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Abstract

Symbolic Regression (SR) searches for mathematical expressions which best de-
scribe numerical datasets. This allows to circumvent interpretation issues inherent
to artificial neural networks, but SR algorithms are often computationally expen-
sive. This work proposes a new Transformer model aiming at Symbolic Regression
particularly focused on its application for Scientific Discovery. We propose three en-
coder architectures with increasing flexibility but at the cost of column-permutation
equivariance violation. Training results indicate that the most flexible architecture
is required to prevent from overfitting. Once trained, we apply our best model to
the SRSD datasets (Symbolic Regression for Scientific Discovery datasets) which
yields state-of-the-art results using the normalized tree-based edit distance, at no
extra computational cost.

1 Introduction

Machine Learning methods allow to infer relationships in datasets and replicate them, but they are
often criticized for being black-box models, preventing from understanding the assumptions and
discoveries of the model. Symbolic Regression (SR) aims at addressing this problem by searching
the space of mathematical expressions and find an interpretable analytical model to explain a given
dataset. SR originated in the field of Genetic Programming [[1], and most state-of-the-art methods
still use this approach. However, Genetic Programming algorithms tend to be computationally
expensive, and deep learning methods have recently attracted attention from the SR community due
of their almost instantaneous inference [2H10]. Notably, the “End-to-End Symbolic Regression with
Transformer” model of Kamienny et al. [8] provides close to state-of-the-art performances (when
using the R? accuracy metric) at virtually no extra computational time.

Because of its interpretability, SR has been extensively applied in various scientific domains. A
pioneer study by Schmidt and Lipson [11] proposed to automatically rediscover physical laws by
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only providing experimental data on the position and velocity of objects. Since then, the sub-field
of Symbolic Regression for Scientific Discovery (SRSD) tries to draw the line between SR seen as
an exercise for Machine Learning research on one side, and its potential for automated or assisted
scientific discovery on the other.

As the SR community was growing, La Cava et al. [12] proposed SRBench, a modern, living, and
unified framework to benchmark SR methods. However, although they used physically-motivated
equations, Matsubara et al. [13]] point out that existing SR datasets have several important shortcom-
ings: unrealistic sampling process, inappropriate handling of physical constants (e.g. the speed of
light is sampled in the range [1, 5]), lack of diversity in orders of magnitude, the systematic treatment
of integer variables as continuous variables, or the fact only relevant variables are provided in the input
dataset. Another problem of SR tasks lies in the lack of meaningful evaluation metrics specifically
for SRSD. To tackle these issues, Matsubara et al. [13] propose SRSD datasets based on the 120
equations from the Feynman SR datasets [[14], meticulously reviewing and highlighting properties
for each dataset, and split into three categories: 30 easy, 40 medium, and 50 hard datasets. They also
propose the use of the normalized tree-based edit distance to better assess how structurally close from
the ground-truth the predicted equations are.

This work introduces a new Transformer model tailored for SR in the context of scientific discovery.
We propose three encoder architectures and train our model using generated datasets. We then
evaluate our best model on the SRSD datasets using the normalized tree edit distance. We show that
our best model achieves state-of-the-art results on the SRSD datasets at almost immediate inference
time. We also publish our code repository for future studieﬂ

2 Methodology — Symbolic Regression with Transformers

This section introduces the architecture for our Transformer model, the methodology used to generate
the training dataset, and the adopted training strategy.

2.1 Architecture of our Transformer model

Our model is a Transformer model [[15] adapted to the problem of SR (see Figure[I). It comprises
an encoder, which receives a numerical tabular dataset as input, and a decoder, whose task is to
predict a sequence of tokens corresponding to the ground-truth equation. The role of the encoder is to
convert the tabular dataset of numerical values into meaningful features. We propose and analyze the
performances of three architectures for the encoder.

We keep in mind that the features of the numerical tabular datasets (i.e. the output of the encoder) are
expected to be permutation invariant with respect to the rows (the observations), and permutation
equivariant with respect to the columns (the variables). On one hand, row-permutation invariance
requires that the features do not change when the rows of the tabular dataset are shuffled. On the
other hand, column-permutation equivariance calls for similar changes between the input and the
output. For example, if the ground-truth equation is log(z; — x2) and the variables x; and x5 are
switched in the original tabular dataset, we expect the features to change accordingly such that our
model should predict log(zo — x1).

The encoder of our Transformer model starts with a Cell MLP, followed by a stack of Ne,,. identical
layers, where we propose three architectures for the encoder layers (see items below, and architecture
details in Appendix[A). A final MLP layer followed by MaxPooling allows to build features that are
permutation invariant with respect to the rows.

* MLP encoder layer is made of a MLP, a row-wise Max-Pooling, another MLP, and a column-
wise Max-Pooling. This architecture preserves both row-permutation invariance and the
column-permutation equivariance.

* Att encoder layer uses a multi-head self-attention mechanism layer between variable
features. Like the MLP architecture, this encoder layer type preserves both the row-wise
permutation invariance and the column-wise permutation equivariance properties.

* Mix encoder layer starts by blending the column features using a standard MLP layer.
This layer is inspired by PointNets [16]], an artificial neural network architecture satisfying
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row-permutation invariance and taking point clouds as input. The output of this first layer
is then passed to a multi-head self-attention mechanism layer to look at other observations
(rows) in the numerical dataset. While the row-permutation invariance is preserved, the
MLP operation breaks the column-permutation equivariance property.

The decoder of our model first combines (learnable) token embeddings and (fixed) token positional
encodings. The main part of the decoder is composed of Nqe.. stacked identical layers. Following the
typical architecture for the decoder of the Transformer model, each layer has: (i) a masked multi-head
self-attention layer, (ii) another multi-head attention layer where the queries and the keys come from
the output of the encoder and the values come from the previous layer, and (iii) a final standard MLP
layer. An additional MLP layer outputs a matrix of dimension (M x v), where M is the maximum
number of tokens allowed and v is the vocabulary size. As a Transformer model, the decoder of our
model is auto-regressive, i.e. the first n outputs of the decoder are fed back into the decoder itself to
produce output n + 1 during inference.
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Figure 1: Architecture of our Transformer model for Symbolic Regression. We propose three
encoder architectures: MLP, Att, or Mix. The decoder is a standard Transformer decoder and is the
same in all cases. During training, the encoder receives the tabular dataset and the decoder receives
the ground-truth sequence of tokens, used with teacher-forcing method. During inference, the decoder
is on its own and predicts tokens in an auto-regressive manner.

We introduce dy,o4el, the innermost dimension of our model, which corresponds to the dimension
of the feature space used for internal representations. After few trials and errors, and given our
computational limitations, we fix dyodel = 256 as well as Nepe, = 4, Ngec. = 8, and the number
of independent heads for the multi-head attention layers is » = 4. Given these hyperparameters,
the MLP, Att, and Mix models respectively have 6,863, 892, 7,523, 348, and 9, 622, 548 trainable
parameters (more on that in Appendix [A).

2.2 Generating synthetic training datasets

The model is trained using synthetic tabular datasets, aimed at representing the diversity of real world
data typically collected during scientific experiments. We first generate a large variety of skeleton
equations using SymPy [[17] which we then sample from.

We begin by generating ground-truth equations, by sampling tokens from a fixed predefined vocab-
ulary composed of the following tokens: [add, mul, sin, cos, log, exp, neg, inv, sq,
cb, sqrt, C, x1, x2, x3, x4, x5, x6]. Tokens sq and cb respectively denote squared and
cubed values. Token C denotes a constant whose value will be later sampled. Expressions can include



up to six variables, denoted from z; to x¢. Each token is given a sampling weight (see the code) to
account for typical frequencies of operators, e.g. mul is more common than cos. Note that we do not
include the binary operations corresponding to division and subtraction, but instead use inv and neg
to represent the unary operation of inverse and negative.

Equations are represented as trees in SymPy. The two tokens add and mul represent binary operators
and correspond to binary nodes requiring two children. Tokens sin, cos, log, exp, neg, inv, sq,
cb, and sqrt are unary operators, represented as nodes needing one child. The remaining tokens
C, x1, x2, x3, x4, x5, and x6 represent constant or variables, and correspond to the tree leaves. We
start by sampling a token from the vocabulary, and continue the sampling process until the tree is
completed, i.e. when all nodes have all their children.

We generate Ngample = 1, 000, 000 random equations. These equations are simplified in a consistent
way using SymPy. Besides, we discard equations made of a single leaf, equations that do not make
use of the constant C' in their skeleton, and equations that do not have a single variable. We also
discard expressions that have more than 30 tokens. We are left with 112,944 valid expressions, from
which we finally discard duplicates and end up with 17,438 unique valid expressions. For each
remaining equation, the ground-truth is stored as a sequence of tokens from the equation tree, using
the pre-order traversal algorithm allowing to maintain a one-to-one correspondence between equation
tree and sequence of tokens. For example, the skeleton of the equation y = 10z + x5 log(z1) will
be stored as the sequence [add, mul, C, x1, mul, x2, log, x1].

For each unique valid expression, we uniformly sample a value for the constant C' in the range
[—100; 4+100], and we log-uniformly sample 50 times the values for the variables x1, ..., x (Where
K < 6) in the range [10~1; 10%]. The log-uniform range for the variables is chosen to represent the
natural variability of physical phenomena. This sampling process generates a tabular dataset of size
(50, 7), where 50 is the number of observations and 7 corresponds to the response variable followed
by the maximum number of variables allowed (y, x1, X2, 3, x4, T5, Tg), possibly padded with zeros.

The whole sampling process is repeated 100 times, such that there exist several tabular datasets
corresponding to the same ground-truth, but with different values for the constants and the variables.
Lastly, we discard datasets from which sampling was impossible (e.g. log(—x1x2), because x; > 0)
or datasets where |y| > 10°. We are left with 1,494, 588 tabular datasets for training.

2.3 Model training

Our model is fed numerical tabular datasets and is tasked to output tokens. In the beginning, we
initiate the decoder with the start of sequence <S0S> token. Besides, the ground-truth sequences
are padded with the <PAD> token, so that all ground-truths have size M = 31 (including the <S0S>
token). Our vocabulary of tokens is the same as the one used for equation generation (see previous
subsection) with the addition of the <S0S> and <PAD> tokens. The vocabulary size is v = 20.

We use the categorical cross-entropy loss function with the Teacher Forcing method during training.
We also test with and without label-smoothing for the loss function (label-smoothing of € = 0.1)
when training, and compare results in the next section.

Following the default parameters of Vaswani et al. [15]], the parameters of our Transformer model are
updated with the Adam optimizer [[18]], with an initial learning rate v = 1, decay factors of 3; = 0.9
and B2 = 0.98 and small scalar e = 10, Besides, we use the same learning rate scheduler as [[15]
with 4, 000 warm-up steps followed by an inverse square-root decay. During training, we monitor the
loss function as well as the token-wise accuracy (seen as a v-class classification problem). Finally,
we use dropout regularization with pgyop = 0.25.

The entire training dataset is split into train, validation, and test subsets with proportions 80%, 10%
and 10% respectively. We provide batches of size 1,024, which corresponds to 1,168 training
iterations to complete an epoch. We train for 100 epochs using 4 NVIDIA Tesla V100 GPUs with
16GB memory. One epoch takes about 8 min to be completed, such that the whole training process
was completed in approximately 13 hours.



3 Results

This section first introduces the results regarding training our Transformer model with respect to the
proposed encoder architectures and training loss functions, and then presents the performances of our
best model on the SRSD datasets [[13]].

3.1 Training results with respect to encoder architectures

We present the training results obtained for different training scenarios. Figures 2] and [3] show
the evolution of the loss function and the token-wise accuracy (v-class classification) with respect
to training epochs for all three proposed architectures. Figure [2] corresponds to the case without
label-smoothing and Figure [3]to the case with label-smoothing e = 0.1.
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Figure 2: Loss function and token-wise accuracy during training without label-smoothing. The
MLP encoder architecture strongly overfits the training set and cannot generalize to the validation/test
sets. The Att encoder architecture can somehow generalize to the validation/test sets but still shows
some overfitting. The Mix architecture shows no overfit sign at all.
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Figure 3: Loss function and token-wise accuracy during training with ¢ = 0.1 label-smoothing.
The same statement as Figure [2] applies. Label-smoothing does not resolve the overfitting problem.

As can be seen on Figure[2] the MLP and Att encoder architectures overfit the training set and do
not generalize their learning to the validation and test sets. The overfit is much stronger for the MLP
architecture. In contrast, the Mix encoder architecture do not show any sign of overfitting, and both
the loss function and the token-wise accuracy computed on the validation or test sets match with the
train set. The validation and the test sets are statistically equivalent, and therefore exhibit similar
performances at epoch 100 because we do not use early-stopping with the validation set.

An intuitive justification for this state of affairs is that the Mix architecture allows for arbitrary
interactions between the variables 1, ...,2¢ and y, by blending them together. The subsequent
self-attention layer of the Mix encoder allows to look for relations between observation-wise features
and therefore build an internal representation of the whole tabular dataset. On the other hand, the
MLP and Att architectures dedicate most of their parameters to computing variable-only features.



Their encoder crosses the information between variables only through few MaxPooling operations
(for the MLP architecture) or self-attention layers (for the Att architecture). In other words, trying to
preserve the permutation equivariance property with respect to variables is too restrictive and hinders
the flexibility of the encoder, while violating this property with the Mix architecture instead allows
for building more meaningful features.

Introducing label-smoothing does not change the relative behaviour of the three proposed architectures.
However, we can see on Figure [3]that the loss function plateaus at higher values (which makes sense
because of label-smoothing), while the token-wise accuracy appears to be unaffected.

3.2 Performances on SRSD datasets

Now, we move to the evaluation of our best Transformer model using the SRSD datasets proposed to
evaluate SR methods tailored for scientific purposes. The set of the 120 SRSD problems is available
onlin and is split into three subsets: 30 easy, 40 medium, and 50 hard equations [[13]].

Each equation in the SRSD dataset is comprised of 10, 000 observations, divided into 8, 000 training,
1,000 validation, and 1, 000 test observations. As our model is already pre-trained using the generated
training dataset presented in Section [2.2] we only use the 1,000 observations from the test set for
each equation in the SRSD dataset.

There exist several heterogeneous metrics to assess the performances of SR algorithms. No-
tably, La Cava et al. [[12]] propose to use three metrics in their open-source benchmark, called
SRBench. These are (i) the R? test for the accuracy, (ii) the formula complexity for the inter-
pretability, and (iii) the inference time for the rapidity. However, these metrics do not assess how
structurally close to the ground-truth equation the model prediction is, and are mostly useful when
the ground-truth equations are unknown.

For this reason, and because the ground-truth equations are available, we decide to focus on the
estimation of the correct skeleton equation, considered to be the hardest problem. We use the
normalized tree-based edit distance proposed by Matsubara et al. [13]] defined as:

d(fpred; ftrue) = min (17 d(fpmd’ftum))

| f true |
where d( fpred; firue) is the tree edit distance computed with the Zhang and Shasha algorithm [19]
between the predicted fyreq and the ground-truth fi,, equations represented as trees, and | firuel
is the number of tokens (or tree nodes) for the ground-truth equation. It has been shown that this
metric is more aligned with human judgment than the R? scores in cases where the ground-truth is
known [[13]].

During evaluation, we start with formatting the SRSD datasets such that the variables z1 to xg
lie in the range [10~!; 10!] to match the range of the generated datasets used during training. We
also log-normalize the response variable y and compensate it by adding an extra token C in the
ground-truth to take the scaling factor into account. Because there exist several ways of expressing
the same mathematical expression, we standardize the ground-truth equations using the simplify
and factor SymPy functions, which are the same conventions used during training (see Section 4]
for details). Finally, recall that our model takes as input tabular numerical datasets of size (50, 7).
Therefore, we randomly sample N = 50 valid observations from the 1, 000 available observations in
the test sets, and we repeat this sampling process 30 times for each SRSD dataset.

Table[T] presents the mean of the normalized tree-edit distance for each SRSD dataset category and
each of our six trained models. These results indicate that the Mix encoder architecture provides best
solutions when applied to the SRSD datasets. The use of label-smoothing in the loss function does
not seem to significantly affect the performances of our model, except maybe on the easy SRSD
datasets. Therefore, we select the Mix Transformer model trained with label-smoothing as our best
model.

3.3 Comparison with state-of-the-art Symbolic Regression methods

We compare these results with the performances of six baseline SR algorithms used in [13]], where
five of the baselines are state-of-the-art SR methods, according to the SRBench study [12].

’huggingface.co/datasets/yoshitomo-matsubara/srsd-feynman_{easy;medium;hard}



No label smoothing With label smoothing
MLP Att Mix MLP Att Mix

easy 0.975 | 0.821 | 0.740 | 0.896 | 0.896 | 0.686
medium | 0.938 | 0.795 | 0.678 | 0.885 | 0.799 | 0.697

hard 0.857 | 0.778 | 0.732 | 0.840 | 0.800 | 0.747

Table 1: Normalized tree edit distance for the proposed Transformer models. The Mix encoder
architecture provides best results on the SRSD datasets, regardless of the use of label-smoothing in
the loss function.

* gplearn, a Genetic Programming Python library built with Scikit-Learn [20].

» Age-Fitness Pareto (AFP), a Genetic Programming method using Pareto optimization which
takes into account the model’s age (epoch) when training [21]].

* AFP-FE, which corresponds to AFP using Eureqa for fitness estimation [11]]. As a commer-
cial platform, Eureqa cannot be easily integrated in the benchmark.

¢ Al-Feynman (AIF), a physics-driven SR algorithm using successive divide and conquer
fixed rules. They also introduce the Feynman datasets [14].

* Deep Symbolic Regression (DSR), using recurrent neural networks [3]].

* End-to-End Symbolic Regression with Transformer (E2E), another Transformer-based
model considered state-of-the-art for SR [8]. They use the scientific notation for tokens even
within the encoder, unlike our model which uses the raw numerical values.

Table [2] presents the results of our best model (Best m.) against other traditional baselines for SR
tasks, where the scores have been taken from [[13]. We can see that our best Transformer model
provides the lowest normalized tree-edit distance results among all methods when evaluated on the
SRSD medium and hard datasets. For the easy SRSD datasets, DSR and AI-Feynman achieve the
best solutions.

gplearn | AFP | AFP-FE | AIF DSR | E2E | Bestm.
easy 0.876 0.703 0.712 0.646 | 0.551 | 1.000 | 0.686

medium | 0.939 0.873 0.897 0.936 | 0.789 | 1.000 | 0.697
hard 0.978 0.960 0.956 0.930 | 0.833 | 0.981 | 0.747

Table 2: Aggregated performances on the SRSD datasets. Our best Transformer model (Mix

encoder with label-smoothing) outperforms other traditional SR methods on the medium and hard
SRSD datasets, and provides competitive performances on the easy SRSD datasets.

It is worth mentioning that our Transformer model being already trained, the inference is almost
instantaneous at test time, unlike the first five SR algorithms. Therefore, it benefits from the same
advantage as the End-to-End Transformer for (E2E) SR proposed by Kamienny et al. [8] while
providing better results on unseen datasets coming from various scientific fields.

4 Discussion

Because of the token-wise accuracy close to 93% during training (see Figures [2|and , we might
expect even lower normalized tree-edit distance results. However, the normalized edit distance results
during evaluation with the SRSD datasets are worse than what they would be if computed over
the generated tabular numerical datasets used for training. This is because of at least two reasons.
The first one is that the Transformer model is now on its own in an auto-regressive manner during
inference, as the Teacher Forcing method cannot be used during test on the SRSD datasets. This
means that early errors get propagated and amplified during decoding. The second one is that as we
increase the ground-truth equation complexity (typically its number of tokens) there is exponentially
more and more possible equations. As a result, the medium and hard SRSD equations most likely
do not appear in the generated datasets used during training. And while some equations of the easy



SRSD datasets might be in the training set, typical equations with small length (less than 10 tokens)
are underrepresented in the training set, which leads our model to often output more than necessary
tokens.

This observation leads to the discussion of an important problem when training Transformer models
tailored for SR: the difference between in-domain performance versus out-of-domain generalization.
While one can easily overfit the training set with enough parameters and computing time, this does not
guarantee that the Transformer model can extrapolate its learning to out-of-domain datasets. When
they introduced their “End-to-End Symbolic Regression with Transformers” (E2E), Kamienny et al.
[8]] explained that memorization of the training set does not occur based on a statistical reasoning
(see Appendix C of [[8]). We would instead argue that memorization does occur, and there is no point
trying to prevent this from happening. Memorization at least guarantees that the tabular datasets
presented to the Transformer during training will be correctly identified during inference at test time.
The actual hurdles instead include: building diverse and representative tabular datasets, handling
constants and variables frequency, choosing appropriate sampling ranges, or finding ways to represent
ground-truth equations coherently — e.g. which of y = (77 — 22)%, y = 2% + 25 — 2w129, Or
y = 23 — 22125 + 27 should the Transformer model predict, although all correct?

As most traditional SR algorithms can be computationally expensive, Transformer models take
advantage of prior GPU training to allow for almost instantaneous inference results later on. However,
further improvements and new research should still be done as to what architectures and training
strategies are optimal. In particular, we showed here that trying to preserve the permutation invariance
and equivariance properties might be unreasonably restrictive constraints, potentially hindering the
flexibility of the artificial neural network models. We also note that depending on the chosen metric(s),
ranking of methods can greatly vary. While SRBench [12]] discuss the performance of SR methods
focused on the R2, the model complexity, and the inference time, we decide to use the normalized
edit distance as suggested by Matsubara et al. [13] as this metric allows to quantify how structurally
close to the ground-truth the estimation is. It should be an important metric to discuss the potential
of symbolic regression for scientific discovery as the metric considers both the interpretability and
structural similarity between the true and predicted equations.

5 Conclusion

Because of the vast searching space, Symbolic Regression (SR) is a very complicated problem, and
its real-world application towards scientific discovery is even more complex. Now, a major strength
of Transformer models for SR is that their inference is almost instantaneous, because they have
already been trained for long hours beforehand. In this work, we proposed several Transformer model
architectures tailored for SR and aiming to solve automatic scientific discovery tasks. Our best model
demonstrates strong performances on the SRSD datasets, a large dataset for SR in the context of
scientific discovery. It already improves over the results of E2E, another Transformer model for SR,
and there is still much room for improvement. In particular, generating more diverse training datasets,
allowing for more flexibility with the constants, having a more flexible vocabulary of allowed tokens,
or bigger/more refined Transformer architectures could improve our proposed Transformer model.
Our code is open-sourced and can be accessed at the following repositor)E]
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A Proposed encoder architectures

This appendix provides additional information regarding the proposed three encoder architectures
and their properties. Figures ] [B] and [6]respectively represent the MLP, the Att, and the Mix encoder
architectures.

The MLP encoder architecture is the first we propose, and is shown on Figure f] This encoder
architecture has desirable properties regarding numerical tabular datasets. The “Cell MLP” allows to
preserve the row permutation invariance and column permutation equivariance. Dataset-wise features
are constructed using the “Row MaxPool” and the “Column MaxPool” operations. Note that the
innermost dimension (the dimension of the Cell MLP) has been divided by two in order to conserve
the same dimension after concatenations with the MaxPooling outputs. While this architecture
preserves interesting properties, it shows the worst results during training and evaluation on the
SRSD datasets. This is because most of the MLP encoder parameters are dedicated to construct cell
representations, but only few of them allow for interactions between variables (the columns of the
dataset).

dode dyode MLP
n X d X dyogel nxdx el 1 X d x —model
2 2 n X d X dyogel
[H il rode i i
Ul | Row dx m:ml L] It
HI| Cell MLP ' MaxPool N . Tile —| Concat i
> > > i
H]] > ) > ____I —_—) L > li
e |
dyode dode dode
nxdx %‘m n x —odel nxdx %‘” nXd X dyoge
H  Column
Cell MLP t MaxPool Tile Concat
> > —_— —_—
> 4 >

Figure 4: Encoder architecture — MLP version. This encoder architecture preserves row permutation
invariance and column permutation equivariance. After MaxPooling, the features are tiled and
concatenated to the original tensor. This architecture does not allow for much flexibility in feature
design between variables.

In light of the shortcomings of the MLP encoder architecture, we then propose the Att encoder
architecture (c.f. Figure5) which utilizes multi-head self-attention mechanisms to build more flexible
features from the input tabular dataset. The Att encoder architecture conserves the same properties
as the previous encoder architecture, because self-attention layers do not break the row permutation
invariance or the column permutation equivariance when applied on the innermost dimension (the
feature dimension, see Figure[5). This means that the self-attention mechanism is applied on a cell
basis and across variables, i.e. seeking relevant information in other columns (other variables) but
not across different samples. As could be seen in Section 3] this architecture also allows for better
generalization: the validation and test loss/accuracy are closer to the train loss/accuracy with the Att
encoder than with the MLP encoder. However, we can still observe some overfitting and the small gap
between train and validation or test metrics indicate that there is additional room for improvement.

Finally, the Mix encoder architecture offers the most flexible design at the expense of violating the
column permutation equivariance properties. This architecture has been inspired by PointNets, an
artificial neural network architecture to work with point clouds classification and segmentation tasks
[16]. As can be seen on Figure [6] the Mix encoder architecture starts by flattening the columns
features altogether, such that original 3D feature tensors become 2D feature tensors. The following
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Figure 5: Encoder architecture — Att version. The self-attention mechanism preserves row
permutation invariance and column permutation equivariance, and is more flexible in feature design.

MLP is not a “Cell MLP” anymore, but instead blends information from all columns: this allows for
arbitrary relations between the input variables x; and the response variable y. Next, a multi-head
self-attention mechanism layer is applied onto the (1 X diodel) tensor, which allows to compare and
match sample features across the whole dataset. This step preserves the row permutation invariance
and allows for greater flexibility in feature design. Finally, we add and normalize (residual connection)
the original dataset with its new features (after being broadcasted), which restores the original shape.

Mix
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Figure 6: Encoder architecture — Mix version. This architecture violates column permutation
equivariance, but allows for the computation of arbitrary relationships between variables.

During the review process of this manuscript, it has been brought to our attention that column-
permutation equivariance could still be enforced during training by using data-augmentation strategies.
Indeed, for each equation in our synthetic training dataset, we could draw random column permu-
tations and change the ground truth accordingly. For example, suppose the ground-truth equation
is given by y = log(x1) + x1242, we could then swap columns 2 and 3 (corresponding to z; and x2
respectively) in the tabular dataset and convert the ground-truth to log(x2) + x2x accordingly.
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For the three proposed architectures, the number of trainable parameters varies depending on the
chosen hyper-parameters. Table [3| presents the number of parameters for each building block.

Number of parameters
First Cell MLP d2 o de1 + 3dmodel
One MLP 3d2 oqer T 2dmodel
Encoder | Encoder Att 4d2 41 + 6dmodel
Layer Mix (54 d)d2, qe1 + 8dmodel
Last MLP d? o de1 T dmodel
Token Embeddings Vdmodel
Decoder | One Decoder Layer | 12d2 ...+ 17dmodel
Last MLP vdmodel + ¥

Table 3: Number of trainable parameters per building block. The overall number of trainable
parameters scales quadratically with d,oqe1, the innermost dimension of our Transformer model. For
the Mix encoder architecture, the number of trainable parameters also scales linearly with the number
of columns d in the tabular datasets. Finally for the decoder, the number of trainable parameters
depends on the vocabulary size v.

Note that for the encoder and decoder parts, the number of trainable parameters is given for a single
layer. They should be multiplied by the number of encoder layers N, .. and decoder layers Ngec.
before being added to obtain the total number of trainable parameters Ny xxx for each architecture.

N9 MLP = (1 5Nenc. + 12Ngee. + 2)dmode1 + (2Nenc 4+ 17Ngec. + 2v + 4)dm0del + v

Ne Att — (4Nenc + 12J\]dec + 2)dmodel + (6Nenc + 17Ndec + 2v + 4)dmode1 +v
Ny mix = ((5+ d)Nenc. + 12Ngec. + 2)d2 a1 + (8 Nene. + 17Ngee, + 20 + 4)dmodel + v

As a sanity check, we can plug the values used in this work, i.e. Nepe, = 4, Ngee. = 8, d =7,
v = 20, and doder = 256. We can verify that Ny ypp = 6 863,892, Ny ptt = 7,523,348, and
Ny mix = 9,622,548, as introduced at the end of Section[2.1in the main text.
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