchical relative policy optimization algorithm to optimize the sys-
tem for high performance, efficiency, and rationality.

» Extensive experiments on six benchmarks demonstrate that MasHost consistently outperforms
most competitive baselines, validating its effectiveness, efficiency, and structural rationality.
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2 PRELIMINARY

2.1 GRAPH FOR MULTI-AGENT SYSTEM

Modeling Multi-agent systems (Mas) as directed graphs G = (V, &) has become a prevailing
paradigm in recent researches. Each node v € V represents an LLM agent with role-specific at-
tributes that include its capabilities and responsibilities, while each directed edge e € £ encodes an
interaction pathway between agents. This formulation offers a flexible and generalizable abstraction
for Mas, and recent efforts have advanced this paradigm to design autonomous Mas architectures
for tackling real-world applications.

2.2 REINFORCEMENT LEARNING FOR MULTI-AGENT SYSTEM
We formulate the Mas construction process as a Markov Decision Process M = (S, A, R).

* State Space S. The state space S covers the global configuration of the Mas. At step ¢, the state
st € S encapsulates the query @, constructed structure M; = {Ry, ..., R”M}, and the message list
of those agents MESSAGE (M), i.e., sy = {Q, M, MESSAGE(M;) }. Moreover, the output of each
agent R; can be formalized as MESSAGE(R, ), where j € [1, |M[].

 Action Space A. The action space A defines all possible editing operations for constructing the
Mas from scratch. It consists of two categories: node-level actions A4,, and edge-level actions A..

* Policy Function 7. The policy function 7 governs the decision-making process of Mas construc-
tion by jointly modeling node-level and edge-level actions.

* Reward Function r(a;). The reward function r(a;) defines the reward of each action a; € A
taken in a given state s € S. To achieve stabilize policy optimization, the advantage function
A(a) is commonly introduced, which quantifies the relative merit of an action by measuring the
difference between the action’s expected return and the baseline value of the current state.

Building on the above understanding, the construction of Mas can be formulated within the RL
paradigm as a sequence of state-action transitions, represented as (sg, a1, S1,as, 2, -+ ), where
each state s, corresponds to the current configuration of the Mas, and each action a, represents an
editing operation that transitions the system from one state to the next. A comprehensive account of
the design motivations and strategies for the above concepts will be provided in Sec. B.

2.3 PROBLEM FORMULATION

Given a query @), we focus on leveraging RL policy to learn an optimal 7* = (nj, w;) for Mas
design, enabling fully autonomous and query-specified construction of multi-agent systems. We
define the optimality of Mas M from three perspectives: performance quality, resource efficiency,
and the structure rationality. Therefore, the overall reward function R(M | @) is formulated as a
composition of three key criteria,

7n(M | Q) = 7apcrf(Ma Q) + Teft (Mv Q) + Tstruct (M) (1)

where 7perr (M, Q) measures performance quality in answering query, reg(M, Q) evaluates resource
efficiency in answering query, and 74,40 (M) captures structure rationality. The objective is to find
7* that maximizes the expected reward,

7" = argmax Ey.. [r(M| Q)]. 2)

3 RELATED WORK

In recent years, the emergence of Large Language Models (LLMs) has introduced new research
paradigms for tasks such as mathematical reasoning, code generation, data analysis, and question
answering Shao et all (2024); Ciet all (20244); Zhu_ef all (2024); Xie_et_all (2024)); Song et all
(2073); Wang et al] (2024); Zha et all (2023). Empirical studies have further shown that challenges
unsolved by a single LLM can be effectively addressed through collaborative interactions among
multiple LLM-based agents with specialized roles Wei ef-all (Z027); Yao_ef all (20023); Shinn_ef all
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Figure 2: Framework of our MasHost. (left) MasHost autonomously manages the complete pro-
cess of building Mas. (right) Detailed construction of Mas using a reinforcement learning strategy.

(20723), giving rise to the development of Multi-agent systems (Mas). Various Mas patterns have
been explored, including chain-based, star-shaped, debate-style, and tree-structured frameworksWei
ef-all (20272); Zhon ef all (2074); Du_ef all (20723); Ishibashi & Nishimnra (2024); Lief all (20245),
leading to notable successes across diverse domains.

Agentic Workflow. Workflow-based approaches statically perform tasks by following predefined
workflows, which is implemented by multiple agents. Designing workflows based on handcraft de-
sign and learnable network constitute two prominent application paradigms. The former aims to
design workflows based on human understanding and domain knowledge, such as code generation
Ridnik_ef all (2024), mathematics (CAPZ)K (2024)), and question an-
swering Nori_efall (2023). The latter focuses on the automated construction of workflows, where
an adaptive algorithm can dynamically design all task-specific workflows. GPTSwarm
(2024) models workflows as graphs, and leverages reinforcement learning to design task-specific
workflows. ADAS Huef-all (Z024)) represents workflows using code structures and maintains his-
torical workflows in a linear list. AFLOW (P0074R) also represents workflows through
code, emphasizing a custom MCTS algorithm for automated workflow optimization.

Autonomous Mas. Different from workflow-based practices, autonomous Mas efforts focus on
designing the most efficient and accurate Mas tailored to each query. MaAS (P025)
constructs Mas by building an agentic supernet, where each block within the supernet is sampled
from a predefined structure pool. MasRouter Yue'ef all (2025) constructs Mas by sampling from four
structure candidate pools while adaptively learning the number of agents, role types, and LLM types.
MAS-GPT [Ye“ef all (Z025) represents Mas as executable code and trains a LLM to construct Mas
by generating code. Actually, existing approaches remain semi-autonomous. The reason lies that
most methods model Mas construction as sampling or combining from predefined structure pools.
Even for the seemingly fully autonomous framework MAS-GPT, the datasets used to train the LLM
are still manually curated rather than generated through exploratory processes. Our work differs
fundamentally from existing approaches by employing reinforcement learning to autonomously ex-
plore optimal Mas structures from scratch. This design enables the constructed Mas to be free from
human biases and solely optimized for better query answering.

4 MasHosT: THE HOST FOR MULTI-AGENT SYSTEMS

The design of Mas involves a complex search space that encompasses both node attributes (e.g.,
agent roles) and connectivity patterns (e.g., inter-agent coordination). As a result, each step of
the RL search process exhibits dual-action characteristics. To facilitate efficient search and ensure
gradient differentiability, we introduce a Joint Probabilistic Space Sampling (JPSS) mechanism in
Sec. El. We then analyze the construction objectives in existing Mas studies and extend them in our
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framework from three dimensions. To achieve this goal, we propose a novel Hierarchical Relative
Policy Optimization pipeline specifically designed for agent system construction in Sec. E2. The
implementation details of the network are described in detail in Fig. B.

4.1 JOINT PROBABILITY SPACE SAMPLING

The action space .A encompasses all editing operations for constructing Mas from scratch, compris-
ing node-level actions A,, and edge-level actions .A.. Therefore, the atomic action at time step ¢ is
represented as a tuple of two sub-actions, a; = (ay, a.). Our policy network 7 consists of two com-
ponents: the first policy g selects actions from the space A,,, and the secondary policy 74 conducts
the link decision from the space A.. At the step ¢, the action space A,, is modeled with three types
of atomic actions a,, € {ADD, DELTE, EXIT}.

» ADD. This action involves adding a new agent. Once triggered, a agent role is subsequently
sampled from the role space R = { Ry, ..., Rx }. Thus, the ADD action serves both as an activation
signal and as a role sapling. In the implementation, we omit its function as an agent-adding signal
and instead integrate role selection directly into the policy my. In other words, the single ADD
action is replaced by the role space ADD := R.

* DELTE. This action corresponds to removing an agent that was most recently modified.

e EXIT. This action marks the completion of Mas construction, where the intermediate inference
results are passed to a final summary agent, which then produces the answer to the query.

Given the above analysis of actions, the sampling space of 7y can be defined as the union of the
role space R and the special actions {DELETE, EXIT},i.e., A, = RU{DELETE, EXIT}, where
|A,| = K + 2. Given the already constructed Mas M, prior to step ¢, the policy network 7y conducts
sampling process with the sate s, as input, i.e., a,, ~ 7o(A,|s¢).

Once the sampled action satisfies a,, = R, € R, the policy 74 is activated. The policy network 7
is designed to learn the interaction patterns a. between the newly added agent R; and the existing
agents M; = {R1,...,Ryy,|}. Technically, w4 performs connectivity sampling using the current state
s; and the selected role R; as inputs, a. ~ my(Ae|st,Re).

The independent learning of g and 7 is infeasible, which brings the issue of gradient disruption. To
this end, we introduce the JPSS to effectively guide the dual-action decision process in Mas design.
In the setting of JPSS, the process of constructing a Mas M based on RL is modeled by a unified
policy procedure. Technically, 7y is parameterized to produce a softmax distribution P, € R¥+2
over the role space A,,, and sample the role R with the highest probability. Subsequently, 7, takes
R as input and outputs a sigmoid-based edge sampling distribution P,, € RM!. Instead of sampling
directly from the probability distribution of P, , we conduct connectivity sampling based on the
joint probability a. ~ p x P, , where p denotes the probability of selecting R. Under this setup, role
selecting and connection learning are modeled as a unified action sampling a; = (@, @e) ~ T X Ty,

7o S — RE, 7T¢:p><R><S—>R‘M“. 3)

4.2 HIERARCHICAL RELATIVE POLICY OPTIMIZATION

We have aligned the Mas construction process with the RL by explicitly formulating its atomic
policy actions in above discussion. In this subsection, we will introduce the reward mechanism that
guides the framework toward learning an optimal Mas construction policy.

The evaluation of a Mas instance is inherently multi-dimensional, encompassing its performance
quality, resource efficiency, and the rationality of its components. Prior studies have predominantly
targeted only one or two of these dimensions, whereas RL enables a unified framework to pursue
globally optimal Mas across all criteria. To this end, we propose a Hierarchical Relative Optimiza-
tion (HRPO), which integrates group-relative advantages and step-wise action rewards.

Group-relative advantage. Balancing accuracy and efficiency is the core principle of constructed
Mas. We introduce an intra-group advantage comparison mechanism to achieve this goal. By com-
paring relative advantages among instances, this mechanism generates preference signals that drive
the policy network to pursue optimal objectives while minimizing resource consumption. Specifi-
cally, given the initial state sg, we first sample a group of Mas instances based on the old policy 74,
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denoted as G = {M;, Mo, ..., M }. Subsequently, instance M; is evaluated in terms of both accuracy
and resource efficiency in answering the same query Q. The reward function 7¢(-) is designed as,

ro;) = { 1_15 - Tokens, l\b;lz((g)) ;}( @)

where Y is the ground-truth of query @ and /3 is a hyper-parameter to ensure 3-Tokens € [0, 1]. Be-
sides, T'okens refers to the token usage ( the sum of prompt and completion tokens) by M; in answer-
ing query . By implementing reward evaluation on each instance, we can collect the global rewards
for the group as Rg = {r¢(M1),r¢(M2),...,7¢(Mz)}. In order to quantify the policy preferences
TG (Mi ) —Tg
where 7 = Mean(Rg) and o, = Var(Rg). Therefore, Ag distills the strengths and weaknesses of
each M, which can effectively guide the policy network to favor superior patterns during training.

through comparison, the normalized relative advantage of the M; is computed as Ag(i) =

>

Action-wise absolute reward. Above relative advantage comparison mechanism can guarantee the
performance and efficiency of the Mas, but fail to capture the rationality of its internal structure. To
this end, we introduce an action-wise absolute reward to explicitly guide the rationality of internal
structural design. Early-added agents, which may focus on task decomposition rather than delivering
accurate answers, always initially show poor performance. These agents also play a pivotal role in
structuring the collaborative process and enabling downstream success. Therefore, it is essential
to protect and encourage these early-added agents to ensure the Mas fosters reasonable individual
collaboration and gradual performance refinement. We introduce an exemption time 7z to safeguard
early-stage exploration, where the actions taken before g are exempt from penalties, even if they
fail to reach the correct solution. Based on this setting, we define the action-wise reward function in
as follows:

—17 lf Otfl = Y,Ot 7é Y
1, if O, 1 £Y,0, =Y

e (ag) =4 e, if O, =0,1=Y (5)
0, ift<Tp, 0 =01 #Y

—Oé'(t—TE), ift>TE,Ot:Ot_17éY

where « is a hyper-parameter to ensure —«- (t—Tg) € [—1,0], and O;_; represents the intermediate
output produced by the constructed Mas after executing action a;. This reward function evaluates
the ¢-th action a; taken during the construction of M;, following the principles outlined below.

* 0,1 =Y,0; #Y. This scenario represents the worst case, where the current action a; disrupts
an already correct Mas. Therefore, it should be assigned the maximum penalty, even if it occurs
before the exemption time.

* O;—1 #Y,0, =Y. This represents the best-case scenario, indicating that the policy network has
successfully captured the correct answering path. To this end, it is assigned the maximum reward
when this occurs.

* Oy = O;_1 =Y. This indicates that consistently correct answers are commendable. However, as
the number of exploration steps increases, the reward should decay toward zero.

* t < Tg,0f = Oy_1 # Y. This case indicates that, before the exemption time, the current action
a, neither improves the previous incorrect outcome. This action is neutral and thus free of penalty.

* t>7Tg, Oy = O;_1 # Y. The action a, fails to bring about any changes in performance after the
exemption time. While it does not worsen the result, it is still discouraged. This case may reflect an
exploration failure of the policy network. Therefore, a significant penalty —«.- (t — Tg) € [—1,0]
increasing with ¢ is assigned to this action.

We have quantified the reward in Mas construction from both group-relative preference and action-
level reward perspectives. The combination of these hierarchical rewards forms a composite action
reward signal that collaboratively guide the policy function to design Mas with strong performance,
high efficiency, and reasonable components. Building on this hierarchical reward design, the final

action advantage fli(at) for each action a; in M; is formulated as,

[ |

Aifar) = (i) + 3 A" 1, (ar). ©)

T=t
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Table 1: Performance comparison with single agent execution methods, hand-craft multi-agent sys-
tems, agentic workflows, and autonomous mutli-agent systems. The execution LLM is consistently
set as gpt-4o-mini for all baselines.We report the average performance across five independent runs.

Methods GSMS8K MATH MMLU GPQA MBPP HumanEval Average
10 OpenAl (2024) 87.37 46.32 81.53 39.21 71.62 87.21 68.88
CoT Werefal (Z022) 86.85¢,{)_53 45.83 10.49 81A92T()V39 39.20“)_(” 71.21 10.41 88.39T]_]g 68.90
SC (CoTx5) Wang et al] (Z022) 87.86T0_4g 47.79¢1_47 80.65 10.88 38'981“13‘ 72.87@_25 88.377]_]6 69.42
MultiPersona Wang et al! (Z073) 87.124}()_35 43.973”‘,5 81.03v() 50 40'09T()-83 72.18TU_5(J 87454“)_33 68.66
LLM-Debate Dinefall (PT123) 88.52T1_15 47.3311_()1 82‘447()})1 39'57T0-36 69.82“_5() 88.07T()_3(, 69.29
DyLAN Cincefall (2023) 89.21T]_g4 48.19'“,37 81.90“)‘37 40.54’(],33 76.50T4_gg 86.98“;‘3: 70.55
GPTSwarm Zhuge et al] (2024) 88.3471)_97 48'31T1-99 8149() 04 42'41T3-3() 77'34T5-72 88.2971_[)8 71.03
ADAS Hiretal (2024) 85721155 41705 806100, 3980105 68.005 83795  66.60
AFlow [Zhang et all (2024K5) 90.601323  50.631431 81931040 44.231500  80.94193 89.2712.06 72.94
AutoAgents Chen_efall (Z023) 87.36“)_()1 43.94\3,1}; 82‘0()?0‘47 42'57?‘-36 71.11 1051 86.95w,3<, 68.99
MAS-GPT Yeeral (2175) 91361300 52111570 82091056 44911570 80191557 87761055  73.07
G-Designer Zangetall (70227) 91271500 5003171 8144000 420205 8010155 873210,  72.03
MaAS Zhang et al] (2023) 91 .76@_39 51 '71T4-40 83A17T1_(,4 44'39T5-18 80'21T3-59 9009T288 73.56
MasHost (OUIS) 93.2375_3(, 52.42T()'|(J 83.40“.87 45.1915‘93 80.977%)35 89.9613‘75 74.20

The learning objective of our MasHost based on HPRO policy is formalized by,

M|
..7HRPD 3 ¢ LZ |M|Z{mln{ 9 ¢) ”,cllp( (9a¢)a1_571+5)'14i,t}}7
Tp\Ei,j
W@(Mi,t|q7 MESSAGE(Mqvt_l)) Rjell"l_i[,t71 ¢( !
7T90M(Miyt|q,MESSAGE(Mi’tfl)) H 7T¢old(ei:j|q’ Mi’t,hMESSAGE(R]’))’

Rj€M; ¢ —1

q,Mi,t_17MESSAGE(le)) (7)

w(0,¢) =

where 7y and 7, denote the current policy models, and 7y ,;4 and 74 , , represent the corresponding
old policy models. ¢ is a clipping-related hyper-parameter introduced in PPO Schulman ef-all (Z017)
for stabilizing training. Similarly, w(6, ¢) denotes the importance sampling ratio, also introduced in
PPO, which serves to constrain excessive policy updates by adjusting the weight of sampled Mas.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate MasHost on six public benchmarks, including (1) math reasoning: GSM8K
Cobbeef all (2021), MATH Hendrycks et al] (2021)); (2) question-answering: GPQA Rein ef all
(2024), MMLU Hendrycks et all (2020); (3) code generation: HumanEval Chen'efall (Z021), MBPP
Ansfin_ef all (Z021). Detailed dataset descriptions and divisions are provided in Appendix. CI.

Baselines. We compare mutli-agent systems constructed by MasHost against various types of base-
lines, including (1) single agent execution methods: 10 OpenAl (2024), Chain-of-Thought (CoT)
Wei ef all (2027), CoT SC (5-shot) Wang et al] (2(027); (2) hand-craft multiagent systems: Multi-
Persona Wang et al] (Z023), LLM-Debate Du et all (2023), DyLAN L efall (Z023); (3) agentic
workflows: GPTSwarm Zhuge et all (2024)), ADAS Hu ef all (2024), AFlow Zhang et al] (20245);
(4) autonomous mutli-agent systems: AutoAgents Chen ef all (20723), MAS-GPT [Ye_ef all (2079),
G-Designer Zhang et all (20244), MaAS Zhang et al] (2025).

Implementation Details. Following the experimental settings adopted by most baselines Zhang
ef_all (Z074h; P0O25), we select GPT-40-mini-0718 OpenAl (P024) as the LLM executor, which
is accessed via APIs. Besides, we set the temperature to O for the executor. We implement our
MasHost on a server equipped with an NVIDIA A100-SXM4-80GB GPU. The code is available
athttps://anonymous.4open.science/r/MasHost—-81BE.

Metrics. For GSM8K, MATH, GPQA and MMLU, we report the Accuracy (%) as the metric. For
HumanEval and MBPP, we report the Pass@1 (%) to assess code accuracy.


https://anonymous.4open.science/r/MasHost-81BF
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5.2 PERFORMANCE COMPARISON

As shown in Tab. [, our proposed MasHost consistently achieves the best performance among all
compared methods. Compared to the existing state-of-the-art, our MasHost achieves an absolute
performance improvement of up to 1.47 % on the GSM&8k, highlighting its superiority over existing
methods. Furthermore, we also focus on the samples where MasHost failed to provide correct
answers to further investigate its robustness. We categorize the samples with incorrect answers into
five types: (1) global failure due to Incorrect Role Selection (IRS), (2) target omission caused by
Task Forgetting (TF), (3) incomplete answers caused by Premature Termination (PT), (4) Incorrect
Verification (IV), and (5) correct reasoning with Slight Deviations in the final result (SD). As shown
in Fig. B(left), we observe that the erroneous samples are primarily concentrated in two categories:
IV and SD. This indicates that MasHost is able to identify the correct direction for answering but
fails to produce the correct solution due to the complexity and difficulty of the questions. This
demonstrates the potential of MasHost in tackling complex problems and highlights its robustness.
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Figure 3: (left) Robustness of MasHost. (middle) The similarity between the roles and the queries
type. (right) Rationality of Constructed Mas.

5.3 COST-EFFICIENT ANALYSIS

As shown in :Tab. O, we present the aver- Table 2: Efficiency comparison on the MATH Benchmark.
age cost required to answer each query in  Begt results are in bold.

the test phase, using GPT-40-mini as ex-
ecution LLM. The cost efficiency of our

# Prompt  # Completion Cost

MasHost is highly competitive. Actu-  pothods Tokens Tokens (x10~2 USD)

ally, we have incorporated the following

design strategies into our framework to re- SE;I‘Swarm Zggé ‘;”gzg g%g

duce costs. (1) The inter-group advantage ow ’ ’ )

in HRPO takes cost consumption into ac- MaAS 3,273 3,749 3.040
MasHost 3,630 3,698 2.763

count and quantifies the associated loss.
(2) The global message pool prevents redundant invocations of the same role. Therefore, we con-
clude that our MasHost provides performance improvements while maintaining cost efficiency.

5.4 RATIONALITY DISCUSSION

We assess the rationality of the multi-agent system built by MasHost from two aspects: (1) the role
rationality and (2) the structure rationality.

Rationality of role assignment. Given the full-scale role space search in our work, ensuring the
rationality of role selection is essential for tackling complex real-world queries. We design a corre-
lation matching strategy to verify whether each role in the constructed Mas is relevant to the given
query. As shown in Fig. B(middle), we observe a perfect correlation (i.e., 100%) between the as-
signed roles and query types across all datasets. This demonstrates that even under full-space role
search, the multi-agent system constructed by MasHost maintains explainable rationality.

Rationality of Mas structure. We evaluate the rationality of our Mas structure in terms of redun-
dancy and oversimplification. Let M denote the multi-agent system generated by MasHost, where
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removing one agent yields M~ and adding one task-related agent results in M. We sample 100 in-
stances from each of the GSM8K and HumanEval datasets to compare the performance of M, M~
and M7, thereby verifying the rationality of the constructed MAS. As shown in Fig B(fight), we ob-
serve that, compared to M, the performance of M~ exhibits a significant drop, while the performance
of M show a slight performance degradation. The decline in performance resulting from the addi-
tion of agents is primarily due to incorrect post-processing, which can corrupt previously accurate
information. This indicates that the M constructed by MasHost achieves an efficient, accurate, and
reasonable multi-agent system.

5.5 ABLATION STUDY

We conduct ablation studies to explore the ef- Typle 3. Ablation study of MasHost. Cost refers
fectiveness of each component of MasHOSt. (4 the relative proportion of total token consump-

Specifically, we analyze the respective impacts ) during the training, with MasHost normal-
of three core components: the joint probabilis- ;.4 to 1.00.

tic space sampling mechanism (JPSS), hierar-

chical relative policy optimization (HRPO), and
the design of exemption time (ET). To this end,  Dataset HumanEval | GSMSK
we design three variants based on MasHost, Perf.  Cost | Perf. Cost

MasHost w.o. JPSS, MasHost w.o. HRPO, MasHost 89096 1.00 ‘ 9323  1.00
and MasHost w.o. ET. Tab. B shows that the

MasHost w.o. JPSS 88.07 1.10 | 91.53 1.02
MasHost w.o. HRPO 8722 143 | 90.64 1.73
MasHost w.o. ET 88.93 092 | 91.17 0.96

performance drops significantly when any of
the three core components is removed. Among

them, MasHost w.o. HRPO exhibits the most
significant performance drop, indicating that this component has the greatest impact on performance.
Although MasHost w.o. ET has a relatively smaller effect on performance, the resulting multi-
agent systems often converge to a smaller scale. In this case, many of the resulting structures lack
rationality and fail to handle complex tasks effectively.

5.6 SENSITIVITY ANALYSIS

We investigate the sensitivity of training rounds
n,., and exemption time 7z. As shown in Fig. @, s
we present the performance fluctuations under |
different hyper-parameter settings on GSM8K
and HumanEval. Although performance im-
proves with larger n,., the marginal gains dimin-
ish when n,. > 4. Therefore, we fix n, = 4 ‘ ‘
to achieve a trade-off between performance and m Te

cost. We observe that the performance con-

verges once the exemption time 7 > 3. Given

that the value of 7% is proportional to the cost Figure 4: The sensitivity of training rounds n,.,
consumption, we set 7z = 3. Moreover, the and exemption time Te.

hyper-parameters «, 3, v, and € are discussed in detail in Appendix C2.
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©® @ © ©
8 8
Performance (%)
® ®m © ©
g8 8 8 =2

3

H H
GSMeK | | GSMeK
HumanEval | HumanEval

©
&

®
&
®
&

6 CONCLUSION

In this work, we propose MasHost, a novel reinforcement learning-based framework that enables
the fully autonomous construction of query-specific Multi-agent system. By introducing a joint
probabilistic sampling mechanism and a novel Hierarchical Relative Policy Optimization strategy,
MasHost enables end-to-end autonomous design of multi-agent systems with enhanced adaptabil-
ity, rationality, and performance. Our approach enables scalable, efficient, and interpretable con-
struction of autonomous Mas. Limitations. A key application of LLM-based multi-agent systems
lies in tool usage for solving real-world problems, which is beyond the scope of our current work. To
enable this capability, it is essential to disentangle the relationship between multi-agent interaction
patterns and tool utilization. In future work, we plan to explore methods for effectively decoupling
multi-agent interaction modes from tool usage, enabling more flexible and adaptive integration of
external tools.
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ETHICS STATEMENT

Our MasHost is an LLM-based multi-agent system designed to address the limitations and perfor-
mance challenges of a single LLM. As it does not involve human subjects, nor raise concerns related
to discrimination, bias, or fairness, this work involves no potential ethical hazards.

REPRODUCIBILITY STATEMENT

No private datasets are used in this paper, and the complete source code has been released via
anonymous links. Detailed descriptions of the experimental settings are provided in the maintext
and the code repository to ensure reproducibility.
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THE USE OF LARGE LANGUAGE MODELS

This paper makes use of large language models in two respects. Firstly, MasHost is an LLM-based
multi-agent system, where the decision-making component of each agent is instantiated by an LLM.
Secondly, during the presentation of this manuscript, large language models are used solely for
language polishing, without activating any content generation capabilities.

A  AUTONOMY AND RATIONALITY GUARANTEE

We guarantee the autonomous capability of MasHost to construct multiple agents from two com-
plementary perspectives. Our HRPO-based graph growth mechanism can generate arbitrary directed
graphs, while our role sampling strategy, in contrast to prior methods restricted to task-specific role
pools, operates over the entire role space.

Autonomy in graph construction. From a graph-theoretic perspective, we argue that the design
space explored by MasHost is equivalent to the entire set of directed graphs over a given node
set. Specifically, by modeling node role assignments and edge connectivity as joint probabilistic
variables, our framework ensures the representational completeness of all possible Mas interaction
topologies without structural bias or limitation. This guarantee implies that MasHost can generate
any feasible directed graph configuration, thus achieving full autonomy in graph construction.

Autonomy of role selection. The autonomous capability of role selection is largely overlooked
in existing works, which typically preset a task-specific role pool and select agent roles within
this limited space. In this work, we focus on enabling autonomous role selection by sampling
from the entire role space without human-imposed restrictions. This approach not only enhances
the flexibility and generality of the system but also allows for emergent agent behaviors that are
better aligned with dynamic task demands. To address the associated optimization challenges arising
from the high-dimensional and combinatorial nature of the full role space, we introduce a joint
probabilistic modeling framework that guides role sampling in a stable and differentiable manner.

Algorithm 1 MasHost: RL-based Multi-Agent System Construction

Require: Query @), full-scale role pool R

Ensure: Multi-agent System Graph M
1: Initialize policy networks 7y (node-level), 7y (edge-level)
2: Initialize empty MAS graph M <+ 0, s = {Q}
3: while not TERMINATED(M) do

4: Observe current state s; = {Q, M, MESSAGE(M) }
5: Sample 4 cases to construct a relative group G = {My, Mo, M3, My} ~ 7
6: Sample action a,, ~ mg(ay, | st) > Node-level action
7: if a,, = EXIT then
8: break
9: else if a,, = DELETE then
10: Remove last-added agent from M
11: else
12: Add agent v with role a,, to M
13: Sample edge distribution P, < my(ae | ¢, an) > Edge-level action
14: Sample connections a. ~ p(a,) - Pe. > Joint distribution sampling
15: Add edges a. toM
16: end if
17: Compute group-relative preference Ag () and action-level reward ry, (ar)

N (M |
18:  Compute advantage A;(a;) = Ag(i) + > v ~try, (ar)
=t

19:  Update 7y, m via HRPO objective Jimpo (6, )
20: end while
21: return M
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B VISUALIZATION RESULTS

To intuitively demonstrate the effectiveness of our MasHost, we visualize the constructed multi-
agent system. As shown in Fig. BA B B, our MasHost yields agents with clearly distinguishable
roles and behaviors, offering strong interpretability in both structure and decision-making. The
visualized trajectories and interactions not only align well with real-world patterns but also reflect
the model’s superior performance in terms of coordination and task success. These visualizations
compellingly demonstrate that our approach achieves a strong balance between interpretability and
performance.

C IMPLEMENTATION DETAILS

C.1 DATASET DESCRIPTIONS AND DIVISIONS

We partially follow the data partitioning scheme of (P0074R), while adapting the split to
align with the characteristics of our framework, as shown in Fig. B

Table 4: Dataset descriptions and partitions.

Dataset Sample size Sampling Strategy Training set Test set
GSMSK 8,500 Full Samples 200 ~6,800
MATH ~12,500 Select 617 123 494
MBPP 974 Full Samples 200 ~T779
HumanEval 164 Full Samples 33 131
GPQA 448 Full Samples 200 248
MMLU ~15,908 Select 1,000 200 800

C.2 HYPER-PARAMETERS SETTINGS

The hyper-parameters «, 3, v, and € play a critical balancing role in our framework, mediating
trade-offs between reward shaping and learning objectives to ensure stable and effective policy opti-
mization. In this section, we elaborate on their functionality and the specific settings adopted in our
implementation.
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765 years younger than her husband.

;25 How old is Steve's son's wife?
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770 Figure 6: The Mas constructed on the GSM8K sample.
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73 Query (HumanEval) Multi-agent system

Z: Help me implement this function:

- defis prime(n): """Return true if a given Python expert Python expert
777 number is prime, and false otherwise.
778 >>>1s_prime(6) False

779 >>>1s prime(101) True

780 >>>1is prime(11) True

781 >>>is prime(13441) True
762 >>>1is prime(61) True

e >>>1s prime(4) False

784 L
- >>>1s prime(l) False
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788 Figure 7: The Mas constructed on the HumanEval sample.
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807 Algebra solver Summarizer
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809 Figure 8: The Mas constructed on the MATH sample.
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Query (MBPP) Multi-agent system

Write a function to find the peak
element in the given array.

Your code should pass these tests: Coding algorithm

* ‘python specialist
assert find_peak([1, 3, 20, 4,

1,0],6)==2
assert find peak([2, 3, 4, 5,

6]’ 5) =4 Summarizer
assert find peak([8, 9, 11, 12, Code reviewer

14, 15], 6) ==

Figure 9: The Mas constructed on the MBPP sample.

Query (MMLU) Multi-agent system

Let A and B be sets, f: A->Band g: B
-> A be functions such that for all a \in
A, g(f(a)) = a. Statement 1 | The
function f must necessarily be injective.
Statement 2 | The function f must
necessarily be surjective.

A: True, True

B: False, False

C: True, False

D: False, True Summarizer

mathematician philosopher

Figure 10: The Mas constructed on the MMLU sample.
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The o in Eq. B is set 0.1 in the implementation. The « is a balancing hyper-parameter to ensure
—a - (t —Tg) € [-1,0]. Since the number of exploration steps typically does not exceed 10, the
value « is empirically set to 0.1.

* The hyperparameter /3 in Eq. B is set to 0.0001 for GSM8K and 0.00001 for the other datasets.
The § is a balancing hyper-parameter to ensure 3 - Tokens € [0, 1]. The difference setting mainly
stems from that the number of tokens consumed per answer in GSMS8K ranges from 100 to 1, 000,
whereas in the other datasets, it typically ranges from 1, 000 to 10, 000.

* The parameter ~y in Eq. B is set to 0.9 in our implementation, following common configurations
adopted in reinforcement learning practices. The discount factor -y controls the temporal weighting
of future rewards, enabling the agent to balance short-term gains with long-term objectives.

* The parameter € in Eq. @ is set to 0.1 in our implementation, following the configuration used in
the paper Shao“efall (Z024); Schulman_ef-all (2017). The clipping threshold e constrains policy
updates by limiting the change in the probability ratio, thus preventing overly aggressive updates
that could destabilize trainingSchilman ef-all (201°7).

C.3 ROLE PROMPTS

Our MasHost relies on a global role pool, which includes all known applicable roles. We pro-
vide specific role names along with corresponding prompts. Different from existing practices, they
overlook the design of refuse conditions for agent. We highlight the specific function and identity
of each role agent. This design is motivated by the aim of this work to enhance the rationality of
Mas. The irrationality of previous methods lies in their tendency to allow the model to select a role
completely unrelated to the question, yet still generate a valid response, as shown in Fig. 1. While
this may seem acceptable for relatively simple problems, it hinders broader transfer and real-world
applicability.
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Figure 11: Roles associated with unrelated tasks are nevertheless able to answer the queries well.

Molecular Biologist

Responsibilities:

* Study structure and function of biomolecules (DNA, proteins, etc.)

* Analyze gene expression and regulation

* Investigate molecular mechanisms of cellular processes

* Develop techniques like PCR or CRISPR
Assist Conditions:

* General biology questions

* Related fields (e.g., Genetics, Biochemistry, Biotechnology)
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Cell Biologist
Responsibilities:
* Study cell structure, division, and metabolism
* Investigate cell signaling and communication
* Analyze organelle functions (e.g., mitochondria, nucleus)
» Research cell responses to environmental changes
Assist Conditions:
* General biology questions
* Related fields (e.g., Molecular Biology, Immunology, Cancer Research)

Geneticist

Responsibilities:

 Study inheritance patterns and genetic variation

* Analyze DNA sequencing data

* Investigate genetic disorders

* Develop genetic engineering tools
Assist Conditions:

* General biology questions

* Related fields (e.g., Genomics, Evolutionary Biology, Medicine)

Botanist

Responsibilities:

 Study plant physiology and taxonomy

* Investigate plant-environment interactions

* Research photosynthesis and plant hormones

» Explore plant biodiversity and conservation
Assist Conditions:

* General biology questions

* Related fields (e.g., Ecology, Agriculture, Forestry)

Biomedical Scientist

Responsibilities:

* Research disease mechanisms (e.g., cancer, infections)

* Develop diagnostic tools and therapies

 Study drug interactions and pharmacokinetics

* Investigate immune system responses
Assist Conditions:

* General biology questions

* Related fields (e.g., Pharmacology, Immunology, Clinical Research)
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Inorganic Chemist
Responsibilities:
* Study the structure and properties of inorganic compounds
* Investigate catalysis and reaction mechanisms in inorganic systems
* Develop new materials
* Analyze metal-ligand interactions in coordination chemistry
* Explore bioinorganic chemistry
Assist Conditions:
* General chemistry questions
* Related fields (e.g., Materials Science, Geochemistry, Industrial Catalysis)

Organic Chemist
Responsibilities:
 Study the synthesis, structure, and reactivity of organic compounds
* Develop new synthetic methodologies
¢ Investigate reaction mechanisms
* Design pharmaceuticals, agrochemicals, or polymers
* Analyze spectroscopic data (NMR, IR, MS) for structure elucidation
Assist Conditions:
* General chemistry questions
* Related fields (e.g., Medicinal Chemistry, Polymer Science, Petrochemistry)

Analytical Chemist
Responsibilities:
* Develop and optimize analytical techniques
* Perform qualitative and quantitative analysis of chemical samples
* Validate methods for quality control
* Interpret data from instruments
 Ensure compliance with regulatory standards
Assist Conditions:
* General chemistry questions
* Related fields (e.g., Forensic Science, Environmental Monitoring, Food Safety)
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Materials Chemist

Responsibilities:

* Design and synthesize novel materials

* Study structure-property relationships in materials

* Develop functional materials for energy storage

* Investigate smart materials
Assist Conditions:

* General chemistry questions

* Related fields (e.g., Nanotechnology, Electronics, Energy Science, Biomedical Engineer-
ing)

Theoretical Chemist
Responsibilities:
* Develop computational models to predict molecular properties and reactions
* Apply quantum mechanics (e.g., DFT, ab initio methods) to chemical systems
» Simulate molecular dynamics and statistical mechanics
* Analyze chemical bonding and electronic structure
* Collaborate with experimentalists to interpret data and guide research
Assist Conditions:
* General chemistry questions

* Related fields (e.g., Computational Chemistry, Drug Design, Catalysis, Astrophysics)

Code Reviewer

Responsibilities:

* Analyze code style compliance

¢ Identify potential bugs and security vulnerabilities

* Suggest performance optimizations

 Evaluate code readability and maintainability

* Check boundary conditions and exception handling
Reject Conditions:

* user mentioned that currently no cooperators available.

* Or user gives cooperators, but their messages are not related to code.
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Code Reviewer

Responsibilities:

* Analyze code style compliance

* Identify potential bugs and security vulnerabilities

» Suggest performance optimizations

 Evaluate code readability and maintainability

* Check boundary conditions and exception handling
Reject Conditions:

* user mentioned that currently no cooperators available.

 Or user gives cooperators, but their messages are not related to code.

Debug Assistant

Responsibilities:

* Parse error messages and stack traces

 Locate root causes in code

* Suggest debugging methods and tools

* Verify effectiveness of fixes

* Reproduce and isolate error scenarios
Reject Conditions:

* user mentioned that currently no cooperators available.

* Or user gives cooperators, but their messages are not related to code.

Python Programmer

Responsibilities:

* Answer Python language feature questions

» Explain standard library and third-party package usage

* Guide Python best practices

* Analyze advanced features

e Compare differences between Python implementations
Assist Conditions:

* General mathematics or physics questions

Coding Algorithm Specialist

Responsibilities:

* Design optimal algorithms for problems

* Analyze time and space complexity

» Suggest suitable data structures

e Compare different algorithmic approaches

* Explain algorithm design patterns
Assist Conditions:

* General mathematics or physics questions
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Performance Optimizer

Responsibilities:

¢ Identify performance bottlenecks

* Suggest low-level optimizations

* Analyze memory usage patterns

* Guide parallelization strategies

* Recommend profiling tools and techniques
Reject Conditions:

* user mentioned that currently no cooperators available.

* Or user gives cooperators, but their messages are not related to code.

Algebra Solver

Responsibilities:

* Solve linear and nonlinear equations

 Perform matrix operations and linear algebra computations

* Factor and manipulate polynomial expressions

* Solve systems of equations

» Simplify algebraic expressions
Assist Conditions:

* General mathematics questions

* Related fields (e.g., number theory, geometry)

Geometry Specialist

Responsibilities:

» Explain coordinate geometry concepts

* Analyze geometric transformations

* Compute areas, volumes and angles

* Guide vector geometry applications

* Solve trigonometric problems
Assist Conditions:

* General mathematics questions

* Related fields (e.g., Physics applications, Computer graphics, Architectural design)
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Applied Mathematician

Responsibilities:

* Bridge theoretical math and practical applications

* Solve mathematical modeling problems

* Explain numerical analysis methods

* Guide optimization problem solutions

* Analyze operations research problems
Assist Conditions:

* General mathematics questions

* Related fields (e.g., Engineering problems, Economic modeling, Scientific computing)

Analytic Mathematician

Responsibilities:

 Study limits, continuity, and convergence in real and complex spaces

* Develop theories in calculus, measure theory, and functional analysis

* Solve differential equations and harmonic analysis problems

* Explore Fourier analysis and operator theory

* Investigate partial differential equations and their applications
Assist Conditions:

* General mathematics questions

* Related fields (e.g., Mathematical physics, Dynamical systems, Probability theory)

Discrete Mathematician

Responsibilities:

» Study combinatorial structures and graph theory

* Solve problems in cryptography and coding theory

* Analyze discrete optimization and algorithmic complexity

» Explore logic, set theory, and discrete probability

* Investigate network science and computational geometry
Assist Conditions:

* General mathematics questions

* Related fields (e.g., Computer science, Cryptography, Operations research)
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Classical Physicist
Responsibilities:
* Study macroscopic physics (mechanics, thermodynamics, electromagnetism)
* Analyze motion and forces in Newtonian frameworks
* Model wave phenomena and fluid dynamics
 Explain classical field theories
Assist Conditions:
* General physics questions
* Related fields (e.g., Engineering mechanics, Acoustics, Thermodynamic systems)

Particle Physicist

Responsibilities:

* Investigate fundamental particles and interactions

* Interpret data from colliders (e.g., LHC)

* Test predictions of the Standard Model

» Explore beyond-Standard-Model theories
Assist Conditions:

* General physics questions

* Related fields (e.g., Quantum field theory, Cosmology, Nuclear physics)

Quantum Physicist
Responsibilities:
e Study quantum systems and entanglement
* Develop quantum computing/algorithms
* Analyze atomic/subatomic behavior
» Explain quantum measurement problems
Assist Conditions:
* General physics questions
* Related fields (e.g., Quantum chemistry, Nanotechnology, Quantum optics)

Condensed Matter Physicist
Responsibilities:
» Research solid/liquid state properties
* Study superconductivity or topological materials
* Model phase transitions and collective phenomena
* Design novel materials (e.g., graphene)
Assist Conditions:
* General physics questions
* Related fields (e.g., Semiconductor physics, Materials science, Spintronics)
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Relativistic Physicist

Responsibilities:

* Analyze spacetime curvature (GR effects)

* Model black hole/neutron star dynamics

* Test Lorentz invariance and relativistic jets

» Simulate gravitational wave sources
Assist Conditions:

* General physics questions

* Related fields (e.g., Astrophysics, Cosmology, High-energy physics)

D LIMITATIONS AND FUTURE WORK

A key application of LLM-based multi-agent systems lies in tool usage for solving real-world prob-
lems, which is beyond the scope of our current work. To enable this capability, it is essential to
disentangle the relationship between multi-agent interaction patterns and tool utilization.

In future work, we plan to explore methods for effectively decoupling multi-agent interaction modes
from tool usage, enabling more flexible and adaptive integration of external tools. Instead of relying
on static workflows, we aim to introduce a unified decision-making framework in which agents can
autonomously determine when, how, and which tools to invoke based on dynamic task demands.
This will empower the system to generalize more effectively across real-world scenarios, supporting
more robust problem-solving. By aligning tool usage with emergent agent collaboration dynamics,
we anticipate improved coordination efficiency and a deeper synergy between reasoning, communi-
cation, and execution.

E BROADER IMPACTS

Our proposed MasHost framework focuses on enabling fully autonomous and adaptive multi-agent
system design to improve the efficiency and effectiveness of solving complex real-world problems.
By automating the generation and coordination of many agents, MasHost aims to reduce human
labor in address real-world tasks, thereby empowering users to achieve higher productivity and
better resource utilization. Therefore, MasHost itself does not involve mechanisms that pose direct
ethical or safety risks. Instead, it serves as a foundational tool designed to assist researchers and
practitioners in building more capable multi-agent systems with improved rationality, performance,
and cost-efficiency. Our frameworks goal is to support human-centered applications by augmenting
human capabilities rather than replacing them.
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