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Abstract

In this work, we propose Branch-to-Trunk network (BTNet), a novel representation1

learning method for multi-resolution face recognition. It consists of a trunk network2

(TNet), namely a unified encoder, and multiple branch networks (BNets), namely3

resolution adapters. As per the input, a resolution-specific BNet is used and the4

output are implanted as feature maps in the feature pyramid of TNet, at a layer with5

the same resolution. The discriminability of tiny faces is significantly improved, as6

the interpolation error introduced by rescaling, especially up-sampling, is mitigated7

on the inputs. With branch distillation and backward-compatible training, BTNet8

transfers discriminative high-resolution information to multiple branches while9

guaranteeing representation compatibility. Our experiments demonstrate strong10

performance on face recognition benchmarks, both for multi-resolution identity11

matching and feature aggregation, with much less computation amount and param-12

eter storage. We establish new state-of-the-art on the challenging QMUL-SurvFace13

1: N face identification task.14

1 Introduction15

Machine learning has advanced tremendously driven by deep learning methods, but is still severely16

challenged by various data specifications, such as data type, structure, scale and size, etc. For17

instance, face recognition (FR) is a well-established deep learning task, while the performance18

degrades dramatically in the testing domain that differs from the training one, influenced by factors19

of variance like resolution, illumination, occlusion, etc.20

Most face recognition methods map each image to a point embedding in the common metric space21

by deep neural networks (DNNs). The dissimilarity of images can be then calculated using various22

distance metrics (e.g., cosine similarity, Euclidean distance, etc.) for face recognition tasks.23

Recent advancements in margin-based loss (e.g., ArcFace [1], MV-Arc-Softmax [2], CurricularFace24

[3], etc) enhanced discriminability of the metric space, with small intra-identity distance and large25

inter-identity distance. However, lack of variation in training data still leads to poor generalizability.26

Various useful methods are utilized to mitigate this issue. The model adapts to factors of variance27

by augmenting datasets, whereas the large discrepancy in data distribution could potentially weaken28

the model’s ability to extract discriminative features with the same data scale and model structure29

(see Section 4.3). Fine-tuning is widely used to transfer large pretrained models to new domains with30

different data specifications. However, this strategy requires one to store and deploy a separate copy31

of the backbone parameters for every single new domain, which is expensive and often infeasible.32

As known, the resolutions of face images in reality may be far beyond the scope covered by the33

model. As the small feature maps with a fixed spatial extent (e.g., 7× 7) are mapped to an embedding34
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with a predefined dimension (e.g., 128 − d, 512 − d, etc.) by a fully connected (fc) layer, input35

images need to be rescaled to a canonical spatial size (e.g., 112× 112) before fed into the network.36

However, up-sampling low-resolution (LR) images introduces the interpolation error (see Section 3.1),37

deteriorating the recognizable ones which contain enough clues to identify the subject. Even though38

super-resolution methods [4–10] are widely used to build faces with good visualization, they inevitably39

introduce feature information of other identities when reconstructing high-resolution (HR) faces.40

This may lead to erroneous identity-specific features, which are detrimental to risk-controlled face41

recognition.42

Empirically, we can divide inputs by resolution distribution and learn to operate on them via multiple43

models to achieve high accuracy and efficiency. However, multi-model fashion cannot be applied44

directly for cross-resolution recognition as representation compatibility among models need to be45

guaranteed [11–15].46

To improve discriminability while ensure the compatibility of the metric space for multi-resolution47

face representation, we learn the “unified” representation by a partially-coupled Branch-to-Trunk48

Network (BTNet). It is composed of multiple independent branch networks (BNets) and a shared49

trunk network (TNet). A resolution-specific BNet is used for a given image, and the output are50

implanted as feature maps in the feature pyramid of TNet, at a layer with the same resolution.51

Furthermore, we find that multi-resolution training can be beneficial to building a strong and robust52

TNet, and backward-compatible training (BCT) [11] can improve the representation compatibility53

during the training process of BTNet. To ameliorate the discriminability of tiny faces, we propose54

branch distillation in intermediate layers, utilizing information extracted from HR images to help the55

extraction of discriminative features for resolution-specific branches.56

Our method is simple and efficient, which breaks the convention of up-sampling the inputs and57

serves as a general framework that can be easily implemented by several existing methods due to58

conceptual simplicity. Meanwhile, BTNet is able to reduce the number of FLOPS by operating the59

inputs without up-sampling, and per-resolution storage cost by only storing the learned branches and60

resolution-aware BNs [16], while re-using the copy of the trunk model.61

We demonstrate that our method performs comparably in various open-set face recognition tasks (1:162

face verification and 1: N face identification), in both settings of multi-resolution identity matching63

and feature aggregation, while meaningfully reduces the redundant computation cost and parameter64

storage. In the challenging QMUL-SurvFace 1: N face identification task [17], we establish new65

state-of-the-art by outperforming prior models. Furthermore, by avoiding the ill-posed problem (i.e.,66

image up-sampling), our approach also effectively reduces the additional noise and uncertainty of the67

representation, which plays a key role in reliable risk-controlled face recognition.68

2 Related Work69

Compatible Representation Learning: The task of compatible representation learning aims at70

encoding features that are interoperable with the features extracted from other models. Shen et. al.71

[11] first formulated the problem of backward-compatible learning (BCT) and proposed to utilize the72

old classifier for compatible feature learning. Since the multi-model fashion benefits representation73

learning with lower computation, our idea of cross-resolution representation learning can be modeled74

similar to cross-model compatibility [11–15], as metric space alignment for different resolutions. Our75

goal is achieved by both compatibility-aware network architecture and training strategy.76

Knowledge Distillation and Transfer: The concept of knowledge distillation (KD) was first77

proposed by Hinton et. al. in [18], which can be summarized as employing a large parameter78

model (teacher) to supervise the learning of a small parameter model (student). Distillation from79

intermediate features [19–29] is widely adopted to enhance the effectiveness of knowledge transfer.80

However, due to the “dark knowledge” hidden in the intermediate layers, additional subtle design is81

often required to match and rescale intermediate features. Instead, our approach can easily locate the82

distillation features without rescaling and effectively transfer knowledge from the HR domain to LR83

branches.84
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Low Resolution Face Recognition: Its task includes low resolution-to-low resolution (LR-to-LR)85

matching and low resolution-to-high resolution (LR-to-HR) matching [30]. The work can be divided86

into two categories [31]: (1) Super-resolution (SR) based methods aim to upscale LR images to87

construct HR images and use them for feature extraction [4–10]. (2) Projection-based methods aim to88

extract adequate representations in different domains and project them into a common feature space89

[32–34]. SR approaches are able to build faces with good visualization, but inevitably introduce90

feature information of other identities when reconstructing corresponding HR faces, thus introducing91

noise for identity-specific features. Compared to previous projection methods, our approach directly92

learns discriminative representations in a common feature space for HR and LR inputs, without93

additional projection heads for feature transformation.94

Pseudo-Siamese Networks: Siamese networks are a coupling architecture based on DNNs, which95

are widely used for signature verification [35], face verification [36, 37], tracking [38], etc. Pseudo-96

Siamese networks [39] are decoupled Siamese networks, as the weights of the two branches are not97

shared, resulting in a more flexible representation way for the two entities. Hughes et. al. in [40]98

proposed a pseudo-Siamese CNN for identifying corresponding patches in SAR and optical images.99

Inspired by pseudo-Siamese networks, we propose a resolution-adaptive partially coupled Siamese100

network architecture, extracting specific-shared features for images with different resolutions.101

3 Learning Specific-Shared Feature Transfer102

Instead of rescaling the inputs to a canonical size, we build multiple resolution-specific branches103

(BNets) that are used to map inputs to intermediate features with the same resolution and a resolution-104

shared trunk (TNet) to map feature maps with different resolutions to a high-dimension embedding.105

We gain several important properties by doing so: (1) Processing inputs on its original resolution106

can diminish the inevitably introduced error via up-sampling or information loss via down-sampling,107

thus preserving the discriminability of visual information with different resolutions. (2) Information108

streams of different resolutions are encoded uniformly, thus enabling the representation compatibility,109

which is particularly beneficial to open-set face recognition considering that a compatible metric110

space is the prerequisite for computing similarity. (3) This also effectively reduce the computation111

for LR images by supplying computational resources conditioned on the input resolution.112

3.1 Up-Sampling Error Analysis113

Figure 1: Estimated Error Upperbound.
(bilinear interpolation, average value for over
100 images) with the change of image reso-
lution relative to resolution 112.

Figure 2: Basic ideas of the proposed BTNet.
Images of a certain identity are first projected to the
feature maps with the same resolution respectively
(Adapt) and then projected to a unified feature repre-
sentation (Encode). In this figure, feature maps with
the same resolution are indicated by outlines in the
same color.

Figure 1 illustrates the experimental estimation of interpolation error, whose upper bound increases114

with the decline of the image resolution (see detailed theoretical derivation in Appendix A.1). Note115

that the error soars up when the resolution drops below 32 approximately which can be viewed as LR116

face images, consistent with the tiny-object criterion [41].117
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The results show that: (1) inputs with a resolution higher than around 32 can be considered in the118

same HR domain, since the error information introduced by up-sampling via interpolation can be119

ignored to a certain extent; (2) inputs with a resolution lower than around 32 should be treated as in120

various LR domains due to the high sensitivity of the resolution to errors.121

3.2 Branch-to-Trunk Network122

Let X be an input RGB image with a space shape: X ∈ RH×W×3 where H ×W corresponds to the123

spatial dimension of the input. For efficient batch training and inference, we predefine a canonical124

size S × S (e.g., 112× 112 for typical face recognition models like ArcFace [1]).125

We build a trunk network T : RH×W×3 → RCemb capable of extracting discriminative information126

with different resolutions, where Cemb is the number of embedding channels. For every resolution r127

in the candidate set, we formulate a resolution-specific branch, zr = Br(Xr), which maps the input128

image Xr to feature maps with the same resolution and expanded channels zr : Rr×r×3 → Rr×r×Cr .129

The idea is to learn our branches B to focus on resolution-specific feature transfer independently.130

Feature maps will then be coupled to the trunk network T in the feature pyramid with the same spatial131

resolution r × r, allowing for further mapping to the unified presentation space by Tr : Rr×r×Cr →132

RCemb .133

Here, we follow the idea of “avoiding redundant up-sampling”. Our branches B are implemented134

with same-resolution mapping: i.e., the model preserves the network architecture of T from input to135

the layer with resolution r and abandons down-sampling operations (e.g., replacing the convolution136

of stride 2 with stride 1, abandoning the pooling layers, etc.) to keep the same-resolution flow.137

We specifically name our specific-shared feature transfer network as Branch-to-Trunk Network,138

abbreviated as "BTNet". Figure 2 visually summarizes the main ideas of BTNet.139

3.3 Training Objectives140

We now describe the training objectives. The training of BTNet includes training the trunk network141

T such that it can produce discriminative and compatible representations for multi-resolution infor-142

mation, and fine-tuning the branch networks B to encourage them to learn resolution-specific feature143

transfer, so as to improve accuracy without compromising compatibility.144

Influence Loss. It is a compatibility-aware classification loss which is implemented by feeding the145

embeddings of the new model to the classifier of the old model [11]. Since the difficulties of samples146

vary due to image resolution, we compute CurricularFace [3] as our classification loss, in the form of:147

148

Lcur = − log(
es cos(θyi+m)

es cos(θyi+m) +
∑n

j=1,j ̸=yi
esN(t(k),cos(θj))

) (1)

149

N(t, cos θj) =

{
cos(θj), cos(θyi +m)− cos(θj) ≥ 0
cos(θj)(t+ cos(θj)), else

(2)

t(k) = α
∑
i

cos θyi
+ (1− α) t(k−1) (3)

which distinguishes both the difficultness of different samples in each stage and relative importance150

of easy and hard samples during different training stages. Thus, we refine CurricularFace loss as our151

influence loss:152

Linfluence = Lcur(φbt, κ
∗) (4)

where φbt is BTNet backbone (both Br and Tr), and κ∗ is the classifier of the pretrained trunk T .153
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Figure 3: Visual comparison of face image-feature map
pairs with different resolutions (resized to a common
size here for illustration).

Branch Distillation Loss. Due to the154

continuity of the scale change of both the155

image pyramid and the feature pyramid156

[42], we can get a qualitative sense of157

the similarity between images and feature158

maps with the same resolution (see Figure159

3). Furthermore, features extracted from160

HR images have richer and clearer infor-161

mation than those from LR images [43].162

Motivated by these analyses, we utilize an163

MSE loss to encourage the branch output164

zr to be similar to the corresponding fea-165

ture maps of the pretrained trunk network166

zs:167

Lbranch =
1

V

V∑
v=1

(zrv − zsv )
2 (5)

where V denotes the batch size.168

The whole training objective is a combination of the above objectives:169

L = Linfluence + λbranchLbranch (6)

where λbranch is a hyper-parameter to weigh the losses and we set λbranch = 0.5 in all our experi-170

ments.171

Figure 4: Comparison of # Params (M) be-
tween fully finetuning and φbt.

Figure 5: Comparison of FLOPs (G) between
baselines and φbt.

3.4 Storing Branch Networks172

An obvious adaptation strategy is fully finetuning of the model on each resolution. However, this173

strategy requires one to store and deploy a separate copy of the backbone parameters for every174

resolution, which is an expensive proposition and difficult to expand into more segmented resolution175

branches. Our BTNet is beneficial in the scenario of multi-resolution face recognition which achieves176

better parameter/accuracy trade-offs. Since activation statistics including means and variances under177

different resolutions are incompatible [44], we update and store Batch Normalization (BN) [45]178

parameters in all layers of Br and Tr for each resolution, whose amount is negligible. Apart from this,179

we only need to store the learned branches and re-use the original copy of the pretrained trunk model,180

significantly reducing the storage cost. Figure 4 shows that BTNet requires only 1.1% ∼ 48.9% of181

all the parameters compared to fully updating all the parameters of TNet.182

4 Experiments183

To validate BTNet on face recognition tasks in open universe, we perform 1:1 verification and 1 : N184

identification tasks in two different settings, including (a) multi-resolution identity matching, and185
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(b) multi-resolution feature aggregation. For 1:1 verification, a pair of templates are provided and186

the model is to decide whether they belong to the same identity or not. For 1:N identification, a set187

of gallery images are first mapped onto their embedding vectors (indexing) and the embeddings of188

query images are extracted to perform search against indexed gallery.189

4.1 Implementation Details190

Datasets. We use MS1Mv3 [46] for training face embedding models. The MS1Mv3 dataset191

contains 5,179,510 images of 93,431 celebrities. According to the test setting, different test datasets192

are used.193

·Multi-Resolution Identity Matching. We try on six widely adopted face verification benchmarks:194

LFW [47], CFP-FF [48], CFP-FP [48], AgeDB-30 [49], CALFW [50], and CPLFW [51], while195

the large-scale surveillance face dataset QMUL-SurvFace [17] is used for 1:N face identification,196

which contains native LR surveillance faces across wide space and time. The spatial resolution for197

QMUL-SurvFace ranges from 6/5 to 124/106 in height/width with an average of 24/20.198

·Multi-Resolution Feature Aggregation. We adopt a top challenging benchmark IJB-C [52], which199

has around 130k images from 3,531 identities, for two standard testing protocols: 1 : 1 verification200

and 1:N identification.201

Training. All the models are trained on four RTX 2080 Tis with batch size 128 by stochastic202

gradient descent. For TNet, we train for 25 epochs, with learning rate initialized at 0.2 with 2 warm-203

up epochs and decaying as a quadratic polynomial. We augment training samples by random horizonal204

flipping and multi-resolution training. For BNets, we initialize the learning rate by 0.02 without205

warm-up epochs. The training all stops at the 10th epoch for a fair comparison. The recommended206

hyper-parameters are used for classification loss from the original paper (e.g., m = 0.5, s = 64207

for ArcFace [1], and α = 0.99, t0 = 0 for CurricularFace [3]). Only horizonal flipping is used as208

augmentation when training BNets.209

Baselines. In our experiment, several baselines are used to validate BTNet in learning discriminative210

and compatible representations for multi-resolution face recognition.211

·High-Resolution Trained φhr. Naive baseline trained with HR data.212

·Independently Trained φmm. Multi-model fashion: is it possible to achieve better results if we213

train a specific model for each resolution independently? Specifically, we train φr for data with214

resolution r and denote the multi-model collections as φmm.215

·Multi-Resolution Trained φmr. Trained with multi-resolution data which adapts to resolution-216

variance. Specifically, each image is randomly down-sampled to a size in the candidate set { 112
2i ×217

112
2i |i = 0, 1, 2, 3, 4} with equal probability of being chosen, and then up-sampled back to 112× 112.218

Instantiation of Network Architecture. The BTNet and baselines are implemented with ResNet50219

[53], and they could be extended easily with other implementations. Dubbed as φbt, the detailed220

instantiation of BTNet based on ResNet50 is illustrated in Appendix A.2.221

4.2 Evaluation Metrics222

On the benchmarks for face verification, we use 1:1 verification accuracy as the basic metrics. The223

rank-20 true positive identification rates (TPIR20) at varying false positive identification rates (FPIR)224

and AUC are used to report the identification results on QMUL-SurvFace. The evaluation metrics225

for IJB-C 1:1 verification protocol are true acceptance rates (TAR) at different false acceptance rate226

(FAR). For 1:N identification, the basic evaluation metrics are the true positive identification rates227

(TPIR) at different false positive identification rates (FPIR).228

For better evaluation, we define another two metrics to assess the relative performance gain similar to229

[11, 14].230
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Table 1: Comparison of different methods on six face verification benchmarks.
“Acc.” denotes average 1:1 verification accuracy.

(a) Cross-resolution identity matching.

112&7 112&14 112&28

Acc. Gain Acc. Gain Acc. Gain

φhr 57.75 - 81.02 - 95.90 -

φmm 50.58 -0.89 49.90 -4.82 50.03 -305.80

φmr 65.85 +1.00 87.47 +1.00 96.05 +1.00

φbt(Ours) 86.10 +3.50 94.08 +2.02 96.65 +5.00

(b) Same-resolution identity matching.

7&7 14&14 28&28 112&112

Acc. Gain Acc. Gain Acc. Gain Acc. Gain

60.70 - 73.88 - 93.58 - 97.68 -

62.57 +1.00 78.00 +1.00 94.68 +1.00 97.68 -

61.02 +0.17 80.32 +1.56 95.12 +1.40 97.25 -

77.78 +9.13 90.90 +4.13 96.27 +2.45 97.25 -

Cross-Resolution Gain. With the purpose towards the cross-resolution compatible representations,231

we define the performance gain as follows:232

Gainr1&r2(φ) =
Mr1&r2(φ)−Mr1&r2(φhr)

|Mr1&r2(φmr)−Mr1&r2(φhr)|
(7)

Here Mr1&r2(·) are metrics when the resolutions of the image/template pair are r1 × r1 and r2 × r2233

(r1 ̸= r2), respectively. φmr shares the same architecture with φhr while is trained on multi-resolution234

images and thus serves as the baseline of cross-resolution gain.235

Same-Resolution Gain. For the scenario of multi-resolution face recognition, the performance of236

same-resolution verification/identification is also vital besides cross-resolution one. Therefore, we237

report the relative performance improvement from base model φhr in the scenario of same-resolution.238

Gainr&r(φ) =
Mr&r(φ)−Mr&r(φhr)

|Mr&r(φr)−Mr&r(φhr)|
(8)

Here Mr&r (·) are metrics when the resolutions of the image/template pair are both r × r. φr is239

a model of the set {φmm = φr|r = 7, 14, 28} trained on images with resolution r × r without240

considering cross-resolution representation compatibility, which serves as the baseline of same-241

resolution gain on resolution r. Note that for both metrics we add the absolute symbol to the242

denominator as they can be negative in some test settings (detailed in Section 4.3 and 4.4).243

4.3 Multi-Resolution Identity Matching244

We now conduct experiments on the proposed BTNet framework for multi-resolution identity match-245

ing. Two different settings are included : (1) same-resolution matching, and (2) cross-resolution246

matching. Table 1 compares the average performance on popular benchmarks for φhr, φmm, φmr,247

φbt. The experimental results on each dataset are detailed in Appendix A.5.248

When directly applied to test data with the resolution lower than training data, φhr suffers a severe249

performance degradation. Up-sampling images via interpolation can increase the amount of data250

but not the amount of information, only to improve the detailed part of the image and the spatial251

resolution (size) [64]. Moreover, it also brings various noise and artificial processing traces [65].252

Up-sampling images via interpolation-typically bilinear interpolation or bicubic interpolation of253

4x4 pixel neighborhoods, essentially a function approximation method, is bound to introduce error254

information (detailed in Appendix A.1), thus potentially confusing identity information, which is255

especially crucial for LR images with limited details. We are able to observe improvement of φmm in256

same-resolution matching but its cross-resolution gain is negative with approximately 50% accuracy.257

Unsurprisingly, independently trained φr is unaware of representation compatibility, and thus does258

not naturally suitable for cross-resolution recognition. The results show that φmr improved both259

cross-resolution and same-resolution accuracy by a large margin, as it learns to adapt to resolution260

variance and maintain discriminability of multi-resolution inputs. Note that the model size and261

training data scale stay the same, while only the resolution distribution of the data changes for262

φmr, and thus there is a marginal accuracy drop in the setting of 112&112 matching. Comparably,263

φbt substantially outperforms all baselines with 2.02 ~5.00 cross-resolution gain and 2.45~9.13264

same-resolution gain. Importantly, due to the multi-resolution branches, our approach has a cost same265

with φmm, significantly lower than φhr and φmr (see Figure 5).266

7



Table 2: Performance of face identification on QMUL-SurvFace. Most compared results are cited
from [17, 54] except BTNet.

TPIR20(%)@FPIR

AUC 0.3 0.2 0.1 0.01

VGG-Face [55] 14.0 5.1 2.6 0.8 0.1

DeepID2 [56] 20.8 12.8 8.1 3.4 0.8

FaceNet [57] 19.8 12.7 8.1 4.3 1.0

SphereFace [58] 28.1 21.3 15.7 8.3 1.0

SRCNN [59] 27.0 20.0 14.9 6.2 0.6

FSRCNN [60] 27.3 20.0 14.4 6.1 0.7

VDSR [61] 27.3 20.1 14.5 6.1 0.8

DRRN [62] 27.5 20.3 14.9 6.3 0.6

LapSRN [63] 27.4 20.2 14.7 6.3 0.7

ArcFace [1] 25.3 18.7 15.1 10.1 2.0

RAN [54] 32.3 26.5 21.6 14.9 3.8

BTNet (avg.+floor) 32.6 27.9 23.4 16.5 1.4

BTNet (avg.+near) 34.6 30.3 25.7 18.9 1.5

BTNet (avg.+ceil) 35.4 31.1 26.8 20.3 2.2

BTNet (min+floor) 32.3 27.6 23.2 16.1 1.4

BTNet (min+near) 34.0 29.6 25.0 18.0 1.4

BTNet (min+ceil) 35.3 31.0 26.6 19.9 2.0

BTNet (max+floor) 33.6 29.1 24.5 17.6 1.3

BTNet (max+near) 35.2 31.0 26.4 19.6 1.7

BTNet (max+ceil) 35.4 31.2 26.9 20.6 2.5

For inference on inputs with resolutions not strictly matched to the branch, we validate three selection267

strategies based on three resolution indicators (see Figure 6). Table 2 compares BTNet against the268

state-of-the-arts models on QMUL-SurvFace 1:N identification benchmark. We are able to observe269

that our proposed approach extends the state-of-the-arts while being more computationally efficient.270

We believe the performance of BTNet (max + ceil) is the highest that have been reported so far, and271

we believe it is meaningful with the increased focus on unconstrained surveillance applications.272

4.4 Multi-Resolution Feature Aggregation273

Multi-resolution feature aggregation is common in set-based recognition tasks where the model needs274

to determine the similarity of sets (templates), instead of images. Each set could contain images of275

the same identity with different resolutions. In our experiment, we rescale the original and flipped276

images in each set to different resolutions and aggregate their features into a representation of the277

template. Detailed experimental results can be seen in Appendix A.5.278

Table 3 (a) compares the cross-resolution results of TAR@FAR=10−4 for 1:1 verification. The279

cross-resolution features are ensured to be mapped to the same vector space where the aggregation280

is conducted for φhr and φmr, but we can observe that φhr performs much better than φmr. One281

possible reason is that φhr has outstanding discriminability to extract HR features, while LR features282

may not overly deteriorate the HR information. This phenomenon also suggests that φmr sacrifices its283

discriminability in exchange for the adaptability for resolution-variance. We can see φbt is comparable284

with φhr, demonstrating the discriminative power of BTNet for aggregating multi-resolution features.285

Table 3 (b) compares the same-resolution results of TAR@FAR=10−4 for 1:1 verification. When286

HR information is removed from the template representation (i.e., test settings 7&7, 14&14, 28&28),287

φhr suffers from performance degradation as well, as the informative embedding cannot catch the288

lost details of the LR images [54]. Both φmm and φmr improve with a limited same-resolution gain,289

while φbt surpasses the baselines by a large margin while also reducing the compute.290

In Table 4 we show the results of TPIR@FPIR=10−1 for 1:N identification protocol. Similar to our291

results for 1:1 verification, we are able to observe that φbt is comparable or even better than φhr with292
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Table 3: Comparison of different methods on the IJB-C dataset 1:1 face verification task.
“TAR” denotes TAR (%@FAR=1e-4).

(a) Cross-resolution feature aggregation.

112&7 112&14 112&28

TAR Gain TAR Gain TAR Gain

φhr 88.89 - 92.40 - 95.62 -

φmm 74.54 -0.56 93.52 +1.33 95.42 -0.69

φmr 63.11 -1.00 91.56 -1.00 95.33 -1.00

φbt(Ours) 88.17 -0.03 93.97 +1.87 95.62 +0.00

(b) Same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TAR Gain TAR Gain TAR Gain TAR Gain

4.83 - 33.74 - 89.65 - 96.40 -

4.83 + 0.00 29.26 -1.00 92.58 +1.00 96.40 -

4.48 - 40.51 +1.51 92.81 +1.08 96.06 -

35.47 - 82.08 +10.79 94.50 +1.66 96.06 -

Table 4: Comparison of different methods on the IJB-C dataset 1: N face identification task.
“TPIR” denotes TPIR (%@FPIR=0.1).

(a) Cross-resolution feature aggregation.

112&7 112&14 112&28

TPIR Gain TPIR Gain TPIR Gain

φhr 85.60 - 90.11 - 94.27 -

φmm 69.70 -0.55 91.73 +1.53 94.13 -0.33

φmr 56.64 -1.00 89.05 -1.00 93.84 -1.00

φbt(Ours) 83.93 -0.06 91.87 +1.66 94.33 +0.14

(b) Same-resolution feature aggregation.

7&7 14&14 28&28 112&112

TPIR Gain TPIR Gain TPIR Gain TPIR Gain

3.12 - 26.37 - 86.06 - 95.57 -

3.24 +1.00 21.84 -1.00 89.76 +1.00 95.57 -

3.25 +1.08 37.58 +2.47 91.02 +1.34 94.85 -

27.70 +204.83 76.65 +11.10 92.89 +1.85 94.85 -

HR information involved and can preserve superior discriminability with limited LR information,293

while also being more computationally efficient.294

Figure 6: Branch selection process. Max/min/average is used on (W, H) to obtain a resolution
indicator for further allocation (floor/near/ceil) to a certain branch.

5 Discussion and Conclusion295

This paper works on the problem of multi-resolution face recognition, and provides a new scheme296

to operate images conditioned on its input resolution without large span rescaling. The error intro-297

duced by up-sampling via interpolation is investigated and analyzed. Decoupled as branches for298

discriminative representation learning and coupled as the trunk for compatible representation learning,299

our Branch-to-Trunk Network (BTNet) achieves significant improvements on multi-resolution face300

verification and identification tasks. Besides, the superiority of BTNet in reducing computational301

cost and parameter storage cost is also demonstrated. It is worth noting that our approach is easy to302

expand to recognition tasks for other classes of objects and has the potential to serve as a general303

network architecture for multi-resolution visual recognition.304

Limitations and Future Work. The dislocation between the underlying optical resolution of native305

face images and that of a certain branch may limit the power of the model, which may be improved306

by selecting the optimal processing branch for the input in combination with the image quality, rather307

than by image size alone. The optimal branch selection strategy is not fully investigated though we308

have provided an intuitive way to select the branch for inputs (see Figure 6). Importantly, based on309

the unified multi-resolution metric space, the underlying resolution of the inputs (integrated spatial310

resolution with quality assessment) can be utilized to provide the reliability of the representation and311

contribute to risk-controlled face recognition. They will be our future research directions.312
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