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Abstract

Estimating cumulative distribution functions (CDFs) of context-dependent random variables
is a central statistical task underpinning numerous applications in machine learning and
economics. In this work, we extend a recent line of theoretical inquiry into this domain
by analyzing the problem of sparse contextual CDF regression, wherein data points are
sampled from a convex combination of s context-dependent CDFs chosen from a set of d

basis functions. We show that adaptations of several canonical regression methods serve as
tractable estimators in this functional sparse regression setting under standard assumptions
on the conditioning of the basis functions. In particular, given n data samples, we prove
estimation error upper bounds of Õ(


s/n) for functional versions of the lasso and Dantzig

selector estimators, and Õ(
Ô

s/ 4
Ô

n) for a functional version of the elastic net estimator.
Our results match the corresponding error bounds for finite dimensional regression and
improve upon CDF ridge regression which has Õ(


d/n) estimation error. Finally, we obtain

a matching information-theoretic lower bound which establishes the minimax optimality of
the lasso and Dantzig selector estimators up to logarithmic factors.

1 Introduction

The estimation of cumulative distribution functions (CDFs) is a classical problem in mathematical statistics
stemming back to the Glivenko-Cantelli theorem (Cantelli, 1933; Glivenko, 1933; Devroye et al., 2013), which
states that empirical CDFs constructed from independent samples of a single random variable converge
uniformly to the random variable’s true CDF. Subsequent classical research in this area has focused on
deriving tight non-asymptotic sample complexity results in terms of the Kolmogorov-Smirnov distance among
others, such as the Dvoretzky-Kiefer-Wolfowitz inequality (Dvoretzky et al., 1956) and improved bounds by
Massart (1990).

Motivated by applications to modern learning tasks such as contextual bandits and Markov decision processes
(Huang et al., 2021; 2022), a recent line of research (Zhang et al., 2024) introduced the problem of
context-dependent CDF estimation, which requires a learner to simultaneously estimate a (possibly infinite)
family of CDFs parameterized by some context variable. As an initial simplification, the authors considered
the restricted setting of contextual CDF regression, wherein the true contextual CDF is a convex combination
of d context-dependent basis functions. The authors generalized the classical ridge regression method (Hoerl
& Kennard, 1970; Abbasi-Yadkori et al., 2011) to this functional regression problem and derived a tight
Õ(


d/n) estimation error bound given n samples in a variety of data generation settings. However, when

d is large, specifically in unstructured settings where a massive set of potential CDFs are considered, ridge
regression utilizes all CDF basis functions for the purpose of estimation without regard to their relevance.

In this paper, as a further step towards developing general algorithms for contextual CDF estimation, we
propose sparse regression and basis selection techniques for the aforementioned CDF regression problem
based on functional versions of lasso (Tibshirani, 1996), elastic net (Zou & Hastie, 2005), and Dantzig selector
(Candes & Tao, 2007) methods. Crucially, all of our techniques achieve estimation bounds with no polynomial
dependence on d, allowing accurate recovery of the true contextual CDF from bases containing exponentially
many irrelevant functions. We also establish minimax optimality results for sparse CDF regression.
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1.1 Outline

We briefly delineate the structure of our paper. We introduce the sparse contextual CDF regression problem
under present investigation in Section 1.2 and define relevant notation in Appendix A. In Section 2, we outline
some applications of CDFs in machine learning and economics, and provide an overview of related functional
regression schemes in the previous scientific literature. In Section 3, we state our main contributions and
discuss the overarching proof techniques used throughout the paper. Section 4 provides the formal derivation
of our upper bound on lasso estimation error in the fixed design setting. We include numerical simulations
of our data generation and parameter estimation processes in Section 5. We defer remaining proofs and
technical details to Appendices B to E, provide examples of CDF bases which satisfy the preconditions
for our main results in Appendix F, and briefly discuss the computational complexity of our estimators in
Appendix G.

1.2 Model and Setup

In this subsection, we formally define the sparse contextual CDF regression problem under investigation in
this paper. (Recall that we utilize the notation defined in Appendix A.) Let X denote a general context
space. We refer to a function f(x, t) : X ◊ R æ [0, 1] as a contextual CDF if for any x œ X , f(x, ·) is a valid
CDF for a real-valued random variable with range contained in some set S ™ R. Let m be any probability
measure on S. Let {„1, . . . , „d} denote a fixed basis of d œ N contextual CDFs indexed by i œ [d]. For
convenience, we often conceptualize this basis as a single vector-valued function � : X ◊ R æ [0, 1]d defined
by [�(x, t)]i = „i(x, t) for all i œ [d].

Let F : X ◊R æ [0, 1] denote the true contextual CDF we aim to recover. Following the precedent established
in Zhang et al. (2024), we assume that F is a convex combination of the basis functions {„1, . . . , „d}. Hence,
the problem reduces to recovering the true parameter vector ◊ú œ �d≠1 such that

’x œ X , ’t œ R, F (x, t) = ◊
€
ú �(x, t) .

Let Sú = supp(◊ú) denote the support of the true parameter. For notational simplicity, let s = |Sú| = Î◊úÎ0.
Let {(x(1)

, y
(1)), . . . , (x(n)

, y
(n))} be a set of n œ N observed samples indexed by j œ [n], generated according

to the fixed design or random design settings described below:

• Fixed design. For each j œ [n], the context variable x
(j) œ X is fixed a priori, and the response

variable y
(j) œ R is independently sampled from the CDF F (x(j)

, ·).

• Random design. For each j œ [n], the context variable x
(j) œ X is independently sampled from

an unknown probability distribution P
(j)
X over X . Then, conditional on x

(j), the response variable
y

(j) œ R is independently sampled from the CDF F (x(j)
, ·).

These design settings extend the data generation processes described in Abbasi-Yadkori et al. (2011) and
Hsu et al. (2012). Let �j(t) = �(x(j)

, t) denote the CDF basis at the jth context variable, and let x
1:n =

(x(1)
, . . . , x

(n)) denote a collection of sampled variables, with analogous definitions for y
1:n and (x, y)1:n. Let

Un œ Rd◊d denote the empirical n-sample Gramian matrix given by

’i, i
Õ œ [d], [Un]i,iÕ = 1

n

nÿ

j=1

+
[�j ]i , [�j ]iÕ

,
) Un = 1

n

nÿ

j=1

⁄

S
�j�€

j dm .

In the random design setting, let �n œ Rd◊d denote the expected n-sample Gramian matrix given by

’i, i
Õ œ [d], [�n]i,iÕ = 1

n

nÿ

j=1
E

X(j)≥P (j)
X

#+
[�j ]i , [�j ]iÕ

,$
) �n = E

X1:n

S

U 1
n

nÿ

j=1

⁄

S
�j�€

j dm

T

V .

As mentioned previously, the objective of contextual CDF regression is to recover ◊ú given the samples
(x, y)1:n. Each Y

(j) defines a one-sample empirical CDF IY (j)(t) = {t Ø Y
(j)} which approximates the
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true CDF F (x(j)
, ·) = E[IY (j)(·) | X

(j) = x
(j)] in expectation conditioned on X

(j) = x
(j). We investigate

three estimators for ◊ú based on the paradigm of empirical risk minimization. Firstly, the lasso estimator ◊̂⁄

imposes an ¸
1-penalty on the parameter vector, weighted by ⁄ > 0:

◊̂⁄ = arg min
◊œRd

Y
]

[
1
n

nÿ

j=1

..Iy(j) ≠ ◊
€�j

..2
L2(S,m) + ⁄ Î◊Î1

Z
^

\ . (1)

Secondly, the elastic net estimator ◊̂⁄1,⁄2 imposes both ¸
1- and ¸

2-penalties on the parameter vector, weighted
by ⁄1 > 0 and ⁄2 > 0 respectively:

◊̂⁄1,⁄2 = arg min
◊œRd

Y
]

[
1
n

nÿ

j=1

..Iy(j) ≠ ◊
€�j

..2
L2(S,m) + ⁄1 Î◊Î1 + ⁄2 Î◊Î2

Z
^

\ . (2)

Thirdly, the Dantzig selector ◊̄⁄ is given by the following variation on the constrained optimization
formulation of lasso estimation:

◊̄⁄ = minimize
◊œRd

Î◊Î1 (3)

subject to

......
1
n

nÿ

j=1

+
Iy(j) ≠ ◊

€�j , �j

,
......

Œ

Æ ⁄ . (4)

For all three estimators, we analyze the estimation error given by the Euclidean distance Î◊̂ ≠ ◊úÎA between
the estimated and true parameter vectors, possibly weighted by some matrix A. We remark that Equations (1)
to (3) define improper estimators which do not necessarily lie in �d≠1 and are thus not guaranteed to define
valid CDFs. However, since ◊ú œ �d≠1 and �d≠1 is closed and convex, any upper bound on the estimation
error of an improper estimator also holds for its projection onto �d≠1, by Beck (2014, Equation 9.10).

Lastly, we remark that our results hold for any s Æ d, although we are principally interested in the advantages
of our proposed methods over the ridge estimator baseline (Zhang et al., 2024, Section 3.1) for small values
of s. We emphasize that our results have no dependence on the cardinality of the context space X .

2 Related Work

Broadly speaking, CDFs underpin the computation of risk functionals which inform decision-making in
mathematical finance and actuarial science. For example, generic law invariant risk functions such as
conditional value-at-risk (Rockafellar et al., 2000; Artzner et al., 1999) are parameterized by CDFs, and
a notion of distortion risk measure (Wirch & Hardy, 2001) arises from the composition of a CDF with
a distortion function. Coherent risk measures are instrumental in portfolio management and optimization
(Krokhmal, 2007) and can be formulated in terms of CDFs (Shapiro et al., 2014). Lastly, spectral risk
measures are computed as weighted averages of outcomes (Acerbi, 2002) and hence depend on the entire
trajectory of the underlying random variable’s CDF.

Similar considerations exist in further scopes of learning theory, where the aforementioned risk functionals
are incorporated into supervised learning tasks (Liu et al., 2022) and multi-armed bandit problems (Cassel
et al., 2023) to model fairness, risk aversion, and distribution shift (Wong et al., 2022). The recently proposed
o�-policy risk assessment framework (Huang et al., 2021) includes CDF estimation as a key building
block and has been applied to contextual bandit problems and Markov decision processes (Huang et al.,
2022). Other work in this vein has employed the mean-variance (Sani et al., 2013; Zimin et al., 2014) and
value-at-risk (Vakili & Zhao, 2015) paradigms in the multi-armed bandit setting to analyze risk-reward
trade-o�s. Furthermore, cumulative prospect theory is intimately tied to risk distortion and the ensuing
dependence on CDF estimation (Prashanth et al., 2016), and has found relevance in reinforcement learning
and stochastic optimization (Jie et al., 2018).
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We touch on the well-established precedent in the scientific community for framing function estimation
through the lens of linear regression and basis selection. Romo et al. (2013) generalized lasso variable
selection to linear models with scalar regressors and functional responses to develop interpretable analyses
of car accident data. A related method exploiting feature sparsity and output function smoothness was
proposed in Barber et al. (2017) to perform genome-wide association studies. Linear models with functional
regressors and scalar responses have been used in genomics, MRI data analysis, and chemometrics, spurring
the development of functional group-lasso (Pannu & Billor, 2017) and wavelet-based lasso methods (Zhao
et al., 2012; 2015) for such models. Prior studies on genetic regulatory networks (Hong & Lian, 2011)
have incorporated function-on-function regression models with ¸

1-regularization to encode sparsity in
pairwise interactions between genes. Lastly, recent developments on lasso estimation for function-on-function
regression (Centofanti et al., 2022; Maranzano et al., 2023) find downstream application in geostatistical
models and mortality data analysis.

Compared to the prior literature, the main novelty of our contributions lies in the simultaneous estimation
of an entire family of CDFs. In this sense, our work may be interpreted as a generalization of the canonical
mixture model with known basis distributions (Murphy, 2012, Section 11.2) to the context-dependent setting.
For maximum generality, we focus on CDF estimation instead of PDFs or quantiles which require restrictions
for existence and well-definedness. We formulate estimation through the lens of functional linear regression
and show that our task reduces to integral computation and finite dimensional optimization, making our
approach computationally e�cient using existing numerical methods. Lastly, our derivations utilize intrinsic
properties of CDFs instead of performing discretization to avoid introducing approximation error, in contrast
to the approach taken in Hong & Lian (2011) among others.

3 Main Results

3.1 Lasso

Before presenting our main contributions, we introduce the following condition on symmetric matrices which
is used in the statements of our main results:

Definition 1 (Restricted eigenvalue condition). Fix d œ N, Ÿ Ø 0, “ Ø 0, and Sú ™ [d]. Let

C“(Sú) =
Ó

v œ Rd :
...[v]Sc

ú

...
1

Æ “
..[v]Sú

..
1

Ô
.

A symmetric matrix A œ Rd◊d satisfies the (Ÿ, “)-restricted eigenvalue condition over Sú i�

’v œ C“(Sú), v
€

Av Ø Ÿ ÎvÎ2
.

Intuitively, the restricted eigenvalue condition specializes the notions of positive definiteness and strong
convexity to the subset of directions whose support is close to Sú. The significance of this condition lies
in its application to the Gramian matrices Un and �n, since lower-bounding the Gramian eigenvalues is
su�cient to ensure the well-conditioning of the basis functions comprising the true CDF. Our formulation of
the restricted eigenvalue condition extends the standard definition from Wainwright (2019, Definition 7.12)
to the general inner product spaces used in the definitions of Un and �n. We provide examples of non-trivial
CDF bases which satisfy the restricted eigenvalue condition in Appendix F.

Under this assumption, we state our first main result, a high-probability upper bound on the error of the
lasso estimator in the fixed design setting:

Theorem 1 (Lasso fixed design upper bound). Fix ” œ (0, 1) and Ÿ > 0. Assume the samples (x, y)1:n are
generated according to the fixed design setting. Assume Un satisfies the (Ÿ, 3)-restricted eigenvalue condition
over Sú. Let ◊̂⁄ be the lasso estimator (1) with regularization hyperparameter ⁄ = 4


(2/n) log(2d/”). Then

with probability at least 1 ≠ ”, the estimation error satisfies the bounds

...◊̂⁄ ≠ ◊ú

...
Un

Æ 6

Û
2s

Ÿn
log

3
2d

”

4
and

...◊̂⁄ ≠ ◊ú

... Æ 6
Ÿ

Û
2s

n
log

3
2d

”

4
.
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We provide the technical details of our proof in Section 4. The crux of our argument lies in the definition of
◊̂⁄ as the minimizer of the empirical risk objective in (1). Substituting ◊̂⁄ and ◊ú into this objective results
in an inequality (11) in terms of ◊̂⁄ and ◊ú. Rearranging yields an upper-bound (13) on the estimation error
Î�ÎUn in terms of two quantities:

• The scalar projections of the sampling errors Iy(j) ≠ ◊
€
ú �j onto the d basis functions �j , which we

upper-bound with high probability (8) using various concentration inequalities.

• The di�erence between the ¸
1-regularizers Î◊úÎ1 ≠ Î◊̂⁄Î1, which we upper-bound by utilizing the

sparsity of ◊ú and the definition of ¸
1-norm, among other techniques.

Combining these results gives rise to a bound on the relative magnitudes of the components of �
corresponding to the true support Sú and its complement (16). Then, upper-bounding the component
Î[�]SúÎ1 is su�cient (17) to characterize the overall estimation error Î�ÎUn . Applying various norm
equivalences and invoking the restricted eigenvalue condition on Un completes the proof.

Theorem 1 establishes the asymptotic complexity of lasso CDF regression as O(


s log(d)/n) = Õ(


s/n),
analogously to the Õ(


d/n) result for ridge regression in Zhang et al. (2024). The dependence on

Ô
s arises

from our sparsity analysis on Î◊úÎ1 ≠ Î◊̂⁄Î1 and the upper-bound on Î[�]SúÎ1 as discussed above. The
factors of 1/

Ô
n and


log(d) arise from the probabilistic arguments in our analysis of the sampling errors.

Ultimately, the lasso estimator’s characteristic ¸
1-penalty term plays an instrumental role in deriving a result

with sub-polynomial dependence on d.

Our second main result is a high-probability upper bound on the error of the lasso estimator in the random
design setting, under similar assumptions on the well-conditioning of the CDF basis:

Theorem 2 (Lasso random design upper bound). Fix ”1 œ (0, 1), ”2 œ (0, 1 ≠ ”1), and Ÿ > 0.
Assume the samples (x, y)1:n are generated according to the random design setting. Assume that for any
n œ N, the matrix �n satisfies the (Ÿ, 3)-restricted eigenvalue condition over Sú. Assume the sample size
is at least n Ø (32d

2
/Ÿ

2) log(d/”1). Let ◊̂⁄ be the lasso estimator (1) with regularization hyperparameter
⁄ = 4


(2/n) log(2d/”2). Then with probability at least 1 ≠ ”1 ≠ ”2, the estimation error satisfies the bounds

...◊̂⁄ ≠ ◊ú

...
Un

Æ 12

Û
s

Ÿn
log

3
2d

”2

4
and

...◊̂⁄ ≠ ◊ú

... Æ 12
Ÿ

Û
2s

n
log

3
2d

”2

4
.

We defer the technical details of our proof to Appendix B. In a nutshell, since Un is a sum of n independent
matrices and is an unbiased estimator of �n, we can employ a matrix analogue of Hoe�ding’s inequality
(18) to justify approximating �n with Un given su�ciently many samples n. Subsequently, we analyze the
estimation error weighted by Un to complete the proof.

3.2 Elastic Net

Our third main result is a high-probability upper bound on the error of the elastic net estimator in the fixed
design setting:

Theorem 3 (Elastic net fixed design upper bound). Fix ” œ (0, 1). Assume the samples (x, y)1:n are
generated according to the fixed design setting. Assume Un satisfies the (Ÿ, 3 + 4⁄2/⁄1)-restricted eigenvalue
condition over Sú. Let ◊̂⁄1,⁄2 be the elastic net estimator (2) with ¸

1-regularization hyperparameter ⁄1 =
4


(2/n) log(2d/”). Then with probability at least 1 ≠ ”, the estimation error satisfies the bounds

...◊̂⁄1,⁄2 ≠ ◊ú

...
Un+⁄2Id

Æ
A

6

Û
2
n

log
3

2d

”

4
+ 2⁄2

B Ú
s

Ÿ + ⁄2
, (5)

...◊̂⁄1,⁄2 ≠ ◊ú

... Æ
A

6

Û
2
n

log
3

2d

”

4
+ 2⁄2

B Ô
s

Ÿ + ⁄2
.
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Furthermore, if Ÿ < (3/2)


(2/n) log(2d/”) and ⁄2 = 3


(2/n) log(2d/”) ≠ 2Ÿ, the bound (5) implies

...◊̂⁄1,⁄2 ≠ ◊ú

...
Un+⁄2Id

Æ 4
Ô

s

A
3

Û
2
n

log
3

2d

”

4
≠ Ÿ

B 1
2

(6)

Æ 4 4

Û
18s2

n
log

3
2d

”

4
.

We emphasize that Theorem 3 produces non-trivial estimation bounds even when no assumptions are placed
on Un (i.e., Ÿ = 0), in which case the bound in (5) has Õ(

Ô
s/ 4

Ô
n) complexity. However, when Ÿ > 0 and the

¸
2-regularization hyperparameter is su�ciently small with ⁄2 = O(1/

Ô
n), the elastic net estimation bound

exhibits Õ(


s/n) scaling, comparable with the result for the lasso estimator in Theorem 1.

At a high level, the elastic net estimator with its characteristic ¸
2-penalty term may be perceived as

“regularizing” the empirical Gramian matrix to produce Un + ⁄2Id, whose smallest eigenvalue is strictly
positive. Additional conditions on Un further tighten the estimation bounds by bolstering the minimum
eigenvalue of Un + ⁄2Id. Hence, the elastic net estimator simultaneously selects features and regularizes the
problem in an integrated fashion by ensuring strong convexity of the objective function (2).

We defer the technical details of our proof to Appendix C. We carry out an analysis of the sampling errors and
upper-bound the di�erence between the ¸

1-regularizers Î◊úÎ1≠Î◊̂⁄1,⁄2Î1, with additional accommodations for
the elastic net estimator’s ¸

2-penalty term. Notably, substituting ◊̂⁄1,⁄2 and ◊ú into the empirical risk objective
(2) and rearranging yields an upper-bound on Î�ÎUn+⁄2Id instead of Î�ÎUn . The resulting expression (25)
contains an additional quantity ⁄2�€

◊ú, which we upper-bound in terms of the error component Î[�]SúÎ1
in (26). Combining this contribution with the terms resulting from the ¸

1-regularizers gives rise to the
parenthesized sum in (5), and choosing the optimal value of ⁄2 to balance the summands achieves the bound
in (6).

By the same technique based on matrix Hoe�ding introduced in Section 3.1, we also obtain the following
high-probability upper bound on the error of the elastic net estimator in the random design setting, which
we prove in Appendix C:

Theorem 4 (Elastic net random design upper bound). Fix ”1 œ (0, 1), ”2 œ (0, 1 ≠ ”1), and Ÿ > 0. Assume
the samples (x, y)1:n are generated according to the random design setting. Assume that for any n œ N, the
matrix �n satisfies the (Ÿ, 3 + 4⁄2/⁄1)-restricted eigenvalue condition over Sú. Assume the sample size is at
least n Ø (32d

2
/Ÿ

2) log(d/”1). Let ◊̂⁄1,⁄2 be the elastic net estimator (2) with ¸
1-regularization hyperparameter

⁄1 = 4


(2/n) log(2d/”2). Then with probability at least 1 ≠ ”1 ≠ ”2, the estimation error satisfies the bounds

...◊̂⁄1,⁄2 ≠ ◊ú

...
Un+⁄2Id

Æ
A

6

Û
2
n

log
3

2d

”2

4
+ 2⁄2

B Ú
2s

Ÿ + 2⁄2
, (7)

...◊̂⁄1,⁄2 ≠ ◊ú

... Æ
A

6

Û
2
n

log
3

2d

”2

4
+ 2⁄2

B
2
Ô

s

Ÿ + 2⁄2
.

Furthermore, if Ÿ < 3


(2/n) log(2d/”2) and ⁄2 = 3


(2/n) log(2d/”2) ≠ Ÿ, the bound (7) implies

...◊̂⁄1,⁄2 ≠ ◊ú

...
Un+⁄2Id

Æ 2
Ô

2s

A
6

Û
2
n

log
3

2d

”2

4
≠ Ÿ

B 1
2

Æ 4 4

Û
18s2

n
log

3
2d

”2

4
.

3.3 Dantzig Selector

Before presenting our fourth main result, we introduce two more conditions on symmetric matrices which
underlie standard assumptions in the statistics and compressed sensing literature (Bandeira et al., 2013):

6
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Definition 2 (Restricted isometry property). Fix ‘ Ø 0 and p œ N. A symmetric matrix A œ Rd◊d satisfies
the (‘, p)-restricted isometry property i�

’v œ Rd
, ÎvÎ0 Æ p =∆ (1 ≠ ‘) ÎvÎ2 Æ v

€
Av Æ (1 + ‘) ÎvÎ2

.

The restricted isometry property states that the curvature of the quadratic form represented by A is bounded
around 1 along directions residing in sparse axis-aligned subspaces, or alternatively, that the linear operator
represented by A is approximately scale-preserving when applied to sparse inputs. A weaker variant of this
property bears resemblance to the Cauchy-Schwarz inequality:

Definition 3 (Restricted orthogonality property). Fix ’ Ø 0, p œ N, and q œ N. A symmetric matrix
A œ Rd◊d satisfies the (’, p, q)-restricted orthogonality property i�

’u, v œ Rd
, ÎuÎ0 Æ p · ÎvÎ0 Æ q · supp(u) fl supp(v) = ÿ =∆

--u€
Av

-- Æ ’ ÎuÎ ÎvÎ .

Under the restricted orthogonality property, A maps sparse vectors with disjoint support to dissimilar
outputs. Our fourth main result is a high-probability upper bound on the error of the Dantzig selector
in the fixed design setting, under assumptions on Un similar to the prior literature (Candes & Tao, 2007):

Theorem 5 (Dantzig selector fixed design upper bound). Fix ” œ (0, 1), ‘ œ [0, 1), and ’ œ [0, 1 ≠ ‘).
Assume the samples (x, y)1:n are generated according to the fixed design setting. Assume Un satisfies the
(‘, 2s)-restricted isometry property and the (’, s, 2s)-restricted orthogonality property. Let ◊̄⁄ be the Dantzig
selector (3) with regularization hyperparameter ⁄ =


(2/n) log(2d/”). Then with probability at least 1 ≠ ”,

the estimation error satisfies the bound

..◊̄⁄ ≠ ◊ú
.. Æ 4

1 ≠ ‘ ≠ ’

Û
2s

n
log

3
2d

”

4
.

We include the Dantzig selector in our investigation of sparse contextual CDF regression as an example
of variable selection formulated as a linear programming problem (4), as opposed to the usual quadratic
programming perspective of lasso estimation. We remark that the (‘, 3p)-restricted isometry property implies
the (‘, p, 2p)-restricted orthogonality property, by Candes & Tao (2005, Lemma 1.1). Hence, Theorem 5 also
holds when the sole assumption placed on Un is the (‘, 3s)-restricted isometry property.

We defer the technical details of our proof to Appendix D and provide a high-level summary below. At the
outset, we upper-bound the estimation error Î�Î in terms of the components Î[�]S†Î and Î[�]Sc

úÎ1, where
S† is a superset of Sú (34). Utilizing the sparsity of ◊ú, we bound the latter component in terms of the former
(35). Subsequently, we upper-bound Î[�]S†Î in terms of Î[Un]ÈS†Í�Î (37), which in turn depends on two
quantities (38):

• The scalar projections of the sampling errors Iy(j) ≠ ◊
€
ú �j onto the d basis functions �j , which we

upper-bound using various probabilistic arguments and concentration inequalities.

• The scalar projections of Iy(j) ≠ ◊̄
€
⁄ �j onto �j , which we upper-bound using the constraint in (4).

Combining these bounds and applying various norm equivalences completes the proof. We note that the
restricted isometry and restricted orthogonality assumptions on Un are preconditions to upper-bound Î�Î
and Î[�]S†Î in the proof.

As previously done for the lasso and elastic net estimators, we use a matrix version of Hoe�ding’s inequality
to derive the following high-probability upper bound on the error of the Dantzig selector in the random
design setting, which we prove in Appendix D:

Theorem 6 (Dantzig selector random design upper bound). Fix ”1 œ (0, 1), ”2 œ (0, 1≠”1), ‘ œ (0, 1/2), and
’ œ (0, 1/2 ≠ ‘). Assume the samples (x, y)1:n are generated according to the random design setting. Assume
that for any n œ N, the matrix �n satisfies the (‘, 2s)-restricted isometry property and the (’, s, 2s)-restricted
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orthogonality property. Assume the sample size is at least n Ø (8d
2
/ min{‘, ’}2) log(2d/”1). Let ◊̄⁄ be the

Dantzig selector (3) with regularization hyperparameter ⁄ =


(2/n) log(2d/”2). Then with probability at
least 1 ≠ ”1 ≠ ”2, the estimation error satisfies the bound

..◊̄⁄ ≠ ◊ú
.. Æ 4

1 ≠ 2‘ ≠ 2’

Û
2s

n
log

3
2d

”2

4
.

3.4 Lower Bound

Our last main result is a lower bound on the minimax ¸
2-risk of sparse contextual CDF regression. To

begin this discussion, we introduce some relevant notation. For any d œ N, let Bd be the universe of all
d-dimensional bases of contextual CDFs, i.e.,

Bd =
)

� : X ◊ R æ [0, 1]d : ’i œ [d], ’x œ X , [�(x, ·)]i is a CDF
*

.

For any x œ X , ◊ œ �d≠1, and � œ Bd, let P
�
Y |x,◊ denote the probability distribution corresponding to the

CDF ◊
€�(x, ·). Given context variables x

1:n œ X n, let Pd
x1:n denote the family of product distributions of

Y
1:n which are convex combinations of d contextual CDFs, i.e.,

Pd
x1:n =

Y
]

[

np

j=1
P

�
Y |x(j),◊ : ◊ œ �d≠1 · � œ Bd

Z
^

\ .

For any s Æ d, let Pd,s
x1:n µ Pd

x1:n denote the family of product distributions of Y
1:n which are convex

combinations of s contextual CDFs chosen from a d-dimensional basis, i.e.,

Pd,s
x1:n =

Y
]

[

np

j=1
P

�
Y |x(j),◊ : ◊ œ �d≠1 · Î◊Î0 = s · � œ Bd

Z
^

\ .

Given a distribution P œ Pd
x1:n , let ◊(P ) œ �d≠1 denote its parameter and let Sú(P ) = supp(◊(P )) ™ [d].

Consequently, |Sú(P )| = s for any P œ Pd,s
x1:n . For any n œ N, let �̂d,n be the universe of all (possibly

randomized) estimators ◊̂ : Rn æ Rd.

Our main result establishes a lower bound on the estimation error of any estimator for sparse contextual
CDF regression, and is obtained as a consequence of the lower bound for general contextual CDF regression
in Zhang et al. (2024, Theorem 8):

Proposition 1 (Lower bound). Fix d œ N, s Æ d, and any su�ciently large n Ø s/2. Fix x
1:n œ X n. Then,

the minimax ¸
2-risk of sparse contextual CDF regression satisfies the bound

R
1

◊

1
Pd,s

x1:n

22
= inf

◊̂œ�̂d,n

sup
P œPd,s

x1:n

E
Y 1:n≥P

Ë...◊̂
!
Y

1:n"
≠ ◊(P )

...
È

= �
3Ú

s

n

4
.

We defer the technical details of our proof to Appendix E. In a nutshell, it su�ces to consider only the
estimation error component corresponding to the indices in Sú(P ), thereby reducing the problem to general
s-dimensional CDF regression. Furthermore, we obtain minimax upper bounds from the high-probability
upper bounds in Theorems 1 and 5 by the arguments from Zhang et al. (2024, p. 12). Hence, Proposition 1
establishes the minimax optimality of the lasso and Dantzig selector estimators up to logarithmic factors.

4 Proof of Lasso Fixed Design Upper Bound

In this section, we prove Theorem 1. We begin by deriving a concentration bound on the inner products
between the sampling errors Iy(j) ≠ ◊

€
ú �j and the basis functions �j :

8
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Lemma 1 (Concentration bound). Fix ” œ (0, 1). With probability at least 1 ≠ ”, it holds that
......

1
n

nÿ

j=1

+
Iy(j) ≠ ◊

€
ú �j , �j

,
......

Œ

Æ

Û
2
n

log
3

2d

”

4
. (8)

Proof of Lemma 1. For each j œ [n] and i œ [d], define a random variable

Zi,j =
+
IY (j) ≠ ◊

€
ú �j , [�j ]i

,
.

Let Fj = ‡(Y 1:j≠1) denote the ‡-algebra generated by the random variables Y
1:j≠1.1 The mean of Zi,j is

E[Zi,j ] (a)= E[E[Zi,j | Fj ]]
(b)= E

#
E

#+
IY (j) ≠ ◊

€
ú �j , [�j ]i

, -- Fj

$$

(c)= E
#+
E

#
IY (j) ≠ ◊

€
ú �j

-- Fj

$
, [�j ]i

,$

(d)= E
#+

0, [�j ]i
,$

= 0 ,

where (a) holds by the tower rule of expectation, (b) holds by definition of Zi,j , (c) holds by Fubini’s theorem,
and (d) holds because E[IY (j) | Fj ] = ◊

€
ú �j . Furthermore, the support of Zi,j is [0, 1] because

|Zi,j | (a)=
----
⁄

S

!
Iy(j)(t) ≠ ◊

€
ú �j(t)

"
„i

1
x

(j)
, t

2
dm

----
(b)
Æ

⁄

S

--Iy(j)(t) ≠ ◊
€
ú �j(t)

--
---„i

1
x

(j)
, t

2--- dm

(c)
Æ m(S) (d)= 1 ,

where (a) holds by definition of inner product, (b) holds by the triangle inequality, (c) holds because CDFs
are bounded between 0 and 1, and (d) holds because m is a probability measure. Thus, for any · > 0,

P

Q

a

......
1
n

nÿ

j=1

+
IY (j) ≠ ◊

€
ú �j , �j

,
......

Œ

Ø ·

R

b
(a)
Æ

dÿ

i=1
P

Q

a

------
1
n

nÿ

j=1
Zi,j

------
Ø ·

R

b
(b)
Æ 2d exp

3
≠n·

2

2

4
,

where (a) holds by definition of Zi,j and the union bound, and (b) holds by Hoe�ding’s inequality. Choosing
· =


2/n log(2d/”) and rearranging, we get ” = 2d exp(≠n·

2
/2), and thus

P

Q

a

......
1
n

nÿ

j=1

+
IY (j) ≠ ◊

€
ú �j , �j

,
......

Œ

Æ

Û
2
n

log
3

2d

”

4R

b Ø 1 ≠ ”

as desired. ⌅

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. Throughout this proof, we restrict to the subset of the probability space where
......

1
n

nÿ

j=1

+
Iy(j) ≠ ◊

€
ú �j , �j

,
......

Œ

Æ

Û
2
n

log
3

2d

”

4
= ⁄

4 , (9)

1This lemma also applies in the random design setting by taking Fj = ‡(X1:j , Y 1:j≠1).

9



Under review as submission to TMLR

which holds with probability at least 1 ≠ ” by Lemma 1. For notational simplicity, let � = ◊̂⁄ ≠ ◊ú. We have

Î�Î2
Un

(a)= �€
Un�

(b)= �€

Q

a 1
n

nÿ

j=1

⁄

S
�j�€

j dm

R

b �

(c)= 1
n

nÿ

j=1

⁄

S
�€�j�€

j � dm

(d)= 1
n

nÿ

j=1

..�€�j

..2
L2(S,m)

(e)= 1
n

nÿ

j=1

3...◊̂
€
⁄ �j

...
2

L2(S,m)
+

..◊
€
ú �j

..2
L2(S,m)

4
≠ 2

n

nÿ

j=1

e
◊̂

€
⁄ �j , ◊

€
ú �j

f

(f)= 1
n

nÿ

j=1

3...◊̂
€
⁄ �j

...
2

L2(S,m)
≠

..◊
€
ú �j

..2
L2(S,m)

4
≠ 2

n

nÿ

j=1

+
�€�j , ◊

€
ú �j

,
, (10)

where (a) holds by definition of weighted ¸
2-norm induced by Un, (b) holds by definition of Un, (c) holds by

the linearity of integration, (d) holds by definition of inner product between functions, (e) holds by definition
of �, and (f) holds by definition of � and the linearity of inner product. Next, since ◊̂⁄ minimizes the
objective in (1), it follows that

1
n

nÿ

j=1

...Iy(j) ≠ ◊̂
€
⁄ �j

...
2

L2(S,m)
+ ⁄

...◊̂⁄

...
1

Æ 1
n

nÿ

j=1

..Iy(j) ≠ ◊
€
ú �j

..2
L2(S,m) + ⁄ Î◊úÎ1 . (11)

Expanding the squared norms and rearranging, it follows that (cf. Wainwright (2019))

1
n

nÿ

j=1

3...◊̂
€
⁄ �j

...
2

L2(S,m)
≠

..◊
€
ú �j

..2
L2(S,m)

4
Æ 2

n

nÿ

j=1

+
Iy(j) , �€�j

,
+ ⁄

1
Î◊úÎ1 ≠

...◊̂⁄

...
1

2
. (12)

Combining Equations (10) and (12), we obtain

Î�Î2
Un

Æ 2
n

nÿ

j=1

+
Iy(j) , �€�j

,
≠ 2

n

nÿ

j=1

+
�€�j , ◊

€
ú �j

,

¸ ˚˙ ˝
1

+ ⁄

1
Î◊úÎ1 ≠

...◊̂⁄

...
1

2

¸ ˚˙ ˝
2

. (13)

Next, we upper-bound 1 . We have

1 (a)= �€

Q

a 2
n

nÿ

j=1

+
Iy(j) ≠ ◊

€
ú �j , �j

,
R

b
(b)
Æ Î�Î1

......
2
n

nÿ

j=1

+
Iy(j) ≠ ◊

€
ú �j , �j

,
......

Œ

(c)
Æ ⁄

2 Î�Î1 , (14)

where (a) holds by the linearity of inner product, (b) follows from Hölder’s inequality, and (c) holds by
substituting in (9). Next, we upper-bound 2 . We have

2 (a)=
dÿ

i=1
|[◊ú]i| ≠

dÿ

i=1
|[◊ú + �]i|

(b)=
ÿ

iœSú

|[◊ú]i| ≠
ÿ

iœSú

|[◊ú + �]i| ≠
ÿ

iœSc
ú

|[�]i|

(c)=
..[◊ú]Sú

..
1 ≠

..[◊ú]Sú
+ [�]Sú

..
1 ≠

...[�]Sc
ú

...
1

10
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(d)
Æ

..[�]Sú

..
1 ≠

...[�]Sc
ú

...
1

, (15)

where (a) holds by definition of ¸
1-norm and �, (b) holds because supp(◊ú) = Sú, (c) holds by definition of

¸
1-norm, and (d) holds by the triangle inequality. Combining Equations (13) to (15), we obtain

Î�Î2
Un

Æ ⁄

3
3
2

..[�]Sú

..
1 ≠ 1

2

...[�]Sc
ú

...
1

4
(16)

Æ 3⁄

2
..[�]Sú

..
1 (17)

(a)
Æ 3⁄

2
Ô

s
..[�]Sú

.. Æ 3⁄

2
Ô

s Î�Î
(b)
Æ 3⁄

2

Ú
s

Ÿ
Î�ÎUn

,

where (a) holds by the equivalence between ¸
1- and ¸

2-norms, and (b) follows from the restricted eigenvalue
condition on Un since rearranging (16) yields Î[�]Sc

úÎ1 Æ 3Î[�]SúÎ1. Thus, the estimation error satisfies the
bounds

Î�ÎUn
Æ 3⁄

2

Ú
s

Ÿ

(a)= 6

Û
2s

Ÿn
log

3
2d

”

4
and Î�Î

(b)
Æ 1Ô

Ÿ
Î�ÎUn

= 6
Ÿ

Û
2s

n
log

3
2d

”

4
,

where (a) holds by substituting in ⁄ and (b) follows from the restricted eigenvalue condition on Un. ⌅

5 Numerical Simulations

In this section, we numerically simulate the data generation processes described in Section 1.2 and empirically
evaluate the accuracy of our proposed lasso (1) and elastic net (2) estimators on synthetic data. For
mathematical conciseness, we consider a basis of contextual Bernoulli CDFs, which yields a closed-form
expression for the induced norm Î·ÎL2(S,m) in the training objective. Formally, let X = [0, 1]d be the space
of all d-tuples x = (x1, . . . , xd) of Bernoulli parameters, and define the basis functions

’i œ [d], „i(x, t) =
I

1 ≠ xi , if 0 Æ t < 1 ,

1 , if t = 1 ,

where „i(x, ·) is the CDF of a Bernoulli(xi) random variable. It follows that F (x, ·) = ◊
€
ú �(x, ·) is the CDF

of a Bernoulli(◊€
ú x) random variable, because

F (x, t) =
dÿ

i=1
[◊ú]i ·

I
1 ≠ xi , if 0 Æ t < 1
1 , if t = 1

(a)=
I

1 ≠ ◊
€
ú x , if 0 Æ t < 1 ,

1 , if t = 1 ,

where (a) holds because ◊ú is a PMF. Let m be the uniform measure over the support S = [0, 1]. Then, the
log-likelihood term in Equations (1) and (2) is equivalent to the canonical least squares formulation because

nÿ

j=1

..Iy(j) ≠ ◊
€�j

..2
L2(S,m)

(a)=
nÿ

j=1

⁄ 1

0

!
Iy(j)(t) ≠ ◊

€�j(t)
"2

dt

(b)=
nÿ

j=1

1 Ó
y

(j) = 0
Ô

≠
1

1 ≠ ◊
€

x
(j)

222

=
nÿ

j=1

1
◊

€
x

(j) ≠ y
(j)

22

(c)= ÎA◊ ≠ bÎ2
,

11
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where (a) follows from the support S = [0, 1] and the choice of measure, (b) holds by substituting in the
definitions of Iy(j) and �j , and the matrix A œ Rn◊d and vector b œ Rn in (c) are defined as [A]ÈjÍ = x

(j)€

and [b]j = y
(j). For specific details regarding our implementation, we refer interested readers to our Python

code at https://anonymous.4open.science/r/SparseContextualCDFRegression-E57B/.

In our experiments, we compare the ¸
2-norm estimation error of our proposed lasso and elastic net

estimators against the ridge regression baseline introduced in Zhang et al. (2024, Section 3.1). For the
¸

2-regularization hyperparameter of ridge regression and the ¸
1-regularization hyperparameter of lasso and

elastic net regression, we use ⁄ = 4


(2/n) log(2d/”) as specified in Theorems 1 and 3, with ” = 0.001. For
experimental convenience, we use various fixed values of ⁄2 for the elastic net estimator, which we report in
Figures 1 and 2. Di�erent values of ⁄ and ” produced qualitatively similar results. We investigate how the
estimation errors scale with various problem dimensions, and report means and standard deviations over 30
independent random trials in Figures 1 and 2 for each configuration under consideration. We train all models
on the same set of generated samples in each random trial.

5.1 Fixed Design

First, we consider the fixed design setting with context variables x
(j) = (x(j)

1 , . . . , x
(j)
d ) given by

x
(j)
i =

I
1 ≠ 2x

(j)
val , if i © j (mod d)

1 ≠ x
(j)
val , if i ”© j (mod d)

with x
(j)
val =

I
1
2 , if j Æ d

µmin(Mj≠1)
–j

, if j > d

and Mj =
1

1 ≠ x
(j)

2 1
1 ≠ x

(j)
2€

+ 1
n

j≠1ÿ

k=1

1
1 ≠ x

(k)
2 1

1 ≠ x
(k)

2€
,

where –j is initialized as –d+1 = µmin(Md)/2 and is doubled as necessary on each j iteration to ensure
x

(j) œ X . To investigate the e�ect of the sample size n, we choose 100 logarithmically spaced points for n

from 104 to 106, and fix the CDF basis dimension d = 10 and parameter sparsity s = 5. Figure 1(a) graphs
the estimation errors against n on a log-log plot. The lasso trend line has slope ≠1/2, matching the theoretical
O(1/

Ô
n) bound in Theorem 1 and substantially outperforming the ridge baseline. The elastic net estimator

achieves results in between the lasso and ridge methods. As a further point of comparison, we repeat this
experiment using handpicked regularization hyperparameters for the ridge estimator and plot the results in
Figure 1(b). Values of ⁄ less than 10≠3 or greater than 10≠1 produced results comparable to the yellow and
purple trend lines, respectively. Observe that the accuracy of the ridge estimator with ⁄ = 10≠3 matches the
lasso estimator when n Æ 105, but quickly plateaus for larger sample sizes. This control experiment confirms
that the superior accuracy of our lasso estimator in the large n setting cannot be emulated by the ridge
baseline regardless of hyperparameter tuning.

Secondly, we investigate how the estimation errors scale with the sparsity s of the true parameter ◊ú. We fix
the sample size n = 105 and CDF basis dimension d = 30, and consider s from 1 to 30. Figure 1(c) graphs
the estimation errors against s on a linear plot. The lasso trend line reflects the theoretical O(

Ô
s) bound in

Theorem 1, and our lasso estimator notably outperforms the ridge baseline in the sparse regime s π d. To
interpret the decreasing ridge trend line, note that Î◊úÎ1 = 1 for any value of s (because ◊ú is a PMF), and so
denser parameter vectors (with greater s) tend to have smaller Î◊úÎ. Thus, the ridge regularization penalty
⁄Î◊úÎ2 at the true parameter vector decreases as s increases, leading to improved accuracy. For additional
comparison, we repeat this experiment for the elastic net estimator using handpicked values of ⁄2 and plot
the results in Figure 1(d). As expected, the elastic net estimation error interpolates continuously between
the lasso and ridge estimation errors as ⁄2 increases. Values of ⁄2 outside the range visualized in Figure 1(d)
produced similar results.

Lastly, we investigate the dependence of the estimation errors on the CDF basis dimension d. We fix the
sample size n = 105 and parameter sparsity s = 10, and consider d from 10 to 100. Figure 1(e) graphs the
estimation errors against d on a linear plot. The ridge and lasso trend lines indicate the respective theoretical
bounds of O(

Ô
d) (Zhang et al., 2024, Section 3.2) and O(

Ô
log d) (Theorem 1).

12
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Figure 1: Means and standard deviations of ridge, lasso, and elastic net estimation errors against various
hyperparameters in the synthetic Bernoulli experiments for the fixed design setting. Figures 1(a), 1(c)
and 1(e) contrast the ridge, lasso, and elastic net estimators with common regularization hyperparameter
⁄ = ⁄1 = 4


(2/n) log(2d/”), as defined in Theorems 1 and 3. For further comparison, Figure 1(b) plots the

ridge estimation error against n for various values of ⁄, and Figure 1(d) plots the elastic net estimation error
against s for various values of ⁄2.
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5.2 Random Design

Next, we consider the random design setting with context vectors x
(j) = (x(j)

1 , . . . , x
(j)
d ) sampled i.i.d. from

a Uniform(0, 1)d distribution. We investigate the e�ect of the sample size n, sparsity s, and CDF basis
dimension d on the ridge, lasso, and elastic net estimation errors, as was done for the fixed design setting
above, and plot the results in Figures 2(a) to 2(c) respectively. The qualitative trends in the random design
experiments are comparable to the corresponding fixed design experiments, although the variance among
the 30 trials for each configuration is lower in the random design setting. We conjecture that the variance is
reduced by virtue of the context vectors in the random design experiments being more typical instances of
the problem, as opposed to the fixed design setting where the context vectors were specifically chosen to be
hard instances which may amplify the e�ect of the randomness in ◊ú. On a di�erent note, we remark that
the elastic net error asymptotes for n ¥ 106 in Figure 2(a) because ⁄2 is fixed for experimental convenience
and does not decrease with n, although a more refined hyperparameter setting could avoid this e�ect in
principle. Lastly, we compare di�erent values of ⁄2 for the elastic net estimator in Figure 2(d) and observe
the expected interpolation between the ridge and lasso trendlines as d ranges from 10 to 100.
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Figure 2: Means and standard deviations of ridge, lasso, and elastic net estimators against various
hyperparameters in the synthetic Bernoulli experiments for the random design setting. Figures 2(a)
to 2(c) contrast the ridge, lasso, and elastic net estimators with common regularization hyperparameter
⁄ = ⁄1 = 4


(2/n) log(2d/”), as defined in Theorems 1 and 3. For further comparison, Figure 2(d) plots the

elastic net estimation error against d for various values of ⁄2.
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6 Conclusion

In this paper, we introduced the task of sparse contextual CDF regression and proposed three basis selection
techniques for this problem stemming from the canonical lasso, elastic net, and Dantzig selector regression
methods. We derived upper bounds of Õ(


s/n) and Õ(

Ô
s/ 4

Ô
n) on estimation error, and obtained a matching

lower bound on minimax risk to establish the optimality of our proposed lasso and Dantzig selector estimators.
In particular, our estimation bounds have sub-polynomial dependence on the dimension d of the CDF
regression basis, enabling our methods to perform basis selection with exponentially many irrelevant features
and furthering progress towards the ultimate goal of general contextual CDF estimation.

We suggest three directions for future work. Firstly, our present analysis holds only when d is finite. A
natural continuation of our research may investigate similar basis selection methods for CDF regression
with infinite-dimensional feature maps. Another promising follow-up direction is to generalize our results to
CDF regression with the least absolute deviation (¸1-) loss, in the vein of previous work which combines
robust regression and variable selection (Wang et al., 2007). Lastly, prior literature has established looser
estimation error bounds on finite-dimensional lasso regression without the restricted isometry property (Zhao
& Yu, 2006; Meinshausen & Yu, 2009). In this spirit, future work may aim to determine unified and weaker
necessary conditions for analyzing the functional lasso, elastic net, and Dantzig estimators proposed in this
paper.

Overall, our main contributions and proposed future directions indicate that contextual CDF estimation
remains a fruitful area of theoretical investigation, accompanied by immediate relevance to a profusion of
downstream scientific applications.
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