
Published as a conference paper at ICLR 2022

PROSPECT PRUNING: FINDING TRAINABLE WEIGHTS
AT INITIALIZATION USING META-GRADIENTS

Milad Alizadeh∗1,2 Shyam A. Tailor 2 Luisa Zintgraf 3 Joost van Amersfoort 1
Sebastian Farquhar 1 Nicholas Donald Lane 2,4 Yarin Gal 1

1OATML, Department of Computer Science, University of Oxford
2CaMLSys, Department of Computer Science and Technology, University of Cambridge
3WhiRL, Department of Computer Science, University of Oxford
4Samsung AI Center, Cambridge

ABSTRACT

Pruning neural networks at initialization would enable us to find sparse models
that retain the accuracy of the original network while consuming fewer compu-
tational resources for training and inference. However, current methods are in-
sufficient to enable this optimization and lead to a large degradation in model
performance. In this paper, we identify a fundamental limitation in the formula-
tion of current methods, namely that their saliency criteria look at a single step
at the start of training without taking into account the trainability of the network.
While pruning iteratively and gradually has been shown to improve pruning per-
formance, explicit consideration of the training stage that will immediately follow
pruning has so far been absent from the computation of the saliency criterion. To
overcome the short-sightedness of existing methods, we propose Prospect Pruning
(ProsPr), which uses meta-gradients through the first few steps of optimization to
determine which weights to prune. ProsPr combines an estimate of the higher-
order effects of pruning on the loss and the optimization trajectory to identify the
trainable sub-network. Our method achieves state-of-the-art pruning performance
on a variety of vision classification tasks, with less data and in a single shot com-
pared to existing pruning-at-initialization methods. Our code is available online
at https://github.com/mil-ad/prospr.

1 INTRODUCTION

Pruning at initialization—where we remove weights from a model before training begins—is a
recent and promising area of research that enables us to enjoy the benefits of pruning at training
time, and which may aid our understanding of training deep neural networks.

Frankle & Carbin (2019) provide empirical evidence for the existence of sparse sub-networks that
can be trained from initialization and achieve accuracies comparable to the original network. These
“winning tickets” were originally found in an iterative process where, in each iteration, the network
is trained to full convergence followed by pruning a subset of the weights by magnitude. The values
of the remaining weights are then rewound to their value at initialization, and the process is repeated
iteratively until the desired sparsity level is achieved.

This process, known as Lottery Ticket Rewinding (LTR), is very compute-intensive and is prone to
failures. For instance, Frankle et al. (2020) show better results by rewinding weights not all the way
back to initialization, but to early stages of training instead. LTR is especially prone to failure for
more difficult problems (e.g., training on ImageNet), where we must rewind weights to their state
several epochs into training.

A recent line of work proposes alternative practical solutions to identify these sub-networks before
training begins, without the cost of retraining the network iteratively Lee et al. (2018); Wang et al.
(2020); de Jorge et al. (2021); Tanaka et al. (2020). This class of methods uses gradients to assess
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the importance of neural network weights. These gradients are often known as Synaptic Saliencies
and are used to estimate the effect of pruning a single parameter in isolation on various objectives,
typically the loss function. This objective is not so different from classical pruning-at-convergence
methods, but the gradients for a well-trained model are small; therefore these methods must inspect
higher-order metrics such as the Hessian to estimate the pruning effect (LeCun et al., 1990; Hassibi
& Stork, 1993). Pruning at initialization is desirable because the benefits of pruning (in terms of
memory and speed) can be reaped during training, rather than only at inference/deployment time.

However, the performance of prune-at-init methods remains poor: the degradation in accuracy is still
significant compared to training the full model and LTR, making these methods impractical for many
real-world problems (Frankle et al., 2021). In this paper, we identify a fundamental limitation in the
objective formulation of current methods, namely that saliency criteria do not take into account the
fact that the model is going to be trained after the pruning step. If our aim was to simply prune a
subset of weights without affecting the loss, then these saliency criteria are estimating the correct
objective. However, this estimate does not take into account that we are going to train the weights
after we prune them. We need a metric that captures the trainability of the weights during the
optimization steps, rather than a single myopic estimate.

Many methods attempt to overcome this by pruning gradually and/or adding training steps between
iterative pruning steps (Zhu & Gupta, 2018; You et al., 2020; de Jorge et al., 2021). Although this ap-
proach has been shown to be effective, it is expensive and cumbersome in practice and ultimately is
an indirect approximation to the trainability criteria we are looking to incorporate into our objective.

In this paper, we propose Prospect Pruning (ProsPr), a new pruning-at-init method that learns from
the first few steps of optimization which parameters to prune. We explicitly formulate our saliency
criteria to account for the fact that the network will be trained after pruning. More precisely, ProsPr
uses meta-gradients by backpropagating through the first few model updates in order to estimate the
effect the initial pruning parameters have on the loss after a few gradient descent steps. Effectively
this enables us to account for both higher-order effects of pruning weights on the loss, as well as the
trainability of individual weights. Similar to other methods we apply pruning to initialization values
of weights and train our models from scratch. In summary, our contributions are:

• We identify a key limitation in prior saliency criteria for pruning neural networks—namely
that they do not explicitly incorporate trainability-after-pruning into their criteria.

• We propose a new pruning-at-init method, ProsPr, that uses meta-gradients over the first
few training steps to bridge the gap between pruning and training.

• We show empirically that ProsPr achieves higher accuracy compared to existing pruning-
at-init methods. Unlike other methods, our approach is single shot in the sense that the
pruning is applied to the network initial weights in a single step.

2 BACKGROUND

In this section we review the key concepts that our method builds upon. We delay comparisons to
other pruning techniques in the literature to Section 5.

Classic post-training pruning methods aim to identify and remove network weights with the least
impact on the loss (LeCun et al., 1990; Hassibi & Stork, 1993). They typically use the Taylor
expansion of the loss with respect to parameters to define a saliency score for each parameter: δL ≈
∇θL⊤δθ + 1

2δθ
⊤H δθ, where H = ∇2

θL is the Hessian matrix. When the network has converged,
the first-order term in the expansion is negligible, and hence these methods resort to using H.

Lee et al. (2018) introduce SNIP, and show that the same objective of minimizing the change in loss
can be used at initialization to obtain a trainable pruned network. At initialization, the first-order
gradients ∇θ in the local quadratic approximation are still significant, so higher-order terms can be
ignored. Hence the computation of the parameter saliencies can be done using backpropagation.

The Taylor expansion approximates the effect of small additive perturbations to the loss. To better
approximate the effect of removing a weight, Lee et al. (2018) attach a multiplicative all-one mask
to the computation graph of each weight. This does not change the forward-pass of the network,
but it enables us to form the Taylor expansion around the mask values, rather than the weights, to
estimate the effect of changing the mask values from 1 to 0. More specifically, SNIP computes the
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saliency scores according to:

sj =
|gj(w,D)|∑m
k=1 |gk(w,D)|

, (1)

with

gj(w,D) =
∂L(c⊙w,D)

∂cj
, (2)

where m is the number of weights in the network, c ∈ {0, 1}m is the pruning mask (initialised to 1
above), D is the training dataset, w are the neural network weights, L is the loss function, and ⊙ is
the Hadamard product. These saliency scores are computed before training the network, using one
(or more) mini-batches from the training set. The global Top-K weights with the highest saliency
scores are retained (cj = 1), and all other weights are pruned (cj = 0), before the network is trained.

Our method, to be introduced in Section 3, also relies on computing the saliency scores for each
mask element, but uses a more sophisticated loss function to incorporate the notion of trainability.

3 OUR METHOD: PROSPR

In this section we introduce our method, Prospect Pruning (ProsPr). We note that for the problem of
pruning at initialization, the pruning step is immediately followed by training. Therefore, pruning
should take into account the trainability of a weight, instead of only its immediate impact on the loss
before training. In other words, we want to be able to identify weights that are not only important at
initialization, but which may be useful for reducing the loss during training. To this end, we propose
to estimate the effect of pruning on the loss over several steps of gradient descent at the beginning
of training, rather than the changes in loss at initialization.

More specifically, ProsPr models how training would happen by performing multiple (M) iterations
of backpropagation and weight updates—like during normal training. We can then backpropagate
through the entire computation graph, from the loss several steps into training, back to the original
mask, since the gradient descent procedure is itself differentiable. Once the pruning mask is com-
puted, we rewind the weights back to their values at initialization and train the pruned network. The
gradient-of-gradients is called a meta-gradient. This algorithm is illustrated visually in Figure 1.

The higher-order information in the meta-gradient includes interactions between the weights during
training. When pruning at initialization, our ultimate goal is to pick a pruned model, A, which is
more trainable than an alternative pruned model B. That means we want the loss L(ŷA, y) to be
lower than L(ŷB , y) at convergence (for a fixed pruning ratio). Finding the optimal pruning mask
is generally infeasible since the training horizon is long (i.e., evaluation is costly) and the space
of possible pruning masks is large. Unlike other methods that must compute the saliency scores
iteratively, we can use the meta-gradients to compute the pruning mask in one shot. This picks a
line in loss-space, which more closely predicts the eventual actual loss. This is because it smooths
out over more steps, and takes into account interactions between weights in the training dynamics.
Crucially, in the limit of large M, the match to the ultimate objective is exact.

3.1 SALIENCY SCORES VIA META-GRADIENTS

We now introduce ProsPr formally. After initialising the network weights randomly to obtain winit,
we apply a weight mask to the initial weights,

w0 = c⊙winit. (3)

This weight mask contains only ones, c = 1, as in SNIP (Lee et al., 2018), and represents the
connectivity of the corresponding weights.
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Figure 1: Visualization of computing saliency scores in our method, ProsPr. By backpropagating
through several gradient steps we capture higher-order information about the objective that we care
about in practice, i.e., saliency of parameters during training and not just at initialization.

We then sample M+1 batches of data Di ∼ Dtrain (i ∈ {0, . . . ,M}; M ≥ 1) for the pruning step,
and perform M weight updates1,

w1 = w0 − α∇w0
L(w0,D0) (4)

...
wM = wM−1 − α∇wM−1

L(wM−1,DM−1). (5)

Then, we compute a meta-gradient that backpropagates through these updates. Specifically, we
compute the gradient of the final loss w.r.t. the initial mask,

∇c L(wM ,DM ). (6)

Using the chain rule, we can write out the form of the meta-gradient beginning from the last step:

∇cL(wM ,D) = ∇wM
L(wM ,D)(∇cwM ), (7)

repeating for each step until we reach the zero’th step whose gradient is trivial,
= ∇wM

L(wM ,D)(∇wM−1
wM ) . . . (∇w0

w1)(∇cw0) (8)
= ∇wM

L(wM ,D)(∇wM−1
wM ) . . . (∇w0w1)(∇c(c⊙winit)) (9)

= ∇wM
L(wM ,D)

[
M∏

m=1

(∇wm−1
wm)

]
winit. (10)

In practice, we can compute the meta-gradients by relying on automatic differentiation software
such as PyTorch (Paszke et al., 2019). However, care must be taken to ensure that weights at each
step are kept in memory so that the entire computation graph, including gradients, is visible to the
automatic differentiation software. The saliency scores are now given by

sj =
|gj(w,D)|∑m
k=1 |gk(w,D)|

, (11)

with

gj(w,D) =
∂L(wM ,D)

∂cj
, (12)

where wM is a function of c. Equation (12) stands in contrast to SNIP, where the saliency is
computed using the loss at c ·winit rather than wM . The saliency scores are then used to prune the
initial weights winit: the ones with the highest saliency scores are retained (cj = 1), and all other
weights are pruned (cj = 0). Finally, the network is trained with the pruned weights ŵinit.

Algorithm 1 summarises the proposed method, ProsPr.
1We formalise the weight updates using vanilla SGD here; in practice these may be different when using

approaches such as momentum or BatchNorm (Ioffe & Szegedy, 2015). Since our implementation relies on
automatic differentiation in PyTorch (Paszke et al., 2019), we can use any type of update, as long as it is
differentiable w.r.t. the initial mask c.

4



Published as a conference paper at ICLR 2022

Algorithm 1 ProsPr Pseudo-Code

1: Inputs: a training dataset Dtrain, number of initial training steps M , number of main training steps N
(M ≪ N ), learning rate α

2: Initialise: network weights winit

3: cinit = 1 ▷ Initialise mask with ones
4: w0 = cinit ⊙winit ▷ Apply mask to initial weights
5: for k = 0, . . . ,M − 1 do
6: Dk ∼ Dtrain ▷ Sample batch of data
7: wi+1 = wi − α∇wL(wi,Dk) ▷ Update network weights
8: end for

9: gj(w,D) = ∂L(wM ,D)/∂cj ▷ Compute meta-gradient

10: sj =
|gj(w,D)|∑m

k=1
|gk(w,D)| ▷ Compute saliency scores

11: Determine the k-th largest element in s, sk.

12: cprune =

{
1, if cj ≥ sk
0, otherwise

▷ Set pruning mask

13: ŵ0 = cprune ⊙winit ▷ Apply mask to initial weights winit

14: for i = 1, . . . , N do ▷ Train pruned model
15: ŵi+1 = ŵi − α∇wL(ŵi,D)
16: end for

3.2 FIRST-ORDER APPROXIMATION

Taking the meta-gradient through many model updates (Equation (6)) can be memory intensive:
in the forward pass, all gradients of the individual update steps need to be retained in memory to
then be able to backpropagate all the way to the initial mask. However, we only need to perform
a few steps2 at the beginning of training so in practice we can perform the pruning step on CPU
which usually has access to more memory compared to a GPU. We apply this approach in our own
experiments, with overheads of around 30 seconds being observed for the pruning step.

Alternatively, when the number of training steps needs to be large we can use the following first-
order approximation. Using Equation (10), the meta-gradient is:

∇cL(wM ,DM ) = ∇wM
L(wM ,DM )

[
M∏

m=1

(∇wm−1
wm)

]
winit, (13)

writing wm in terms of wm−1 following SGD,

= ∇wM
L(wM ,DM )

[
M∏

m=1

∇wm−1
(wm−1 − α∇wm−1

L(wm−1;Dm))

]
winit,

(14)
carrying through the partial derivative,

= ∇wM
L(wM ,DM )

[
M∏

m=1

I − α∇2
wm−1

L(wm−1;Dm)

]
winit, (15)

and finally dropping small terms for sufficiently small learning rates,

≈ ∇wM
L(wM ,DM )

[
M∏

m=1

I

]
winit, (16)

= ∇wM
L(wM ,DM ) winit. (17)

In the second-to-last step, we drop the higher-order terms, which gives us a first-order approximation
of the meta-gradient3.

2We use 3 steps for experiments on CIFAR-10, CIFAR-100 and TinyImageNet datasets
3Note that this approximation also works for optimisers other than vanilla SGD (e.g., Adam, Adamw, Ad-

abound), except that the term which is dropped (r.h.s. of Equation Equation (15)) looks slightly different.
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Figure 2: Accuracy of ProsPr against other prune-at-init and prune-after-convergence methods as
benchmarked by Frankle et al. (2021). The shaded areas denote the standard deviation of the runs.

With this approximation, we only need to save the initial weight vector winit in memory and multiply
it with the final gradient. This approximation can be crude when the Laplacian terms are large, but
with a sufficiently small learning rate it becomes precise. The approximation allows us to take many
more intermediate gradient-steps which can be beneficial for performance when the training dataset
has many classes, as we will see in Section 4.2.

4 EXPERIMENTS

We empirically evaluate the performance of our method, ProsPr, compared to various vision classi-
fication baselines across different architectures and datasets. In supplementary sections we show
effectiveness of our method on image segmentation tasks (Appendix D) and when using self-
supervised initialization (Appendix E). We provide details of our hyper-parameters, experiment
setup, and implementation details in Appendix A.

4.1 RESULTS ON CIFAR AND TINY-IMAGENET

In recent work, Frankle et al. (2021) extensively study and evaluate different pruning-at-initialization
methods under various effects such as weight re-initialization, weight shuffling, and score inversion.
They report the best achievable results by these methods and highlight the gap between their perfor-
mance and two pruning-at-convergence methods, weight rewinding and magnitude pruning (Renda
et al., 2020; Frankle et al., 2020).

In Figure 2 we evaluate ProsPr on this benchmark using ResNet-20 and VGG-16 on CIFAR-10,
and ResNet-18 on Tiny-ImageNet. It can be seen that ProsPr reduces the performance gap, espe-
cially at higher sparsity levels, and in some cases exceeds the accuracy of pruning-after-convergence
methods. Full results are also summarised in Appendix B.

This is a remarkable achievement: ProsPr is the first work to close the gap to methods that prune after
training. Previous works that prune at the start have not been able to outperform methods that prune
after training on any settings, including smaller datasets such as CIFAR-10 or Tiny-ImageNet. It is
also important to note that other baselines that have comparable accuracies are all iterative methods.
ProsPr is the only method that can do this in a single shot after using only 3 steps batch-sizes of 512
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Table 1: Test accuracies of VGG-19 and ResNet-50 on ImageNet. First-Order ProsPR exceeds the
results reported by de Jorge et al. (2021) in all configurations but one, where GraSP works best.

VGG-19 ResNet-50

Sparsity 90% 95% 90% 95%
Accuracy Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Unpruned Baseline 73.1 91.3 — — 75.6 92.8 — —

ProsPr (ours) 70.75 89.9 66.1 87.2 66.86 87.88 59.62 82.82
FORCE 70.2 89.5 65.8 86.8 64.9 86.5 59.0 82.3
Iter-SNIP 69.8 89.5 65.9 86.9 63.7 85.5 54.7 78.9
GRASP-MB 69.5 89.2 67.6 87.8 65.4 86.7 46.2 66.0
SNIP-MB 68.5 88.8 63.8 86.0 61.5 83.9 44.3 69.6
Random 64.2 86.0 56.6 81.0 64.6 86.0 57.2 80.8

in the inner-loop before computing the meta-gradients. In total, we only use 4 batches of data. We
also do not do any averaging of scores by repeating the method multiple times.

The performance in these small datasets comes from the fact that ProsPr computes higher-order
gradients. While there are other iterative methods that can work without any data, their effect is
mostly a more graceful degradation at extreme pruning ratios as opposed to best accuracy at more
practical sparsity levels. One example is SynFlow which is similar to FORCE but uses an all-one
input tensor instead of samples from the training set (Tanaka et al., 2020).

4.2 RESULTS ON IMAGENET DATASET

To evaluate the performance of ProsPr on more difficult tasks we run experiments on the larger Im-
ageNet dataset. Extending gradient-based pruning methods to this dataset poses several challenges.

Number of classes In synaptic-saliency methods, the mini batches must have enough examples
from all classes in the dataset. Wang et al. (2020) recommend using class-balanced mini-batches
sized ten times the number of classes. In datasets with few classes this is not an issue and even a
single batch includes multiple examples per class. This is one reason why methods like SNIP work
with a single batch, and why we kept the number of steps in ProsPr’s inner loop fixed to only 3.
ImageNet however has 1,000 classes, and using a single or a handful of small batches is inadequate.
Previous methods such as FORCE, GraSP, or SynFlow avoid this problem by repeating the algorithm
with new data batches and averaging the saliency scores. In ProsPr we instead increase the number of
updates before computing the meta-gradients, ensuring they flow through enough data. Computing
meta-gradients through many steps however poses new challenges.

Gradient degradation We start to see gradient stability issues when computing gradients over
deep loops. Gradient degradation problems, i.e., vanishing and exploding gradients, have also been
observed in other fields that use meta-gradients such as Meta-Learning. Many solutions have been
proposed to stabilize gradients when the length of loop increases beyond 4 or 5 steps, although this
remains an open area of research (Antoniou et al., 2019).

Computation Complexity For ImageNet we must make the inner loop hundreds of steps deep
to achieve balanced data representation. In addition to stability issues, backpropagating through
hundreds of steps is very compute intensive.

Therefore for our experiments on ImageNet we use the first-order approximation of ProsPr (Sec 3.2).
We evaluate ProsPr using ResNet-50 and VGG-19 architectures and compare against state-of-the-art
methods FORCE and Iter-SNIP introduced by de Jorge et al. (2021). We include multi-batch ver-
sions of SNIP and GraSP (SNIP-MB and GraSP-MB) to provide a fair comparison to iterative meth-
ods, which partially prune several times during training, in terms of the amount of data presented to
the method. We use 1024 steps with a batch size of 256 (i.e. 262,144 samples) for ResNet-50. For
VGG-19, a much larger model, and which requires more GPU memory we do 256 steps with batch
size of 128. This is still far fewer samples than other methods. Force, for example, gradually prunes
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in 60 steps, where each step involves computing and averaging scores over 40 batches of size 256,
i.e. performing backpropagation 2400 times and showing 614,400 samples to the algorithm.

Table 1 shows our results compared to the baselines reported by de Jorge et al. (2021). First-order
ProsPr exceeds previous results in all configurations except one, where it is outperformed by GraSP.
Note the surprisingly good performance of random pruning of ResNets, which was also observed by
de Jorge et al. (2021). This could be explained by the fact that VGG-19 is a much larger architecture
with 143.6 million parameters, compared to 15.5 million in ResNet-50s. More specifically the final
three dense layers of VGG-19 constitute 86% of its total prunable parameters. The convolution
layers of VGG constitute only 14% of the prunable weights. Pruning methods are therefore able
to keep more of the convolution weights and instead prune extensively from the over-parametrized
dense layers. ResNet architectures on the hand have a single dense classifier at the end.

4.3 STRUCTURED PRUNING

We also evaluate ProsPr in the structured pruning setup where instead of pruning individual weights,
entire channels (or columns of linear layers) are removed. This is a more restricted setup, however
it offers memory savings and reduces the computational cost of training and inference.

Adopting ProsPr for structured pruning is as simple as changing the shape of the pruning mask c in
Eq 3 to have one entry per channel (or column of the weight matrix). We evaluate our method against
3SP, a method that extends SNIP to structured pruning (van Amersfoort et al., 2020). Our results are
summarized in Table 2 which show accuracy improvements in all scenarios. In Appendix C we also
evaluate wall-clock improvements in training time as a result of structured pruning at initialization.

Table 2: Test accuracies for structured pruning using VGG-19 on CIFAR-10 and CIFAR-100. ProsPr
achieves better accuracy in all configurations.

Sparsity Method CIFAR-10 Acc (%) CIFAR-100 Acc (%)

— Unpruned Baseline 93.6 72.5

80% ProsPr (ours) 93.61 ± 0.01 72.29 ± 0.11
3SP 93.4 ± 0.03 69.9 ± 0.14
3SP + reinit 93.4 ± 0.04 70.3 ± 0.16
3SP + rescale 93.3 ± 0.03 70.5 ± 0.13
Random 92.0 ± 0.08 67.5 ± 0.16

90% ProsPr (ours) 93.64 ± 0.24 71.12 ± 0.26
3SP 93.1 ± 0.04 68.3 ± 0.12
3SP + reinit 93.0 ± 0.02 69.0 ± 0.08
3SP + rescale 93.0 ± 0.06 69.2 ± 0.11
Random 90.4 ± 0.12 63.8 ± 0.13

95% ProsPr (ours) 93.32 ± 0.15 68.03 ± 0.38
3SP 92.5 ± 0.12 63.2 ± 0.52
3SP + reinit 92.6 ± 0.09 64.2 ± 0.35
3SP + rescale 92.5 ± 0.06 63.5 ± 0.63
Random 89.0 ± 0.15 60.1 ± 0.29

4.4 NUMBER OF META STEPS

Finally, we evaluate ProsPr when using a varying number of meta steps, which gives insight into
whether using meta-gradients is beneficial. We repeated experiments from Section 4.3 but this time
we vary the depth of training steps between 0 and 3. The results in Table 3 show that the final
accuracy consistently increases as we increase the depth of the training, showing the effectiveness
of meta-gradients. We used the same data batch in all M training steps to isolate the effect of M,
while in other experiments we use a new batch in every step.

In theory increasing the number of training steps should always help and match the ultimate objective
(estimating the loss after many epochs of training) in the limit. However, in practice increasing the
number of steps beyond 3 poses a lot of gradient stability issues (and is computationally expensive).
These issues have been also identified in the meta-learning literature (Antoniou et al., 2019).
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Table 3: Evaluating the effect of meta steps (M) on structured pruning performance of VGG-19

(a) 90% Sparsity

M CIFAR-10 Acc CIFAR-100 Acc

0 93.1% ± 0.04 68.3% ± 0.12
1 93.3% ± 0.12 68.8% ± 0.18
2 93.5% ± 0.21 69.8% ± 0.20
3 93.6% ± 0.19 71.0% ± 0.21

(b) 95% Sparsity

M CIFAR-10 Acc CIFAR-100 Acc

0 92.5% ± 0.12 63.20% ± 0.52
1 92.9% ± 0.31 64.87% ± 0.35
2 93.25% ± 0.24 67.12% ± 0.42
3 93.29% ± 0.29 67.98% ± 0.31

5 RELATED WORK

Pruning at initialization Several works extend the approach proposed by Lee et al. (2018).
de Jorge et al. (2021) evaluate SNIP objective in a loop in which pruned parameters still receive
gradients and therefore have a chance to get un-pruned. The gradual pruning helps avoid the layer-
collapse issue, and their method, known as FORCE, achieves better performance at extreme sparsity
levels. Tanaka et al. (2020) provide theoretical justification for why iteratively pruning helps with
the layer-collapse issue and propose a data-free version of the method where an all-one input tensor
is used instead of real training data. Wang et al. (2020) propose an alternative criterion to minimizing
changes in the loss and instead argue for preserving the gradient flow. Their method, GraSP, keeps
weights that contribute most to the norm of the gradients. van Amersfoort et al. (2020) extends SNIP
and GraSP to structured pruning to make training and inference faster. They further augment the
scores by their compute cost to push the pruning decision towards more FLOPS reduction.

Gradual pruning As discussed in Section 1, in existing methods the training step has been ab-
sent from the saliency computation step. As a workaround, many methods make their approaches
training-aware by applying pruning gradually and interleaving it with training: Zhu & Gupta (2018)
proposed an exponential schedule for pruning-during-training and Gale et al. (2019) showed its
effectiveness in a broader range of tasks. Frankle & Carbin (2019) show that weight rewinding
achieves better results when done in multiple prune-retrain steps. Lym et al. (2019) continuously
apply structured pruning via group-lasso regularization while at the same time increasing batch
sizes. You et al. (2020) find pruned architectures after a few epochs of training-and-pruning and
monitoring a distance metric.

Meta-Gradients Backpropagation through gradients, and its first-order approximation, is also
used in model-agnostic meta-learning literature (Finn et al., 2017; Zintgraf et al., 2019) where the
objective is to find a model that can be adapted to new data in a few training steps. Similar to our
setup, the meta-loss captures the trainability of a model, but additionally, the meta-gradients are
used to update the network’s weights in a second loop. In self-supervised learning setting, Xiao
et al. (2021) use meta-gradients to explicitly optimize a learn-to-generalize regularization term in
nested meta-learning loops. Computing gradients-of-gradients is also used to regularize loss with
a penalty on the gradients, for instance, to enforce Lipschitz continuity on the network (Gulrajani
et al., 2017) or to control different norms of the gradients (Alizadeh et al., 2020).

6 DISCUSSION

Although pruning at initialization has the potential to greatly reduce the cost of training neural
networks, existing methods have not lived up to their promise. We argue that this is, in part, because
they do not account for the fact that the pruned network is going to be trained after it is pruned.
We take this into account, using a saliency score that captures the effect of a pruning mask on
the training procedure. As a result, our method is competitive not just with methods that prune
before training, but also with methods that prune iteratively during training and those that prune
after training. In principle, compressing neural networks at initialization has the potential to reduce
energy and environmental costs of machine learning. Beyond our context, taking into account that
methods which prune-at-convergence generally have to be fine-tuned, it is possible that our work
could have further implications for these pruning methods as well (Molchanov et al., 2016; Wang
et al., 2019).
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A EXPERIMENTAL SETUP

A.1 ARCHITECTURE DETAILS

We use standard VGG and ResNet models provided by torchvision throughout this work where
possible. The ResNet-20 model, which is not commonly evaluated, was implemented to match the
version used by Frankle et al. (2021) so that we could compare using the benchmark supplied by
this paper.

For smaller datasets, it is common to patch models defined for ImageNet. Specifically, for ResNets,
we replace the first convolution with one 3 × 3 filter size, and stride 1; the first max-pooling layer
is replaced with an identity operation. For VGG, we follow the convention used by works such
as FORCE (de Jorge et al., 2021). We do not change any convolutional layers, but we change the
classifier to use a single global average pooling layer, followed by a single fully-connected layer.

A.2 TRAINING DETAILS

For CIFAR-10, CIFAR-100 and TinyImageNet we perform 3 meta-steps to calculate our saliency
criteria. We train the resulting models for 200 epochs, with initial learning rate 0.1; we divide the
learning rate by 10 at epochs 100 and 150. Weight decay was set to 5×10−4. Batch size for CIFAR-
10, CIFAR-100, and TinyImageNet was 256. For CIFAR-10 and CIFAR-100 we augment training
data by applying random cropping (32× 32, padding 4), and horizontal flipping. For TinyImageNet
we use the same procedure, with random cropping parameters set to 64× 64, padding 4.

For ImageNet we train models for 100 epochs, with an initial learning rate of 0.1; we divide the
learning rate by 10 at epochs 30, 60 and 90. Weight decay was set to 1× 10−4. Batch size was 256.
We use the first order approximation to do pruning, and use 1024 steps for ResNet-50. For VGG-19
we use 2048 steps, but with batch size set to 128 (due to memory limitations, as our implementation
only utilized a single GPU for meta-training). We apply random resizing, then crop the image to
224× 224, with horizontal flipping.

A.3 IMPLEMENTATIONS

In addition to our code, the reader may find it useful to reference the following repos from related
work. Our experiments were performed using code derived from these implementations:

• https://github.com/naver/force

• https://github.com/alecwangcq/GraSP

• https://github.com/facebookresearch/open_lth

• https://github.com/ganguli-lab/Synaptic-Flow

• https://github.com/mil-ad/snip

B NUMBERS FROM FIGURE 2

Table 4: Numerical results for ResNet-20 on CIFAR-10
Sparsity (%) 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2 97.7 98.2

LTR after Training 91.8 ± 0.2 91.9 ± 0.2 91.9 ± 0.2 91.7 ± 0.2 91.5 ± 0.1 91.4 ± 0.1 91.1 ± 0.1 90.6 ± 0.1 90.1 ± 0.0 89.2 ± 0.1 88.0 ± 0.2 86.8 ± 0.2 85.7 ± 0.1 84.4 ± 0.2 82.8 ± 0.1 81.2 ± 0.3 79.4 ± 0.3 77.3 ± 0.5
Magnitude after Training 92.2 ± 0.3 92.0 ± 0.2 92.0 ± 0.2 91.7 ± 0.1 91.5 ± 0.2 91.3 ± 0.2 91.1 ± 0.2 90.7 ± 0.2 90.2 ± 0.2 89.4 ± 0.2 88.7 ± 0.2 87.7 ± 0.2 86.5 ± 0.2 85.2 ± 0.2 83.5 ± 0.3 81.9 ± 0.3 80.4 ± 0.2 77.7 ± 0.4
Magnitude at Initialization 91.5 ± 0.2 91.2 ± 0.1 90.8 ± 0.1 90.7 ± 0.2 90.2 ± 0.1 89.8 ± 0.2 89.3 ± 0.2 88.6 ± 0.2 87.9 ± 0.3 87.0 ± 0.3 86.1 ± 0.2 85.2 ± 0.4 83.9 ± 0.2 82.5 ± 0.4 80.7 ± 0.5 79.1 ± 0.4 77.2 ± 0.4 74.5 ± 0.7
SNIP 91.8 ± 0.2 91.2 ± 0.3 90.9 ± 0.1 90.7 ± 0.1 90.1 ± 0.2 89.7 ± 0.3 89.0 ± 0.2 88.5 ± 0.3 87.7 ± 0.2 87.2 ± 0.4 85.8 ± 0.1 84.7 ± 0.5 83.8 ± 0.3 82.5 ± 0.4 80.9 ± 0.2 79.1 ± 0.2 77.3 ± 0.2 74.0 ± 0.5
GraSP 91.5 ± 0.1 91.3 ± 0.2 91.2 ± 0.1 90.6 ± 0.2 90.3 ± 0.2 89.6 ± 0.1 89.1 ± 0.2 88.4 ± 0.2 87.9 ± 0.1 87.0 ± 0.2 85.9 ± 0.1 85.1 ± 0.4 83.9 ± 0.4 82.8 ± 0.2 81.2 ± 0.2 79.7 ± 0.3 78.0 ± 0.3 76.0 ± 0.5
SynFlow 91.7 ± 0.1 91.3 ± 0.2 91.2 ± 0.1 90.8 ± 0.1 90.4 ± 0.2 89.8 ± 0.1 89.5 ± 0.3 88.9 ± 0.4 88.1 ± 0.1 87.4 ± 0.5 86.1 ± 0.2 85.4 ± 0.2 84.3 ± 0.2 82.9 ± 0.2 81.7 ± 0.2 80.0 ± 0.3 78.6 ± 0.4 76.4 ± 0.4
Random 91.6 ± 0.2 91.2 ± 0.2 90.8 ± 0.3 90.5 ± 0.2 89.8 ± 0.2 89.0 ± 0.4 88.4 ± 0.2 87.5 ± 0.3 86.6 ± 0.2 85.6 ± 0.3 84.3 ± 0.4 83.1 ± 0.4 81.6 ± 0.3 79.6 ± 0.4 74.2 ± 6.4 64.7 ± 9.7 56.9 ± 8.5 43.7 ± 12.5
ProsPr 92.3 ± 0.1 92.1 ± 0.0 91.7 ± 0.2 91.5 ± 0.1 91.0 ±0.2 90.5 ± 0.0 90.1 ± 0.1 89.6 ± 0.2 88.5 ± 0.5 87.8 ± 0.1 86.9 ± 0.3 85.5 ± 0.6 84.3 ± 0.2 83.0 ± 0.9 80.8 ± 0.5 79.6 ± 0.7 77.0 ± 0.8 74.2 ± 0.3

Table 5: Numerical results for VGG-16 on CIFAR-10
Sparsity (%) 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2 97.7 98.2

LTR after Training 93.5 ± 0.1 93.6 ± 0.1 93.6 ± 0.1 93.6 ± 0.1 93.8 ± 0.1 93.6 ± 0.1 93.6 ± 0.1 93.8 ± 0.1 93.8 ± 0.1 93.7 ± 0.1 93.7 ± 0.1 93.8 ± 0.1 93.5 ± 0.2 93.4 ± 0.1 93.2 ± 0.1 93.0 ± 0.2 92.7 ± 0.1 92.1 ± 0.4
Magnitude after Training 93.9 ± 0.2 93.9 ± 0.2 93.8 ± 0.1 93.8 ± 0.1 93.9 ± 0.1 94.0 ± 0.2 93.8 ± 0.1 93.8 ± 0.1 93.9 ± 0.2 93.9 ± 0.2 93.8 ± 0.2 93.7 ± 0.2 93.5 ± 0.1 93.5 ± 0.1 93.3 ± 0.2 93.0 ± 0.1 92.9 ± 0.1 91.7 ± 0.8
Magnitude at Initialization 93.6 ± 0.2 93.4 ± 0.2 93.3 ± 0.1 93.2 ± 0.2 93.3 ± 0.3 93.0 ± 0.1 93.1 ± 0.1 92.9 ± 0.1 92.9 ± 0.2 92.7 ± 0.1 92.5 ± 0.2 92.3 ± 0.1 92.2 ± 0.2 92.0 ± 0.1 91.8 ± 0.2 91.5 ± 0.1 91.3 ± 0.3 90.9 ± 0.2
SNIP 93.6 ± 0.1 93.4 ± 0.1 93.3 ± 0.1 93.4 ± 0.2 93.3 ± 0.2 93.4 ± 0.1 93.1 ± 0.1 93.1 ± 0.1 93.2 ± 0.1 93.1 ± 0.1 92.9 ± 0.1 92.8 ± 0.2 92.8 ± 0.1 92.3 ± 0.2 92.2 ± 0.1 92.1 ± 0.1 91.7 ± 0.1 91.5 ± 0.1
GraSP 93.5 ± 0.1 93.4 ± 0.2 93.5 ± 0.0 93.3 ± 0.1 93.2 ± 0.2 93.3 ± 0.2 93.2 ± 0.1 93.0 ± 0.3 93.0 ± 0.1 92.7 ± 0.2 92.8 ± 0.1 92.4 ± 0.1 92.3 ± 0.1 92.2 ± 0.1 91.9 ± 0.1 91.6 ± 0.2 91.5 ± 0.0 91.2 ± 0.2
SynFlow 93.6 ± 0.2 93.6 ± 0.1 93.5 ± 0.1 93.4 ± 0.1 93.4 ± 0.2 93.5 ± 0.2 93.2 ± 0.1 93.2 ± 0.1 93.1 ± 0.1 92.9 ± 0.1 92.7 ± 0.2 92.5 ± 0.1 92.3 ± 0.1 92.0 ± 0.1 91.8 ± 0.3 91.3 ± 0.1 91.0 ± 0.2 90.6 ± 0.2
Random 93.6 ± 0.3 93.2 ± 0.1 93.2 ± 0.2 93.0 ± 0.2 92.7 ± 0.2 92.4 ± 0.2 92.2 ± 0.1 91.7 ± 0.1 91.2 ± 0.1 90.8 ± 0.2 90.3 ± 0.2 89.6 ± 0.2 88.8 ± 0.2 88.3 ± 0.4 87.6 ± 0.1 86.4 ± 0.2 86.0 ± 0.4 84.5 ± 0.4
ProsPr 93.7 ± 0.2 93.7 ± 0.1 93.9 ± 0.1 93.8 ± 0.1 93.8 ± 0.1 93.5 ± 0.2 93.6 ± 0.1 93.4 ± 0.3 93.5 ± 0.2 93.3 ± 0.1 93.0 ± 0.1 93.0 ± 0.1 92.8 ± 0.3 92.7 ± 0.1 92.6 ± 0.1 92.2 ± 0.1 92.1 ± 0.2 91.6 ± 0.4
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Table 6: Numerical results for ResNet-18 on TinyImageNet
Sparsity (%) 20.0 36.0 48.8 59.0 67.2 73.8 79.0 83.2 86.6 89.3 91.4 93.1 94.5 95.6 96.5 97.2 97.7 98.2

LTR after Training 51.7 ± 0.2 51.4 ± 0.3 51.5 ± 0.4 52.1 ± 0.4 51.8 ± 0.4 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.2 52.1 ± 0.3 52.0 ± 0.2 52.4 ± 0.2 51.8 ± 0.4 51.8 ± 0.6 51.4 ± 0.4 50.9 ± 0.2 49.3 ± 0.7 48.3 ± 0.7 46.0 ± 0.3
Magnitude after Training 51.7 ± 0.3 51.4 ± 0.1 51.7 ± 0.2 51.5 ± 0.3 51.7 ± 0.4 51.4 ± 0.5 51.1 ± 0.3 51.4 ± 0.4 51.3 ± 0.4 51.1 ± 0.6 51.7 ± 0.3 51.3 ± 0.3 51.8 ± 0.4 51.2 ± 0.3 51.1 ± 0.2 50.4 ± 0.2 49.0 ± 0.2 47.8 ± 0.5
Magnitude at Initialization 51.0 ± 0.3 51.2 ± 0.3 51.0 ± 0.2 50.5 ± 0.5 50.6 ± 0.3 50.0 ± 0.3 50.3 ± 0.2 50.3 ± 0.3 50.0 ± 0.1 49.8 ± 0.5 49.0 ± 0.1 48.3 ± 0.3 47.2 ± 0.2 46.2 ± 0.2 44.4 ± 0.5 42.2 ± 0.1 40.8 ± 0.4 38.1 ± 0.6
SNIP 51.4 ± 0.2 51.5 ± 0.3 51.4 ± 0.3 51.3 ± 0.5 51.6 ± 0.4 51.4 ± 0.5 51.9 ± 0.6 51.5 ± 0.3 51.0 ± 0.2 51.2 ± 0.7 50.6 ± 0.3 50.1 ± 0.3 49.2 ± 0.3 47.8 ± 0.2 46.7 ± 0.1 45.2 ± 0.4 44.5 ± 0.3 42.3 ± 0.3
GraSP 49.8 ± 0.4 49.1 ± 0.3 49.5 ± 0.2 49.5 ± 0.4 49.2 ± 0.1 49.5 ± 0.2 48.7 ± 0.1 49.0 ± 0.5 48.8 ± 0.4 48.3 ± 0.1 48.2 ± 0.1 47.7 ± 0.2 46.5 ± 0.1 45.5 ± 0.7 44.9 ± 0.2 44.1 ± 1.0 42.9 ± 0.5 41.0 ± 0.1
SynFlow 51.8 ± 0.3 51.6 ± 0.3 51.7 ± 0.7 51.8 ± 0.2 51.3 ± 0.4 51.3 ± 0.4 51.5 ± 0.2 51.0 ± 0.4 50.2 ± 0.4 50.4 ± 0.3 49.1 ± 0.0 48.0 ± 0.5 46.7 ± 0.7 45.6 ± 0.0 44.0 ± 0.2 42.2 ± 0.3 40.0 ± 0.1 38.2 ± 0.5
Random 50.6 ± 0.5 50.1 ± 0.2 49.9 ± 0.3 48.7 ± 0.2 48.0 ± 0.4 48.0 ± 0.6 46.4 ± 0.1 45.9 ± 0.5 44.7 ± 0.2 43.6 ± 0.3 42.7 ± 0.2 41.4 ± 0.4 40.2 ± 0.2 37.2 ± 0.2 36.2 ± 0.7 34.0 ± 0.4 32.2 ± 0.5 30.0 ± 0.3
ProsPr 51.8 ± 0.4 51.4 ± 0.7 51.2 ± 0.9 52.0 ± 0.2 51.8 ± 0.1 51.2 ± 0.4 52.0 ± 0.3 51.6 ± 0.7 51.1 ± 0.4 50.7 ± 0.6 50.9 ± 0.3 50.8 ± 1.2 51.1 ± 0.7 50.8 ± 0.5 50.8 ± 0.3 49.6 ± 0.6 49.2 ± 0.2 46.9 ± 0.7

C WALL CLOCK TIME FOR STRUCTURE PRUNING AT INITIALIZATION

When pruning is done at convergence, the benefits of having a compressed model (in terms of
memory saving and speed-up) can only be utilized at inference/deployment time. However, with
pruning-at-initialization these benefits can be reaped during training as well. This is especially
true in the case of structured pruning, where pruning results in weight and convolutional kernels
with smaller dimensions (as opposed to unstructured pruning, where we end up with sparse weights
with the original dimensions). This means that in addition to memory savings, training take fewer
operations which speeds up training. To evaluate the benefits of training at initialization in terms of
speed improvements we measured the wall-time training time on an NVIDIA RTX 2080 Ti GPU for
the architectures used in Section 4.3 (an additionally on ImageNet dataset). The results in Table 7
show that structured pruning with ProsPr can significantly reduce the overall training time.

Table 7: Wall-time Training Speed-ups by Structured Pruning at Initialization

Dataset Epochs Model Unpruned 80% pruned 90% pruned 95% pruned

CIFAR-100 200 ResNet-18 83.9 mins 60.76 mins 54.8 mins 46.6 mins
CIFAR-100 200 VGG-19 50.3 mins 45.8 mins 39.93 mins 38.8 mins
Tiny-ImageNet 200 ResNet-18 9.79 hours 8 hours 5.4 hours 4.92 hours
Tiny-ImageNet 200 VGG-19 5.75 hours 4.0 hours 3.38 hours 2.7 hours
ImageNet 90 ResNet-18 73.7 hours 72.15 hours 65.9 hours 64.6 hours

D RESULTS ON SEGMENTATION TASK

An interesting, albeit less common, application for pruning models is within the context of segmen-
tation. In a recent paper Jeong et al. (2021) train and prune the U-Net (Ronneberger et al., 2015)
architecture on two image datasets from the Cell Tracking Challenge (PhC-C2DH-U373 and DIC-
C2DH-HeLa). They use the classic multi-step approach of gradually applying magnitude-pruning
interleaved with fine-tuning stages. To evaluate the flexibility of our method we used meta-gradients
at the beginning of training (on a randomly initialized U-Net), prune in a single shot, and train the
network once for the same number of epochs (50). We kept the training set-up the same as the base-
line by Jeong et al. (2021) (i.e., resizing images and segmentation maps to (256,256), setting aside
30% of training data for validation) and similarly aim to find the highest prune ratio that does not
result in IOU degradation. We report intersection-over-union (IOU) metric for the two datasets in
Tables 8 and 9:

Table 8: Mean-IOU on U373 validation

Method Prune Ratio Mean IOU

Unpruned - 0.9371
Jeong et al. 95% 0.9368
ProsPr 97% 0.9369

Table 9: Mean-IOU on HeLa validation

Method Prune Ratio Mean IOU

Unpruned - 0.7514
Jeong et al. 81.8% 0.7411
ProsPr 90% 0.7491

These results show that our method works as well (or better) compared to this compute-expensive
baseline, in the sense that we can prune more parameters while keeping the IOU score the same.
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E SELF-SUPERVISED INITIALIZATION

To evaluate the robustness and consistency of our method against non-random initialization we ran
experiments using BYOL to learn representations from unlabeled samples (Grill et al., 2020). We
used ResNet-18 as a backbone and trained for 1000 epochs with an embedding size of 64. Unlike the
vanilla ResNet-18 architecture used in Section 4.3 we used the commonly-used modified version of
ResNet-18 for smaller inputs (removing the first pooling layer and modifying the first convolutional
layer to have kernel kernel size of 3, stride of 1, and padding size of 1). We then used this trained
ResNet18 as the initialization for our meta-gradient pruning method. After the pruning step, all
layers were trained as before until convergence. All training hyper-parameters were kept as before.
The results (final test accuracies for 95% pruning) are summarized in Table 10.

Table 10: Comparing test accuracies (%) of ProsPr on randomly initialized ResNet-18 and initial-
ization from self-supervised learning (BYOL)

Dataset Random Init BYOL init

CIFAR-10 93.6 93.62
CIFAR-100 73.2 74.02

These results show the robustness of our method for this particular self-supervised initialization.
Starting from a learned representation can be challenging because these representations are much
closer to weight values at convergence, and therefore the magnitude of their gradients is significantly
smaller than randomly initialized weights. However, this is less of a problem for meta-gradients as
their magnitude is still significant due to back-propagation through training steps. This can be seen
in Figure 3 which shows the L2 norm of gradients of each layer of a BYOL-initialized ResNet-18 for
meta-gradients compared to normal gradients. It can be seen that meta-gradients provide a stronger
signal compared to normal gradients.

Figure 3: Comparing L2-norm of gradients and meta-gradients in BYOL-initialized ResNet-18
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