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Abstract

When pre-trained contextualized embeddings-001
based models developed for unstructured data002
are adapted for structured tabular data, they003
perform admirably. However, recent prob-004
ing studies show that these models use spuri-005
ous correlations and often ignore or focus on006
wrong evidence to predict labels. To study007
this issue, we introduce the task of Trustwor-008
thy Tabular Reasoning, where a model needs009
to extract evidence to be used for reasoning,010
in addition to predicting the label. As a case011
study, we propose a two-stage sequential pre-012
diction approach, which includes an evidence013
extraction and an inference stage. To begin,014
we crowdsource evidence row labels and de-015
velop several unsupervised and supervised ev-016
idence extraction strategies for INFOTABS,017
a tabular NLI benchmark. Our evidence ex-018
traction strategy outperforms earlier baselines.019
On the downstream tabular inference task, us-020
ing the automatically extracted evidence as the021
only premise, our approach outperforms prior022
benchmarks.023

1 Introduction024

Reasoning on tabular or semi-structured knowledge025

is a fundamental challenge for today’s Natural Lan-026

guage Processing (NLP) systems. Two recently027

created tabular Natural language Inference (NLI)028

datasets, TabFact (Chen et al., 2019) on Wikipedia029

relational tables and INFOTABS (Gupta et al., 2020)030

on Wikipedia Infoboxes, help study the question031

of inferential reasoning over semi-structured ta-032

bles. Today’s state-of-the-art for NLI over un-033

structured text uses contextualized models such034

as BERT (Devlin et al., 2019) and RoBERTa (Liu035

et al., 2019b). These models, when adapted for036

tabular NLI by flattening tables into synthetic sen-037

tences using heuristics, achieve remarkable perfor-038

mance on the datasets.039

However, a recent study (Gupta et al., 2021)040

demonstrates that these models fail to reason prop-041

Breakfast in America Relevant
Released4 29 March 19794 H3
Recorded3,4 May-December 19783,4 H2, H3
Studio The Village Recorder in

Los Angeles3

Genre Pop, Art Rock, Soft Rock
Length2 46:062 H1
Label A&M
Producer1 Peter Henderson, Super-

tramp1
H1

H1: Supertramp produced1 an album that was less than
an hour long2.

H2: Most of Breakfast in America was recorded3 in the
last month of 19783.

H3: Breakfast in America was released4 the same month
recording ended 4.

Figure 1: A semi-structured premise (the table
‘Breakfast in America’) example from (Gupta et al.,
2020). Hypotheses H1 are entailed by it, H2 is nei-
ther entailed nor contradictory, and H3 is a contradic-
tion. The “Relevant" represent the mapping of the hy-
pothesis sentences with the evidence rows. The col-
ored text (and subscript number) in the table and hy-
pothesis highlights relevance token level alignment.

erly on the semi-structured inputs in many cases. 042

For example, they can ignore the relevant rows 043

to (a) focus on the irrelevant rows (Neeraja et al., 044

2021) (b) use only the hypothesis sentence (Poliak 045

et al., 2018; Gururangan et al., 2018), or (c) use 046

existing pre-trained knowledge (Jain et al., 2021; 047

Gupta et al., 2021) for inference. In essence, the 048

models use spurious correlations between irrele- 049

vant rows, the hypothesis and the inference label 050

for predicting labels. 051

In this paper, we argue that existing NLI sys- 052

tems optimized solely for label prediction cannot 053

be fully trusted. It is not sufficient for a model 054

be merely “Right" but also “Right for the Right 055

Reasons". Thus, extraction of relevant rows as the 056

“Right Reasons" is equally important for trustworthy 057

reasoning1. We address this issue, by introducing 058

1We suggest that a reasoning system can be deemed trust-
worthy only if it exposes how its decisions are made, thus
verifying whether it is right for the right reasons.
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the task of Trustworthy Tabular Inference, where059

the goal is to focus on both extracting relevant rows060

as evidence and predicting inference labels.061

To illustrate this task, let us look at an exam-062

ple from the INFOTABS dataset in Figure 1, which063

shows a premise table and three hypotheses. This064

example also depicts the evidence rows and the065

corresponding tokens in hypothesis that indicates066

the relevance connection link. For trustworthy tab-067

ular reasoning, the model, in addition to predict-068

ing label ENTAIL for H1, CONTRADICT for H2069

and NEUTRAL for H3, also identifies the evidence070

rows. i.e., rows Producer and Length for hypothe-071

sis H1, Recorded for hypothesis H2, Released and072

Recorded for hypothesis H3.073

We propose a two-stage sequential prediction ap-074

proach, which comprises of an evidence extraction075

stage and the inference stage. In the evidence ex-076

traction stage, the model focuses on extracting the077

necessary evidence information needed for reason-078

ing. During inference stage, the NLI model then079

uses only the extracted evidence as the premise for080

label prediction task.081

We explore several unsupervised evidence ex-082

traction approaches on INFOTABS. Our best unsu-083

pervised evidence extraction method outperforms084

a previously developed baseline by 4.3%, 2.5%085

and 5.4% absolute score on the three test sets.086

For supervised evidence extraction, we annotated087

the INFOTABS training set (17K table-hypothesis088

pairs with 1740 unique tables) with relevant rows089

following Gupta et al. (2021), and then train a090

RoBERTaLarge classifier. The supervised model091

further enhances the evidence extraction perfor-092

mance by 8.7%, 10.8%, and 4.2% absolute score093

on the three test sets over unsupervised approaches.094

Finally, for the full inference task, we demonstrate095

that our two-stage approach with best extraction,096

outperform the earlier baseline by 1.6%, 3.8%, and097

4.2% absolute score on the three test sets.098

In summary, our contributions are as follows:099

• We introduce the problem of trustworthy tab-100

ular reasoning and propose a two-stage pre-101

diction approach that includes an evidence102

extraction stage and an inference stage.103

• We investigate a variety of unsupervised ev-104

idence extraction techniques. Our unsuper-105

vised approach for evidence extraction outper-106

form the previous methods.107

• We enrich the INFOTABS train set with evi-108

dence rows and develop a supervised extrac- 109

tion approach with human-like performance. 110

• We demonstrate that our two-stage technique 111

with best extraction outperforms all the prior 112

benchmarks on the downstream NLI task. 113

The updated dataset, along with associated code, is 114

available at anonymous_for_submission. 115

2 Task Formulation 116

We begin by introducing the task formulation and 117

datasets we are working on. 118

Tabular Inference is a reasoning task that, like 119

conventional NLI (Dagan et al., 2013; Bowman 120

et al., 2015; Williams et al., 2018), asks whether a 121

natural language hypothesis can be inferred from a 122

tabular premise. Concretely, given a premise table 123

T with m rows {r1, r2, . . . , rm}, and a hypothesis 124

sentence H, this task maps them to ENTAIL (E), 125

CONTRADICT (C) or NEUTRAL (N ) as 126

f(T,H)→ y (1) 127

where, y ∈ {E, N, C}. For example, for the tabular 128

premise in Figure 1, the model should predict E, 129

C, and N for H1, H2, and H3, respectively. 130

Trustworthy Tabular Inference is a table rea- 131

soning problem that seeks not just the NLI label, 132

but also relevant evidence from the input table that 133

supports the label prediction. We use TR, a subset 134

of T, to denote the relevant rows or evidence. Then, 135

the task is defined as follows. 136

f(T,H)→ {TR, y} (2) 137

In our example table, this task will also indicate 138

the evidence rows TR of Producer and Length for 139

hypothesis H1, Recorded for hypothesis H2, and 140

Released and Recorded for hypothesis H3. 141

Dataset Details. There are several datasets for 142

tabular NLI: TabFact, INFOTABS, and the Se- 143

mEval’21 Task 9 (Ru Wang et al., 2021) and 144

the FEVEROUS’21 shared task (Aly et al., 2021) 145

datasets. We use the INFOTABS data. It contains 146

finer-grained annotation (e.g., TabFact lacks NEU- 147

TRAL hypotheses) and complex reasoning2 than 148

the others. 149

2As per Gupta et al. (2020), examples in INFOTABS re-
quire complex reasoning involving multiple rows (33%). The
dataset covers all reasoning types present in Glue (Wang et al.,
2018) and SuperGlue (Wang et al., 2019).
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Agreement Range Percentage (%)
Poor < 0 0.27
Slight 0.01 – 0.20 1.61
Fair 0.21 – 0.40 5.69
Moderate 0.41 - 0.60 13.89
Substantial 0.61 - 0.80 22.92
Perfect 0.81 - 1.00 55.61

Table 1: Examples (%) for each Fleiss’ Kappa score bucket.

The dataset consists of 23, 738 premise-150

hypothesis pairs collected by crowdsourcing on151

Amazon MTurk. The tabular premises are based152

on 2, 540 Wikipedia Infoboxes representing twelve153

diverse domains, and the hypotheses are short state-154

ments paired with associated NLI label. All tables155

contain a title followed two columns (cf. Figure 1,156

left columns are keys and right are values).157

In addition to the train and dev sets, the data in-158

cludes multiple adversarial test sets: α1 represents159

a standard test set that is both topically and lexi-160

cally similar to the training data; α2, hypotheses161

are designed to be lexically adversarial; and α3 ta-162

bles are drawn from topics unavailable in the train-163

ing set. The dev and test set, comprising of 7200164

table-hypothesis pairs, were recently extended with165

crowdsourced evidence rows (Gupta et al., 2021).166

As one of our contributions, we describe the evi-167

dence rows annotation for the training set in the168

next Section 3.169

3 Evidence Extraction by Human170

This section describes the process of using Amazon171

MTurk to annotate evidence rows for the 16, 538172

premise-hypothesis pairs that make the training set173

of INFOTABS. We followed the protocol of Gupta174

et al. (2021): one table and three distinct hypothe-175

ses formed a HIT. For each of the hypotheses, five176

annotators would select the evidence rows. We di-177

vide the tasks equally into 110 batches, each batch178

having 51 HITs each having 3 examples. To reduce179

bias induced by a link between the NLI label and180

row selections, we do not provide labels to the an-181

notators. The quality control details are provided182

in the Appendix A.183

In total, we received 81,282 annotations from 90184

distinct annotators. Overall, twenty five annotators185

completed more than 1000 tasks, corresponding186

to 87.75 % examples, indicating a tail distribution187

with the annotations. In the end, 16,248 training188

set table-hypothesis pairs were successfully labeled189

with the evidence rows3. On average, we obtain190

3We exclude certain example pairings from our training

Figure 2: High level flowchart showing our approach for
evidence extraction and trustworthy tabular inference.

89.49% F1-score with equal precision and recall 191

for annotation agreement when compared with ma- 192

jority vote. Furthermore, 85% examples have an 193

F1-score of >80 %, and 62% examples have an 194

F1-score of >90 %. Around 60% examples have 195

either perfect (100%) precision or recall, and 42% 196

have both. Table 1 reports the Fleiss’ Kappa score 197

with annotation percentage. The average Kappa 198

score is 0.79 with standard deviation of 0.234. 199

Choice of Semi-structured Data. Despite con- 200

nection to title entity, the table’s rows are seman- 201

tically distinct. Each row can be considered as a 202

separate and uniquely distinct source of informa- 203

tion about the title entity. Because of this property, 204

the problem of evidence extraction is well-formed 205

as relevant row selection. The same is not true for 206

unstructured text, where granularity at the token, 207

phrase, and paragraph levels is missing (Ribeiro 208

et al., 2020; Goel et al., 2021; Mishra et al., 2021; 209

Yin et al., 2021). 210

4 Trustworthy Tabular Inference 211

Trustworthy inference has an intrinsic sequential 212

causal structure: extract evidence first, then predict 213

the inference label using the extracted evidence 214

data, knowledge/common sense, and perhaps for- 215

mal reasoning (Herzig et al., 2021; Paranjape et al., 216

2020)5. To operationalize this intuition, we chose 217

a two-stage sequential approach which consists of 218

an evidence extraction followed by the NLI classi- 219

fication, as shown in Figure 2. 220

Notation. The function f in Eq. 2 can be rewrit- 221

ten with functions g and h, f(.) = g(.), h ◦ g(.), as 222

sets since they could not achieve satisfactory agreement after
adding more annotators or have label imbalance issues i.e.
more the required number of neutrals.

4We also manually examined hypothesis phrases that sig-
nal relevant rows. See Appendix E for details.

5See more details discussion in section 6
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223

f(T,H) = g(T,H) , h (g(T,H),H) (3)224

Here, the function g extracts the evidence rows TR225

subset of T, and h, uses the extracted evidence TR226

and the hypothesis H to predict the inference label227

y, as228

g(T,H)→ TR

h(TR,H)→ y
(4)229

To obtain f(.) we need to define the functions230

g(.), h(.) and a flexible representation of a semi-231

structured table T. To represent a table T, we use232

the Better Paragraph Representation (BPR) heuris-233

tic of Neeraja et al. (2021). BPR uses hand-crafted234

rules based on the table category and entity type’s235

of the row values (e.g., boolean and date) to con-236

vert each row to a sentence, consisting of table237

title, key and values. This representation outper-238

forms the original “para” representation technique239

of INFOTABS.240

We explore unsupervised (Section 4.1) and su-241

pervised (Section 4.2) evidence extraction methods242

to model the function g(.), i.e., the evidence row243

extraction.244

4.1 Unsupervised Evidence Extraction245

All the unsupervised approaches extract Top-K246

rows based on relevance scores, where K is a hyper-247

parameter. To score rows, we use the cosine simi-248

larity between the row and the hypothesis sentence249

representations. We study three categories of evi-250

dence extraction methods, as described below.251

4.1.1 Using Static Embeddings252

Inspired by the Distracting Row Removal (DRR)253

heuristic of Neeraja et al. (2021), we propose DRR254

(Re-Rank + Top-Sτ ), which uses fastText (Joulin255

et al., 2016; Mikolov et al., 2018) based static em-256

beddings to measure sentence similarity. To im-257

prove DRR technique, we proposed three modifica-258

tions as follows.259

Re-Rank (δ): We observed that the raw similar-260

ity scores (i.e., using only fastText) for some valid261

evidence rows can be low, despite exact word-level262

lexical matching with the row’s key and values.263

To incentivize exact matches, we augmented the264

scores by δ for each exact match.265

Sparse Extraction (S): For most instances, the266

number of relevant rows (K) is much lower than267

the total number of rows (m): most examples have268

only one or two relevant rows. We constrained the269

sparsity in the extraction by capping the value of K 270

to S� m. 271

Dynamic Selection (τ ): We use a threshold τ 272

to select rows dynamically Top-Kτ based on the 273

hypothesis, rather than always selecting a fixed K 274

rows. If the similarity (after Re-Rank) between the 275

row and the hypothesis sentence representations > 276

threshold (τ ) we select the row otherwise not. 277

We adapt this strategy because: (a) The number 278

of rows in premise table can vary across examples, 279

(b) and hypothesis can require different number of 280

evidence rows for reasoning. 281

4.1.2 Using Embedding Alignment 282

This approach constitutes of two parts (a) getting 283

alignment between rows and the hypothesis words 284

(b) , and then computing cosine similarity between 285

the alignment words. In specific, we use SimAlign 286

(Jalili Sabet et al., 2020) method for getting word- 287

level alignment. SimAlign use static and contex- 288

tualized embeddings without parallel training data 289

for getting words alignment. We choice the Match 290

(mwmf) method for alignment matching. Match 291

method uses maximum-weight maximal matching 292

(mwmf) in the bipartite weighted network formed 293

by the word level similarity matrix (e.g., (Kuhn, 294

2010)), and finds a global optima. We prefer Match 295

(mwmf) over the other greedy methods Itermax 296

and Argmax because they finds only local optima. 297

After alignment, we normalize the sum of cosine 298

similarities of RoBERTaLarge token embeddings6 299

to derive the relevance score. Furthermore, because 300

all rows use the same title, we assign title match- 301

ing terms zero weight. We refer this method as 302

SimAlign (Match (mwmf)) in this paper. 303

4.1.3 Using Contextualised Embeddings 304

Methods in Section 4.1.2 only provide alignment 305

between words, but here, we compute similarity 306

scores directly between the contextualised sentence 307

embeddings obtained by transformer models. We 308

explore two options here. 309

Sentence Transformer: We use Sentence-BERT 310

(Reimers et al., 2019) and its variants (Reimers and 311

Gurevych, 2020; Thakur et al., 2021; Wang et al., 312

2021). These model uses the Siamese neural net- 313

work (Koch et al., 2015; Chicco, 2021) based loss 314

objective. We explore several pre-trained sentence 315

6We use the average BPE token embeddings as the word
embeddings.
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transformers models7 for sentence representation.316

These model differ in (a) the data used for pre-317

training (b) , the main model type and it size (c) ,318

and, the maximum sequence length.319

SimCSE: SimCSE (Gao et al., 2021) use a sim-320

ple contrastive learning framework to train sen-321

tences embeddings in both unsupervised and super-322

vised settings. The former takes an input sentence323

and predicts itself using standard dropout as the324

noise, and the latter takes example pairs from the325

MNLI dataset with entailment serving as positives326

and contradiction serving as hard negatives for327

contrastive learning.328

We pass the rows sentence directly to SimCSE to329

get embeddings. Since all rows uses the same title,330

to avoid spurious matching between the hypothe-331

sis tokens and premise rows title tokens, we swap332

the hypothesis title tokens with another title (prefer333

single token title) from another table of same cate-334

gory (randomly selected). We then use the cosine335

similarity between SimCSE sentences embeddings336

to compute final relevance score. We again uses337

the sparsity and Dynamic selection as earlier. In338

the study, we refer this method as SimCSE (Hypo-339

Title-Swap + Re-rank + Top-Kτ ).340

4.2 Supervised Evidence Extraction341

The supervised evidence extraction procedure con-342

sists of three aspects: (a) Dataset construction,343

(b) Label balancing, and (c) Classifier training.344

Dataset Construction. We use the annotated rel-345

evant row data (Section 3) to construct supervised346

extraction training dataset. It contains hypothesis347

and each table-row with an binary label, signifying348

whether the row is relevant or irrelevant, obtain349

by human annotations. We use the sentences from350

Better Paragraph Representation (BPR) (Neeraja351

et al., 2021) to represent each row.352

Label Balancing. The number of irrelevant rows353

would be substantially more than that of relevant354

rows for a table-hypothesis pair. It was empiri-355

cally confirmed through our annotation analysis356

and independently by Gupta et al. (2021) through357

perturbation probing. Therefore, if we use all irrel-358

evant rows from tables as negative examples, the359

resulting training set would be highly imbalanced,360

with about 6× more irrelevant than relevant rows.361

We investigate several label balancing strate-362

gies by sub-sampling the number of irrelevant rows363

7https://www.sbert.net

for training. We explore the following schemes: 364

(a) Take all irrelevant rows from the table with- 365

out sub-sampling (on average 6× more irrelevant 366

rows) referred as Without Sample(6×), (b) pick 367

unrelated rows at random in the same proportion as 368

relevant rows referred as Random Negative(1×), 369

(c) use the unsupervised DRR (Re-Rank + Top- 370

Sτ ) method to pick the most irrelevant row in 371

equal proportion as the relevant rows, referred as 372

Hard Negative(1×), and (d) same to (c), except 373

pick top three irrelevant rows, referred as Hard 374

Negative(3×)8. 375

Classifier Training. We use RoBERTaLarge two 376

sentence classifier for modeling the relevant- 377

vs-irrelevant row classification. We prefer 378

RoBERTaLarge, because of (a) superior perfor- 379

mance in comparison to other models, and (b) the 380

fact that RoBERTaLarge is also used by Gupta et al. 381

(2020); Neeraja et al. (2021) for the NLI task. 382

4.3 Natural Language Inference 383

For the downstream NLI task, the function h(.) is a 384

two-sentence classifier with input TR (the output of 385

the function g(.)) and hypothesis H. We use BPR 386

for representing TR as we did for T. Since |TR|� 387

|T|, the extraction benefits larger tables (especially 388

in α3 set) which exceed the classifier token limit. 389

5 Experimental Evaluation 390

Our experiments assess the efficacy of evidence 391

extraction (Section 4) and its impact on the down- 392

stream NLI task by studying the following ques- 393

tions: 394

RQ1: What is the efficacy of unsupervised ap- 395

proaches for evidence extraction? (Section 5.2) 396

RQ2: Is supervision beneficial? Is it helpful to 397

use hard negatives from unsupervised approaches 398

for supervised training? (Section 5.2). 399

RQ3: Does evidence extraction enhance the 400

downstream tabular inference task? (Section 5.3) 401

5.1 Experimental Setup 402

Next, we discuss the models used for experiments. 403

We investigate both unsupervised (Section 4.1) 404

and supervised (Section 4.2) evidence extraction 405

methods. Furthermore, we use the extracted evi- 406

dence as the only premise for tabular inference task 407

8We explored other selection ratios too, take rows with
rank till 5×, 2×, and 4×, but discovered that their perfor-
mance is equivalent to (a), (b), and (c) respectively.
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(Section 4.3). We compare both tasks with human408

performance.409

As baselines, we use the Word Mover Distance410

(WMD) of Gupta et al. (2020) and the un-changed411

DRR (Neeraja et al., 2021) with Top-4 extracted412

evidence rows. For DRR (Re-Rank + Top-Sτ ),413

which uses static embeddings, we set the maximum414

sparsity parameter S = 2, and the dynamic row415

selection parameter τ = 1.0. For simplicity and a416

fair comparison, we maintain δ at a constant 0.5417

for all approaches. We choose S = 2, because in418

INFOTABS most (92%) instances have only one419

(54%) or two (38%) relevant rows.420

As for models using contextualized embed-421

dings, for the the Sentence Transformer, we422

used the “paraphrase-mpnet-base v2” model423

(Reimers et al., 2019) which is a pre-trained with424

the mpnet-base architecture using several exiting425

paraphrase/non-paraphrase datasets. Our choice426

of the “paraphrase-mpnet-base v2” model was427

guided by performance on the dev set. Sim-428

CSE (Gao et al., 2021) (both Supervised / Un-429

supervised) models uses the same parameters as430

DRR (Re-Rank + Top-Kτ ). In addition, we use431

Hypo-Title-Swap to mitigate spurious matches432

from matching the title. We refer to the supervised433

and unsupervised variants as SimCSE-Supervised434

and SimCSE-Unsupervised.435

For the NLI task we use the BPR representation436

on extracted evidence TR with the RoBERTaLarge437

two sentence classification model. We compare438

(a) Gupta et al. (2020) WMD Top-3, (b) No Extrac-439

tion i.e. full premise table as “para" representation440

Gupta et al. (2020), (c) DRR Top-4, (d) DRR (Re-441

Rank + Top-2(τ=1)) for training, development and442

test sets, (e) training a supervised classifier with443

a human oracle i.e. annotated evidence extraction444

as discussed in Section 3, and using the best ex-445

traction model, i.e. supervised evidence extraction446

with Hard Negative (3×) for the test sets, (f) and,447

the human oracle across the training, development448

and the test sets.449

5.2 Results of Evidence Extraction450

Unsupervised: With regard to RQ1, Table 2451

shows the performance of unsupervised methods.452

We see that the contextual embedding method,453

SimCSE-Supervised (Hypo-Title-Swap + Re-Rank454

+ Top-2(τ=1)), performs the best. Among the static455

embedding cases, DRR (Re-Rank + Top-2(τ=1))456

sees substantial performance improvement over the457

original DRR baseline. The alignment based ap- 458

proach, SimAlign, performs worse, especially on 459

the α1 and α2 test sets. However, surprisingly, its 460

performance on the α3 data, with out of domain 461

and longer tables, is competitive to other methods. 462

Overall, the idea of using Top-Sτ , i.e., using the 463

dynamic number of rows prediction and Re-Rank 464

(exact-match based re-ranking) is beneficial. Prior 465

models such as DRR and WMD have very low F1- 466

score, because of poor precision. Using Re-Rank 467

based on exact match improves the evidence ex- 468

traction recall. Furthermore, introducing sparsity 469

Top-Sτ , i.e. considering only the Top-2 rows (S=2) 470

and dynamic row selection (τ = 1) substantially 471

enhance evidence extraction precision. Further- 472

more, the zero weighting of title matches, a.k.a 473

Hypo-Title-Swap, benefits contextualized embed- 474

ding model such as SimCSE9. 475

SimCSE-supervised (Hypo-Title-Swap + Re- 476

Rank + Top-2(τ=1) ) outperforms DRR (Re-Rank 477

+ Top-2(τ=1)) by 4.3% (α1), 2.5% (α2) and 5.4% 478

(α3) absolute score. Since the table domains and 479

the NLI reasoning involved for α1 and α2 are sim- 480

ilar, so is their evidence extraction performance. 481

However, the performance of α3, which contains 482

out-of-domain and longer tables (an average of thir- 483

teen rows, versus nine rows in α1 and α2) is com- 484

paratively worse. The unsupervised approaches are 485

still 12.69% (α1), 13.49% (α2), and 19.81% (α3) 486

behind the human performance, highlighting the 487

challenges of the task. 488

Supervised: With regard to RQ2, Table 4 shows 489

the performance of the supervised relevant row 490

extraction using binary classification with several 491

sampling techniques for irrelevant rows. Overall, 492

adding supervision is advantageous10. Further- 493

more, we observe that using the unsupervised DRR 494

technique to extract challenging irrelevant rows, 495

a.k.a Hard Negative, is more effective11 than ran- 496

dom sampling. Indeed, using random negative ex- 497

amples as the irrelevant row performs the worst. 498

Not sampling (6×) or using only one irrelevant 499

row, namely Hard Negative (1×), also performs 500

poorly. We see that employing moderate sampling, 501

i.e., Hard Negative (3×) performs best. 502

The best supervised model with Hard Negative 503

(3×) sampling enhanced evidence extraction per- 504

9For static embedding models, the effect of Hypo-Title-
Swap was insignificant

10To investigate “How much supervision is adequate?" we
provide details in Appendix B

11Similar recall for DRR and SimCSE for Top-4 rows.
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Category Unsupervised Methods α1 α2 α3

Baseline WMD (Gupta et al., 2020) 29.42 30.13 28.23
DRR (Neeraja et al., 2021) 33.36 35.72 33.38

Static Embedding DRR (Re-Rank + Top-2(τ=1) 71.49 73.28 63.41
Alignment SimAlign (Match (mwmf)) 58.98 61.53 66.33

Sentence-Transformer (paraphrase-mpnet-base-v2) 67.37 69.88 63.36
Contextualised Embedding SimCSE-Unsupervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1)) 72.93 70.88 66.33

SimCSE-Supervised (Hypo-Title-Swap + Re-Rank + Top-2(τ=1) 75.79 75.74 68.81
Human Oracle (Gupta et al., 2021) 88.62 89.23 88.56

Table 2: F1-Score for several unsupervised evidence extraction method.

Category Evidence Extraction Train Set Evidence Extraction Test Set α1 α2 α3

WMD (Gupta et al., 2020) WMD (Gupta et al., 2020) 70.38 62.55 61.33
Baseline No Extraction (Gupta et al., 2020) No Extraction (Gupta et al., 2020) 74.88 65.55 64.94

DRR (Neeraja et al., 2021) DRR (Neeraja et al., 2021) 75.78 67.22 64.88
Unsupervised DRR (Re-Rank + Top-2(τ=1)) DRR (Re-Rank + Top-2(τ=1)) 74.66 67.38 65.83
Supervised Oracle Supervised (3x Hard Negative) 77.34 71.15 68.92
Human Oracle Oracle (Gupta et al., 2021) 78.83 71.61 71.55
Human Human NLI (Gupta et al., 2020) Human NLI(Gupta et al., 2020) 84.04 83.88 79.33

Table 3: Tabular NLI performance with the extracted relevant rows as the premise.

formance further by 8.7% (α1), 10.8% (α2), and505

4.2%α3 absolute score in comparison to best unsu-506

pervised model’s evidence extraction, i.e., SimCSE-507

Supervised (Hypo-Title-Swap + Re-Rank + Top-508

2(τ=1)). The human oracle outperforms the best509

supervised model by 4.13%(α1) and 2.65% (α2)510

absolute scores, which is a smaller gap compared511

to the best unsupervised approach. Furthermore,512

we observe that the supervision does not benefit the513

α3 set much, where the performance gap with hu-514

man reduction is still around 15.95% (only 3.80%515

improvement over unsupervised approach). We516

suspect this is because of the distributional changes517

in α3 set noted earlier. This highlights future im-518

provement directions by domain adaptation for su-519

pervised methods. Appendices C and D show more520

detailed error analysis for the interested reader.521

Sampling (Ratio) α1 α2 α3

Random Negative (1×) 69.42 71.94 54.12
Hard Negative (1×) 80.88 84.37 68.28
No Sampling (6×) 83.76 85.41 71.26
Hard Negative (3×) 84.49 86.58 72.61
Human Oracle (*) 88.62 89.23 88.56

Table 4: F1-Score for several supervised evidence extraction
method. Here, (*) represent the human selected optimal rows.

5.3 Results of Natural Language Inference522

For RQ3, we investigate how using only extracted523

evidence as premise impacts the performance of524

the tabular NLI task. Table 3 shows the results. In525

comparison to the baseline DRR, our unsupervised526

DRR (Re-Rank + Top-2(τ=1)) performs similarly527

for α2, worse by 1.12% on α1, and outperforms by528

0.95% on α3. 529

Using evidence extraction with the best su- 530

pervised model, Hard Negative (3×), trained on 531

human-extracted (Oracle) rows results in 2.68% 532

(α1), 3.93% (α2), and 4.04% (α3) improvements 533

against DRR. Furthermore, using human extracted 534

(Oracle) rows for both training and testing sets out- 535

performs all models-based extraction methods. The 536

Human Oracle based evidence extraction leads to 537

largest performance improvements of 3.05% (α1), 538

4.39% (α2), and 6.67% (α3) over DRR. Overall, 539

these findings indicate that extracting evidence is 540

beneficial for reasoning in tabular inference task. 541

Despite using human extracted (Oracle) rows 542

for both training and testing, the NLI model still 543

falls far behind human reasoning (Human NLI) 544

(Gupta et al., 2020). This gap exists because, in 545

addition to extracting evidence, the INFOTABS hy- 546

potheses require inference with the evidence in- 547

volving common-sense and knowledge, which the 548

NLI component does not adequately perform. 549

6 Discussion 550

Why Sequential Stages? Our choice of the se- 551

quential paradigm is motivated by the observation 552

that it enforces a causal structure. Of course, a 553

joint or a multi-task model can make the predic- 554

tions even better. However, this technique risks 555

failing to fulfill the causal relationship between ev- 556

idence selection and label prediction (Herzig et al., 557

2021; Paranjape et al., 2020). Ideally, each row is 558

independent and determines the relevance to the 559

hypothesis on its own. However, in a joint or a 560

7



multi-task model that promotes spurious correla-561

tion, irrelevant rows and NLI label, can erroneously562

influence row selection (Gupta et al., 2021).563

Future Directions. Based on the observations564

and discussions, we identify the future directions565

as follows. (a) Joint Causal Model. To build a566

joint or a multi-task model that follows the causal567

reasoning structure, significant changes in model568

architecture are required; the model first latently569

identifies important rows and then uses them for570

NLI predictions. (b) How much Supervision is571

Needed? As evident from our experiments, rele-572

vant rows supervision improves the evidence ex-573

traction, especially on α1 and α2 sets compared to574

unsupervised extraction. But do we need full super-575

vision for all examples? Is there any lower limit to576

supervision? Probably yes, we partially answered577

this question by training the evidence extraction578

model with limited supervision (semi-supervised579

setting); see Appendix B for details. (c) Improving580

Zero-shot Domain Performance. As evident from581

section 5.2, the evidence extraction performance582

of out-of-domain tables in α3 can be further im-583

proved by transfer learning for domain adaptations,584

and (d) Lastly, inspired from (Neeraja et al., 2021),585

one can add implicit or explicit knowledge to im-586

prove evidence extraction, as evident from the error587

analysis in Appendix D.588

7 Comparison with Related Work589

Tabular Reasoning Many recent studies inves-590

tigate various NLP tasks on semi-structured tab-591

ular data, including tabular NLI and fact verifica-592

tion (Chen et al., 2019; Gupta et al., 2020), various593

question answering and semantic parsing tasks (Pa-594

supat and Liang, 2015; Krishnamurthy et al., 2017;595

Abbas et al., 2016; Sun et al., 2016; Chen et al.,596

2020b; Lin et al., 2020; Zayats et al., 2021; Oguz597

et al., 2020; Chen et al., 2021, inter alia), and table-598

to-text generation (e.g., Parikh et al., 2020; Radev599

et al., 2020; Yoran et al., 2021; Chen et al., 2020a).600

Several strategies for representing Wikipedia601

relational tables were recently proposed, such602

as TAPAS (Herzig et al., 2020), TaBERT (Yin603

et al., 2020), TabStruc (Zhang et al., 2020), TAB-604

BIE (Iida et al., 2021), TabGCN (Pramanick and605

Bhattacharya, 2021) and RCI (Glass et al., 2021).606

Yu et al. (2018, 2021); Eisenschlos et al. (2020)607

and Neeraja et al. (2021) study pre-training for im-608

proving tabular inference.609

Interpretability and Explainability Model in- 610

terpretability can either be through explanations 611

or by referring to the evidence for the predictions 612

(Feng et al., 2018; Serrano and Smith, 2019; Jain 613

and Wallace, 2019; Wiegreffe and Pinter, 2019; 614

DeYoung et al., 2020; Paranjape et al., 2020). Ad- 615

ditionally, NLI models (e.g. Ribeiro et al., 2016, 616

2018a,b; Zhao et al., 2018; Iyyer et al., 2018; 617

Glockner et al., 2018; Naik et al., 2018; McCoy 618

et al., 2019; Nie et al., 2019; Liu et al., 2019a) must 619

be subjected to numerous test sets with adversarial 620

settings. These settings can focus on various as- 621

pects of reasoning, such as perturbed premises for 622

evidence selection (Gupta et al., 2021), zero-shot 623

transferability (α3), counterfactual premises (Jain 624

et al., 2021), and contrasting hypotheses α2. 625

Comparison with Shared Tasks The most clos- 626

est work to our approach is the SemEval’21 Task 627

9 (Ru Wang et al., 2021) and FEVEROUS’21 628

shared task (Aly et al., 2021). SemEval focuses on 629

statement verification and evidence finding using 630

relational tables from scientific articles. Compared 631

to SemEval, we focus on (a) evidence extraction 632

for non-scientific Wikipedia Infobox entity tables, 633

(b) proposed two stages sequential approach which 634

follows casual reasoning aspect, (c) use the IN- 635

FOTABS dataset which has complex reasoning and 636

multiple adversarial tests for robust evaluation. 637

The FEVEROUS’21 shared task focuses on ver- 638

ifying information using unstructured and struc- 639

tured evidence from open domain Wikipedia. Our 640

approach is more concerned on evidence extraction 641

from a single table rather than open-domain doc- 642

ument/table/paragraph retrieval. Furthermore, we 643

are only concerned with entity tables rather than 644

relational tables or unstructured text12. 645

8 Conclusion and Future Work 646

In this paper, we introduced the problem of Trust- 647

worthy Tabular Inference, where a reasoning model 648

both extracts evidence from a table and predicts an 649

inference label. We studied a two-stage approach 650

comprising an evidence extraction and inference 651

stage. We explored several unsupervised and su- 652

pervised strategies for evidence extraction, several 653

of which outperform prior benchmarks. Finally, 654

we showed that using only extracted evidence as 655

to the premise, our inference stage can outperform 656

previous baselines at tabular inference. 657

12FEVEROUS has relational tables, unstructured text, and
fewer entity tables
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A Quality Control for Crowdsourcing 1069

Evidence Extraction 1070

Since many hypothesis sentences (especially those 1071

with neutral labels) require out-of-table informa- 1072

tion for inference, we’ve introduced the option to 1073

choose out-of-table (OOT) pseudo rows, which are 1074

highlighted only when the hypothesis requires in- 1075

formation that isn’t common (a.k.a common sense) 1076

and missing from the table. To reduce any possi- 1077

ble bias due to unintended link between the NLI 1078

label and the row selections, e.g., using OOT for 1079

neutral examples, we avoid showing labels to the 1080

annotators13. 1081

To assess an annotator, we compare his/her an- 1082

notation with the majority consensus of other an- 1083

notators’ (4) annotations. We perform this com- 1084

parison at two levels: (a) local-consensus-score 1085

on the most recent batch, and (b) cumulative- 1086

consensus-score on all batches annotated thus far 1087

. We use these consensus scores to temporarily 1088

(local-consensus-score) or permanently (cumula- 1089

tive score) block the spurious annotators from the 1090

task. We also review the annotations manually and 1091

provide feedback in term follow-up recommenda- 1092

tions with more detailed instructions and person- 1093

alized examples for genuine annotators who were 1094

making unkindly mistakes due to task uncertainty. 1095

We give incentives to annotators who received 1096

high consensus scores, suggesting that they per- 1097

formed brilliantly on the assignment. As in previ- 1098

13Because of the random sequence and unbalanced nature,
each of the three hypothesis sentences can have any NLI label,
i.e., in total 33 = 27 possibilities.
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ous work, we remove certain annotators’ annota-1099

tions that have a very poor consensus score (cumu-1100

lative score) and publish a second validation HIT1101

to double-check each data point if necessary.1102

B How Much Supervision is Enough for1103

Evidence Extraction?1104

To investigate this, we use Hard Negative (3x) with1105

RoBERTaLARGE model as our evidence extraction1106

classifier, which is similar to the full supervision1107

method. To simulate semi-supervision settings, we1108

randomly sample 10%, 20%, 30%, 40%, and 50%1109

example instances of the train set in an incremental1110

fashion for model training, where we repeat the1111

random samplings three times. Figure 3, 4, and 51112

compares the average F1-score over three runs on1113

the three test sets α1, α2 and α3 respectively.1114
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Figure 3: Extraction performance with limited supervision
for α1. All results are average of three random splits runs.
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Figure 4: Extraction performance with limited supervision
for α2. All results are average of three random splits runs.

We discovered that adding supervision had ad-1115

vantages over not having any supervision. In ad-1116

dition, we find 20% supervision is adequate for1117

reasonably good evidence extraction with only <1118

5% F1-score gap with full supervision. One key1119

issue we observe is the lack of a visible trend due1120

to significant variation produced by random data1121
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Figure 5: Extraction performance with limited supervision
for α3. All results are average of three random splits runs.

sub-sampling. It would be worthwhile to explore 1122

if this volatility could be reduced by strategic sam- 1123

pling using an unsupervised extraction model, an 1124

active learning framework, and strategic diversity 1125

maximizing sampling, which is left as future work. 1126

C Error Analysis: Human v.s. 1127

Supervised Models on Evidence 1128

Extraction 1129

We perform an error analysis of how well does 1130

our proposed supervised extraction model (Hard 1131

Negative(3x)) performs as opposed to the human. 1132

The model makes two types of errors, referred to 1133

as Type I and Type II. Type I error occurs when 1134

an evidence row (1) is marked as non-relevant (0), 1135

whereas, Type II error occurs when an irrelevant 1136

row is marked as evidence. For the extraction 1137

model, a Type I error will reduce the model’s pre- 1138

cision, whereas a Type II error, will decrease the 1139

model’s recall. The Type I mistake is especially 1140

concerning for the downstream NLI task; the misla- 1141

beled evidence rows (0 instead of 1) will be absent 1142

from the extracted premise, therefore necessary ev- 1143

idence will be omitted, resulting in inaccurate label 1144

prediction. On the other hand, in the Type II mis- 1145

take, when an irrelevant row is labeled as evidence 1146

(1 instead of 0), the model just suffers from extra 1147

noise with the premise, but all required evidence 1148

remains. 1149

Test Set Type-I Type-II Ratio (II/I) Total
α1 312 430 1.38 742
α2 286 358 1.25 644
α3 508 1053 2.07 1561

Table 5: Type-I and Type-II error of best supervised evidence
extraction model.

Table 5 shows a comparison of the supervised 1150

extraction (Hard Negative (3x)) approach with the 1151

provided ground truth human label for all the three 1152
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test sets on both error types. On α3 set the both1153

Type-I and Type-II error is substantially higher than1154

α1 and α2. This highlights that for the α3 set the1155

model has the worst disagreement with humans.1156

Furthermore, the ratio of Type-II over Type-I error1157

is substantially higher for α3 than for α1 and α2.1158

This indicates that the supervised extraction model1159

marks many irrelevant rows as evidence (Type-II1160

error) for α3 set. The out-of-domain origin of α31161

tables, as well as their larger size, might be one1162

explanation for this poor performance.1163

D Human vs Models Qualitative1164

Examples1165

We manually inspect the Type I and Type II error1166

examples instances for the supervised model and1167

human annotation for the development set. Below,1168

we show some of these examples where models1169

conflict with ground-truth human annotation. We1170

also provide the possible reason behind the model1171

mistakes.1172

Type I Error. Below, we show Type I error ex-1173

amples.1174

Example I
Row: Colorado Springs, Colorado is a poor training
location for endurance athletes.

Hypothesis: The elevation of Colorado Springs,
Colorado is 6,035 ft (1,839 m).

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the con-

cept of elevation with the perfect high elevation training

ground requirement of endurance athletes. Require com-

mon sense and knowledge.

1175

Example II
Row: The equipment of Combined driving are horse,
carriage, horse harness equipment.

Hypothesis: Combined driving is a horse racing event
style.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the horse

related equipment i.e. ‘horse carriage, horse harness’

with the event time i.e. ‘horse racing’.

1176

Example III
Row: The number of number of employees of
International Fund for Animal Welfare - ifaw is 300+
(worldwide).

Hypothesis: International Fund for Animal Welfare -
ifaw is a national organization focused on only North
America.

Model Prediction: Not Relevant
Human Ground Truth: Relevant Evidence.

Possible Reason: Model wasn’t able to connect the clue

(‘worldwide’) in the table row with the phrase ‘focused

on only north America’.

1177

Type II Error. Below, we show Type II error 1178

examples. 1179

Example I Row: Dazed and Confused was directed
by Richard Linklater.

Hypothesis: Dazed and Confused was directed in 1993.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model focus on lexical match token

‘directed’ instead using entity type where premise refer

for ‘Person’ who directed rather than ‘Date’ of direction.

1180

Example II Row: The spouse(s) of Celine Dion
(CC OQ ChLD) is René Angélil, ( m. 1994; died 2016).

Hypothesis: Thérèse Tanguay Dion had a child that
became a widow.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model unable to connect widow con-

cept in hypothesis with it relation to Spouse and the

marriage date René Angélil, ( m. 1994; died 2016).

1181

Example III Row: The trainer of Caveat is Woody
Stephens.

Hypothesis: Caveat won more in winnings than it took
to raise and train him.

Model Prediction: Relevant Evidence
Human Ground Truth: Not Relevant.

Possible Reason: Model connect ‘raise and train’ term

with the trainer name which is unrelated and has no con-

nection to overall, winning races money vs spending for

animal.

1182

Discussion Based on the observation from the 1183

above examples as also stated in Section 6.2 (d.), 1184

the model fails on many examples due to its lack 1185

of knowledge and common-sense reasoning ability. 1186
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One possible solution to mitigate this is by the1187

addition of implicit and explicit knowledge on-the-1188

fly for evidence extraction, as done for inference1189

task by Neeraja et al. (2021).1190

E Implicitly Relevance Indication1191

Phrases1192

We manually examine the human-annotated evi-1193

dence in the Development set. We discovered the1194

existence of several relevant phrases/tokens which1195

implicitly indicate the presence of evidence rows.1196

E.g. The existence of tokens such as “married",1197

“husband", “lesbian", and “wife" in hypothesis(H)1198

is very suggestive of the row ’Spouse’ being the1199

relevant evidence.1200

Learning such implicit relevance-based phrases1201

and tokens connection is although easy for humans1202

as well for large pre-trained supervision models, it1203

is an incredibly difficult task for similarity-based1204

unsupervised extraction methods. Below, we show1205

implicit relevance indicating token and the corre-1206

sponding relevant evidence rows.1207

Implicit Relevance Indicating Phrase (H)
→ Relevant Evidence Rows Keys (T)

‘broked’, ‘started from’, ‘doesn’t anymore’, ‘still
perform’, ‘over a decade’, ‘began performing’, ‘started
wrapping’, ’first started’→ year active

age related term, ‘were of <age>’, ‘after <age>’, ’fall’,
’spring’,’birthday’→ born

’several years’, ’one month’, century art→ year (painting
category )

‘co-wrote’, ‘written’, ‘writer’, ‘original written’ →
written by (novel and book)

‘married’, ‘husband’, ‘lesbian’, ‘wives’→ Spouse

‘no-reward’, ‘monetary value’, ‘prize’→ rewards

‘earlier’, ‘debut’, ‘21st century’, ‘early 90s’, ‘record-
ing’,‘product of years’→ recorded

‘lost’, ’won’, ’races’,’competition’ → records (horse
races, car races etc)

’tall’, ’short’→ ’lowest’, ’highest’, ’sea level’→ ’lowest
elevation’, ’highest elevation’, ’elevation’

multi-lingual, multi-faith → ’regional languages’,
’official languages’, ’religion’, ’,’race or faith’

‘acting’, ‘rapping’, ‘politics’→ occupation
‘over an’, ‘shortest’, ‘longest’, ‘run-time’→ length

‘is form <country>’, ’originate’, ‘are an <nationality>’,
‘formed on <location>’, ’moved to <Country>’, ‘de-
scended from’→ origin, descendant, parenthood etc

1208

’city’ with ’x’ peoples→ ’metropolitan municipality’
or ’metro’

‘was painted with’, ‘mosaic’, ‘oil’, ‘water’ →
medium

‘owned’ or ‘company’→ manufacturer

‘hung in’ , ‘museum’, ‘is stored in/at’, ‘wall’, ‘mural’→
’location’
‘was discontinued’, ‘awards’→ ‘last awarded’

’playing bass’→ ’instruments’

‘served’, ‘term’, ‘current charge’ , ‘in-charge’ → ’in
office’

‘is controlled by’, ‘under control’→ ’government’

‘classical’, ‘pop’, ‘rock’, ‘hip-hop’, ‘sufi’→ genre
‘founded by’, ‘has been around’, ‘years’ → founded ,
introduced

‘was started’, ‘century’, ‘was formed’, ’100 years’ →
founded, formation

‘won more’, ‘in winning (race)’, ‘earned more than’→
earnings

‘bigger than an average’→ dimension

‘Register of’, ‘Cultural Properties’→ designated

‘urban area’, ‘less dense’ -> urban density, density

‘American’, ‘British’, ‘European’, ‘from USA’→ country

‘daughters’, ‘sons’→ children spouse(s), partner(s)

‘is a bovine’(dog)→ ’breed’

‘lost money’, ‘net profit’, ‘budget’, ‘unprofitable’, ’not
popular’(common sense)

1209

1210
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