
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMAL FLOW TRANSPORT AND ITS ENTROPIC REG-
ULARIZATION: A GPU-FRIENDLY MATRIX ITERATIVE
ALGORITHM FOR FLOW BALANCE SATISFACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

The Sinkhorn algorithm, based on Entropic Regularized Optimal Transport (OT),
has garnered significant attention due to its computational efficiency enabled by
GPU-friendly matrix-vector multiplications. However, vanilla OT primarily deals
with computations between the source and target nodes in a bipartite graph, limiting
its practical application in real-world transportation scenarios. In this paper, we
introduce the concept of Optimal Flow Transport (OFT) as an extension, where
we consider a more general graph setting and the marginal constraints in vanilla
OT are replaced by flow balance constraints. To obtain solutions, we incorporate
entropic regularization into the OFT and introduce virtual flows for individual
nodes to tackle the issue of potentially numerous isolated nodes lacking flow
passages. Our proposition, the OFT-Sinkhorn algorithm, utilizes GPU-friendly
matrix iterations to maintain flow balance constraints and minimize the objective
function, and theoretical results for global convergence is also proposed in this
paper. Furthermore, we enhance OFT by introducing capacity constraints on nodes
and edges, transforming the OFT problem into a minimum-cost flow problem. We
then present the Capacity-Constrained EOFT-Sinkhorn algorithm and compare
it with the traditional Minimum cost flow (MCF) algorithm, showing that our
algorithm is quite efficient for calculation. In particular, our EOFT-Sinkhorn is
evaluated on high-precision and integer-precision MCF problems with different
scales from one hundred to five thousand size, exhibiting significant time efficiency
and the ability to approximate optimal solutions. Source code is available at the
Supplementary Material.

1 INTRODUCTION

Optimal Transport (OT) has shown increasingly important role in solving various problems in machine
learning, including domain adaptation (Tzeng et al., 2017; Cui et al., 2018), generative models (Ar-
jovsky et al., 2017), network design (Xu & Cheng, 2023), self-supervised contrastive learning (Caron
et al., 2020; Shi et al., 2023), and long-tail recognition (Peng et al., 2021; Shi et al., 2024) etc. As an
efficient method for solving OT, the Sinkhorn algorithm relies on matrix-vector iterations to solve the
transportation problem, which is GPU-friendly with high-speed calculations. However, the Sinkhorn
algorithm’s applicability is limited to bipartite graphs, as it only involves computations between sets
of source and target nodes, which significantly deviates from real transportation scenarios. Naturally,
a question arises: can optimal transport with matrix iterations be extended to more general graphs?

Numerous researchers have made significant efforts in the field of optimal transport on graphs. For
instance, based on the graph structure, (Le et al., 2022) propose a variant of OT called Sobolev
transport (ST), which provides a closed-form solution for efficient computation. Additionally, in a
related work, (Le et al., 2024) utilize a specific class of convex functions with an Orlicz structure
to introduce the generalized form of Sobolev transport. However, previous works have mostly
overlooked the flow balance constraints on nodes in graph transport. They indirectly compute the
flow between two nodes by calculating the shortest paths between source and target nodes first, thus
failing to incorporate capacity constraints on nodes and edges, which are common in real-world
transportation scenarios.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Vanilla OT (b) Optimal Flow Transport (c) Flow Balance

Figure 1: Illustration of our optimal flow transport and difference to vanilla OT. (a): Vanilla OT
focuses on solving the transportation within a bipartite graph, focusing on transportation between
source and target nodes. (b): Our OFT aims to solve transportation on a more general graph, focusing
on the flow between each pair of nodes. (c): In our OFT, we consider the constraints on each node
satisfying the flow balance constraint.

In this paper, we aim to fill this gap by proposing Optimal Flow Transport (OFT), in which the
constraints for marginals are replaced by flow balance constraints on nodes. As illustrated in Figure
1, we consider more complex transportation problems where the source nodes (blue) may not directly
transport to the target nodes (orange). Instead, it may pass through other nodes, such as transshipment
points (yellow). As a result, the original transportation problem is generalized into a broader min-cost
flow (MCF) problem where the marginal constraints are replaced by flow balance constraints as
shown in Figure 1(c). However, in the current works, we are unable to derive a matrix-vector iterative
algorithm for flow balance satisfaction in OFT by introducing an entropic regularization (Benamou
et al., 2015) directly. This limitation can be attributed to the following reasons: 1) the marginals are
unknown in OFT, and we only have information about their differences; 2) the presence of isolated
points in the graph that do not carry any flow contradicts the non-sparse nature of matrix iteration.

To overcome these limitations, in this paper, we propose entropic optimal flow transport, in which we
do the following reformulation for the flow problem: 1) we introduce virtual transport flows from
each node to itself in the graph, allowing isolated points to participate in the iterations even if they do
not have any incoming or outgoing flows originally; 2) reformulating the flow balance constraints
with marginal-like constraints via adding a new marginal variable for the optimization; 3) Finally
adding the entropic regularization to get the relaxation for OFT. The above reformulations of OFT
enable us to iteratively update the coupling and marginals to compute an approximate solution for the
OFT problem, where we refer to this algorithm as the OFT-Sinkhorn algorithm, and the theoretical
guarantee is also proposed for convergence. Moreover, we can impose capacity constraints on nodes
and edges in our OFT-Sinkhorn algorithm, in which the proposed method can serve as a matrix
iteration-based solver for the minimum-cost flow problem, and experimental results demonstrate the
efficiency of our algorithm with minimal computational errors. Finally, this paper contributes:

• We extend the vanilla OT within a bipartite graph to a more general graph case, and thus propose
optimal flow transport, in which the marginal constraints are replaced by flow balance constraints.

• We propose the entropic OFT to get the GPU-friendly OFT-Sinkhorn algorithm to get the ap-
proximate solution of the OFT problem. The theoretical guarantee is also proposed for global
convergence.

• We incorporate node and edge capacity constraints into the OFT, and in this case our OFT is
equivalent to the minimum-cost flow problem. By considering these constraints, we modify the
OFT-Sinkhorn algorithm to ensure that the output satisfies capacity constraints. Experimental
results on the minimum-cost flow problem showcase the superiority of our algorithm.

2 RELATED WORKS AND BACKGROUND

Entropic Optimal Transport. The Optimal Transport (OT) theory can be traced back to (Monge,
1781) where the objective is to seek a mapping that minimizes the total cost of transporting mass
from a source measure to a target measure. Kantorovich (Kantorovich, 1960) introduces the idea
of using probabilistic transport instead of a deterministic map, which is now commonly known as
Kantorovich’s formulation of OT. Specifically, given the cost matrix C and two marginals (a,b), Kan-
torovich’s OT with entropic regularization involves solving the coupling P (i.e. the joint probability

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

matrix) by

min
P∈U(a,b)

< C,P > −ϵH(P), where U(a,b) = {P ∈ R+
mn|P1n = a,P⊤1m = b} (1)

Note that H(P) = − < P, logP − 1m×n > represents the entropic regularization, and ϵ is the
coefficient. When ϵ = 0, the entropic OT degenerates to vanilla Kantorovich, and when ϵ > 0, the
objective in Eq. 1 is ϵ-strongly convex. Consequently, it possesses a unique solution that can be
determined using Sinkhorn algorithms, as discussed in (Cuturi, 2013; Benamou et al., 2015).
Proposition 1 (Solution Form of Entropic OT (Peyre & Cuturi, 2019)). The solution to Eq. 1 is
unique and satisfy Pϵ = diag(u)Kdiag(v), where K = e−C/ϵ is the Gibbs kernel associated to the
cost matrix C and (u,v) are two (unknown) scaling variables.

With the solution form of entropic OT, Sinkhorn algorithms (Cuturi, 2013; Benamou et al., 2015)
were proposed to obtain the solution of Eq. 1, where one can iteratively update u = a

(Kv) and
v = b

(K⊤v)
to approximate the solution of the transportation problem. However, research on solving

operational research problems using GPU-friendly matrix iteration algorithms seems to be focused
only on transportation problems or matching problems, rather than other complex problems in
operation research. In this paper, we propose to use matrix-vector iterative algorithms to solve a more
generalized transportation problem, i.e. MCF. To the best of our knowledge, our algorithm is the first
GPU-friendly matrix iterative method specifically designed for solving MCF.

Optimal Transport on the Graph. The concept of optimal transport on graphs can be attributed
to (Feldman & McCann, 2002), who initially compute the shortest distances between source and
target nodes to establish a cost matrix. This matrix is then used to calculate the 1-Wasserstein
distance, transforming the problem into a linear program, specifically a min-cost flow problem. This
methodology has been applied and expanded to formulate and analyze traffic congestion models.
Recently, (Le et al., 2022) introduced a new variation named Sobolev transport (ST), tailored
for measures supported on graphs, enabling a closed-form expression for quicker computation.
Furthermore, (Le et al., 2024) extended Sobolev transport with an Orlicz structure (Orlicz, 1932).
They need to first calculate shortest paths before solving the optimal transport between source and
target and they can’t handle capacity constraints at nodes. In this paper, we introduce optimal flow
transport and its entropic regularized case, which calculate the flow in the graph via matrix iterative
methods without the need for precomputing the shortest distances on the graph.

Minimum Cost Flow. Network flow theory (Iri, 1996) encompasses a wide range of optimization
problems. One problem is the minimum-cost flow (MCF) (Goldberg, 1997), which involves finding
the minimum-cost transportation of the specified amount of a commodity from a set of supply
nodes to a set of demand nodes in a directed network, considering capacity constraints and linear
cost defined on the arcs. The MCF problem arises in diverse applications, including transporta-
tion (Ahmady & Eftekhari Yeghaneh, 2022), logistics (Krile, 2004), telecommunication (Ahmady &
Eftekhari Yeghaneh, 2022), dynamic resource planning (Hadji & Zeghlache, 2012), and many other
industries (Choi et al., 1988; Minieka, 1979; Ahuja & Hochbaum, 2008). Efficient algorithms have
been developed to solve the MCF problem. For instance, Fulkerson’s out-of-kilter algorithm (Fulker-
son, 1961) takes advantage of the special structure of MCF and adjusts the arcs that do not satisfy
optimality properties. The cycle canceling algorithm is proposed by Klein (Klein, 1967), which fo-
cuses on maintaining feasible flow at each iteration. Recent years, advancements in the MCF problem
have been marked by several pivotal studies. However, most of the previous methods is based on
CPU calculations and also make an assumption that all the data is integers (de Vos, 2023; Klingman
et al., 1974), which limits the solution of the MCF problem when dealing with high-precision data.
Therefore, when dealing with non-integer data, it is necessary to multiply the decimal by a power of
10 to convert it into an integer. In this paper, we incorporate some results from OT to solving the
MCF problem. Leveraging entropic regularization, we solve MCF by using a GPU-friendly matrix
iterative method to get the approximate solutions.

3 METHDOLOGY

3.1 OPTIMAL FLOW TRANSPORT

In this subsection, We give the definition of Optimal Flow Transport and its exact methods for solving.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Formulation of OFT. We begin by defining the Optimal Flow Transport (OFT) as follows. Consider
α =

∑n
i=1 aiδvi

and β =
∑n

i=1 biδvi
are two measures on the graph G(V, E), where N = |V|

and (a, b) are two balanced vectors satisfying < a − b,1 >= 0. The formulation of OFT can be
specified as

min
P≥0

< D,P > s.t. P1N −P⊤1N = s (2)

where D ≥ 0 is the distance matrix and s = a−b. Note for each node vi ∈ V , if si > 0, we refer to
node vi as a supply node with a supply value of si > 0. If si < 0, it is a demand node with a demand
of −si. If −si = 0, we categorize node vi as a transshipment node. Besides, considering each edge
eij ∈ E , Dij is the distance of the edge eij and we set Dii → +∞ to prevent self-transportation
of nodes here. In comparison to traditional vanilla OT, our OFT considers flow balance constraints
P1N −P⊤1N = s instead of the marginal constraints in U(a,b) in Eq. 1.

Exact Solving for OFT. For solving the optimization in Eq. 2, in the field of OT, solutions are
typically obtained indirectly. Specifically, one can first define the cost matrix using the geodesic
distance (or shortest path metric):

Cij = min
K≥0,(ik)k:i→j

{K−1∑
k=1

Dik,ik+1
, 0 ≤ k ≤ K, eik,ik+1∈E

}
(3)

where i → j indicates i1 = i and iK = j, which is the path starts at i and ends at j. The primary
formulation of OT, or called the 1-Wasserstein distance can be formulated as

min
π≥0

< C, π > s.t. π1N = a, π⊤1N = b, (4)

where pi represents the final transportation results between the source and target nodes, which can
be equivalent to P given the routing of the shortest path in Eq. 3. Then one can adopt the Network
Simplex (Dantzig, 1951) or Sinkhorn Algorithms (Cuturi, 2013) to get the solutions. However, these
shortest path-based approachs have some notable limitations because the routes in the graph are fixed,
and there is no way to impose constraints on the flow of any arbitrary edge or node, which limits the
potential for real applications such as real traffic scenarios. Another line of approaches (Li et al.,
2010; Mohammad Ebrahim & Razmi, 2009) is to use heuristic algorithms based on minimum cost
flow. However, different from the algorithms of transportation problems, most of these algorithms
assume that all data are integers (e.g. (de Vos, 2023)) and aim to find an integer-valued flow with the
minimum total cost while meeting the supply-demand constraints for the graph. This severely limits
the algorithms’ applications on high-precision data.

3.2 OPTIMAL FLOW TRANSPORT WITH ENTROPIC REGULARIZATION

In this subsection, we propose the definition of entropic OFT and corresponding OFT-Sinkhorn to get
the approximate solution for OFT.

Figure 2: Illustration of our constraints in Entropic
OFT. The flow constraints satisfied by Eq. 5, where
each node includes virtual flow(d), input flow(qi),
and output flow(qi − si + d). For each node, it ag-
gregates flows from all other nodes and distributes
them to the downstream nodes.

Formulation for Entropic OFT. Differing
from previous CPU-based algorithms, in this
paper, following (Cuturi, 2013), we consider
the entropic OFT and employ a GPU-friendly
matrix-vector iterative algorithm to speed up
the computations for OFT. However, directly
adding entropy regularization cannot derive
an algorithm to obtain an approximate solu-
tion as directly as vanilla OT. The reason is
that: 1) there are many isolated points that do
not have any flow passing through them in
the exact solution, while under entropy regu-
larization, flows are necessarily channeled
through them, causing significant bias; 2)
the flow balance constraint cannot directly
form an alternating iterative algorithm like
the marginal constraint. To address the is-
sues mentioned above, we have modified the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Visualization of network flow results by varying the regularization coefficient ϵ for OFT.
We observe that as ϵ decreases, our approximate solution calculated by EOFT-Sinkhorn approaches
closer to the exact solution computed by Gurobi.

optimization objectives and constraints:

min
P,q

< D,P > −ϵH(P) s.t. P1N = q+ d,P⊤1N = q− s+ d, diag(P) = d, (5)

where d = d · 1N represents the virtual flow from each node to itself, given the constant d. Here,
D is the distance matrix and we set Dii = 0 for every node i and increase the constraint Pii = d,
ensuring that each node, including the isolated nodes mentioned earlier, carries at least d units of
flow, which reduces the impact of isolated points for the solutions. Additionally, q represents the
flow out of the nodes (excluding the virtual flow). Then given the net outflow s, we can infer the flow
into each node as q− s. The purpose of these transformations above is to establish a form similar to
the marginal constraints in line with vanilla OT, thereby enabling the derivation of a Sinkhorn-like
algorithm to obtain an approximate solution for OFT. Based on the method of Lagrange multipliers,
we can derive the following proposition (see the proof in Appendix C.1), which aids us in further
understanding the prosperity of the solution for OFT.
Proposition 2. The solution to Eq. 5 is unique and has the form:

P = diag(u)Kdiag(v), and q =
s

2
+

(
(Kv) · (K⊤u) +

s2

4

) 1
2

− d. (6)

Here u,v are two (unknown) scaling variables satisfying u⊙v = 1 and K = e(−C+diag(h))/ϵ where
h is defined as

h = ϵ(logd− logu− logv). (7)

Similar to the entropic OT, the solution P still satisfies P = diag(u)Kdiag(v). However, the output
flow q needs to be calculated, and the Gibbs kernel K is no longer a fixed matrix. Therefore, the
iteration process appears more complex compared to the vanilla Sinkhorn algorithm, which we will
discuss in detail next.

Algorithm 1 OFT-Sinkhorn: Iterative Sinkhorn-
based Algorithm for Entropic Optimal Flow Trans-
port without Constraints
Input: Distance Matrix D, Marginal Difference

s, maximum iteration number L, Virtual-flow d.
Output: The Allocation Matrix Pij for i, j =
1, . . . , N
Initialize K = exp

(
−D

ϵ

)
element-wise.

for l = 0 to L− 1 do
Update u(l+1) and v(l+1) according to Eq. 8
Update K(l+1) by Eq. 10
Update q(l+1) according to Eq. 9

end for
Compute P = Diag(u) ·K · Diag(v)
return P∗ = P−P⊤

OFT-Sinkhorn Algorithm. Here we propose
the OFT-Sinkhorn algorithm 3.2, in which we
aim to get the optimal solution of Eq. 5 through
matrix-vector iterations. An intuitive idea is to
iteratively update P, q, and K to obtain the
optimal solution. For the coupling P, based on
the solution form P = diag(u)Kdiag(v) and
the marginal constraints in Eq. 5, we derive the
following iterations for u(l) and v(l) with the
(l + 1)−th iteration:

u(l+1) =
q(l) + d

K(l)v(l)
, v(l+1) =

q(l) − s+ d

(K(l))⊤u(l+1)

(8)

where we initialize v(0) = 1, K(0) = e−D/ϵ,
and q(0) = max{τ, τ + s} where τ is a suffi-
ciently small positive value. By initializing in this manner, we can ensure that the two marginals of

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Visualization of the coupling and marginals by varying the regularization coefficient ϵ for
EOFT. As ϵ decreases, the solutions of the coupling and marginals calculated by EOFT-Sinkhorn
become increasingly sparse, approaching the exact solution.

the coupling are positive (q(0) > τ and q(0)− s > τ) , making both u and v positive as well, thereby
guaranteeing that the coupling P is positive. Regarding the calculation of q, following Eq. 6, we can
update it as:

q(l+1) =
s

2
+

(
(K(l+1)v(l+1)) · ((K⊤)(l+1)u(l+1)) +

s2

4

) 1
2

− d. (9)

In fact, for the iteration of q(l+1), we would need to apply a truncation operation as done for q(0) to
ensure q(l+1) ≥ τ and q(l+1) − s ≥ τ . However, in practical iterations, we find that the computed
result for q(l+1) typically naturally satisfies these conditions. Furthermore, for the iteration of K, we
can utilize the constraints diag(K) = d in Eq. 5 to obtain:

diag(K(l+1)) =
d

u(l+1) ⊙ v(l+1)
. (10)

and the remaining matrix elements still maintain K
(l+1)
ij = e−Dij/ϵ for i ̸= j. By iterating l =

1, 2, . . . until convergence, we can obtain the optimal solution P∗ for entropic OFT. Similar to how
the Sinkhorn algorithm for entropic OT often serves as an activation layer to ensure that the output
of neural networks is a doubly stochastic matrix (Wang et al., 2019), our OFT-Sinkhorn algorithm
can also serve as a layer to ensure that the output matrix satisfies flow balance constraints, which are
typically enforced using loss functions in previous works (Bengio et al., 2023). Furthermore, since
the matrix P∗ exhibits backflow

(
i.e., P∗

ij > 0 and P∗
ji > 0 for any node indices i and j

)
, we can

perform a backflow removal operation P∗ ←− max{0,P∗ − (P∗)⊤}, which results in a P∗ closer to
the exact solution of OFT.

Global Convergence. Then we give the convergence discussion. Following (Franklin & Lorenz,
1989), we adopt the Hilbert projective metric to prove our global convergence which is defined as:

dH (u,u′)
def.
= logmax

i,j

uiu
′
j

uju′
i

.

Then we can get the theoretical results that our OFT-Sinkhorn algorithm has linear convergence and
the proof are given in Appendix E.

Theorem 1. The iterative scheme for OFT-Sinkhron algorithm has linear convergence. More
precisely: one has

(
u(l),v(l),K(l),q(l)

)
→ (u∗,v∗,K∗,q∗) and

dH

(
u(ℓ),u⋆

)
= O(λ(K)2l), and dH

(
v(ℓ),v⋆

)
= O(λ(K)2l), (11)

where

λ(K) = max
l

λ(K(l)) = sup

{
dH

(
K(l))v,K(l))v′)
dH (v,v′)

}
≤ 1. (12)

Additionally, we further discuss the numerical convergence of our OFT-Sinkhorn algorithm by
varying the iterations in the experimental section.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3 CAPACITATED OPTIMAL FLOW TRANSPORT WITH ENTROPIC REGULARIZATION

To align with the minimum cost flow problems, in this subsection, we consider adding constraints
to our OFT so that our algorithm can address the minimum cost flow problem with matrix-vector
iterations. The detailed algorithm is shown in Alg. 2 in Appendix B. Next, we will divide the capacity
constraints into node constraints and edge constraints, and subsequently refine our OFT-Sinkhorn
algorithm accordingly.

Capacitated Constraints on Nodes. Initially, we consider Capacitated constraints on nodes, which
involve imposing constraints on the optimization in Eq. 5: q ≤ r and q− s ≤ r, where r represents
the maximum capacity for incoming or outgoing flows at nodes. To address these capacity constraints
in the OFT-Sinkhorn Algorithm modification, we perform a truncation operation, specifically setting
ql+1 ← min

(
r,min(r− s,ql+1)

)
, where ql+1 is defined in Eq. 9 for the (l+1)-th iteration within

the OFT-Sinkhorn Algorithm.

Capacitated Constraints on Edges. Then we examine the capacitated constraints on edges, which
replace the constraints diag(P) = d in Eq. 5 with the constraints P ≤ S, where Sii = d represents
the constraints of virtual flow and Sij denotes the capacity for edge eij . By employing the Lagrangian
method, we can derive the following proposition, with the proof provided in the Appendix C.2.
Proposition 3. The solution of entropic OFT with edge capacity is unique and has the form:

P∗ = diag(u)Kdiag(v) and q∗ =
s

2
+
(
(Kv)⊙ (K⊤u) +

s2

4

) 1
2 − d. (13)

Here u,v are two (unknown) scaling variables satisfying u⊙ v = 1 and K = e(−D+G)/ϵ where G
is defined as

G = min
(
D+ ϵ · log

(
diag(u−1)Sdiag(v−1)

)
,0

)
(14)

For the Capacitated Edges Constraints in the OFT-Sinkhorn algorithm, we will modify the iteration
for K in Eq. 10 as follows:

K(l+1) = min
(
K, diag(u(l+1))−1Sdiag(v(l+1))−1

)
. (15)

By iteratively applying Eq. 8, Eq. 9, and Eq. 15 until convergence, we can derive the modified
OFT-Sinkhorn algorithm based on edge capacity constraints.

Capacitated constraints on nodes and edges are typically meaningful in practical scenarios. For
instance, in transportation problems where edges represent roads and nodes denote intersections at
either end of the roads, node capacity constraints can effectively express the limit of vehicles passing
through intersections. Meanwhile, edge capacity constraints can depict the maximum flow allowed
on each road, thereby enabling our capacitated OFT to more accurately model transportation issues
within a traffic road network.

4 EXPERIMENT

4.1 DATASETS AND EXPERIMENT SETTINGS

We conduct experiments using an NVIDIA GeForce RTX 4090 GPU, with programs implemented in
Python and PyTorch. We evaluate our approach on two graph datasets: Uniform-MCF and NETGEN-
MCF. For all experiments except the ablation study, we use the same settings to demonstrate our
method’s robustness. Since only our matrix iteration algorithm can run efficiently on GPU, the other
three comparison methods were tested on the Intel i9-10920X CPU.

Datasets. We adopt the following datasets in our experiments:

• Uniform-MCF (Double-precision): We consider the symmetry between source and target
nodes(i.e., 10% of nodes designated as sources and targets), constructing four synthetic datasets
accordingly(w/o constraint, w/edge constraint, w/node constraint, w/edge+node constraint). We
utilizes Gaussian function to generate double-precision point within Euclidean space. The initial
flow of source and target nodes are generated by Uniform function which is also double-precision.
The edge capacity are set to the same value on the same set of parameters. For more details, please
refer to Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Evaluation Results on Uniform-MCF-500, Uniform-MCF-5k and Uniform-MCF-10k. We
compared our matrix-vector iterative algorithm (EODT-Sinkhorn) with classical MCF algorithms
(such as Real and ZKW) and commonly used general solver Gurobi. One can find that our algorithm
is significantly more efficient than traditional algorithms when computing large-scale Maximum Flow
instances, all while maintaining low computational errors. The fastest solution time is bolded.

Size Methods W/o constraint W/ edge constraint W/ node constraint W/ edge+node constraints
obj time obj time obj time obj time

50
0
×
50
0 Real 10.02 14.8 s 10.067 101 s 10.065 101 s 10.066 101.9s

ZKW 10.02 18.4 s 10.067 129 s 10.065 139.4 s 10.066 120.8 s
Gurobi 10.02 768 s 10.067 4254 s 10.066 4314 s 10.067 4052 s

ours 10.11 4.18 s 10.137 34 s 10.67 43.4 s 10.138 72.8 s

5k
×

5k

Real 10.059 1843 s 10.071 1036 s 10.071 899 s 10.064 868 s
ZKW 10.059 2034 s 10.071 977s 10.071 1200 s 10.064 1015 s

Gurobi - ≥ 3 hours - ≥ 3 hours - ≥ 3 hours - ≥ 3 hours

ours 10.311 33 s 10.18 814 s 10.431 316 s 10.186 656 s

10
k
×
10

k Real 10.08 3363 s 10.0898 2032 s 10.0898 1842 s 10.0898 1425 s
ZKW 10.08 3781 s 10.0898 2396 s 10.0898 2543 s 10.0898 1961 s

Gurobi - ≥ 3 hours - ≥ 3 hours - ≥ 3 hours - ≥ 3 hour

ours 10.728 47 s 10.1496 1352 s 10.18 1021 s 10.147 1462 s

• NETGEN (Integer-precision): Note that NETGEN (Klingman et al., 1974) is a well-established
generator that produces integer-precision instances for the Minimum Cost Flow (MCF) problem and
other network optimization problems. It is designed to generate minimum-cost flow problems based
on a set of parameters including node size, arc costs, and arc capacities. In our data generation
process, we utilize PyNETGEN (Pyn, 2022), a Python implementation of NETGEN. The edge
capacity are randomly sampled within the specified range for each edge. For further details, please
refer to Appendix D.

• Vision (Real Scene): This family(Goldberg, 2008) consists of MCF instances based on large-scale
maximum flow problems arising in computer vision applications. These data files were made
available at by the Computer Vision Research Group at the University of Western Ontario. The
detail of the data is given in Appendix 6.

Baselines. To demonstrate the feasibility and effectiveness of our OFT-Sinkhorn method, we compare
it with representative MCF algorithms on both synthetic and NETGEN dataset. We consider the
following three methods as our baselines: 1)Real((Papadimitriou & Steiglitz)) is an exact algorithm
that combines SPFA (Ahuja et al., 1995) and augmenting paths which is particularly suitable for
solving minimum cost flow problems in graphs of fixed distribution of capacity; 2)ZKW((Goldberg
et al.)) is a variant of Successive Shortest Path Algorithm based on augmenting paths and DFS to
efficiently find the shortest path. It is particularly suitable for solving minimum cost flow problems
in graphs of random distribution of capacity. 3)Gurobi((Gurobi Optimization, LLC, 2021)) is a
powerful optimization solver that can efficiently handle a wide range of mathematical optimization
problems, including the minimum cost flow (MCF) problem. However, as the number of nodes and
instances increases, Gurobi’s computational efficiency decreases. 4)pns((Kara & Özturan, 2022))is
one of the SOTA Parallel network simplex algorithm for the MCF problem. 5)lemon((Király &
Kovács, 2012)) is a is a Highly optimized CPU based solver for MCF problems. Here we test on
lemon-ns which is the network simplex version of lemon.

4.2 EXPERIMENTAL RESULTS

In this section, we discuss the overall performance of various methods on uniform and NETGEN
datasets which is presented in Table 1 and Table 2.

Evaluation on Uniform Data. Uniform-MCF is a double-precision MCF instance with predefined
edge capacities. In terms of Obj across each dataset, both Real and ZKW consistently achieve
the optimal solution, while Gurobi gave a tight approximate solution with a gap of less than 0.1%
as shown in Table 1. This might be attributed to the fact that the MCF problem is solvable in
polynomial time, where exact algorithms can always provide the optimal solution. However, their
efficiency significantly decreases with larger datasets. Notably, Gurobi struggles with problems

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of MCF on Small to medium-sized NETGEN dataset.

Methods 100× 100 500× 500 1k × 1k 5k × 5k
obj time obj time obj time obj time

Real 64.58 421ms 20.418 1028 s 23.365 2340 s 15.652 18592 s
ZKW 64.58 504 ms 20.418 706 s 23.365 1639 s 15.652 7491 s

Gurobi 64.58 77.3 s 20.42 4572 s – ≥ 3 hours - ≥ 10 hours
pns(k=16,p=16) 64.58 256 s 20.44 15388s 23.56 10117s 15.66 67847s

lenmon-ns 64.58 56 ms 20.43 7.2s 23.57 6.6s 15.68 41s
EOFT-Sinkhorn 65.05 22.2 s 20.548 82s 24.696 420s 16.41 1261s

Table 3: Evaluation of MCF on very large sparse graph.

Methods Netgen_8 Netgen_lo_8 Vision
obj time obj time obj time

pns(k=1,p=1) 18.33 335 s 12.88 89 s 30.16 1774 s
pns(k=4,p=4) 18.33 261 s 12.88 71 s 30.16 2579 s

pns(k=16,p=16) 18.33 286 s 12.88 91s 30.16 2512s
lenmon-ns 18.33 186 s 12.88 51s 30.16 2805s

EOFT-Sinkhorn 18.83 50.4 s 13.08 59.3s 32.04 1802s

exceedomg 5,000 nodes, which we indicate with a "-" symbol. On W/o constraints, there are only
constraints mentioned in Eq. 5. For problems that incorporate both capacity and node constraints,
the objective (obj) of the problem slightly increases (e.g., from 10.02 to 10.06) due to the additional
constraints, and the computational time increases almost linearly with the problem size. In contrast,
our entropy regularization method, specifically the Sinkhorn algorithm (Cuturi, 2013), offers faster
solving speeds due to its GPU-friendliness. The results demonstrate that our algorithm significantly
outperforms traditional algorithms in terms of efficiency when computing large-scale MCF instances,
while maintaining low computational error gap. For further details and parameters regarding the
Uniform-MCF , please refer to Table 4 in Appendix D.

Evaluation Results on small to medium-size NETGEN. The experimental details of NETGEN
datasets are given in Table 5 and the results are given in Table 2. Besides lemon, for smaller
problems, Real ((Papadimitriou & Steiglitz)) and ZKW ((Goldberg et al.)) achieve the best solution
quality and computational time. However, as the dataset size |D|, the total number of nodes |V |,
and the total number of edges |E| increase, our method demonstrates superior solution speed over
former 4 methods. Lemon achieve best solution and speed under all-cases, demonstrated outstanding
performance in solving small to medium-scale MCF problems as a SOTA method." Appendix D
shows the parameters and details about NETGEN experiments.

Evaluation Results on very large sparse graph. The experimental details of Large sparse datasets
are given in Table 6 and the results are given in Table 3. For solving thoes three very large sparse
MCF problem, we implemented our algorithm to better suit the triplet structure of sparse graphs.
As the first work to apply entropic regularization to the MCF problem and achieve a GPU-friendly
algorithm**, our algorithm effectively addresses the minimum cost flow problem on extremely large
sparse graphs, and in some instances, even outperforms the current SOTA algorithms in obtaining
approximate solutions.

4.3 ABLATION STUDY

In this subsection, we will analyze the convergence, effect of entropy regularization, and numerical
stability in depth.

Convergence of EOFT. In Figure 6, we visualize how the Marginal changes with the number
of iterations on a 5000 nodes instance. The marginal difference is calculated by P1N − P⊤1N

(denoted as ssoft) and Ground Truth (GT) marginals is s. Initially, we use one-dimensional Gaussian
function to generate the flow of source/target point separately (denoted as ssource and starget). We
use Gaussian Kernel Density Estimation (KDE)(Parzen, 1962) defined as K(u) = 1√

2π
e−

1
2u

2

to
estimate the distribution of source marginals (ssource) and target marginals (starget), the marginals
difference on transshipment nodes is the difference distribution between them i.e. ssource − starget.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Source Marginals (b) Target Marginals (c) Marginal Difference

Figure 6: Visualization of the marginals by varying iterations for EOFT. As iterations increase, the
marginals calculated by the OFT-Sinkhorn algorithm (dotted line) gradually approach Ground Truth
(black solid line).

The results show that as the number of iterations increases, EOFT gradually approaches the GT
margins, which indicates the convergence quality of our algorithm. (e.g., the red dotted line (EOFT-
200 iterations) in Figure 6 almost overlaps with the solid black line which is GT marginals).

Figure 5: Visualization of the cost and time by varying the
ϵ and Error(convergence threshold) for EOFT. Under most
cases, EOFT exhibits a smooth changing process. Each point
is obtained by the average of 4 instance

Sparsity of the Coupling. In domains
such as logistics planning, an exact
and sparse transport plan is desired.
In this section, we conduct tests on
the sparsity of the transport plan for
EOFT-Sinkhorn methods with differ-
ent regularization coefficients ϵ. We
uniformly sample a network of 60
nodes, designating 15 as sources and
15 as targets. Figure 3 visualizes the
transportation plan generated by the
EOFT method. The dotted green lines
represent potential node connections,
whereas the red solid lines signify the
actual transportation routes. The color
intensity along these paths is indicative of the flow volume, offering a clear visual illustration of
the plan’s density. The results reveal that as the of ϵ decrease, the approximate solution from the
EOFT-Sinkhorn method converges more closely to the optimal solution achieved using Gurobi.

Similarly, Figure 4 illustrates the transformation of the coupling matrix and marginals as the regular-
ization coefficient ϵ decreased. With a decreasing ϵ, the optimal coupling matrix exhibits increased
sparsity, and the transportation plan P progressively aligns with the solution delivered by Gurobi.

Numerical Stability. Note the stability is critical in algorithm design and Figure 5 evaluates the
numerical stability of the OFT-Sinkhorn algorithm. Each data point reflects the mean performance
of four random instances, with all other parameters kept constant to ensure fair comparison. The
heatmap displays both cost and time, where NaN represents a computational failure at that particular
parameter combination. The horizontal axis shows the progressively reducing Err (the algorithm’s
convergence threshold, defined as P1N −P⊤1N − s), and the vertical axis illustrates the gradually
decreasing ϵ. The findings reveal that as either the convergence threshold or ϵ diminishes, the EOFT
algorithm requires more time to converge, yet it achieves a solution of higher quality. Our algorithm
exhibits remarkable stability across a wide range of parameters, notably when ϵ range from 5× 10−1

to 1× 10−4 and convergence threshold ranges from 1× 10−2 to 1× 10−5.

5 CONCLUSION

This paper has formulated the optimal flow transport problem beyond the vanilla discrete OT, to
improve its applicability in real-world problems. We also present new time-efficient methods OFT-
Sinkhorn algorithm to solve the problem and its variants, which is solved by GPU-friendly matrix
iterations. Experiments show that our method is more efficient than general solvers in solving the
minimum cost flow problem, which proves that our EOFT algorithm can be effectively used to solve
the minimum cost flow problem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

PyNETGEN. https://github.com/adam-rumpf/pynetgen, 2022.

Mahmuod Ahmady and Yones Eftekhari Yeghaneh. Optimizing the cargo flows in multi-modal freight
transportation network under disruptions. Iranian Journal of Science and Technology, Transactions
of Civil Engineering, 46(1):453–472, 2022.

Ravindra K Ahuja and Dorit S Hochbaum. Solving linear cost dynamic lot-sizing problems in o (n
log n) time. Operations research, 56(1):255–261, 2008.

Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows: theory, algorithms and
applications. Prentice hall, 1995.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. ICML, 2017.

Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré. Itera-
tive bregman projections for regularized transportation problems. SIAM Journal on Scientific
Computing, 37(2):A1111–A1138, 2015.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J. Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations, 2023. URL https://arxiv.org/abs/2111.09266.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
Unsupervised learning of visual features by contrasting cluster assignments. Advances in neural
information processing systems, 33:9912–9924, 2020.

Wonjoon Choi, Horst W Hamacher, and Suleyman Tufekci. Modeling of building evacuation
problems by network flows with side constraints. European Journal of Operational Research, 35
(1):98–110, 1988.

Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4109–4118, 2018.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

George B Dantzig. Application of the simplex method to a transportation problem. Activity analysis
and production and allocation, 1951.

Tijn de Vos. Minimum cost flow in the congest model, 2023. URL https://arxiv.org/abs/
2304.01600.

Mikhail Feldman and Robert J. McCann. Uniqueness and transport density in monge’s mass
transportation problem. Calculus of Variations and Partial Differential Equations, 15:81–113,
2002. URL https://api.semanticscholar.org/CorpusID:6328939.

Joel Franklin and Jens Lorenz. On the scaling of multidimensional matrices. Linear Algebra and its
applications, 114:717–735, 1989.

Delbert R Fulkerson. An out-of-kilter method for minimal-cost flow problems. Journal of the Society
for Industrial and Applied Mathematics, 9(1):18–27, 1961.

Andrew V Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Journal
of algorithms, 22(1):1–29, 1997.

Andrew V Goldberg. The partial augment–relabel algorithm for the maximum flow problem. In
European Symposium on Algorithms, pp. 466–477. Springer, 2008.

Andrew V Goldberg, Éva Tardos, and Robert Tarjan. Network flow algorithm. Technical report,
Cornell University Operations Research and Industrial Engineering.

Gurobi Optimization, LLC. Gurobi Optimization, LLC, 2021. URL https://www.gurobi.com.

11

https://arxiv.org/abs/2111.09266
https://arxiv.org/abs/2304.01600
https://arxiv.org/abs/2304.01600
https://api.semanticscholar.org/CorpusID:6328939
https://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Makhlouf Hadji and Djamal Zeghlache. Minimum cost maximum flow algorithm for dynamic
resource allocation in clouds. In 2012 IEEE Fifth International Conference on Cloud Computing,
pp. 876–882. IEEE, 2012.

Masao Iri. Network flow—theory and applications with practical impact. In System Modelling and
Optimization: Proceedings of the Seventeenth IFIP TC7 Conference on System Modelling and
Optimization, 1995, pp. 24–36. Springer, 1996.

Leonid V Kantorovich. Mathematical methods of organizing and planning production. Management
science, 6(4):366–422, 1960.

Gökçehan Kara and Can Özturan. Parallel network simplex algorithm for the minimum cost flow
problem. Concurrency and Computation: Practice and Experience, 34(4):e6659, 2022.

Zoltán Király and Péter Kovács. Efficient implementations of minimum-cost flow algorithms. arXiv
preprint arXiv:1207.6381, 2012.

Morton Klein. A primal method for minimal cost flows with applications to the assignment and
transportation problems. Management Science, 14(3):205–220, 1967.

Darwin Klingman, Albert Napier, and Joel Stutz. Netgen: A program for generating large scale
capacitated assignment, transportation, and minimum cost flow network problems. management
science, 20(5):814–821, 1974.

Srećko Krile. Application of the minimum cost flow problem in container shipping. In Proceedings.
Elmar-2004. 46th International Symposium on Electronics in Marine, pp. 466–471. IEEE, 2004.

Tam Le, Truyen Nguyen, Dinh Phung, and Viet Anh Nguyen. Sobolev transport: A scalable metric
for probability measures with graph metrics. In International Conference on Artificial Intelligence
and Statistics, pp. 9844–9868. PMLR, 2022.

Tam Le, Truyen Nguyen, and Kenji Fukumizu. Generalized sobolev transport for probability measures
on a graph. arXiv preprint arXiv:2402.04516, 2024.

XY Li, Yash P Aneja, and F Baki. An ant colony optimization metaheuristic for single-path
multicommodity network flow problems. Journal of the Operational Research Society, 61(9):
1340–1355, 2010.

Edward Minieka. The chinese postman problem for mixed networks. Management science, 25(7):
643–648, 1979.

R. Mohammad Ebrahim and J. Razmi. A hybrid meta heuristic algorithm for bi-objective
minimum cost flow (bmcf) problem. Advances in Engineering Software, 40(10):1056–1062,
2009. ISSN 0965-9978. doi: https://doi.org/10.1016/j.advengsoft.2009.03.003. URL https:
//www.sciencedirect.com/science/article/pii/S0965997809000635.

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Mem. Math. Phys. Acad. Royale
Sci., pp. 666–704, 1781.

W. Orlicz. Ueber eine gewisse klasse von räumen vom typus. Bulletin International de l’Académie
Polonaise des Sciences et des Lettres, pp. 8–9, 1932.

Christos H Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms and
complexity. Courier Corporation.

Emanuel Parzen. On estimation of a probability density function and mode. Annals of Mathe-
matical Statistics, 33:1065–1076, 1962. URL https://api.semanticscholar.org/
CorpusID:122932724.

Hanyu Peng, Mingming Sun, and Ping Li. Optimal transport for long-tailed recognition with learnable
cost matrix. In International Conference on Learning Representations, 2021.

Gabriel Peyre and Marco Cuturi. Computational optimal transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

12

https://www.sciencedirect.com/science/article/pii/S0965997809000635
https://www.sciencedirect.com/science/article/pii/S0965997809000635
https://api.semanticscholar.org/CorpusID:122932724
https://api.semanticscholar.org/CorpusID:122932724

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liangliang Shi, Gu Zhang, Haoyu Zhen, Jintao Fan, and Junchi Yan. Understanding and generalizing
contrastive learning from the inverse optimal transport perspective. International conference on
machine learning, 2023.

Liangliang Shi, Zhaoqi Shen, and Junchi Yan. Double-bounded optimal transport for advanced
clustering and classification. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 14982–14990, 2024.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks
for deep graph matching. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3056–3065, 2019.

Hongteng Xu and Minjie Cheng. Regularized optimal transport layers for generalized global pooling
operations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

B DETAILS ALGORITHM OF EOFT WITH NODE AND EDGE CONSTRAINTS

Algorithm 2 OFT-Sinkhorn: Iterative Sinkhorn-based Algorithm for (capacitied) Entropic Optimal
Flow Transport with Edge and Node Constraints
Input: Distance Matrix D, Edge Capability S, Node Capability r, Marginal Difference s, maximum

iteration number L, Virtual-flow d.
Output: The Allocation Matrix Pij for i, j = 1, . . . , N

Initialize K = exp
(
−D

ϵ

)
element-wise.

for l = 0 to L− 1 do
Update u(l+1), v(l+1) according to Eq. 8
Update q(l+1) according to Eq. 13
Update G(l+1) according to Eq. 14
Update K(l+1) by exp

(
−D+G(l+1)

ϵ

)
end for
Compute P = Diag(u) ·K · Diag(v)
return P∗ = P−P⊤

C PROOF FOR ALGORITHEM EOFT-SH, EOFT-SH-C

Here we provide the Mathematical proof for Proposition 1 and 2 in main text.

C.1 WITHOUT CONSTRAINS

min
P≥0,
q≥0

< D,P > −ϵH(P)

subject to P1N = q+ d,P⊤1N = q− s+ d

diag(P) = d

(16)

Adding dual variables f ,g,h, the lagrange equation is then:

L =< D,P > −ϵH(P)− < f ,P1N−q−d > − < g,P⊤1N−q+s−d > − < h, diag(P)−d >
(17)

We can get partial differential of lagrange equation with respect to P:

∂L
∂Pi,j

= Dij + ϵ log (Pij)− fi − gj = 0(i ̸= j) (18)

Then we can get :
Pij = efi/ϵe−Dij/ϵegj/ϵ. (19)

Similarly:
∂L
∂Pii

= Dii + ϵ log (Pii)− fi − gi − hi = 0 (20)

Then we can get :
Pii = efi/ϵe−(Dii−hi)/ϵegi/ϵ. (21)

Thus for the whole matrix P, we can get :

P = Diag(ef/ϵ)e−D+Diag(h)/ϵDiag(eg/ϵ). (22)

Letting u = ef/ε, v = eg/ε, K = e−D+Diag(h)/ϵ, we can get the optimal solution from P =
Diag(u)KDiag(v).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We can get partial differential of lagrange equation with respect to q:

∂L
∂q

= f + g = 0. (23)

Thus we can get f = −g i.e: u⊙ v = 1

Knowing P1N = q+ d and P⊤1N = q− s+ d, we can get:

1 u =
q+ d

Kv
, v =

q− s+ d

K⊤u
(24)

Thus we have :
q+ d

Kv
⊙ q− s+ d

(K)⊤u
= 1

Then we can get the solution of q as :

2 q∗ =
s

2
+
(
(Kv)⊙ (K⊤u) +

s2

4

) 1
2 − d. (25)

Knowing diag(P) = d, we can get that :

diag(P) = ui · e(−Dii+Diag(hi))/ϵ · vi = d

So the solution of d is :

3 h = ϵ× (logd− logu− logv) +Diag(D)

From the above derivation, we can know:

4 K = e−D+Diag(h)/ϵ

By iterating through 1 , 2 , 3 , and 4 , we obtain the final Proposition

C.2 WITH CONSTRAINS

min
P≥0,
q≥0

< D,P > −ϵH(P)

subject to P1N = q+ d,P⊤1N = q− s+ d

P ≤ S,q ≤ λ

(26)

Adding dual variables f ,g,H(H ≥ 0), the lagrange equation is then:

L =< D,P > −ϵH(P)− < f ,P1N − q− d > − < g,P⊤1N − q+ s− d > − < H,P− S >
(27)

The partial differential of lagrange equation with respect to P:

∂L
∂Pij

= Dij + ϵ log (Pij)− fi1
⊤ − 1⊤gj −Hi,j = 0 (28)

Thus we get :
Pi,j = efi/ϵe(−Dij+Hij)/ϵegj/ϵ = Diag(u)KDiag(v) (29)

where u = ef/ε, v = eg/ε, K = e(−D+H)/ϵ.

We can get partial differential of lagrange equation with respect to q:

∂L
∂q

= f + g = 0. (30)

Thus we can get f = −g i.e: u⊙ v = 1 Similar to the Section 3.1:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

u⊙ v =
q+ d

Kv
⊙ q− s+ d

(K)⊤u
= 1

Due to the constraint on q:

q∗ = Min(
s

2
+
(
(Kv)⊙ (K⊤u) +

s2

4

) 1
2 − d, λ) (31)

Due to P ≤ S ,we can get that :

P = Diag(u)e(−D+H)/ϵDiag(v) ≤ S (32)

Thus: H ≤ D+ ϵ · log
(
diag(u−1)Sdiag(v−1)

)
Thus we can get that :

H = min
(
D+ ϵ · log

(
diag(u−1)Sdiag(v−1)

)
,0

)
(33)

D DETAILS ABOUT EXPERIMENTS

D.1 DETAILS ABOUT PARAMETERS

Table 4 show the parameters of MCF experiments at Table 1 in main text ,including the Batch size,
Regularization coefficients, Split of the node set, d (Virtual-flow), Node_C (Capacity for flows at
nodes), Edge_C (Capacity for edges)), and err (Convergence threshold of the iterations).

Table 4: The parameters for experiments on synthetic dataset
Instance Instance_Num ϵ Node_Split d0 Edge_C Node_C Convergence threshold
Node_500_W/o constraint 64 5e-4 50_400_50 1e-3 - - 1e-6
Node_500_W/edge constraint 256 1e-4 50_400_50 1e-4 0.05 - 1e-5
Node_500_W/node constraint 256 5e-4 50_400_50 1e-4 - 0.1 1e-5
Node_500_W/ edge+node constraints 256 1e-4 50_400_50 1e-4 0.1 0.5 1e-5
Node_5k_W/o constraint 16 5e-4 500_4000_500 1e-4 - - 1e-6
Node_5k_W/edge 16 5e-4 500_4000_500 1e-4 0.05 - 1e-5
Node_5k_W/node 8 1e-3 500_4000_500 1e-4 - 0.1 1e-5
Node_5k_W/ edge+node constraints 8 5e-4 500_4000_500 1e-4 0.1 0.5 1e-5
Node_10k_W/o constraint 4 5e-4 1000_8000_1000 1e-6 - - 1e-6
Node_10k_W/ edge constraints 2 5e-4 1000_8000_1000 1e-4 0.05 - 1e-5
Node_10k_W/ node constraints 2 5e-4 1000_8000_1000 1e-4 - 0.1 1e-5
Node_10k_W/ edge+node constraints 2 5e-4 1000_8000_1000 1e-4 0.1 0.5 1e-5

Similarly, Table 5 show the parameters of MCF experiments at Table 2 in main text, including
the Batch size, Regularization coefficients, Split of the node set, d (Virtual-flow), Cap_Range
(Capacity range for NETGEN to randomly generate), Arc_Num (Totak arc number)), and err
(Convergence threshold of the iterations).

The Convergence threshold err is defined as the average differance of the marginals:

err =

∑batch_size
i=1

∥∥Pi1n −P⊤
i 1m − si

∥∥
batch_size

Table 5: The parameters for experiments on NETGEN dataset
Instance Instance_Num ϵ Node_Split d0 Cap_Range Arc_Num err
Node_100_NETGEN 128 1e-3 10_80_10 1e-4 [0.5,1] 800 1e-5
Node_500_NETGEN 256 5e-4 50_400_50 1e-4 [0.5,1] 64 k 1e-4
Node_1k_NETGEN 128 5e-4 100_800_100 1e-4 [0.5,1] 80 k 1e-4
Node_5k_NETGEN 8 5e-4 500_4000_500 1e-4 [0.5,1] 10000 k 1e-4

Table 7 shows the Sparsity degree of the Table 1,including the Cost Matrix, Guroobi and EOFT.The
results shows that the Uniform-dataset is sparse graph, and both Gurobi and EOFT have obtained
nearly equally sparse solutions across various constraint scenarios and problem sizes. The arc number
of NETGEN dataset is about O(n2) on 500/1k/5k instances, which means they are Dense graph.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: The parameters for very large sparse graph. For netgen generator, netgen_8 is a sparse graph
with a degree 8, and netgen_lo are variants with lower supplies. Vision we adopt the Vision_inv_05
instance mentioned in (Kara & Özturan, 2022)

Instance Instance_Num Node Num Arc Num Total Supply Capacity_Range Cost_Range err ϵ d0
Netgen_8 1 1048576 8388608 1024000 [1,1000] [1,10000] 1e-3 1e-2 1e-4
Netgen_lo_8 1 1048576 8388608 10240 [1,1000] [1,10000] 1e-3 1e-2 1e-4
Vision 1 3899394 23091149 10000 [0,100] [9000,11000]

capacity 1e-3 1e-2 1e-4

Table 7: The sparsity degree of the solutions
Instance Cost_Mat Gurobi_Sol EOFT_Sol
Node_500_W/o constraint 0.02 0.998 0.996
Node_500_W/ edge+node constraints 0.02 0.999 0.992
Node_5k_W/o constraint 0.002 0.998 0.997
Node_5k_W/ edge+node constraints 0.002 0.982 0.951
Node_10k_W/o constraint 0.002 0.999 0.999
Node_10k_W/ edge+node constraints 0.002 0.962 0.934

D.2 DETAILS ABOUT DATASET

Uniform-MCF: The average out-degree of this dataset is 16, indicating that Uniform-MCF is a
high-precision and sparse graph dataset. The Distance matrix here is generated by gaussian function
within [0, 1]2 Euclidean space

NETGEN (Klingman et al., 1974) was used to generate random minimum-cost flow, maximum flow,
and assignment problems, exported in DIMACS graph format. We use PyNETGEN (Pyn, 2022) as a
Python implementation of NETGEN in our data generating process.

PyNETGEN are capable of generating minimum-cost network flows problems according to a set of
tuneable parameters that control things like the size of the network and the acceptable ranges of arc
costs and capacities. It begins by defining source and sink nodes and randomly distributing supply
among them. It then generates a set of "skeleton arcs" to create paths from the sources to the sinks.
Skeleton arcs are guaranteed to have enough capacity to carry all required flow, ensuring that the
problem instance is feasible. After the skeleton is defined, arcs are randomly generated between pairs
of randomly-selected nodes until the desired density is reached The main parameters used for the
NETGEN are as follows:

• nodes – number of nodes (default 10)

• sources – number of source nodes (default 3)

• sinks – number of sink nodes (default 3)

• density – number of arcs (shown in Table 4)

• mincost – minimum arc cost (we set as 10)

• maxcost – maximum arc cost (we set as 100)

• supply – total supply (we set as 10000)

• capacitated – percent of skeleton arcs (0-100) that are capacitated (we set as 100)

• mincap – minimum arc capacity (shown in Table 4)

• maxcap – maximum arc capacity (shown in Table 4)

E CONVERGENCE OF OFT-SINKHRON ALGORITHM.

Based on the OFT-Sinkhorn algorithm, the corresponding iterative scheme is as follows,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

u(l+1) =
q(l) + d

K(l)v(l)
,

v(l+1) =
q(l) − s+ d

(K(l))⊤u(l+1)
,

diag(K(l+1)) =
d

u(l+1) ⊙ v(l+1)
,

q(l+1) =
s

2
+

(
(K(l+1)v(l+1))⊙ ((K⊤)(l+1)u(l+1)) +

s2

4

) 1
2

− d,

(34)

for l = 0, 1, . . . ,M . The stopping criteria are chose as max
∣∣q(M) − q(M−1)

∣∣ < δ with a small error
criteria δ. Before analyzing the global convergence of OFT-Sinkhorn algorithm, we introduce the
Hilbert projection metric, which is defined as,

dH (u,u′) = logmax
i,j

uiu
′
j

uju′
i

. (35)

Lemma 1. For matrix K, vector v and v′, the following inequality holds

dH (Kv,Kv′) ≤ λ(K)dH (v,v′) (36)

with  λ(K) =

√
η(K)−1√
η(K)+1

< 1,

η(K) = maxi,j,k,ℓ
Ki,kKj,ℓ

Kj,kKi,ℓ
.

(37)

The above theoretical results are given in Theorem 4.1 in the paper (Peyre & Cuturi, 2019) and we
use it to prove the following theorem to show our convergence.

Theorem 2. The iterative scheme equation 34 for OFT-Sinkhron algorithm has linear convergence.
More precisely: one has

(
u(l),v(l),K(l),q(l)

)
→ (u∗,v∗,K∗,q∗) and

dH

(
u(ℓ),u⋆

)
= O(λ(K)2l),

dH

(
v(ℓ),v⋆

)
= O(λ(K)2l),

(38)

where

λ(K) = max
l

λ(K(l)) = sup

{
dH

(
K(l))v,K(l))v′)
dH (v,v′)

}
≤ 1. (39)

Proof. For any v and v′, we have

dH (v,v′) = dH (v/v′,1N) = dH (1N/v,1N/v′) . (40)

Then,

dH

(
u(l+1),u∗

)
= dH

(
q(l) + d

K(l)v(l)
,
q∗ − s+ d

K∗v∗

)
= dH

(
K(l)v(l)

q(l) + d
,

K∗v∗

q∗ − s+ d

)
≤ max(λ(Kl), λ(K∗))dH

(
v(l)

q(l) + d
,

v∗

q∗ − s+ d

)
≤ λ(K)dH

(
v(l)

q(l) + d
,

v∗

q∗ − s+ d

)
,

(41)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 1 is used in Eq.equation 41 which implies u(l) → u∗, v(l)

q(l) → v∗

q∗ .

Furthermore,

dH

(
v(l+1),v∗

)
= dH

(
q(l) + d

K(l)u(l+1)
,
q∗ − s+ d

K∗u∗

)
= dH

(
K(l)u(l+1)

q(l) + d
,

K∗u∗

q∗ − s+ d

)
≤ λ(K)dH

(
u(l+1)

q(l) + d
,

u∗

q∗ − s+ d

) (42)

Lemma 1 is used again in Eq.equation 42 which shows that v(l) → v∗, u(l)

q(l) → u∗

q∗ .

Substituting u∗ and v∗ into equation 34, which deduces to

diag(K∗) =
d

u∗ ⊙ v∗ , q∗ =
s

2
+

(
(K∗v∗)⊙ ((K⊤)∗u∗) +

s2

4

) 1
2

− d. (43)

19

	Introduction
	Related Works and Background
	Methdology
	Optimal Flow Transport
	Optimal Flow Transport with Entropic Regularization
	Capacitated Optimal Flow Transport with Entropic Regularization

	Experiment
	Datasets and Experiment Settings
	Experimental Results
	Ablation Study

	Conclusion
	Appendix
	Details Algorithm of EOFT with Node and Edge constraints
	Proof for algorithem EOFT-SH, EOFT-SH-C
	Without Constrains
	With Constrains

	Details about Experiments
	Details about parameters
	Details about Dataset

	Convergence of OFT-Sinkhron Algorithm.

