
Robust Multi-Agent Pathfinding with Continuous Time

Anonymous submission

Abstract

Multi-Agent Pathfinding (MAPF) is the problem of finding
plans for multiple agents such that every agent moves from
its start location to its goal location without collisions. If un-
expected events delay some agents during plan execution, it
may not be possible for the agents to continue following their
plans without causing any collision. We define and solve a T -
robust MAPF problem that seeks plans that can be followed
even if some delays occur, under the generalized MAPFR set-
ting with continuous time notions. The proposed approach is
complete and provides provably optimal solutions. We also
develop an exact method for collision detection among agents
that can be delayed. We experimentally evaluate our proposed
approach in terms of efficiency and plan cost.

Introduction
Multi-Agent Pathfinding (MAPF) is the problem of find-
ing plans for multiple agents such that every agent moves
from its start location to its goal location without any colli-
sion. MAPF can be applied to autonomous vehicles (Morris
et al. 2016), robotics (Veloso et al. 2015), video games (Ma
et al. 2017), warehouse management (Wurman, D’Andrea,
and Mountz 2008), etc. Solving MAPF optimally for com-
mon objective functions is NP-hard (Yu and LaValle 2013a;
Surynek 2010). Nonetheless, practically efficient algorithms
have been developed (Wagner and Choset 2015; Surynek
2012; Boyarski et al. 2015; Yu and LaValle 2013b).

Most prior works on MAPF assumed that time is dis-
cretized into time steps and each action executes in one time
step (Andreychuk et al. 2022). However, these simplified as-
sumptions restrict the applicability of MAPF algorithms in
real-world scenarios. In addition, unexpected events may de-
lay some of the agents during the execution of a MAPF plan,
preventing them from following their plans on time. In this
case, we may need to replan for the agents to avoid colli-
sions. Such re-planning may not always be practical, as it
requires resources (e.g., computing and communication), or
time that the agents may not have. Thus, it is often desirable
to generate plans that can tolerate unexpected delays.

In this paper, we explore a continuous-time form of ro-
bustness for MAPF called T -robust MAPF (TR-MAPF),
which is designed to generate MAPF plans for continuous-
time scenarios that can be followed even if unforeseen de-
lays occur. In TR-MAPF, we seek a plan that is robust to

a total time delay of T per agent during plan execution, i.e.,
each agent may be delayed up to T and the plan remains safe
(collision-free). In the continuous-time form, the time delay
T can be any non-negative real number.

Our contributions can be summarized as follows:

• T -Robust Continuous-time Conflict-based Search
(TR-CCBS): We present sufficient and required condi-
tions for a MAPF solution to be T -robust and develop
an extension to CCBS to find TR-MAPF plans in a state
space that grows exponentially with T .

• Closed-form formulas for Collision Detection under
T -delay: We propose a collision detection mechanism
under T -delay, which is also used to compute unsafe in-
tervals under T -delay. To improve accuracy and reduce
computational complexity, closed-form formulas for col-
lision detection under T -delay are developed.

The rest of the paper is organized as follows: First, we
summarize some closely related work. Next, TR-MAPF
is introduced, and we propose our TR-CCBS approach to
solve TR-MAPF. After that, the closed-form formulation for
collision detection under T -delay is presented. Finally, the
paper finishes with empirical evaluation and conclusions.

Related Work
Ma, Kumar, and Koenig (2017) proposed a MAPF algorithm
based on conflict-based search (CBS) (Sharon et al. 2015)
to minimize the expected makespan as part of their work
on execution policies for MAPF with delays. However, they
assumed prior knowledge of delay probabilities and did not
provide any robustness guarantee on the plan constructed.

Atzmon et al. (2018) proposed k-robust CBS that can find
k-robust plans, where each agent can tolerate up to k time
steps of delay while executing the plan without collisions.
They also extended the work to develop several robust exe-
cution policies guaranteeing that the agents reach their goals
even if they encounter unexpected delays (Atzmon et al.
2020). However, they focused on discrete time notions with
unit time steps and did not support continuous time notions.

Walker, Sturtevant, and Felner (2018) introduced a MAPF
formulation with non-unit duration actions and extended the
increasing cost tree search algorithm for it. Cohen et al.
(2019) enhanced CBS to reason with continuous time and
developed a bounded-suboptimal extension of Safe Interval

1

Path Planning (SIPP). Andreychuk et al. (2022) proposed
continuous-time conflict-based search (CCBS), a MAPF al-
gorithm that handles continuous time notions and is sound,
complete, and optimal. They also adapted successful CBS
improvements, including prioritizing conflicts, disjoint split-
ting, and high-level heuristics, to CCBS (Andreychuk et al.
2021). However, all the above algorithms do not support ro-
bustness or tolerate any delays experienced by the agents.

T -Robust MAPF
We consider MAPF in 2D environments. For ease of exposi-
tion, all agents are assumed to have the same (1) shape and
size, and (2) constant speed. The environment is defined as
a graph G = (V,E) whose vertices correspond to locations
that agents can occupy (and wait in them) and edges corre-
spond to straight-line trajectories for agents to move from
one location to the other. We ignore the inertia and assume
that the agents start or stop moving instantaneously. The du-
ration of a move action is the length of the edge divided by
the speed, while the duration of a wait action can be any
positive real number. Prior work referred to this setting as
MAPFR (Walker, Sturtevant, and Felner 2018).

There are n agents. Each agent i has a start vertex si ∈ V
and a goal vertex gi ∈ V . A plan πi for an agent i is a se-
quence of actions that moves the agent from its start vertex
to its goal vertex. Each action in the plan is a pair (ai, ti)
representing that action ai (either move or wait) starts exe-
cution at time ti. The end time of an action is the start time
of the next action in the sequence. After finishing the plan,
the agent stays at the last location (its goal vertex) forever.

A set of plans, one for each agent, is called a joint plan,
denoted by π = {π1, ..., πn}. A solution to a MAPFR prob-
lem is a joint plan such that if all agents start to execute
their plans concurrently, they will reach their goal vertices
without any collision. The cost of a joint plan is defined by
an objective function. Common objective functions include
makespan and sum of costs, which refer to the maximum
and total times for agents to reach their goal vertices.

A conflict is defined between two timed actions.

Definition 1 (Conflict). A conflict is a tuple ⟨ai, ti, aj , tj⟩,
such that if agent i executes action ai at time ti and agent j
executes action aj at time tj , they will collide (i.e., their ge-
ometry shapes will overlap at some time during the actions).

A joint plan π is said valid if it is conflict-free. A MAPF
solver is sound if it outputs a valid plan. A delay in a plan
π is defined by a tuple ⟨i, tD,∆D⟩, representing that agent i
experiences a delay ∆D starting from time tD. This means
that for each action (ai, ti) after tD (ti ≥ tD) in the plan,
agent i will not perform action ai at the intended time ti and
instead will perform ai at time ti + ∆D. A plan is robust
to a delay if the delayed agent can continue to execute its
remaining plan after the delay without causing any collision.

Formally, for a plan π and a delay D = ⟨i, tD,∆D⟩,
let D(π) be the plan that is equivalent to π, except for re-
placing each timed action (ai, ti) in πi with (ai, ti + ∆D)
if ti ≥ tD. A plan π is robust to a delay D if D(π) is
valid. π is robust to a series of delays D if applying all
the delays in D to π will yield a valid plan, i.e., assuming

D = {D1, D2, . . . , Dm} where tD1
≤ tD2

≤ · · · ≤ tDm
,

the plan Dm(. . . D2(D1(π)) . . .) is valid. Note that there
could be multiple delays in D on the same agent.

Definition 2 (T -robust Plan). A plan is T -robust if it is valid
and it is robust to any series of delays that contains at most
a total delay of T for each agent.

We extend the definition of a conflict between two timed
actions to a T -delay conflict to facilitate checking if a plan
is T -robust.

Definition 3 (T -delay Conflict). A T -delay conflict is a tu-
ple ⟨ai, ti, aj , tj⟩, such that there exists a value ∆ ∈ [0, T]
so that if agent i executes action ai at time ti and agent j
executes action aj at time tj +∆, they will collide.

Lemma 1. A plan is T -robust if and only if it does not con-
tain any T -delay conflict.

Due to space limitations, we omit the formal proof of
Lemma 1. There can be more than one T -robust plan for a
given MAPFR problem. A T -robust plan is optimal if there
is no other T -robust plan with a lower cost.

T -Robust Continuous-time CBS (TR-CCBS)
Review of CBS
CBS (Sharon et al. 2015) is a widely used MAPF solver
which is complete and optimal. It is designed for classi-
cal MAPF with discrete time notions and unit-duration ac-
tions. It solves a given MAPF problem by building a plan
for each agent separately, detecting conflicts between these
plans, and resolving them by replanning for involved agents
with additional constraints that they cannot occupy certain
vertices or traverse certain edges at particular time steps.

CBS searches in a Constraint Tree (CT) for a set of con-
straints that an optimal plan should satisfy. The CT is a bi-
nary tree, where each node N represents a set of constraints
imposed on the agents (N.constraints) and a joint plan sat-
isfying these constraints (N.π). The root node has an empty
set of constraints. A successor node inherits the constraints
of the parent node and adds a new constraint for one agent.

Next, we describe how CBS identifies conflicts in a node
N and chooses the constraint to add when expanding N and
generating its successors.

Identifying conflicts For each node N , a low-level solver
is used to find a plan N.π for each agent, subject to the con-
straints for the agent in N.constraints. The plan is vali-
dated by simulating the movement of the agents along their
planned paths. N is a goal node if N.π does not contain any
conflict. N is a non-goal node if a conflict is found in N.π.

Resolving conflicts CBS performs a best-first search of
the CT. In each iteration, the CT node with the lowest-cost
joint plan is selected. When a goal node N is selected, CBS
stops searching and outputs its plan N.π. When a non-goal
node N is selected, CBS chooses a conflict in N.π and re-
solves it by generating two successor nodes of N . Specif-
ically, if the conflict chosen involves two agents i and j at
x (either a vertex or an edge) at time step t, two successor
nodes Ni and Nj are generated by inheriting N.constraints

2

and adding a new constraint that prohibits agents i and j re-
spectively from occupying or traversing x at t. After that,
CBS continues searching the CT in a best-first manner.

T -Robust CCBS
Next, we introduce T -robust CCBS (TR-CCBS), an adapta-
tion of CCBS designed to return optimal T -robust plans.

CCBS (Andreychuk et al. 2022) extends CBS for MAPFR

by using a geometry-aware collision detection mechanism.
To avoid collisions, CCBS computes constraints according
to the unsafe intervals of each action, i.e., the time interval
in which performing the action will cause the agent to col-
lide with another agent. The constraints in CCBS are repre-
sented by pairs of actions and unsafe intervals, meaning that
an action cannot be executed in its unsafe interval. For the
low-level solver, CCBS uses a version of SIPP (Phillips and
Likhachev 2011) adapted to handle CCBS constraints.

Our TR-CCBS differs from CCBS in how it identifies and
resolves conflicts. TR-CCBS identifies T -delay conflicts. To
resolve T -delay conflicts, a simple idea is to add T to the un-
safe interval found by CCBS. However, if two agents do not
collide when they are not delayed, there will not be any un-
safe interval by CCBS. Therefore, a new collision detection
mechanism is required to handle T -delay conflicts.

Identifying T -delay conflicts For each node N in the CT,
TR-CCBS scans its joint plan N.π for T -delay conflicts,
which is further described in the next section.

Resolving T -delay conflicts Similar to CBS, TR-CCBS
runs a best-first search of the CT, expanding in every iter-
ation the CT node N that has the joint plan with the low-
est cost (if N is a non-goal node). TR-CCBS chooses a
T -delay conflict in N.π and generates successor nodes of
N to resolve it. To resolve a T -delay conflict ⟨ai, ti, aj , tj⟩,
TR-CCBS computes the unsafe interval of each action the
other action. The unsafe interval of action ai with respect
to aj is the maximal time interval [ti, tui) such that for each
t ∈ [ti, t

u
i), there exists a value ∆ ∈ [0, T] so that execut-

ing ai at time t will lead to a collision with executing aj at
time tj + ∆. The unsafe interval of action aj with respect
to ai is the maximal time interval [tj , tuj) such that for each
t ∈ [tj , t

u
j), there exists a value ∆ ∈ [0, T] so that execut-

ing aj at time t+∆ will cause a collision with executing ai
at time ti. TR-CCBS generates two successor nodes Ni and
Nj for N , and adds to Ni (resp. Nj) a new constraint that
agent i (resp. j) cannot execute ai (resp. aj) in its unsafe in-
terval [ti, tui) (resp. [tj , tuj)). Then, the low-level solver runs
the adapted SIPP to find new plans for agents i and j in Ni

and Nj respectively that satisfy the additional constraints.
TR-CCBS uses a similar method to CCBS for comput-

ing unsafe intervals based on collision detection results: it
iteratively carries out collision detection by shifting the start
time of ai or aj until no collision is found (Andreychuk et al.
2022).

Theoretical properties TR-CCBS is sound, complete,
and optimal. Soundness follows from performing conflict
detection for the joint plan of every CT node and Lemma
1. Our proof of completeness and optimality is based on

the following lemma from Andreychuk et al. (2022) and the
sound pair of constraints defined by Atzmon et al. (2018).

Lemma 2. Running the adapted SIPP from (Andreychuk
et al. 2022) with a set of CCBS (or TR-CCBS) constraints
returns the lowest-cost path that satisfies these constraints.

Definition 4 (Sound Pair of Constraints). A pair of con-
straints is sound if every T -robust plan satisfies at least one
of these constraints.

Lemma 3. For a T -delay conflict ⟨ai, ti, aj , tj⟩ and cor-
responding unsafe intervals [ti, t

u
i) and [tj , t

u
j), the pair of

constraints forbidding agents i and j to execute actions ai
and aj in [ti, t

u
i) and [tj , t

u
j) respectively is a sound pair of

constraints.

Proof. Assume on the contrary that there exists a T -robust
plan in which agent i executes ai at time ti + δi for some
δi ∈ [0, tui − ti), and agent j executes aj at time tj + δj for
some δj ∈ [0, tuj − tj). By Lemma 1, ⟨ai, ti+δi, aj , tj +δj⟩
is not a T -delay conflict.

By the definition of tuj , for each t ∈ [tj , t
u
j), there ex-

ists a value ∆ ∈ [0, T] such that executing aj at time
t + ∆ will cause a collision with executing ai at time ti,
i.e., ⟨ai, ti, aj , t⟩ is a T -delay conflict by Definition 3. This
implies that for each δ ∈ [0, δj] and each t ∈ [tj +δ, tuj +δ),
⟨ai, ti + δ, aj , t⟩ is also a T -delay conflict. It follows from
tj + δj ∈ [tj + δ, tuj + δ) that ⟨ai, ti + δ, aj , tj + δj⟩ is a T -
delay conflict. Since ⟨ai, ti+δi, aj , tj +δj⟩ is not a T -delay
conflict, we must have δi /∈ [0, δj], which indicates δi > δj .

By the definition of tui , for each t ∈ [ti, t
u
i), there exists a

value ∆ ∈ [0, T] such that executing ai at time t will lead to
a collision with executing aj at time tj+∆, i.e., ⟨ai, t, aj , tj⟩
is a T -delay conflict by Definition 3. This implies that for
each δ ∈ [0, δi] and for each t ∈ [ti+δ, tui +δ), ⟨ai, t, aj , tj+
δ⟩ is also a T -delay conflict. It follows from ti + δi ∈ [ti +
δ, tui + δ) that ⟨ai, ti + δi, aj , tj + δ⟩ is a T -delay conflict.
Since ⟨ai, ti + δi, aj , tj + δj⟩ is not a T -delay conflict, we
must have δj /∈ [0, δi], which indicates δj > δi.

As a result, a contradiction arises.

Theorem 1. TR-CCBS is guaranteed to return an optimal
T -robust plan if there exists one.

Proof. The proof, based on Lemma 2 and Lemma 3, is sim-
ilar to Andreychuk et al. (2022)’s proof for CCBS. Consider
any CT node N . Let N1 and N2 be the successors of N , gen-
erated by a sound pair of constraints C1 and C2 respectively
(Lemma 3). Let π(N) denote all T -robust plans that satisfy
N.constraints. By the definition of a sound pair of con-
straints (Definition 4), it holds that π(N) = π(N1)∪π(N2).
Thus, splitting a CT node does not cause it to lose any T -
robust plan. Due to (1) Lemma 2, (2) the best-first search of
the CT in terms of the cost, and (3) the fact that adding con-
straints can never reduce the cost, TR-CCBS is guaranteed
to return an optimal T -robust plan if there exists one.

Collision Detection under T -Delay
The goal of collision detection is to find out whether the ge-
ometry shapes of two agents will overlap when performing

3

their actions. Recall that to solve T -robust MAPF, actions
are timed. Our general approach is to first derive the time in-
terval in which the shapes of two moving agents overlap (we
call it the collision interval) and then check if the collision
interval intersects the time intervals of the actions to infer
whether collisions will occur during the actions.

Sampling Approach
To check for T -delay conflicts, we first present a discretized
sampling approach that proceeds by sampling for possible
delays in each agent and checking if the agents collide. Con-
sider two timed actions (ai, ti) and (aj , tj) of two circular
agents i and j respectively. Let T be the set of discretized
delay samples in [0, T]. For each ∆i ∈ T and each ∆j ∈ T,
we derive the collision interval [τ−, τ+) in which the geom-
etry shapes of agents i and j overlap, if they start performing
actions ai and aj at times ti +∆i and tj +∆j respectively.
The detailed derivation will be given later in the section ti-
tled “Collision detection between two moving circles”. As-
sume that the durations of actions ai and aj are di and dj re-
spectively. Under delays ∆i and ∆j , the time intervals of the
actions are [ti+∆i, ti+di+∆i) and [tj+∆j , tj+dj+∆j).
Hence, a collision would really occur if and only if these two
intervals and the collision interval found intersect:
[ti+∆i, ti+∆i+di)∩[tj+∆j , tj+∆j+dj)∩[τ−, τ+) ̸= ∅.

A drawback of the sampling approach is that it has an in-
creasing computational complexity with respect to the num-
ber of delay samples and hence T assuming a constant sam-
pling size per unit delay. Next, we propose to solve for the
exact collision interval between two agents that may be de-
layed. The key benefit of this method is that the computa-
tional complexity of the collision detection is constant to T .

Extruding Time Delay Dimension
We propose to use Constructive Solid Geometry (CSG) for
collision detection under T -delay. CSG forms objects from
primitives by combining them with set-theoretic operations
(Requicha and Rossignac 1992). By treating the time do-
main as an additional polygonal dimension, the polygons
can be extruded into the time dimension, after which a static
polygonal intersection check is applied (Walker and Sturte-
vant 2019). To check for T -delay conflicts, we extrude the
agent shapes into the time-delay dimension and perform dy-
namic collision detection between extruded geometries.

Assume that the agents have circular shapes and move
with constant velocities, and each action is a linear mo-
tion from the start location to the target location. We can
extrude the circular agents into a stadium, which is a two-
dimensional geometric shape composed of a rectangle with
semicircles at a pair of opposite sides. The stadium repre-
sents all possible areas occupied by the agent under the de-
lay. In general, assuming the center point of the agent with-
out delay is p, the maximum delayed center point of the
agent is pd = p − vT , where v is the velocity of the agent.
Figure 1 shows a stadium formed from two circles centered
at p and pd.1 We can then perform collision detection be-

1If it is a wait action, then v = 0, p and pd are the same, so that
the stadium degenerates to the circular shape of the agent.

pd p

Figure 1: A stadium formed from a circular agent (p) and its
delayed position (pd).

1 2 3

1

2

i

j

(a) Agents are not delayed

1 2 3

1

2

i
j

(b) Agents may be delayed.

Figure 2: Collision detection between two circular agents.

tween the stadium geometry formed by each agent. Figure 2
illustrates the collision detection for (a) agents that are not
delayed and (b) agents that can be delayed (by extruding the
circular geometry into a stadium geometry).

Special considerations, however, need to be taken at the
beginning and end of an action, because both p and pd can-
not go beyond the start and target locations of the action.
Consider a timed action (ai, ti) of agent i. Let di be the du-
ration of the action, v be the velocity of the agent, and p0 be
the start center point of the agent (then the target center point
of the agent is p0+vdi). Figure 3 illustrates the evolution of
the stadium for the action.

(1) Initially, both center points p and pd are at the start loca-
tion p0, so the stadium degenerates to a circle.

(2) During the initial T duration of the action, the length of
the rectangle in the stadium gradually grows from 0 to
vT , i.e., for each t ∈ [ti, ti + min{T, di}), the center
point without delay will be p = p0 + v(t − ti) and the
maximum delayed center point will remain at pd = p0.

(3) There are two cases for the time interval [ti +
min{T, di}, ti +max{T, di}):
di ≥ T : In this case, [ti+min{T, di}, ti+max{T, di})
= [ti + T, ti + di). During this time interval, the sta-
dium stops growing (with the rectangle reaching the
maximum length of vT) and continues to move to-
wards the target location, i.e., for each t ∈ [ti +
T, ti + di), the center point without delay will be
p = p0 + v(t − ti) and the maximum delayed cen-
ter point will be pd = p− vT = p0 + v(t− ti − T).

di < T : In this case, [ti+min{T, di}, ti+max{T, di})
= [ti + di, ti + T). During this time interval, the sta-
dium stops growing (with the rectangle reaching the
maximum length of vdi) because the agent has reached
the target location, i.e., for each t ∈ [ti+di, ti+T), the
center point without delay will remain at p = p0+ vdi
and the maximum delayed center point will remain at
pd = p0.

(4) Beyond the action completion without delay, the length
of the rectangle in the stadium gradually shrinks from vT

4

ppd

di >= T di < T

(1)

(2)

(3)

(4)

(5)

ti ti+di ti ti+di

ppd

p (pd) p (pd)

p (pd) p (pd)

ppd ppd

ppd ppd

Figure 3: Evolution of the stadium over time for an action.

to 0, i.e., for each t ∈ [ti+max{T, di}, ti+ di+T), the
center point without delay will remain at p = p0 + vdi
and the maximum delayed center point will be pd = p−
v(ti + di + T − t) = p0 − v(ti + T − t).

(5) Finally, both center points p and pd will be at the target
location p0 + vdi, so the stadium again degenerates to a
circle.

Conceptually, a stadium is constructed from a set union
of two circles and a rectangle. Let us represent the stadium
geometry of agent i as Gi = {ci, ri, cdi }, consisting of a cir-
cle ci (centered at p), a rectangle ri, and another circle cdi
(centered at pd). Based on the above evolution, we can parti-
tion the time interval [ti, ti+di+T) into three sub-intervals
[ti, ti + min{T, di}), [ti + min{T, di}, ti + max{T, di})
and [ti+max{T, di}, ti+ di+T). In each sub-interval, the
circles ci and cdi move with constant velocities. The rectan-
gle ri also moves with constant velocity, in the sense that all
four vertices move along the same direction with constant
velocities. In the second sub-interval, since the stadium has
grown to its maximum length, all four vertices move at the
same velocity. In the first and last sub-intervals, due to the
growing or shrinking of the stadium, a pair of vertices move
at a different velocity from the other pair of vertices at the
opposite side.

To check for T -delay conflicts between two timed actions
(ai, ti) and (aj , tj) of agents i and j with durations di and
dj , we perform collision detection between their stadium ge-
ometries Gi = {ci, ri, cdi } and Gj = {cj , rj , cdj}, focusing
on the intersection between the time intervals [ti, ti+di+T)
and [tj , tj+dj+T). Figure 4 shows the combination of par-
titioning of [ti, ti+di+T) and [tj , tj+dj+T), which divides
the intersection [ti, ti+di+T)∩[tj , tj+dj+T) into smaller
sub-intervals in which all the geometric primitives in Gi and
Gj move at constant velocities. In each sub-interval, we can
break down the collision detection into that between moving
geometric primitives, i.e., among moving circles and rectan-
gles. A collision only occurs if any collision interval found

Sub-intervals of agent i

Sub-intervals of agent j

Partitioned sub-intervals

Figure 4: Sub-intervals from agents i and j are further di-
vided into smaller sub-intervals.

from the primitives intersects the sub-interval. In what fol-
lows, we describe the collision detection between (1) two
circles, (2) a circle and a rectangle, and (3) two rectangles.

(1) Collision detection between two moving circles The
collision detection between two moving circles is based on
Guy and Karamouzas (2019)’s descriptions. Given two cir-
cular agents i and j, the distance between their centers at
time t is given by:

dist(t) = ||(pi + vit)− (pj + vjt)||,

where pi and pj are the center points of the circles at time 0,
and vi and vj are the velocities of the agents. Squaring and
expanding leads to the following quadratic equation for t:

dist2(t) = (v∆ · v∆)t2 + 2(p∆ · v∆)t+ (p∆ · p∆), (1)

where p∆ = pj − pi, v∆ = vj − vi and · is the dot product
of vectors. Via substitution, equation (1) can be rewritten as:

dist2(t) = at2 + bt+ c0,

where a = v∆ · v∆, b = 2(p∆ · v∆) and c0 = p∆ · p∆.
A collision occurs when the squared distance between the

agents is less than or equal to the squared sum of their radii,
r:

dist2(t) ≤ (2r)2.

Thus, we have the following equation for collision detection:

at2 + bt+ c ≤ 0,

where c = p∆ · p∆ − (2r)2. We can solve it using the
quadratic formula to determine the start and end times of
the collision interval between two agents:[

−b−
√
b2 − 4ac

2a
,
−b+

√
b2 − 4ac

2a

)
.

The above formulation assumes that the two agents start
their actions at the same time while at positions pi and pj . If
they start their actions at different times ti and tj , we need
to align their positions to the same time instant before per-
forming the collision detection. Specifically, if ti < tj , the
center point of agent i is first moved to p′i = pi + vi(tj − ti)
and collision detection is then performed with p′i and pj .

(2) Collision detection between a moving circle and a
moving rectangle First, we study the collision detection
between a circle and an axis-aligned rectangle. Next, we ex-
tend it to consider a moving circle and a moving rectangle.

For an axis-aligned rectangle, we first find the point on the
rectangle edges that is the closest to the circle’s center and
then check whether the point is located in the circle. The for-
mer can be done by clamping the coordinates of the circle’s

5

center pi to the coordinates of the rectangle’s vertices (let pj
be the lower-left vertex of the rectangle, w and l be its width
and length):

p∆[x] = pi[x]−max(pj [x],min(pi[x], pj [x] + w)),

p∆[y] = pi[y]−max(pj [y],min(pi[y], pj [y] + l)).

A collision occurs if p∆ · p∆ ≤ r2, where r is the radius of
the circle.

To extend this formulation to derive the collision interval
between the moving circle and rectangle, we form a set of
positions by combining the elements in p∆[x] and p∆[y]:

Px = {pj [x], pi[x], pj [x] + w},
Py = {pj [y], pi[y], pj [y] + l},

P ′ = {p′|p′ = ⟨p′[x], p′[y]⟩, p′[x] ∈ Px, p
′[y] ∈ Py}.

For each position p′ ∈ P ′, we find its the corresponding
velocity v′. Then, we substitute p∆ = pi−p′ and v∆ = vi−
v′ into equation (1) and solve the equation dist2(τ) ≤ r2 to
get a collision interval. Then, we combine these intervals by
taking the minimum start time and the maximum end time
to obtain the complete collision interval between a moving
circle and a moving axis-aligned rectangle.

If the rectangle is not axis-aligned, we can rotate the rect-
angle vertices to align with the axis, and rotate the rectangle
and circle velocities accordingly, before applying the above
formulation to derive the collision interval.

(3) Collision detection between two moving rectangles
We can utilize the Separating Axis Theorem (SAT) to per-
form collision detection between two moving rectangles
(Boyd and Vandenberghe 2004). The velocities of the rect-
angles are used to determine the separating axes as the mov-
ing directions of the rectangles decide where two rectangles
will collide first. The separating axes, A, are a set consisting
of the normalized vectors of the velocities, ||vi|| and ||vj ||,
their orthogonals, ⊥ ||vi|| and ⊥ ||vj ||, and the sum of the
velocities, ||vi + vj || and ⊥ ||vi + vj ||. The sum of the ve-
locities is required for the case where vi is orthogonal to vj .

A =

{
{||vi + vj ||,⊥ ||vi + vj ||} if vi ⊥ vj ,

{||vi||,⊥ ||vi||, ||vj ||,⊥ ||vj ||} otherwise.

Let Pi and Pj be the sets of vertices of two rectangles.
For each pair of vertices pi ∈ Pi and pj ∈ Pj , we find
their corresponding velocities vi and vj . Then, we project
the vertices and velocities onto each separating axis, a ∈ A:

p′i = pi · a, v′i = vi · a,
p′j = pj · a, v′j = vj · a.

After that, for each pair of projected vertices p′i and p′j , we
find the time instants when the moving points overlap (i.e.,
the distance between the points is equal to zero) to derive a
collision interval. Specifically, we substitute p∆ = p′i − p′j
and v∆ = v′i − v′j into equation (1) and solve the equa-
tion dist2(τ) = 0 to get a collision interval. Then, we com-
bine these intervals by taking the minimum start time and the
maximum end time to obtain the complete collision interval
between two moving rectangles.

Experiments
We implemented TR-CCBS on top of CCBS
(https://github.com/pathplanning/continuous-cbs) and
conducted experiments using the same experimental
settings of Andreychuk et al. (2022). Agents move in
2k-neighborhood grids. In a move action, agents can move
from the center of one grid cell to the center of any grid cell
located in their 2k neighborhood, where k is a parameter
(Rivera, Hernández, and Baier 2017). The size of every
cell is 1 × 1, and the shape of every agent is a circle of
radius

√
2/4. Moves are allowed only if the agent can move

safely to the target cell without colliding with other agents
or obstacles, considering the geometry shapes of the agents
and obstacles. The moving speeds of agents are 1 per unit
time, so the duration of a move action corresponds to the
Euclidean distance between the centers of the start and
target cells. We used the makespan as the objective function
in pathfinding. Constructive Solid Geometry (CSG) was
used for collision detection, unless stated otherwise. The
experiments were run on an Intel i9-12900K 5.6GHz
processor with 32GB memory.

Open Grids
In the first set of experiments, we used a 10× 10 open grid.
For every number of agents, we created 250 different prob-
lems by placing agents’ start and goal locations randomly.

Increasing number of agents We performed experiments
with 2 ∼ 24 agents. Each problem was solved with TR-
CCBS for k = 2, 3, 4, 5, and T -delay = 0, 0.5, 1, 1.5, 2.
Note that T = 0 is the standard CCBS.

The top half of Table 1 presents the success rate, i.e., the
ratio of problems solved by TR-CCBS within a time limit of
60 seconds. Every row shows the results for a distinct num-
ber of agents, as indicated in the left-most column. Every
five columns show the results for a 2k-neighborhood rang-
ing from k = 2 ∼ 5. Each of the five columns shows the
success rate for a distinct T -delay. Data points marked by
“-” indicate settings where the success rate is 0. The bottom
half of Table 1 presents the cost (makespan) of the output
plan for one particular problem (of 250 problems tested),
where data points marked by “-” indicate that no solution
was found within the time limit.

It can be seen from Table 1 that increasing the number of
agents leads to a lower success rate, which was also shown
for the original CCBS (Andreychuk et al. 2022). A larger
number of agents result in a denser environment, which is
more difficult to solve as more potential conflicts need to be
resolved. Increasing the number of agents under a higher T -
delay exhibits a sharper decrease in the success rate. This
is especially prominent for T = 2, where no solution was
found within the time limit for more than 12 ∼ 17 agents.
Due to the higher delay, agents need to reserve more space to
avoid conflicts, which increases the hardness of pathfinding.

Table 1 also shows that increasing k yields a lower suc-
cess rate. For example, for T = 0 and 24 agents, the success
rate for k = 2 is 0.688, while that for k = 5 is only 0.12.
A larger k increases the branching factor (more paths avail-
able), making the optimal plan harder to find.

6

Success Ratio
k = 2 k = 3 k = 4 k = 5

Agents ⧹ td 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
2 1.000 0.996 0.996 0.992 0.968 1.000 1.000 0.992 0.976 0.972 1.000 0.992 0.988 0.980 0.976 1.000 0.996 0.980 0.976 0.968
3 1.000 0.992 0.988 0.972 0.940 1.000 0.996 0.976 0.940 0.912 1.000 0.980 0.964 0.928 0.924 1.000 0.984 0.948 0.940 0.916
4 1.000 0.984 0.968 0.932 0.904 1.000 0.996 0.944 0.908 0.836 1.000 0.964 0.904 0.868 0.848 1.000 0.964 0.896 0.880 0.860
5 1.000 0.928 0.916 0.852 0.772 1.000 0.952 0.856 0.768 0.692 1.000 0.896 0.808 0.760 0.728 1.000 0.908 0.812 0.796 0.748
6 1.000 0.908 0.892 0.804 0.704 1.000 0.944 0.796 0.684 0.608 1.000 0.868 0.740 0.664 0.584 1.000 0.880 0.752 0.708 0.604
7 1.000 0.872 0.820 0.712 0.616 1.000 0.896 0.696 0.576 0.460 1.000 0.816 0.636 0.524 0.456 1.000 0.824 0.656 0.552 0.456
8 1.000 0.832 0.776 0.612 0.508 1.000 0.856 0.556 0.388 0.324 1.000 0.756 0.492 0.356 0.312 1.000 0.732 0.484 0.360 0.284
9 1.000 0.772 0.692 0.472 0.388 1.000 0.780 0.468 0.300 0.228 1.000 0.664 0.388 0.252 0.188 0.996 0.624 0.352 0.228 0.152

10 1.000 0.700 0.624 0.356 0.300 1.000 0.704 0.360 0.204 0.124 1.000 0.580 0.284 0.152 0.096 0.996 0.532 0.228 0.128 0.072
11 1.000 0.636 0.536 0.260 0.216 1.000 0.640 0.252 0.116 0.056 0.996 0.472 0.192 0.096 0.056 0.980 0.420 0.164 0.088 0.032
12 0.996 0.540 0.436 0.172 0.132 0.996 0.536 0.176 0.060 0.028 0.992 0.392 0.128 0.040 0.028 0.956 0.268 0.092 0.040 0.004
13 0.972 0.456 0.356 0.140 0.088 0.992 0.440 0.104 0.024 0.004 0.988 0.292 0.060 0.012 - 0.956 0.208 0.044 0.008 -
14 0.956 0.404 0.300 0.096 0.068 0.996 0.360 0.072 0.016 0.004 0.980 0.208 0.036 0.004 - 0.884 0.132 0.024 0.004 -
15 0.956 0.340 0.260 0.060 0.040 0.992 0.264 0.044 0.004 - 0.968 0.140 0.016 0.004 - 0.836 0.080 0.016 0.004 -
16 0.936 0.236 0.176 0.016 0.004 0.988 0.180 0.020 0.004 - 0.932 0.096 0.012 0.004 - 0.764 0.044 0.008 0.004 -
17 0.928 0.188 0.128 0.012 0.004 0.964 0.124 0.004 - - 0.904 0.048 0.004 - - 0.676 0.024 0.004 - -
18 0.896 0.156 0.096 0.004 - 0.948 0.080 0.004 - - 0.840 0.036 0.004 - - 0.568 0.012 - - -
19 0.872 0.120 0.068 0.004 - 0.936 0.044 - - - 0.760 0.016 - - - 0.500 - - - -
20 0.852 0.068 0.044 0.004 - 0.916 0.024 - - - 0.676 - - - - 0.424 - - - -
21 0.800 0.040 0.028 - - 0.848 0.012 - - - 0.576 - - - - 0.352 - - - -
22 0.768 0.028 0.020 - - 0.816 0.004 - - - 0.496 - - - - 0.284 - - - -
23 0.720 0.016 0.012 - - 0.736 - - - - 0.416 - - - - 0.192 - - - -
24 0.688 0.012 0.004 - - 0.672 - - - - 0.344 - - - - 0.120 - - - -

Plan Cost for a Particular Problem
2 6 6 6 6 6 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24 4.24
3 15 15 15 15 15 12.66 12.66 12.66 12.66 - 11.94 11.94 - - - 11.72 11.72 - - -
4 15 15 15 15 15 12.66 12.66 12.66 12.66 - 11.94 11.94 - - - 11.72 11.72 - - -
5 15 15 15 17 - 14.01 14.51 14.66 14.66 - 13.65 14.15 - - - 13.50 13.99 - - -
6 15 15 17 - - 14.01 14.59 14.66 14.66 - 13.65 14.21 - - - 13.50 14.06 - - -
7 15 15 17 - - 14.01 14.59 14.66 14.66 - 13.65 14.21 - - - 13.50 14.06 - - -
8 16 16.50 17 - - 14.01 14.59 - - - 13.65 14.21 - - - 13.50 - - - -
9 16 16.50 17 - - 14.01 14.59 - - - 13.65 14.21 - - - 13.50 - - - -

10 16 16.50 17 - - 14.01 14.59 - - - 13.65 14.21 - - - 13.50 - - - -
11 16 16.50 17 - - 14.01 14.59 - - - 13.65 14.21 - - - 13.50 - - - -
12 16 16.50 17 - - 14.01 14.59 - - - 13.65 14.21 - - - 13.50 - - - -
13 16 16.50 17 - - 14.01 - - - - 13.65 - - - - 13.50 - - - -
14 20 20 20 - - 14.14 - - - - 14.14 - - - - 14.14 - - - -
15 20 20 20 - - 14.14 - - - - 14.14 - - - - 14.14 - - - -
16 20 - - - - 14.14 - - - - 14.14 - - - - - - - - -
17 20 - - - - 14.33 - - - - 14.33 - - - - - - - - -
18 20 - - - - 14.33 - - - - 14.33 - - - - - - - - -
19 20 - - - - 14.33 - - - - 14.33 - - - - - - - - -
20 20 - - - - 14.33 - - - - - - - - - - - - - -
21 20 - - - - 14.33 - - - - - - - - - - - - - -
22 20 - - - - 14.33 - - - - - - - - - - - - - -
23 20 - - - - 14.33 - - - - - - - - - - - - - -
24 20 - - - - 14.33 - - - - - - - - - - - - - -

Table 1: Results for open grid scenario across an increasing number of agents.

As seen from Table 1, the cost of the plan increases with
the number of agents due to the higher density of the en-
vironment. For example, when k = 2, the cost is 6 for 2
agents, and increases to 20 for 14 agents and beyond. Sim-
ilarly, the cost of the plan also increases with the T -delay
and hence the hardness of pathfinding. However, increasing
k reduces the cost of the plan. For 2 agents, the cost reduces
from 6 for k = 2, down to 4.24 for k = 3 and beyond.
This is because increasing k means that there are more direct
routes available between the start and goal locations and thus
the paths for the agents can be shorter. Overall, increasing k
introduces two diverse effects on pathfinding: the resulting
search space for the low-level solver becomes shallower but
wider.

Increasing T -delay Next, we evaluated a wider range of
the T -delay. We only performed the experiments with 5, 10,
and 15 agents. Again, we created 250 different problems for
every number of agents. Each problem was solved with TR-
CCBS for k = 2, 3, 4, and T -delay = 0, 0.5, 1, . . . , 6.5, 7.

Table 2 presents the results. Every row shows the results
for a distinct T -delay, as indicated in the left-most column.
In the top half of the table, every three columns show the

Success Rate
k = 2 k = 3 k = 4

T ⧹ Agents 5 10 15 5 10 15 5 10 15
0.0 1.000 0.992 0.936 1.000 1.000 0.992 1.000 1.000 0.964
0.5 0.928 0.700 0.340 0.848 0.484 0.116 0.820 0.328 0.036
1.0 0.916 0.616 0.260 0.780 0.272 0.044 0.752 0.204 0.016
1.5 0.852 0.356 0.056 0.680 0.120 0.004 0.672 0.080 0.008
2.0 0.772 0.296 0.040 0.644 0.084 - 0.656 0.052 0.004
2.5 0.708 0.168 0.008 0.548 0.040 - 0.620 0.036 0.004
3.0 0.692 0.148 0.004 0.528 0.028 - 0.564 0.032 0.004
3.5 0.600 0.040 - 0.464 0.016 - 0.536 0.012 -
4.0 0.564 0.032 - 0.388 0.004 - 0.476 0.004 -
4.5 0.500 0.012 - 0.340 0.004 - 0.420 0.004 -
5.0 0.472 0.012 - 0.308 - - 0.396 0.004 -
5.5 0.408 0.008 - 0.260 - - 0.360 0.004 -
6.0 0.364 0.008 - 0.236 - - 0.360 - -
6.5 0.344 - - 0.224 - - 0.316 - -
7.0 0.324 - - 0.176 - - 0.304 - -

Plan Cost for a Particular Problem
0.0 8.00 13.00 15.00 7.41 10.66 11.83 7.24 10.13 11.54
0.5 8.00 13.00 15.50 7.41 11.07 13.90 7.24 10.13 13.19
1.0 8.00 13.00 16.00 7.41 11.66 14.31 7.24 10.36 14.78
1.5 8.00 13.00 17.00 7.41 11.66 15.66 7.24 10.36 14.78
2.0 8.00 13.00 18.00 7.41 11.66 - 7.24 10.36 15.42
2.5 8.00 13.00 18.00 7.41 12.41 - 7.24 10.94 15.42
3.0 8.00 13.00 18.00 7.41 12.41 - 7.24 10.36 15.42
3.5 8.00 13.00 - 7.41 14.49 - 7.24 10.36 -
4.0 8.00 13.00 - 7.41 15.66 - 7.24 14.18 -
4.5 9.00 13.00 - 7.41 15.49 - 7.24 14.94 -
5.0 9.00 13.00 - 7.41 - - 7.24 14.94 -
5.5 9.00 13.00 - 7.41 - - 7.24 14.94 -
6.0 9.00 13.00 - 7.41 - - 7.24 - -
6.5 9.00 - - 7.66 - - 7.24 - -
7.0 9.00 - - 7.66 - - 7.24 - -

Table 2: Results for open grids across increasing T -delay.

7

Success Rate
k = 2 k = 3 k = 4

Agents ⧹ T 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
10 0.964 0.912 0.912 0.832 0.832 0.960 0.888 0.840 0.800 0.744 0.984 0.932 0.888 0.828 0.772
15 0.932 0.792 0.780 0.660 0.656 0.908 0.760 0.628 0.572 0.520 0.924 0.772 0.692 0.572 0.508
20 0.884 0.636 0.632 0.452 0.452 0.824 0.512 0.340 0.296 0.224 0.820 0.504 0.384 0.292 0.220
25 0.824 0.468 0.456 0.296 0.276 0.748 0.260 0.148 0.100 0.072 0.696 0.224 0.140 0.080 0.056

Plan Cost of a Particular Problem
10 191.00 191.00 191.00 191.00 191.00 155.40 155.40 155.40 155.40 155.40 149.34 149.34 149.34 149.34 149.34
15 195.00 195.00 195.00 195.00 195.00 157.87 157.87 157.87 157.87 157.87 154.49 154.49 154.49 154.49 154.49
20 236.00 236.00 236.00 254.00 254.00 200.85 200.85 200.85 200.85 200.85 196.75 196.75 196.75 196.75 220.20
25 236.00 236.00 236.00 255.00 255.00 200.85 200.85 200.85 229.74 229.74 196.75 205.33 219.76 219.76 233.69

Table 3: Results for den520d map.

success rate for a 2k-neighborhood ranging from k = 2 to 4.
Each of the three columns shows the success rate for a dis-
tinct number of agents. The bottom half of the table shows
the plan cost for one particular problem.

Similar to the results in Table 1, increasing the T -delay
reduces the success rate due to the increased hardness of
pathfinding. In general, increasing the T -delay does not sig-
nificantly increase the cost of the plan found. When the num-
ber of agents is small, the likelihood of them colliding with
each other is low as the environment is sparse. Hence, it is
possible that even increasing the T -delay, the agents may
still not interact with each other. Thus, increasing the T -
delay may not have a significant effect on the cost.

Dragon Age Maps
Further experiments were also performed on a larger grid,
den520d, from the Dragon Age: Origin (DAO) game
(available in the movingai repository (Sturtevant 2012)).
The start and goal locations of agents were chosen randomly
to create 250 different problems for every number of agents.

Table 3 presents the results, which are tabulated in a sim-
ilar manner to Table 1. In general, the same overall trends
are observed: increasing the number of agents or T -delay
reduces the success rate and increases the plan cost; increas-
ing k reduces the success rate and the plan cost. However,
when the number of agents is small, the optimal T -robust
plan often has the same cost as the optimal 0-robust plan as
the map is very large. For example, for 10 agents, there is no
increase in the plan cost with increasing T -delay.

Comparison between CSG and Sampling
Lastly, we compare the runtime performance of collision de-
tection using CSG and the sampling approach. We repeated
the Open Grids experiments for k = 4 using the sampling
approach for collision detection and collected the average
time spent in performing collision detection per CT node.
This is to ensure fair comparison as differences in the unsafe
interval will influence the number of CT nodes explored, af-
fecting the overall runtime of the search. In Figure 5, the
collision detection time (CDT) is plotted against the T -delay
for different numbers of agents a = 5, 10, 15 and different
sample sizes per unit delay s = 10, 20, 30. Some lines end
before the maximum delay of 7, because the success rate
(within a time limit of 60 seconds) drops to 0.

As seen from Figure 5, the CDT for CSG remains quite
similar as the T -delay increases. This implies that the mag-

1 2 3 4 5 6 7
Delay

0.00

0.02

0.04

0.06

0.08

Co
llis

io
n

De
te

ct
io

n
Ti

m
e

(s
)

CSG (a=5)
CSG (a=10)
CSG (a=15)
Sampling (s=10, a=5)
Sampling (s=10, a=10)
Sampling (s=10, a=15)
Sampling (s=20, a=5)
Sampling (s=20, a=10)
Sampling (s=20, a=15)
Sampling (s=30, a=5)
Sampling (s=30, a=10)
Sampling (s=30, a=15)

Figure 5: Average collision detection time per CT node
against increasing T -delay.

nitude of T -delay has little impact on the computational
complexity of CSG. However, the CDT for the sampling ap-
proach increases with the T -delay. This is because the num-
ber of samples increases proportionally to the T -delay. For
a sample size of 10, if T -delay is below 2, it is possible that
sampling has a lower CDT compared to CSG. Other than
that, when the T -delay is above 1, sampling has a higher
CDT compared to CSG. A larger sample size also leads to
higher CDT, especially when the T -delay is large. The set-
ting of the sample size yields a tradeoff between the compu-
tational complexity and the accuracy of collision detection.
A larger sample size will increase the computational time of
collision detection, whereas a smaller sample size will re-
duce the accuracy of collision detection.

Conclusion
In this paper, we have proposed TR-CCBS, a sound, com-
plete, and optimal MAPF algorithm that supports continu-
ous time and produces plans that can tolerate a total de-
lay up to T for each agent. TR-CCBS extends CCBS by
identifying T -delay conflicts and resolving them by finding
the unsafe intervals for the T -delay conflict. We have also
presented an exact method for finding the collision interval
between agents under the T -delay conflict. Our experimen-
tal results demonstrate the impact of increasing T -delay and
agent number on the success rate and plan cost.

8

References
Andreychuk, A.; Yakovlev, K.; Boyarski, E.; and Stern, R.
2021. Improving Continuous-Time Conflict Based Search.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, 11220–11227. ISBN 2374-3468.
Andreychuk, A.; Yakovlev, K.; Surynek, P.; Atzmon, D.; and
Stern, R. 2022. Multi-Agent Pathfinding with Continuous
Time. Artificial Intelligence, 305: 103662.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Bartak, R.;
and Zhou, N.-F. 2018. Robust Multi-Agent Path Finding.
Proceedings of the International Symposium on Combinato-
rial Search, 9(1): 2–9.
Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2020. Robust Multi-Agent Path Finding
and Executing. Journal of Artificial Intelligence Research,
67: 549–579.
Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Shimony, E.;
Bezalel, O.; and Tolpin, D. 2015. Improved conflict-based
search for optimal multi-agent path finding. In 24th Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015.
Boyd, S. P.; and Vandenberghe, L. 2004. Convex optimiza-
tion. Cambridge university press.
Cohen, L.; Uras, T.; Kumar, T. K.; and Koenig, S. 2019. Op-
timal and Bounded-Suboptimal Multi-Agent Motion Plan-
ning. In Proceedings of the International Symposium on
Combinatorial Search, volume 10, 44–51.
Guy, S. J.; and Karamouzas, I. 2019. Guide to Anticipa-
tory Collision Avoidance. In Game AI Pro 360: Guide to
Movement and Pathfinding. CRC Press. ISBN 978-0-429-
05509-6.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent
Path Finding with Delay Probabilities. Proceedings of the
AAAI Conference on Artificial Intelligence, 31(1).
Ma, H.; Yang, J.; Cohen, L.; Kumar, T.; and Koenig, S. 2017.
Feasibility study: Moving non-homogeneous teams in con-
gested video game environments. In Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 13, 270–272.
Morris, R.; Pasareanu, C. S.; Luckow, K. S.; Malik, W.; Ma,
H.; Kumar, T. S.; and Koenig, S. 2016. Planning, Scheduling
and Monitoring for Airport Surface Operations. In AAAI
Workshop: Planning for Hybrid Systems, 608–614.
Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval
Path Planning for Dynamic Environments. In 2011 IEEE In-
ternational Conference on Robotics and Automation, 5628–
5635.
Requicha, A. A.; and Rossignac, J. R. 1992. Solid model-
ing and beyond. IEEE computer graphics and applications,
12(5): 31–44.
Rivera, N.; Hernández, C.; and Baier, J. 2017. Grid Pathfind-
ing on the 2k Neighborhoods. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1).
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.

Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games, 4(2): 144–148.
Surynek, P. 2010. An optimization variant of multi-robot
path planning is intractable. In Proceedings of the AAAI
conference on artificial intelligence, volume 24, 1261–1263.
Surynek, P. 2012. Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In Pacific
Rim international conference on artificial intelligence, 564–
576. Springer.
Veloso, M.; Biswas, J.; Coltin, B.; and Rosenthal, S.
2015. Cobots: Robust symbiotic autonomous mobile ser-
vice robots. In Twenty-fourth international joint conference
on artificial intelligence. Citeseer.
Wagner, G.; and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artificial intelligence,
219: 1–24.
Walker, T. T.; and Sturtevant, N. R. 2019. Colli-
sion Detection for Agents in Multi-Agent Pathfinding.
arxiv:1908.09707.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2018. Ex-
tended Increasing Cost Tree Search for Non-Unit Cost Do-
mains. In IJCAI, 534–540.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
ordinating hundreds of cooperative, autonomous vehicles in
warehouses. AI magazine, 29(1): 9–9.
Yu, J.; and LaValle, S. 2013a. Structure and intractability of
optimal multi-robot path planning on graphs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 27, 1443–1449.
Yu, J.; and LaValle, S. M. 2013b. Planning optimal paths
for multiple robots on graphs. In 2013 IEEE International
Conference on Robotics and Automation, 3612–3617. IEEE.

9

