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Abstract
The quest for analytical solutions to differential
equations has traditionally been constrained by
the need for extensive mathematical expertise.
Machine learning methods like genetic algorithms
have shown promise in this domain, but are hin-
dered by significant computational time and the
complexity of their derived solutions. This paper
introduces SSDE (Symbolic Solver for Differen-
tial Equations), a novel reinforcement learning-
based approach that derives symbolic closed-form
solutions for various differential equations. Eval-
uations across a diverse set of ordinary and par-
tial differential equations demonstrate that SSDE
outperforms existing machine learning methods,
delivering superior accuracy and efficiency in ob-
taining analytical solutions.

1. Introduction
Differential equations (DEs) are foundational to mathemat-
ics, physics, and the natural sciences, providing abstract
models for diverse physical phenomena. For example, Pois-
son’s equation governs the distribution of electrostatic poten-
tial, while the heat equation describes temperature variations
within an object (Evans, 2022). Solving these DEs is critical
for understanding and predicting the dynamics of complex
physical systems (Alkhadhr & Almekkawy, 2021; Savović
et al., 2023).

Deriving analytical solutions requires rigorous analysis of
their existence, uniqueness, stability, and behavioral proper-
ties, often leveraging advanced mathematical theories and
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computational techniques (Beck, 2012; Friz et al., 2020;
Aderyani et al., 2022). For example, solving linear partial
differential equations (PDEs) via the superposition principle
involves determining Green’s functions, G(x,x′), which
represent solutions to PDEs with a point source at x′. This
process demands deep insights into the properties of Green’s
functions, especially under complex boundary conditions
or in multidimensional domains (Duffy, 2015). Nonlinear
PDEs, however, pose greater challenges due to their inher-
ent complexity, rendering analytic solutions intractable and
necessitating numerical methods. Traditional numerical
methods, such as the finite volume method, are prone to
discretization errors and rely heavily on meshing, which can
lead to convergence issues, especially with finely granulated
meshes (Moukalled et al., 2016; Li et al., 2023b). Machine
learning (ML) methods have emerged as powerful tools to
address these limitations, significantly enhancing the ability
to model and solve complex PDEs.

Physics-Informed Neural Networks (PINNs) (Raissi et al.,
2019; Cuomo et al., 2022), grounded in the universal ap-
proximation theorem (Hornik et al., 1989), effectively ap-
proximate solutions to diverse physical systems. However,
due to the nature of neural networks, these methods often ex-
hibit low computational efficiency and struggle to accurately
satisfy physical constraints, resulting in compromised con-
vergence accuracy, particularly for stiff or high-frequency
problems (Wang et al., 2021; Rao et al., 2023). The advent
of neural operator methods, such as Deep Operator Network
(DeepONet) (Lu et al., 2021a) and the Fourier Neural Opera-
tor (FNO) (Li et al., 2023b), which learn mappings between
functions, offers a promising avenue to tackle these issues.
Yet, these neural operator algorithms typically require ex-
tensive labeled data for training. Moreover, both traditional
numerical methods and deep learning approaches sacrifice
the interpretability of analytical solutions. This lack of inter-
pretability poses challenges in accurately grasping system
dynamics and limits the ability to extrapolate beyond the
computational domain, thereby constraining their applica-
bility in scientific research and engineering applications.

Recent advances in symbolic regression have enabled the
derivation of interpretable solutions to DEs without requir-
ing expert mathematical knowledge, through data-driven
approaches. Genetic programming (GP)-based approaches
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employ physics-regularized fitness functions to evolve sym-
bolic solutions. Tsoulos et al. (2006) propose a GP method
that evolves solution expression genomes modeled using
Formal Grammars (HOPCROFT, 1979). Oh et al. (2023)
introduce a customizable GP approach (Randall et al., 2022)
that directly evolves expression trees as solutions for this
task. Cao et al. (2023; 2024) enhance GP algorithms with
pruning techniques and transfer learning. Similarly, Ka-
mali et al. (2015) and Boudouaoui et al. (2020) develop
population-based methods that emulate heuristic search be-
haviors inspired by resource-seeking populations. How-
ever, these approaches often yield complex solutions with
limited interpretability and incur high computational costs,
particularly in high-dimensional problems, where finding
accurate solutions remains challenging. In parallel, alter-
native paradigms have emerged. Liang and Yang propose
the FEX method (2022), which uses reinforcement learning
to search for weighted symbolic networks to solve differen-
tial equations. Liu’s Kolmogorov-Arnold Networks (2025)
can be used to derive symbolic solutions through network
symbolization. While both methods improve fitting perfor-
mance by introducing additional parameters, they frequently
lack interpretability. Majumdar et al. propose an approach
utilizing trained PINNs to generate datasets, subsequently
applying symbolic regression to extract expressions (2023).
This method falls short of adhering to physical constraints,
primarily due to inherent limitations in numerical precision
and error propagation. The core challenge lies in balancing
three critical aspects: (1) maintaining strict adherence to
physical laws, (2) ensuring computational efficiency, and
(3) preserving human-interpretable symbolic forms. Cur-
rent symbolic regression approaches either sacrifice inter-
pretability for accuracy or face scalability issues in complex
problems. Alternative paradigms, while offering improved
fitting capabilities, fundamentally differ from our goal of
deriving precise, physics-compliant symbolic solutions. To
overcome these limitations, we propose a novel reinforce-
ment learning (RL)-based method for deriving closed-form
symbolic solutions to DEs. Our contributions are as follows:

• The introduction of the Symbolic Solver for Differen-
tial Equations (SSDE), an RL-based paradigm that
directly derives closed-form symbolic solutions to dif-
ferential equations with high interpretability.

• The development of the Risk-Seeking Constant Opti-
mization (RSCO) algorithm, which accelerates con-
stant optimization while preserving accuracy and con-
vergence.

• A novel form of symbolic solutions expressed as para-
metric expressions, enhancing the applicability of
SSDE for discovering symbolic solutions to DEs in
any single dimension.

• An innovative exploration technique that enables SSDE
to recursively solve high-dimensional PDEs, achiev-
ing superior performance across tested DE types and
outperforming mainstream comparative methods.

2. Related Work
Numerical methods based on ML PINNs leverage the
nonlinear representation power of neural networks to solve
PDEs by embedding physical constraints directly into the
training process as inductive biases (Raissi et al., 2019).
This approach enables unsupervised learning relying on
PDE residuals while faces several challenges. For exam-
ple, their dependency on soft constraints for embedding
physical laws may not thoroughly integrate exact physical
priors and they often exhibit inefficiency when handling
with stiff problems, characterized by rapidly changing solu-
tions (Wang et al., 2021; Rao et al., 2023). To address these
limitations, enhancements have been developed, including
the hard-coding boundary conditions (Lu et al., 2021c), and
employing temporal representations (Rao et al., 2023). In
contrast, operator learning methods (Lu et al., 2021a; Cai
et al., 2021; Li et al., 2023c;b) utilize neural networks to ap-
proximate nonlinear operators, providing a supervised learn-
ing approach to solving PDEs that depends on paired input-
output data. While these methods offer significant potential,
their substantial requirement for labeled data in scientific
contexts poses a significant challenge. Both PINNs and neu-
ral operator learning methods yield approximate solutions to
PDEs. These solutions frequently lack interpretability with
respect to the underlying physical phenomena and demon-
strate limited generalization beyond the specific scenarios
used for training.

Symbolic regression methods Symbolic regression meth-
ods can be broadly categorized into two main categories:
search-based and supervised learning-based approaches.
Search-based methods explore the solution space to iden-
tify optimal symbolic expressions, encompassing traditional
techniques such as genetic programming (GP) and heuristic
search strategies (Forrest, 1993; Koza, 1994; Schmidt & Lip-
son, 2009; Staelens et al., 2013; Arnaldo et al., 2015; Iwo
& Krawiec, 2019; Randall et al., 2022; Jiang & Xue, 2023).
These conventional approaches, however, often grapple with
an expansive search space, leading to computationally in-
tensive tasks. Moreover, they tend to produce increasingly
complex symbolic expressions without corresponding per-
formance gains. To mitigate these challenges, recent ad-
vancements have integrated neural networks to guide and
constrain the search process, enhancing efficiency (Sahoo
et al., 2018; Zhang et al., 2023; Dong et al., 2024). Addi-
tionally, reinforcement learning techniques, including policy
gradient methods and Monte Carlo tree searches, have been
employed for symbolic regression (Petersen et al., 2020;
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Mundhenk et al., 2021; Sun et al., 2023; Li et al., 2024). Al-
though these methods exhibit slower inference times since
they necessitate iterative searches during inference and the
time-consuming evaluation of regressed symbolic expres-
sions, they demonstrate promising performance in SRBench
Black-box dataset (La Cava et al., 2021). In contrast, super-
vised learning-based approaches leverage large-scale pre-
training on synthetic datasets to directly generate symbolic
expressions (Biggio et al., 2021; Kamienny et al., 2022; Li
et al., 2023a). By producing expressions in a single forward
pass, these methods achieve significantly faster inference
speeds compared to search-based techniques. A notable
hybrid approach, TPSR (Shojaee et al., 2024), combines
elements of search and supervised learning, yielding impres-
sive performance. However, the effectiveness of supervised
methods diminishes when the training data distribution di-
verges from that of the target physical system, leading to
reduced model accuracy.

ML for solving DEs analytically Symbolic regression’s
ability to uncover expressive and interpretable formulations
makes it a promising tool for deriving understandable sym-
bolic solutions to DEs. Genetic algorithm-based symbolic
regression methods have been employed to solve DEs (Tsou-
los & Lagaris, 2006; Oh et al., 2023; Cao et al., 2023). Oh
et al. introduce Bingo (Randall et al., 2022), using auto-
matic differentiation to assess physical residuals in DEs as
a fitness function to optimize symbolic expressions. Heuris-
tic algorithms inspired by swarm intelligence, such as ant
colony programming (Kamali et al., 2015) and artificial
bee colony programming (Boudouaoui et al., 2020) emulate
resource-seeking behaviors to search for solutions. However,
these methods are computationally intensive, particularly
for high-dimensional problems, where the expansive search
space poses significant challenges. To address this, trans-
fer learning has been explored to reduce the search space
by leveraging solutions from single-dimensional instances
of high-dimensional PDEs (HD-PDEs) (Cao et al., 2024).
Yet, this approach is limited, as most physical systems gov-
erned by PDEs lack known single-dimensional equations.
Liang and Yang (2022) propose a reinforcement learning
pipeline to guide a weighted symbolic network toward ap-
proximate solution of DEs. The introduction of weights
reduces interpretability and complicates the discovery of
minimalist analytical expressions. Kolmogorov-Arnold Net-
works (KANs) (Liu et al., 2025) offer a novel approach
for deriving symbolic solutions to DEs by incorporating
a physics-regularized loss function. However, converting
KANs’ learned representations into symbolic expressions
often degrades accuracy, resulting in solutions that fail to
precisely satisfy the underlying equations. Majumdar et
al. (2023) perform symbolic regression on numerical so-
lutions from PINNs to identify interpretable expressions.
Since PINN-derived solutions are inherently approximate,

the resulting symbolic expressions may not fully adhere to
physical constraints, introducing inaccuracies due to error
propagation.

3. Preliminary Studies
Differential equations Differential equations (DEs) are
equations related to unknown univariate or multivariate
functions and their derivatives or partial derivatives. Con-
sider a bounded domain Ω ⊂ Rn, with a point x =
(x1, x2, . . . , xn) ∈ Ω. Let u(x) denote the unknown func-
tion to be determined. For a positive integer k, Dku ∈ Rnk

represents all k-th order partial derivatives of u. Given a
function F : Ω× R× Rn × · · · × Rnk−1 × Rnk → R, the
general form of a k-th order partial differential equation
(PDE) can be expressed as in Eq. (1). When n = 1, the
PDE reduces to an ordinary differential equation (ODE).

F [x, u(x), Du(x), . . . , Dk−1u(x), Dku(x)] = 0 (1)

Prominent examples include Poisson’s equation:

−∆u(x) = −
n∑

i=1

∂2u

∂x2i
= f(x), (2)

defined on the spatial domain Ω, and the heat equation:

∂u

∂t
(x, t)− a2∆u(x, t) = f(x, t), a > 0, (3)

defined on the spatiotemporal domain (x, t) ∈ Ω×τ , where
a is a constant and T > 0. To ensure a well-posed prob-
lem for analytical solutions, a PDE must be accompanied
by appropriate boundary conditions (BCs) and, for time-
dependent PDEs, initial conditions (ICs). BCs are typi-
cally specified as B(u;x ∈ ∂Ω) = 0 on the boundary
∂Ω, while ICs for time-dependent problems are given as
I(u; t = 0,x ∈ Ω) = 0. Together, the differential equation,
BCs, and ICs define a complete mathematical problem.

Closed-form solution The closed-form solution û(x) to
a differential equation (DE) composed of a finite combi-
nation of known functions, such as elementary functions
(e.g., polynomials, exponentials, trigonometric functions),
special functions (e.g., Bessel or hypergeometric func-
tions), or, in some contexts, neural operators. Within a
bounded domain, the solution must satisfy the DE along
with its associated boundary conditions (BCs) and, for time-
dependent problems, initial conditions (ICs). For example,
û = c cosh(x1) sin(x2), involving the constant c, opera-
tors {×, cosh, sin} and variables x1 and x2, is a candidate
closed-form solution to the Laplace equation −∆u(x) = 0.

4. Methodology
SSDE identifies closed-form solutions using an unsuper-
vised reinforcement learning framework, as depicted in Fig.
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Sample closed-form solution   from RNN 
Expression  

Tree 

Sample points from 
spatio-temporal
domain 

Forward computation with gradients

PDE ICs/BCs

Physical constraintsReward 
 

Local Constants
Optimization 

(a)

(b)

(c)

(d)

(e)

Figure 1. Algorithm overview (using spatiotemporal dynamical
systems as an example). (a) The RNN generates skeletons for
candidate solutions. (b) Sampled points are fed into the candidate
skeletons to construct computational graphs with constants ci as
parameters. (c) Physical constraints are built via automatic differ-
entiation. (d) Constants are optimized to minimize Ls-t. (e) The
evaluator computes rewards based on physical constraints to train
RNN. The process iterates until a valid solution is found.

1. To accelerate convergence while maintaining precision,
we propose a risk-seeking constants optimization method.
Additionally, for solving high-dimensional partial differen-
tial equations (HD-PDEs), we develop a recursive explo-
ration technique. Pseudocode for the proposed algorithms
is included in the appendix A.

4.1. Physics-Regularized Reinforcement Learning

Expression skeleton generator We leverage symbolic ex-
pression trees, where internal nodes denote mathematical op-
erators, and terminal nodes represent input variables or con-
stants. The pre-order traversal of the corresponding expres-
sion tree τ represents the expression skeleton of û. Each con-
stant within the skeleton is a column vector of length |cdim|.
Therefore, when |cdim| ≠ 1, a single expression skeleton can
yield multiple outputs for identical inputs, as detailed in Sec-
tion 4.3. Inspired by automated machine learning (AutoML)
works (Bello et al., 2017; Cuomo et al., 2022), we employ a
Recurrent Neural Network (RNN) to generate categorical
distributions over tokens from a given symbolic library L.
For each token τi (e.g., +,×, x1, c, . . . ), we sample with
likelihood P (τi|τ1:(i−1); θ) in an autoregressive manner to
ensure contextual dependencies on previously chosen sym-

bols. The likelihood of the entire sampled expression û is
computed as p(û|θ) =

∏|τ |
i=1 p(τi|τ1:(i−1); θ), where |τ | is

the length of the pre-order traversal. The RNN inputs in-
clude representations of the parent and sibling nodes of the
token being sampled, reinforcing the model’s understanding
of the expression’s tree structure.

Physics-regularized local constant optimization(LCO)
To ensure the expression skeleton complies with physical
constraints, we employ PyTorch’s automatic differentiation
method (Paszke et al., 2017) to compute the differential
term associated with the constraints. The constants in û are
optimized by minimizing the discrepancy between predicted
values and the given conditions. For instance, in a spatiotem-
poral dynamical system satisfying Dirichlet conditions, data
points are sampled from the spatiotemporal domain Ω× T .
We use nonlinear optimization algorithms such as the BFGS
algorithm (Fletcher, 2000), to optimize the constants by
minimize the sum of mean squared errors Ls-t (Eq. (4),
where ‘s-t’ denotes the spatio-temporal system). The loss
terms for the collocation points corresponding to the differ-
ential term F (defined in Eq. (1)), boundary conditions B,
and initial conditions I , where {xi

f , t
i
f}

NF
i=1, {xi

b, t
i
b, u

i
b}

NB
i=1

, {xi
0, u

i
0}

NI
i=1 represent the respective collocation points,

and λi denotes the relative weight of each loss term.
Ls-t = λ0MSEF + λ1MSEB + λ2MSEI

MSEF = 1
NF

∑NF
i |F(xif , tif )|2

MSEB = 1
NB

∑NB
i |û(xib, tib)− uib|2

MSEI = 1
NI

∑NI
i |û(xi0, 0)− ui0|2

(4)

Solution Evaluator We conceptualize the task of discov-
ering closed-form solutions as a Markov Decision Process
(MDP) comprising the elements (S,A,P,R). The siblings
and parent nodes of the current symbolic node act as the
observation S. The policy is defined by the distribution
of tokens produced by the RNN, p(τi|θ), from which the
action (token τi) is sampled, leading to a transition to a
new expression state. Each generation of the expression
is guided by terminal and undiscounted reward functions,
where each episode reflects one cycle. To evaluate the gen-
erated expression under physics regularization, we apply a
squashing function to the average of the root mean square
errors (RMSE) of physical constraints across different sys-
tems. The reward for the expression skeleton û in a spatio-
temporal dynamical system is computed as:

Rs-t(û) =
1

1 + Average(
√

MSEF +
√

MSEB +
√

MSEI)
(5)

Training RNN using policy gradients Standard policy
gradient methods typically focus on optimizing the average
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performance of the policy, which deviates from the objective
of finding an optimal closed-form solution. To maximize
the best-case performance, we employ risk-seeking policy
gradients with genetic programming introduced in (Petersen
et al., 2020; Mundhenk et al., 2021), with the learning ob-
jective Jrisk(θ; ϵ) parameterized by ϵ as:

Jrisk(θ; ϵ) ≈ Eû∼p(û|θ)[R(û)|R(û) ≥ Rϵ(θ)] (6)

where Rϵ(θ) is the reward distribution’s (1 − ϵ)-quantile
under the current policy. To foster exploration, we integrate
the hierarchical entropy of the sampled expressions into the
reward term, weighted by λH(Landajuela et al., 2021):

H(θ) = λHEû∼p(û|θ)

 |τ |∑
i=1

γi−1H[p(τi|τ1:(i−1); θ)]


(7)

4.2. Risk-Seeking Constant Optimization (RSCO)

Optimizing constants within the expression skeleton to sat-
isfy physical constraints, particularly those related to differ-
ential equations (e.g., MSEF ), incurs considerable compu-
tational costs. Building on the risk-seeking policy gradients
introduced in (Petersen et al., 2020), the training objective
focuses solely on the top ϵ fraction of episodes. Note that
the skeleton must satisfy deterministic conditions to meet
physical constraints. As û approaches these deterministic
conditions, the likelihood of satisfying the differential equa-
tion’s physical constraints increases. Therefore, we propose
a risk-seeking constant optimization method.

In each iteration, the constants of a batch of sampled expres-
sion skeletons are optimized based on deterministic condi-
tions by minimizing the modified loss L′

s-t (defined in Eq.
(8)). The reward R̃ for each expression is still computed by
Eq. (5). The top ϵ fraction of samples incorporates all phys-
ical constraints as defined in Eq. (4), while the constants
are refined and the rewards are recalculated to yield more
accurate evaluations. The accurate rewards of the precise
top ϵ fraction are then used to calculate the policy gradient
∇θJrisk(θ, ϵ) via Eq. (9), which will guide the RNN. By en-
forcing boundary or initial conditions before optimization,
this strategy eliminates unnecessary constant optimization
based on differential relationships for expression skeletons
that already violate physical constraints, echoing the philos-
ophy of hard constraint embedding. (Lu et al., 2021c).

L
′

s-t =λ1MSEB + λ2MSEI (8)
∇θJrisk(θ, ϵ) =Eû∼p(û|θ)[(R(û)−Rϵ(θ))·

∇θ log p(û|θ)|R̃(û) ≥ R̃ϵ(θ)] (9)

4.3. Recursion-Based Exploration

As the solution dimensionality increases, the symbol library
expands, leading to an exponential growth in the search

space. The pre-order traversal length |τ |, and the size of the
symbol library |L| result in a combinatorial search space
of size |L||τ |. The computational complexity of solving
HD-PDEs also grows with dimensionality, due to the in-
creased number of variables in the physical constraints. To
mitigate this, we propose a recursive exploration scheme
that decomposes the solution of multidimensional differen-
tial equations into sequential, dependent rounds, with each
round focusing on a single variable.

Parametric expression We focus on finding the expres-
sion skeleton for the single variable {xi}di=1. The terms
formulated using other variables x−i are treated as fluc-
tuating parameters α⃗(x−i) ∈ Rm, where m denotes the
number of such parameters. The skeleton û(x) is trans-
formed into a parametric expression ũ(xi; α⃗(x−i)). For the
first k observed variable, we can get the solution a paramet-
ric form: û = ũ(x1, x2, · · · , xk; α⃗k(x−{1,2,...,k})). Here,
x−{1,2,...,k} represents all variables except x1, x2, . . . , xk.

Recursive call When k = 0, the close-form solution is
viewed as a parameter û = α⃗0 = α0. For each round
k > 0, we update the expression for the k-th observed
variable xk. The last round’s parametric expressions α⃗k−1

are viewed as new parameter expressions ũk dependent
on xk and the new parameters α⃗k(x−{...,k}). Namely,
α⃗k−1 = ũk(xk; α⃗k(x−{...,k})), which forms a typical re-
cursive relation.

Recursive case We ascertain the parametric skeletons ũk
on the single dimension, as well as the parameter vector
α⃗k by the reinforcement learning method proposed above.
In the parametric expression, each parameter is a vector of
length |cdim|, corresponding to the varying values calculated
from data points collected within the x−i space. Here, |cdim|
represents the number of points. These parameters are opti-
mized in accordance with the specified physical constraints,
and the resulting parametric expressions are evaluated. If
the variance of the |cdim| dimensional parameters falls below
a predetermined threshold, we surmise that this parameter
does not vary with x−i and it degenerates to a constant. This
approach allows us to distinguish between fixed constants
and α⃗ parameters.

Base case When the identified parametric skeleton has no
remaining parameters, ũ is considered a symbol expression
independent of the other variables. In the final round, the
parameter expression from the previous round, α⃗d−1, be-
comes a symbolic expression dependent only on the last
variable xd. Further, the closed-form solution to a d-dim
DE is given as:

û = ũ(x1, x2, · · · , xk; α⃗k(x−{1,2,...,k}))

= ũ1(x1; ũ2(x2; . . . ũd(xd; c⃗)))
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Ultimately, by substituting all parameters with their corre-
sponding symbolic expressions regarding the other variables
and further optimizing the constants within the expression
skeleton based on physical constraints, we can derive a
closed-form solution for the multidimensional differential
equation.

The recursive process enables SSDE to learn in a focused
manner, addressing one variable dimension at a time.

5. Experimental Settings
We present experimental settings used to evaluate SSDE by
answering the following research questions (RQs):

RQ1: How does SSDE compare to other mainstream
methods in finding closed-form solutions to differential
equations?

RQ2: Can RSCO and the recursive exploration strategies
improve SSDE’s ability to find closed-form solutions?

RQ3: Does SSDE produce more accurate solutions than
performing symbolic regression methods based on numeri-
cal solutions?

All details regarding datasets, computing infrastructures,
baselines and their parameter settings, along with additional
comparative experiments and results, are reported in ap-
pendix.

5.1. Metrics

The evaluation of our methodology and baselines is con-
ducted from two distinct perspectives:

• The mean Root Mean Squared Error (RMSE) between
the predicted closed-form solution and physical con-
straints, denoted by LPHY. Taking the spatiotemporal
dynamical system as an example and referring to Eq.
(4), it is defined as:

LPHY = Average(
√

MSEF +
√

MSEB +
√

MSEI)
(10)

This measure assesses whether the identified solutions
are consistent with physical constraints.

• The complete recovery rate of closed-form solution
expressions. For a given closed-form solution u, if the
skeleton of the found expression û after simplification
is exactly the same or equivalent to u, and after the
final optimization of constants, the mean square error
between the expression and the true solution is less
than 1 × 10−8, the expression is considered to have
completely recovered the true solution. PRE represents
the proportion of closed-form solution expressions that

completely recover the true solution in 20 independent
experiments. This metric quantifies the symbolic and
numerical differences between the regressed expres-
sion and the true solution.

5.2. Baselines

We evaluate the performance of the proposed recursive ex-
ploration method by comparing it with the following meth-
ods used for seeking the closed-form solutions:

• PINN+DSR: Performs symbolic regression with DSR
(Petersen et al., 2020) on the numerical solutions ob-
tained from PINNs (Raissi et al., 2019).

• Kolmogorov–Arnold Networks (KAN): A recently
proposed method designed to replace Multi-Layer Per-
ceptrons (MLP) (Liu et al., 2025). Compared to MLP,
KAN performs better in symbolic formula represen-
tation tasks (Yu et al., 2024) and shows promise for
discovering closed-form solutions to HD-PDEs.

• PR-GPSR: Uses genetic programming to search for
a function that satisfies the given PDE and boundary
conditions (Oh et al., 2023).

5.3. Benchmark Problem Sets

To evaluate the performance of our method across a diverse
range of differential equations, we selected the following
equations for testing:

• 2D and 3D Poisson’s Equations: As a classic exam-
ple of time-independent partial differential equation,
Poisson’s equation is widely used in fields such as elec-
trostatics, fluid dynamics, and mechanical engineering.

• 2D and 3D Heat Equations: These equations are
canonical examples of spatio-temporal dynamic sys-
tems, describing the phenomena related to heat transfer.

• 2D and 3D Nonlinear Wave Equations: Nonlinear
wave equations are fundamental models for describing
the propagation of waves in various media, where the
wave amplitude depends on both space and time.

The equations and their deterministic conditions are pro-
vided in Table 1.

6. Results on Benchmarks
(RQ1) Solution accuracy on benchmarks Table 2
presents a comparative analysis of solutions from SSDE
against other methods used to derive closed-form solutions.
SSDE consistently outperforms the other methods across all
benchmarks, discovering solutions with significantly smaller
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Table 1. Summary of tested differential equations with their deterministic conditions

NAME PDE DETERMINISTIC CONDITIONS

POISSON2D ∂2u
∂x2

1
+ ∂2u

∂x2
2
=30x2

1−7.8x1+1,X∈[−1,1]2 u(X)=2.5x4
1−1.3x3

1+0.5x2
2−1.7x2,X∈∂[−1,1]2

POISSON3D ∂2u
∂x2

1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
=30x2

1−7.8x2+1,X∈[−1,1]3 u(X)=2.5x4
1−1.3x3

2+0.5x2
3,X∈∂[−1,1]3

HEAT2D ∂u
∂t

−( ∂
2u

∂x2
1
+ ∂2u

∂x2
2
)=−30x2

1+7.8x2+t,X∈[−1,1]2
u(X,t)=2.5x4

1−1.3x3
2+0.5t2,X∈∂[−1,1]2,t∈[0,1]

u(X,0)=2.5x4
1−1.3x3

2,X∈[−1,1]2

HEAT3D
∂u
∂t

−( ∂
2u

∂x2
1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
)=−30x2

1+7.8x2−2.7 u(X,t)=2.5x4
1−1.3x3

2+0.5x2
3−1.7t,X∈∂[−1,1]3,t∈[0,1]

,X∈[−1,1]3 u(X,0)=2.5x4
1−1.3x3

2+0.5x2
3,X∈[−1,1]3

WAVE2D
∂2u
∂t2

−( ∂
2u

∂x2
1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
)=−u−u3+((0.25−4x2

1)· u(X,t)=exp(x2
1)sin(x2)e

−0.5t,X∈∂[−1,1]3,t∈[0,1]

ex
2
1−0.5t+e3x

2
1−1.5tsin(x2)

2)sin(x2),X∈[−1,1]3 u(X,0)=exp(x2
1)sin(x2),X∈[−1,1]3

WAVE3D
∂2u
∂t2

−( ∂
2u

∂x2
1
+ ∂2u

∂x2
2
+ ∂2u

∂x2
3
)=u2−((4x2

1+4x2
3+2.75)· u(X,t)=exp(x2

1+x2
3)cos(x2)e

−0.5t,X∈∂[−1,1]3,t∈[0,1]

ex
2
1+x2

3−0.5t+e2x
2
1+2x2

3−tcos(x2))cos(x2),X∈[−1,1]3 u(X,0)=exp(x2
1+x2

3)cos(x2),X∈[−1,1]3

Table 2. Comparison of average LPHY(û) and recovery rates among SSDE and baselines for solving differential equations. 95% confidence
intervals are obtained from the standard error between mean LPHY(û) on each problem set.

SSDE PINN+DSR KAN PR-GPSR

NAME LPHY ↓ PRE ↑ LPHY ↓ PRE ↑ LPHY ↓ PRE ↑ LPHY ↓ PRE ↑
POISSON2D 7.20E-5±2.57E-6 100% 5.71E-1±7.88E-2 0% 7.20E+0±1.46E+0 0% 1.90E-2±2.32E-3 0%
POISSON3D 5.70E-5±1.33E-6 100% 2.60E+0±1.11E-1 0% 6.16E+0±1.52E+0 0% 1.80E-1±1.76E-2 0%
HEAT2D 1.47E-6±7.64E-7 100% 3.21E+0±1.35E-1 0% 1.16E+1±1.24E+0 0% 2.15E-1±1.28E-2 0%
HEAT3D 1.05E-5±1.23E-6 100% 2.69E+0±3.24E-1 0% 1.15E+1±1.72E+0 0% 8.87E-1±2.96E-1 0%
WAVE2D 4.25E-5±2.35E-6 100% 9.56E-1±2.14E-1 0% 2.04E+0±1.42E-1 0% 4.24E-1±3.69E-1 0%
WAVE3D 8.17E-6±1.56E-6 100% 1.34E+1±4.16E+0 0% 1.36E+1±2.38E+0 0% 9.87E-1±2.46E-1 0%
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Figure 2. Ablation study of SSDE on benchmarks of PDE.

LPHY values. The increased dimensionality poses a substan-
tial challenge for the other methods, as they struggle to

navigate the exponentially expanded search space to find ac-
curate closed-form solutions. In contrast, SSDE’s recursive
exploration strategy, which employs reinforcement learning
independently for each dimension, exhibits a remarkable
advantage in solving higher-dimensional PDEs. Specifically,
SSDE reliably identifies correct closed-form solutions for
both linear and nonlinear differential equations. We also
provide a detailed illustration of how SSDE progressively
isolates each variable and recursively constructs the correct
solution through stepwise regression in the appendix F.

(RQ2) Ablation studys We conducted a series of abla-
tion studies to evaluate the individual contributions of key
components, including RSCO and the recursive exploration
strategy (RecurExp). Figure 2 illustrates the complete re-
covery rate of SSDE on the PDE benchmarks under the
same execution time for each ablated configuration. The
results highlight the critical role of these components in
enhancing overall performance. Specifically, the absence of
RSCO significantly impairs SSDE’s ability to identify cor-
rect closed-form solutions within the same time frame. Simi-
larly, disabling the recursive exploration strategy drastically
diminishes SSDE’s capability to solve high-dimensional
partial differential equations, preventing it from discovering
accurate closed-form solutions.
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Table 3. Identified Solutions û by SSDE on DEs

NAME GROUND TRUTH IDENTIFIED SOLUTION û

POISSON2D x2
1(2.5x

2
1−1.3x1)+0.5x2(x2−1.4)−x2 x2

1(2.5000x
2
1−1.3000x1)+0.4999x2(x2−1.4002)−x2

POISSON3D 2.5x4
1−1.3x3

2+0.5x2
3 2.5000x4

1−1.3000x3
2+0.4999x2

3+2.3763e−5

HEAT2D 0.5t2+2.5x4
1−1.3x3

2 0.5000t2+log(e2.5000x
4
1−x2

2(1.3000x2−8.1811e−7))
HEAT3D −1.7t+2.5x4

1−1.3x3
2+0.5x2

3 −1.7003t+2.5000x4
1−1.3000x3

2+0.4999x2
3+0.0002

WAVE2D exp(x2
1)sin(x2)e

−0.5t exp(−0.5000t+x2
1)sin(x2)

WAVE3D exp(x2
1+x2

3)cos(x2)e
−0.5t exp(−0.5000t+1.000x2

1+x2
3)cos(x2)

1.000

Table 4. Comparison of average LPHY(û) and recovery rates between SSDE and PINN+DSR for Poisson’s equations within Γ dataset.
95% confidence intervals are obtained from the standard error between mean LPHY(û) on each problem set.

SSDE PINN+DSR

NAME DIFFERENTIAL EQUATION LPHY↓ PRE↑ LPHY↓ PRE↑

Γ1
∂2u
∂x1

2=6x1+2 8.70E-8±7.72E-9 100% 2.93E-5±2.36E-6 100%

Γ2
∂2u
∂x1

2=12x2
1+6x1+2 3.65E-7±2.62E-7 100% 6.55E-5±5.78E-6 100%

Γ3
∂2u
∂x1

2=20x3
1+12x2

1+6x1+2 3.98E-7±9.22E-8 100% 2.52E-4±3.38E-5 100%

Γ4
∂2u
∂x1

2=30x4
1+20x3

1+12x2
1+6x1+2 7.24E-7±7.79E-8 100% 2.47E-3±7.83E-4 0%

Γ5
∂2u
∂x1

2=(2cos(x1)−4x1sin(x1))cos(x
2
1)−(4x2

1+1)·
sin(x2

1)cos(x1)

1.39E-6±2.06E-6 100% 8.66E-5±4.05E-6 100%

Γ6
∂2u
∂x1

2=2cos(x2
1+x1)−sin(x1)−(2x1+1)2sin(x2

1+x1) 7.60E-7±8.75E-7 100% 1.26E-5±8.48E-7 100%

Γ7
∂2u
∂x1

2=−4x2
1/(x

2
1+1)2+2/(x2

1+1)−1/(x1+1)2 4.06E-6±5.82E-6 100% 8.42E-3±1.15E-3 0%

Γ8
∂2u
∂x1

2=−0.25/x1.5
1 1.23E-6±2.01E-6 100% 1.98E-5±1.87E-6 70%

Γ9
∂2u
∂x1

2+
∂2u
∂x2

2=2cos(x2
2)−4x2

2sin(x
2
2)−sin(x1) 3.22E-7±3.27E-8 100% 5.15E-3±1.32E-3 0%

Γ10
∂2u
∂x1

2+
∂2u
∂x2

2=−4sin(x1)cos(x2) 1.27E-6±1.92E-6 100% 2.58E-3±3.17E-4 0%

Γ11
∂2u
∂x1

2+
∂2u
∂x2

2=xx2
1 log(x1)

2+xx2
1 x2(x2−1)/x2

1 1.24E-5±2.29E-5 100% 4.89E-3±2.69E-3 0%

Γ12
∂2u
∂x1

2+
∂2u
∂x2

2=12x2
1−6x1+1.0 1.22E-5±2.32E-5 100% 6.68E-1±1.48E-1 0%

7. (RQ3) Compared with SR on Numerical
Solutions

To further demonstrate the superiority of SSDE over sym-
bolic regression methods that operate on numerical solu-
tions, we conduct a series of benchmarks based on the
Nguyen dataset, adapted for Poisson’s equations with known
source terms. Each differential equation is designed so that
its analytical solution corresponds to one of the expressions
in the Nguyen dataset (Uy et al., 2011). The baseline method
first computes numerical solutions for these equations us-
ing PINNs and then applies DSR directly to the numerical
outputs.

Table 4 reports the results of SSDE and the baseline method
in terms of LPHY and recovery rate PRE. Due to the ap-
proximation errors inherent in numerical solutions and the
compounding of these errors during the symbolic regres-
sion process, the baseline methods occasionally recover
the correct solution skeletons, but frequently yield signifi-
cant inaccuracies during constant optimization. In contrast,

SSDE bypasses the reliance on numerical surrogates entirely
and consistently recovers accurate closed-form expressions
across all test cases.

8. Conclusion
We propose SSDE, a reinforcement learning-based frame-
work for discovering closed-form symbolic solutions to
differential equations. SSDE employs a recurrent neural
network to generate symbolic candidates, guided by an
evaluator grounded in physical constraints. To improve
learning efficiency and convergence, we introduce a risk-
seeking constant optimization technique. By formulating
symbolic solutions as parametric expressions, SSDE can de-
compose high-dimensional PDEs into recursively solvable,
single-dimensional components. This recursive formulation
allows SSDE to efficiently recover closed-form solutions
to complex differential equations. Extensive experiments
on various types of differential equations demonstrate that
SSDE can discover accurate symbolic solutions without
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prior mathematical knowledge, offering a promising new
direction for analytical DE solving.

Software and Data
To facilitate reproducibility and further research, we provide
the complete implementation of SSDE, including training
scripts, benchmark configurations, and symbolic expression
evaluation tools. The source code is publicly available at:

https://github.com/Hintonein/SSDE

In addition, all benchmark datasets constructed for this
study, including the high-dimensional PDEs and Poisson
problems derived from Nguyen expressions, are included in
the repository. The code is implemented in Python and relies
on PyTorch and standard scientific computing libraries.
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A. Pseudocode for SSDE
In this section, we present the pseudocode of SSDE. The overall procedure is described in Alg. 1, and the recursive
exploration mechanism is shown in Alg. 3. Additionally, we provide the subroutines SampleSkeleton (line 5 in Alg. 1),
ReplaceParameters (line 12 in Alg. 3), and SingleDimensionalSSDE (line 9 in Alg. 3) in Algs. 2, 4, and 5,
respectively.

Alg. 1 describes the overall SSDE framework with the risk-seeking constant optimization (RSCO) strategy. An RNN
generates candidate symbolic skeletons, and the constants within each skeleton are optimized using boundary and initial
conditions. A reward is then computed based on physical constraints. After collecting a batch of rewards, the (1−ϵ)-quantile
is computed to select top-performing skeletons. These selected expressions are further refined by re-optimizing constants,
and the updated rewards are used to compute risk-seeking policy gradients and entropy regularization for RNN parameter
updates. This process continues until the termination criterion is met. Alg. 2 defines the symbolic skeleton sampling process
using the RNN. The ApplyConstraints function (line 8) filters infeasible tokens to reduce the search space, while
Arity (line 11) returns the argument count for each token. ParentSibling (line 12) calculates the parent and sibling
nodes to guide the next token generation. This top-down sampling process follows a similar mechanism as DSR (Petersen
et al., 2020); readers are referred to the original paper for further details.

In Alg. 3, we propose a recursive algorithm based on single-dimensional SSDE (described in Alg. 5) to identify the
closed-form solutions to high-dimensional partial differential equations (HD-PDEs). For an HD-PDE with d variables, the
algorithm iteratively represents the symbolic solution as a hierarchical parametric traversal. At iteration k, the traversal
corresponding to the k-th dimension is denoted as τ̃ (k)(xk; α⃗k) about single variable xk and containing parameters α⃗k ,
where α⃗k contains parameters dependent on subsequent variables x−{··· ,k}. Initially, the entire solution is regarded as a

Algorithm 1 SSDE: Reinforcement Learning Framework for Discovering Closed-Form PDE Solutions with RSCO
Input: differential equation F ; deterministic conditions (boundary conditions B, initial conditions I)
Parameter: RNN learning rate η; entropy coefficient λH; risk factor ϵ; batch size N ; sample epochs M ; reward function R
Output: identified closed-form solution û∗ that best satisfies the physical constraints

1: Initialize RNN with parameters θ
2: Randomly sample the domain to build the dataset D = {xi

f}
NF
i=1 ∪ {xi

b, u
i
b}

NB
i=1 ∪ {xi

0, u
i
0}

NI
i=1

3: for i← 1 to M do
4: for j ← 1 to N do
5: ûj ← SampleSkeleton(θ) ▷ Sample a skeleton
6: (L′

s-t)j ← BIConstraintsCalc(ûj ,D) ▷ Calculate the physics-regularized loss concerning B, I
7: û

′

j ← BFGS(ûj ,D, (L
′

s-t)j) ▷ Optimize constants in the skeleton using BFGS
8: R̃(û

′

j)← RewardCalc(û
′

j) ▷ Compute the reward
9: end for

10: R̃ ← {R̃(û′

j)}Nj=1 ▷ Collect batch rewards
11: R̃ϵ ← (1− ϵ)-quantile of R̃ ▷ Compute reward threshold
12: U : {ûq} ← {û

′

j : R̃(û
′

j) ≥ R̃ϵ} ▷ Select expressions with rewards exceeding the ϵ-quantile threshold
13: for q ← 1 to ϵ ·N do
14: (Ls-t)q ← PrLoss(ûq,D) ▷ Calculate the physics-regularized loss
15: û

′

q ← BFGS(ûq,D, (Ls-t)q) ▷ Optimize constants in the skeleton using BFGS
16: R(û

′

q)← RewardCalc(û
′

q) ▷ Compute precise reward
17: end for
18: R ← {R(û′

q)}ϵ∗Nq=1 ▷ Collect precise batch rewards
19: ĝ1 ← ReduceMean((R−Rϵ)∇θ log p(U|θ)) ▷ Compute risk-seeking policy gradient
20: ĝ2 ← ReduceMean(λH∇θH(U|θ)) ▷ Compute entropy gradient
21: θ ← θ + η(ĝ1 + ĝ2) ▷ Apply gradients
22: if maxR > R(û∗) then
23: û∗ ← ûargmaxR ▷ Update best expression
24: end if
25: end for

12



Closed-form Solutions: A New Perspective on Solving Differential Equations

Algorithm 2 Sampling a closed-form solution’s skeleton from the RNN
Input: RNN with parameters θ; tokens library L
Output: The closed-form solution’s skeleton û from the RNN

1: τ ← [] ▷ Initialize empty pre-order traversal of skeleton
2: counter← 1 ▷ Initialize counter for number of unselected nodes
3: x← empty||empty ▷ Initial RNN input is empty parent and sibling
4: C0 ← 0⃗ ▷ Initialize RNN cell state to zero
5: i← 1
6: while counter ̸= 0 do
7: (ψi, ci)← RNN(x,Ci−1; θ) ▷ Emit probabilities; update state
8: ψi ← ApplyConstraints(ψi,L, τ) ▷ Adjust probabilities
9: τi ← Categorical(ψi) ▷ Sample next token

10: τ ← τ ||τi ▷ Append token to traversal
11: counter← counter + Arity(τi)− 1 ▷ Update number of unselected nodes
12: x← ParentSibling(τ) ▷ Compute next parent and sibling
13: i← i+ 1
14: end while
15: û← τ ▷ Assemble the pre-order traversal τ into an expression skeleton
16: return û

Algorithm 3 Recursive Exploration based on single-dimensional SSDE
Input: Differential equation F ; deterministic conditions (boundary conditions B, initial conditions I).
Parameter: Number of variables in differential equations d.
Output: Identified closed-form solution û∗ that best satisfies the physical constraints.

1: Randomly sample the domain to build the dataset D = {xi
f}

NF
i=1 ∪ {xi

b, u
i
b}

NB
i=1 ∪ {xi

0, u
i
0}

NI
i=1

2: Treat the solution as a parameter α0, initialize α0 with B, I
3: τ̂ (0)(x0;α0)← α0 ▷ Initialize empty regressed expression’s traversal with α0

4: |α⃗0| ← 1 ▷ Initialize number of parameters of τ̂ (0) as 1
5: τ̂ ← τ̂ (0)(x0;α0) ▷ Initialize pre-order traversal of regressed skeleton with τ̂ (0)

6: for k ← 1 to d do
7: τ̃ (k)(xk; α⃗k)← []
8: for m← 1 to |α⃗k−1| do
9: τ̃

(m)
k (xk; α⃗

m
k )← SingleDimSSDE(D, α⃗k−1[m], k) ▷ Seek parametric expressions for each αd−1

10: τ̃k(xk; α⃗k)← τ̃k(xk; α⃗k)||τ̃ (m)
k (xk; α⃗

m
k ) ▷ Append new parametric expression of kth variable

11: end for
12: τ ← RepalceParameters(τ̂(x0:k−1; α⃗k−1), τ̃k) ▷ Replace parameters in τ with new sub-expressions discovered for

the kth variable
13: if k ̸= d then
14: L(k)

s-t ← PartialConstraintsCalc(τ(x0:k; α⃗k),D) ▷ Calculate constraints across the regressed dimensions
15: τ̂ ← BFGS(τ,D,L(k)

s-t ) ▷ Optimize parameters and constants in the skeleton with BFGS
16: else
17: Ls-t ← PhysicalConstraintsCalc(τ(x0:d),D) ▷ Calculate the physics-regularized loss
18: τ∗ ← BFGS(τ,D,Ls-t) ▷ Optimize constants in the skeleton with BFGS
19: end if
20: end for
21: û∗ ← τ∗ ▷ Assemble the pre-order traversal τ into an expression skeleton
22: return û∗

single parameter α0, dependent on all variables x1:d. We formally denote this as a trivial traversal τ̂ (0)(x0, α0), where x0 is
is merely a placeholder without practical meaning, simplifying to τ̂ (0) = α0. At each subsequent iteration k, Alg. 5 generates
single-dimensional traversals τ̃k(xk; α⃗k) for parameters α⃗k−1 identified in the previous step. Alg. 4 then substitutes the
previous parameters α⃗k−1 within the current traversal τ̂ with these newly obtained expressions, producing the updated
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Algorithm 4 Replace parameters in regressed skeleton with kth variable’s traversals
Input: Regressed skeleton τ̂(x0:k−1; α⃗k−1); new identified traversals τ̃k of k-th variable .
Output: New traversal τ of symbolic skeleton of k variables.

1: τ = [] ▷ Initialize empty traversal of k variables
2: for i← 1 to |τ̂(x0:k−1; α⃗k−1)| do
3: for m← 1 to |α⃗k−1| do
4: if τ̂ [i] = α⃗m

k−1 then
5: τ ← τ ||τ̃k[m] ▷ Replace parameter α⃗m

k−1 with the corresponding traversal of the kth variable
6: else
7: τ ← τ ||τ̂ [i] ▷ Append regressed traversal
8: end if
9: end for

10: end for
11: return τ

traversal τ involving d variables. To mitigate error propagation during the recursion, constants in the traversal τ are refined
by minimizing L(k)

s-t , which incorporates partial physical constraints. At the final iteration (k = d), when the traversal
involves the last variable xd without further parameters, we optimize the traversal τ against the complete physical constraints
Ls-t, thereby obtaining the final precise symbolic expression.

The underlying principle of Alg. 5 closely parallels that of Alg. 1, yet specifically targets discovering symbolic traversals
corresponding to single-dimensional variable skeletons. Here, we employ an RNN to generate candidate traversals [τ̃k]j
associated with the k-th variable during each training batch. Each constant token (c) within these traversals is represented as
a vector [p⃗k]j of dimensionality |cdim|. Initially, the vectors are optimized by minimizing deterministic constraints sampled
from boundary (B) and initial conditions (I).

We denote the h-th c token within traversal [τ̃k]j as [p⃗k]hj , thus |cdim| = |[p⃗k]hj |. If the variance of a given vector [p⃗k]hj falls
below a predefined threshold δ, it is treated as a constant; otherwise, it remains as a parameter. The parameters retained in
[p⃗k]j subsequently become new parameters for traversal [τ̃k]j . As in Alg. 1, we utilize the RSCO strategy to select the top-ϵ
traversals within the batch, computing rewards accordingly. Finally, the RNN parameters are updated using risk-seeking
policy gradients augmented by entropy regularization.

As an illustrative example, consider discovering the closed-form solution:

u = 2.5x41 − 1.3x32 + 0.5x23

Initially, we represent the symbolic solution simply as û = α0. The expression skeleton corresponding to the first variable
x1 is identified using Alg. 5, yielding a parametric traversal:

ũ(x1; α⃗1) = c1x
4
1 + α1

where the parameter α1 depends on subsequent variables x2 and x3. Next, Alg. 5 identifies the skeleton for the second
variable x2:

α1(x2; α⃗2) = c1x
3
2 + α2

Using Alg. 4, we combine the skeletons derived from the first two dimensions to form the intermediate traversal:

û = c1x
4
1 + c2x

3
2 + α2

where α2 remains dependent on x3. Subsequently, the traversal for the final variable x3 is obtained as

α2(x3) = c1x
2
3

Combining all traversals results in the complete symbolic expression

û = c1x
4
1 + c2x

3
1 + c3x

2
2

Finally, optimizing the constants c1, c2, c3 against the full set of physical constraints precisely recovers the exact closed-form
solution.
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Algorithm 5 Single-dimensional SSDE
Input: Differential equation F ; deterministic conditions (boundary conditions B, initial conditions I); themth last regressed
variable’s paramter α⃗d−1[m];the order dth of the variable currently in focus
Parameter: RNN learning rate η; entropy coefficient λH; risk factor ϵ; batch size N ; sample epochs M ; reward function R;
early stop threshold Rt; constant judgement threshold δ
Output: Pre-order traversal τ̃∗k of the parametric expression of k-th variable that best satisfies the physical con-
straints

1: Randomly sample the domain to build the dataset D = {xi
f}

NF
i=1 ∪ {xi

b, u
i
b}

NB
i=1 ∪ {xi

0, u
i
0}

NI
i=1

2: Initialize generator RNN with parameters θ
3: for i← 1 to M do
4: for j ← 1 to N do
5: [τ̃k]j ← SampleSkeleton(θ) ▷ Sample k-th variable’s expression skeleton
6: [L̃′

s-t]
k
j ← SingleDimBIConstraints([τ̃k]j ,D, α⃗k−1[m]) ▷ Calculate single-dimensional constraints on B, I

7: [τ̃k]
′

j(xk, [p⃗k]j)← BFGS([τ̃k]j ,D, α⃗k−1[m], [L̃′

s-t]
k
j ) ▷ Optimize parameters in the skeleton using BFGS

8: for h← 1 to |[p⃗k]j | do
9: if variance([p⃗k]hj ) < δ then

10: [p⃗k]
h
j ← average([p⃗k]hj ) ▷ Fix parameter to average value if its variance falls below threshold δ

11: end if
12: end for
13: α⃗k ← {[p⃗k]j |[p⃗k]hj is not const.} ▷ Extract variable parameters from optimized constants
14: R̃([τ̃k]

′

j)← RewardCalc([τ̃k]
′

j) ▷ Compute the reward
15: end for
16: R̃ ← {R̃([τ̃k]

′

j)}Nj=1 ▷ Compute batch rewards
17: R̃ϵ ← (1− ϵ)-quantile of R̃ ▷ Compute reward threshold
18: T : {[τ̃k]q} ← {[τ̃k]

′

j : R̃([τ̃k]
′

j) ≥ R̃ϵ} ▷ Select expressions with rewards exceeding the ϵ-quantile threshold
19: for q ← 1 to ϵ ·N do
20: [L̃s-t]

k
q ← SingleDimPhysicalConstraints([τ̃k]q,D, α⃗k−1[m]) ▷ Calculate the physics-regularized loss

21: [τ̃k]
′

q(xk, [p⃗k]q)← BFGS([τ̃k]q,D, α⃗k−1[m], [L̃s-t]
k
q ) ▷ Optimize constants in the skeleton using BFGS

22: for h← 1 to |[p⃗k]q| do
23: if variance([p⃗k]hq ) < δ then
24: [p⃗k]

h
q ← average([p⃗k]hq ) ▷ Fix parameter to average value if its variance falls below threshold δ

25: end if
26: end for
27: α⃗k ← {[p⃗k]q|[p⃗k]q is not const.} ▷ Extract variable parameters from optimized constants
28: R([τ̃k]

′

q)← RewardCalc([τ̃k]
′

q) ▷ Compute the reward
29: end for
30: R ← {R([τ̃k]

′

q)}ϵ∗Nk=1 ▷ Compute precise batch rewards
31: ĝ1 ← ReduceMean((R−Rϵ)∇θ log p(T |θ)) ▷ Compute risk-seeking policy gradient
32: ĝ2 ← ReduceMean(λH∇θH(U|θ)) ▷ Compute entropy gradient
33: θ ← θ + η(ĝ1 + ĝ2) ▷ Apply gradients
34: if maxR > R([τ̃k]

∗) then
35: [τ̃k]

∗ ← [τ̃k]
argmaxR ▷ Update best expression

36: end if
37: end for

B. Computing Infrastructure and Hyperparameter Settings
In this section, we provide additional experimental details, including the computing infrastructure and the specific hyperpa-
rameter configurations for SSDE.

Computing infrastructure All experiments reported in this work were conducted on an Intel(R) Xeon(R) Gold 6138 CPU
@ 2.00GHz. The algorithm implementation can also leverage GPU acceleration for improved computational efficiency.
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Table 5. Hyperparameters for SSDE.

HYPERPARAMETER SYMBOL VALUE

LEARNING RATE η 0.0010
ENTROPY WEIGHT λH 0.07
ENTROPY GAMMA γ 0.7
RNN CELL SIZE – 32
RNN CELL LAYERS – 1
RISK FACTOR ϵ 0.05
MAX EPOCH M 200
BATCH SIZE N 1000
PDE CONSTRAINT WEIGHT λ0 1
BC CONSTRAINT WEIGHT λ1 1
IC CONSTRAINT WEIGHT λ2 1

Table 6. Convergent relative L2 error of baselines on high-dimensional dataset

NAME SSDE MATHEMATICA PR-GPSR KAN FEX DSR PINN

POISSON2D 1.55E-05 ✗ 1.49E-02 3.24E+00 2.00E-02 9.85E-02 6.24E-04
POISSON3D 3.58E-06 ✗ 2.01E-02 2.57E+00 9.13E-02 2.15E-01 3.93E-03
HEAT2D 4.45E-06 ✗ 4.57E-02 6.54E+00 4.70E-02 2.19E-01 6.98E-03
HEAT3D 9.34E-06 ✗ 1.39E+00 5.58E+00 3.63E-01 3.20E-01 1.15E-02
WAVE2D 3.11E-05 ✗ 1.80E-01 1.18E+00 2.34E-01 7.40E-02 1.34E-02
WAVE3D 7.62E-06 ✗ 4.56E-01 7.26E+00 3.97E-01 1.95E+00 3.69E-02

Hyperparameter settings The hyperparameters of our method mainly include the hyperparameters for the reinforcement
learning policy gradient optimization, and weighting coefficients of the physical constraints defined in the loss function Ls-t:

Ls-t = λ0MSEG + λ1MSEB + λ2MSEI (11)

For the policy optimizer, we considered the following hyperparameter search spaces: learning rate ∈
{0.0001, 0.0005, 0.0010}, entropy weight λH ∈ {0.04, 0.07, 0.10}, and hierarchical entropy’s coefficient γ ∈
{0.5, 0.7, 0.9}. Hyperparameter tuning was performed via grid search on benchmark problems Γ5 and Γ10 from the
Γ dataset, and the best hyperparameters were selected by minimizing the average LPHY . The optimal hyperparameters
identified through this tuning process are summarized in Table 5, and these configurations were consistently used across all
benchmark experiments.

C. Additional Experiments and Results
C.1. Experiments with Additional Baselines

To facilitate fair comparison across different methods, we adopt the relative L2 error (defined by Eq. (12)) as a unified
evaluation metric in our supplementary experiments.

Mean Relative L2 Loss =
1

n

n∑
i=1

∥ytrue,i − ypred,i∥2
∥ytrue,i∥2

(12)

In the main text, we compare SSDE with the baseline method PINN+DSR, which performs symbolic regression on
numerical solutions of differential equations. Additionally, we evaluate both methods on a suite of PDE benchmarks. To
further enrich the comparison, we introduce two additional baselines. The first is Mathematica (Wolfram Research, Inc.,
2024), a commercial software capable of computing analytical solutions to differential equations. The second is FEX (Liang
& Yang, 2022), a reinforcement learning-based framework for solving differential equations. Detailed descriptions of these
two baselines are provided in Appendix D. Table 6 summarizes the performance of all methods across the PDE benchmarks.
SSDE consistently identifies correct closed-form solutions and outperforms all baseline methods in terms of accuracy.
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Figure 3. Ablation study on RSCO efficiency (results averaged over 20 benchmark runs) (a) Time efficiency comparison: RSCO achieves
4.65× speedup (µ = 934s vs. 200s) in solution discovery time. (b) Search space comparison: While requiring 22% more expression
evaluations, RSCO maintains superior time efficiency.

C.2. Complexity Analysis

We conduct a complexity analysis to address two research questions (RQs):

RQ1 Does the proposed risk-seeking constant optimization (RSCO) algorithm accelerate the discovery of closed-form
solutions?

RQ2 How does the size of the symbolic library affect the computational complexity of the algorithm?

To answer RQ1, we perform 20 independent trials on each of the Γ1-Γ8 benchmarks, comparing the average convergence
time and number of iterations required with and without RSCO. As shown in Figure 3, RSCO consistently reduces the total
solving time across all benchmarks, despite only marginally improving the average number of iterations. Interestingly, under
the same random seed, RSCO sometimes achieves convergence in fewer iterations, highlighting the benefit of prioritizing
boundary condition satisfaction early in the optimization process.

To investigate RQ2, we evaluate the impact of symbolic library size on solving complexity using the Γ1–Γ4 benchmarks. As
shown in Figure 4, we start with a minimal operator set +,−,×,÷ and progressively expand it by adding transcendental
functions such as sin, cos, exp, and log. We observe that enlarging the symbolic library significantly increases the
average time and number of iterations required to recover the correct solution. Moreover, the addition of higher-order
operators like exp introduces a much larger increase in complexity than trigonometric functions. This is likely due to
the presence of high-order polynomial terms in the target solutions, which can be easily confused with exponential or
logarithmic expressions during symbolic search, especially given the close derivative relationships among ex, lnx, and
certain polynomial approximations.
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Figure 4. Computational complexity scaling with library size. Average (a) time and (b) explored expression count for SSDE in Γ1-4
experiments across 20 independent runs.

D. Details of Baselines Algorithms
In this section, we introduce the mainstream methods used for identifying the closed-form symbolic solution to high-
dimensional PDEs.

Kolmogorov–Arnold Networks (KAN) A newly proposed method designed to replace Multi-Layer Perceptrons(MLP)
incorporates capabilities for automatic symbolic regression(Liu et al., 2025). Compared with MLP, it performs better on
symbolic formula representation tasks(Yu et al., 2024) and is promising for discovering closed-form solutions to HD-PDEs.
Moreover, compared to EQL((Sahoo et al., 2018)), which is a fully-connected work where elementary functions are used as
activation functions, this method does not require additional sparsification for symbolic regression and only requires a small
number of nodes to complete the task of fitting the data. In this work, we use the open-source code and implementation
provided by the authors1. The open source code has been implemented for the 2D Poisson’s equation merely. We have also
implemented the algorithm for the 3D Poisson’s equation, 2D and 3D heat equations based on the open source code. It is
imperative to note that due to the automatic symbolic regression process, expressions involving basic operations such as
addition, subtraction, multiplication, and division can be directly derived from KAN’s network structure. Therefore, the
symbol library used in the KAN method for automatic regression does not include these operators. Additionally, cos token
can also be directly obtained from sin by adding a bias (i.e., sin(x+ π

2 ) = cos(x)), therefore, the cos token is also absent
from the symbol library. To ensure a fair comparison, apart from the symbol library employed in our algorithm, we also
introduced { 2, 3, 4} as additional symbols for use in the KAN method. In addition, we utilized the same hyperparameters
and network architecture settings as those employed in the KAN repository’s source code on partial differential equations.

Physics-regularized Genetic Programming Based Symbolic Regression(PR-GPSR) PR-GPSR((Oh et al., 2023)) is a
physics-regularized genetic programming(GP) based symbolic regression method for analytical solutions to differential
equations. They use the mean-squared error with physical constraints as the fitness of population to measure how well

1https://github.com/KindXiaoming/pykan
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the found expression û satisfies the differential equations. In this work, we use the open-source code and implementation
provided by the authors2. The open source code has been implemented for the 2D Poisson’s equation. We have also
implemented the PR-GPSR algorithm for the 3D Poisson’s equation, 2D and 3D heat equations based on the open source
code. To ensure fair comparison, we use the hyperparameters settings reported in the original paper. In addition, we use the
same symbol library as our algorithm and add the CONST token to give it the ability to generate constants.

PINN+DSR To demonstrate that SSDE has better solution accuracy than the natural paradigm of directly applying
symbolic regression algorithms to numerical solutions, we designed this baseline. It consists of two parts: the PINN
algorithm and the DSR algorithm. The PINN algorithm is used to generate numerical solutions for each equation in the Γ
dataset, and the DSR algorithm directly regresses the corresponding symbolic expressions based on the numerical solutions.
The following will introduce these two algorithms and their implementation in detail.

Physics-Informed Neural Network (PINN) A neural network method proposed by (Raissi et al., 2019), which is
widely used to solve the partial differential equations numerically. PINN directly uses a fully connected neural network
to approximate the solution function of the partial differential equation. Its numerical solution has high accuracy when
solving low-dimensional PDEs with uncomplicated computational domains and boundary conditions. In this work, we use
the open-source code and implementation by DeepXDE3(Lu et al., 2021b). To ensure fair and effective comparison, we
train the network with PDEs and deterministic conditions defined in Γ dataset until the network convergent. And sample the
points in the computational domain identically to our approach used for subsequent symbolic regression. The convergent
mean relative L2 error on the Γ dataset is shown in Table 7.

Deep Symbolic Regression (DSR) DSR((Petersen et al., 2020)) is a symbolic regression method based on reinforcement
learning. The risk-seeking policy gradient is used to guide the RNN to generate the symbolic expressions corresponding to
the given observational data. In this work, we use the open-source code and implementation provided by the authors4. To
ensure fair comparison, we use the same library as our algorithm and add the CONST token to give it the ability to generate
constants. In addition, we used the hyperparameter combination reported in table 5 for the policy optimizer.

Finite Expression Method (FEX) FEX is a reinforcement learning-based method for solving high-dimensional partial
differential equations by discovering solutions expressed as finite mathematical expressions (Liang & Yang, 2022). Instead of
parameterizing the solution with neural networks, FEX formulates the PDE-solving process as a combinatorial optimization
problem over the space of mathematical expressions, represented as binary trees with both discrete operators and continuous
parameters. While FEX is theoretically designed to recover compact, interpretable expressions that approximate the true
solution, in practice, its symbolic structures are often coarse approximations, and the accuracy is largely achieved by tuning
the continuous parameters. As a result, the discovered expressions tend to resemble parameterized symbolic networks,
wherein most of the fitting power comes from weight optimization rather than symbolic structure. This compromises
interpretability and makes it difficult to recover exact closed-form solutions, especially when the symbolic search fails
to capture the core structure of the ground truth. Nonetheless, FEX still presents a promising approach for symbolic
approximation of PDEs with lower memory cost and offers partial interpretability compared to black-box neural solvers. In
this work, we use the official open-source implementation of FEX provided by the authors5. The repository includes support
for 2D and 3D Poisson equations. To enable fair and comprehensive comparison, we further extend the implementation to
support 2D and 3D heat equations and wave equations.

Mathematica Mathematica is a commercial symbolic computation software developed by Wolfram Research, widely
used for solving mathematical problems involving algebraic manipulation, symbolic integration, and differential equations.
It provides a built-in solver for obtaining analytical solutions to a wide range of ordinary and partial differential equations,
leveraging rule-based rewriting systems and symbolic inference engines. In contrast to data-driven approaches, Mathematica
relies on curated mathematical knowledge and a comprehensive symbolic engine to derive closed-form solutions. However,
Mathematica’s performance is strongly tied to the internal heuristics and rule libraries it employs, which are generally
optimized for classical PDEs with known solution templates. For high-dimensional PDEs, equations with nonstandard

2https://github.com/HongsupOH/physics-regularized-bingo
3https://github.com/lululxvi/deepxde
4https://github.com/dso-org/deep-symbolic-optimization
5https://github.com/LeungSamWai/Finite-expression-method
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Table 7. Convergent mean relative L2 error of PINN on Γ dataset

NAME EPOCH MEAN RELATIVE L2 ERROR

Γ1 30000 2.25E-05
Γ2 30000 6.32E-06
Γ3 30000 7.04E-05
Γ4 30000 5.28E-05
Γ5 30000 2.57E-05
Γ6 30000 2.14E-05
Γ7 30000 1.08E-05
Γ8 30000 1.05E-05
Γ9 50000 2.59E-03
Γ10 50000 5.91E-04
Γ11 50000 3.61E-04
Γ12 50000 2.88E-03

Table 8. Configuration of high-dimensional PDEs dataset.

NAME DOMAIN LIBRARY L∗ GROUND TRUTH

POISSON2D [−1, 1]2 L0 ∪ {x2} u(X) = 2.5x4
1 − 1.3x3

1 + 0.5x2
2 − 1.7x2

POISSON3D [−1, 1]3 L0 ∪ {x2, x3} u(X) = 2.5x4
1 − 1.3x3

2 + 0.5x2
3

HEAT2D [0, 1]× [−1, 1]2 L0 ∪ {x2, t} u(X, t) = 2.5x4
1 − 1.3x3

2 + 0.5t2

HEAT3D [0, 1]× [−1, 1]3 L0 ∪ {x2, x3, t} u(X, t) = 2.5x4
1 − 1.3x3

2 + 0.5x2
3 − 1.7t

WAVE2D [0, 1]× [−1, 1]2 L0 ∪ {x2, t} u(X, t) = exp(x2
1) sin(x2)e

−0.5t

WAVE3D [0, 1]× [−1, 1]3 L0 ∪ {x2, x3, t} u(X, t) = exp(x2
1 + x2

3) cos(x2)e
−0.5t

∗ Owing to the structure of the KAN network, the symbol library employed in the KAN baseline encompasses variables and constants, as
well as the operators { 2, 3, 4, sin, log, exp}.

boundary conditions, or synthetic benchmarks designed outside its built-in library scope, Mathematica often fails to return
exact symbolic solutions or may produce no result at all. In this work, we use Mathematica (Version 14.2) as a baseline to
assess its symbolic solving capabilities on our PDE benchmarks.

E. Details of Datasets
E.1. Dataset on High-dimensional PDEs

Despite the availability of existing datasets for validating numerical PDE solvers based on deep learning methods (Takamoto
et al., 2022), these datasets typically do not provide explicitly defined symbolic solutions. Consequently, evaluating
symbolic-solution discovery algorithms on such datasets is not only computationally expensive and inefficient but also does
not guarantee the correctness or interpretability of the resulting symbolic expressions.

To comprehensively assess the effectiveness of our algorithm in discovering diverse symbolic solutions, we constructed a new
benchmark dataset consisting of various types of differential equations (DEs). This dataset enables rigorous performance
evaluation of our proposed method and other state-of-the-art symbolic-solution discovery algorithms. Specifically, each
benchmark example (see Table 8) includes the differential equation itself, the computational domain, associated boundary
conditions, and a symbol library defining permissible functional forms. For clarity and brevity, we define symbol libraries
relative to a base library L0, given by L0 = {+,−,×,÷, sin, cos, exp, log, x1, const.}. The notation [−1, 1]d denotes a
spatial domain represented by a d-dimensional hypercube, while the notation [0, 1] × [−1, 1]d explicitly differentiates
between the temporal domain (the first interval) and the spatial domain (the second interval). The benchmark differential
equations encompass a range of scenarios, including both stationary and spatiotemporal dynamics, as well as linear and
nonlinear PDEs, thereby providing comprehensive coverage for validating symbolic solution discovery methods.
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Table 9. Configuration of Γ dataset on Poisson’s Equation

NAME DOMAIN LIBRARY L GROUND TRUTH

Γ1 [−1, 1] L0 u(x) = x3
1 + x2

1 + x1

Γ2 [−1, 1] L0 u(x) = x4
1 + x3

1 + x2
1 + x1

Γ3 [−1, 1] L0 u(x) = x5
1 + x4

1 + x3
1 + x2

1 + x1

Γ4 [−1, 1] L0 u(x) = x6
1 + x5

1 + x4
1 + x3

1 + x2
1 + x1

Γ5 [−1, 1] L0 u(x) = sin(x2
1) cos(x1)− 1

Γ6 [−1, 1] L0 u(x) = sin(x1) + sin(x1 + x2
1)

Γ7 [0.5, 1.5] L0 u(x) = log(x1 + 1) + log(x2
1 + 1)

Γ8 [0.5, 1.5] L0 u(x) =
√
x1

Γ9 [0.5, 1.5]2 L0 ∪ {x2} u(x) = sin(x1) + sin(x2
2)

Γ10 [0.5, 1.5]2 L0 ∪ {x2} u(x) = 2 sin(x1) cos(x2)
Γ11 [0.5, 1.5]2 L0 ∪ {x2} u(x) = xx2

1

Γ12 [−1, 1]2 L0 ∪ {x2} u(x) = x4
1 − x3

1 +
1
2
x2
2 − x2

E.2. Benchmarks on Poisson’s Equation

To compare SSDE with methods that apply symbolic regression (SR) directly to numerical solutions of differential equations,
we constructed a dataset inspired by the symbolic regression task in the Nguyen benchmark (Uy et al., 2011). Specifically, we
selected 12 target expressions from the Nguyen benchmark and used them as closed-form solutions to derive corresponding
Poisson equations. The complete configuration of this dataset is summarized in Table 9. It is worth noting that expressions
involving only a single variable result in ordinary differential equations (ODEs), while those involving two variables give rise
to partial differential equations (PDEs). This setup allows us to evaluate the performance of SSDE and other baselines on
both ODE and PDE settings in a controlled, ground-truth-aware environment. Leveraging its recursive exploration strategy,
SSDE successfully recovers the Nguyen-12 expressions as exact closed-form solutions, whereas conventional symbolic
regression methods like DSR (Petersen et al., 2020) and DSO (Mundhenk et al., 2021) are unable to fully reconstruct the
target forms.

F. Details of Experimental Results
SSDE successfully recovered the symbolic solutions for all tested partial differential equations, with the intermediate
regressed expressions presented in Table 10. In contrast, the solutions obtained by PINN+DSR often omitted essential
variables. We hypothesize that DSR’s failure to identify correct solutions stems from two key limitations: (1) the increased
dimensionality significantly expands the search space, making exploration more difficult; and (2) the policy gradients
corresponding to different variables may interfere with each other during training, hindering convergence to the correct
expression. Although the KAN method can approximate numerical solutions of PDEs with high accuracy through its
network architecture, its symbolic regression capability remains limited. The resulting expressions tend to be dense and lack
interpretability due to insufficient sparsity. In terms of efficiency, PR-GPSR performs poorly: in our experiments, it required
approximately one day to complete 1500 generations. To ensure a fair comparison across methods, we capped the number
of generations for PR-GPSR at 1500. Even within this limit, PR-GPSR consistently failed to recover the correct symbolic
solutions across all benchmark equations.
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