
RoboMonkey: Scaling Test-Time Sampling and
Verification for Vision-Language-Action Models

Jacky Kwok1 Christopher Agia1,† Rohan Sinha1,† Matt Foutter1,†

Shulu Li2 Ion Stoica2 Azalia Mirhoseini1 Marco Pavone1,3

1Stanford University 2UC Berkeley 3NVIDIA Research

Abstract—Vision-Language-Action (VLA) models have demon-
strated remarkable capabilities in visuomotor control, yet en-
suring their robustness in unstructured real-world environments
remains a persistent challenge. In this paper, we investigate test-
time scaling through the lens of sampling and verification as
means to enhance the robustness and generalization of VLAs.
We first demonstrate that the relationship between action error
and the number of generated samples follows an exponentiated
power law across a range of VLAs, indicating the existence
of inference-time scaling laws. Building on these insights, we
introduce RoboMonkey, a test-time scaling framework for VLAs.
At deployment, RoboMonkey samples a small set of actions from
a VLA, applies Gaussian perturbation and majority voting to
construct an action proposal distribution, and then uses a Vision
Language Model (VLM)-based verifier to select the optimal
action. We propose a synthetic data generation pipeline for
training such VLM-based action verifiers, and demonstrate that
scaling the synthetic dataset consistently improves verification
and downstream accuracy. Through extensive simulated and
hardware experiments, we show that pairing existing VLAs with
RoboMonkey yields significant performance gains, achieving a
25% absolute improvement on out-of-distribution tasks and 8%
on in-distribution tasks. Additionally, when adapting to new robot
setups, we show that fine-tuning both VLAs and action verifiers
yields a 7% performance increase compared to fine-tuning VLAs
alone. Project website: https://robomonkey-vla.github.io.

I. INTRODUCTION

Foundation models, pre-trained on extensive internet-scale
data, have demonstrated significant potential in robotics
domains. Recent advancements in Vision-Language-Action
(VLA) models [2, 18, 12, 3, 4] have shown that scaling up
training compute on large-scale robotics datasets [17, 30] can
improve their capabilities and generalization. Despite these
advancements, VLAs exhibit diverse failure modes during de-
ployment [1, 39], such as imprecise grasping, task progression
failure, and collision with surrounding objects. Addressing
these limitations could accelerate the deployment of robots
in unstructured real-world environments.

Efforts to improve the robustness and generalization of
VLAs have gradually shifted from the pre-training to the
post-training phase. In the pre-training stage, previous work
emphasizes scaling up data collection [55, 30, 46], optimiz-
ing training data mixtures [15, 18], and developing model
architectures [9, 2, 6, 53] that can be effectively adapted for
robot control. More recently, we have observed a paradigm

†
Equal contribution. Correspondence to: jackykwok@stanford.edu

shift toward developments in the post-training phase, e.g.,
fine-tuning VLAs for multi-step reasoning with chain-of-
thought [49, 10, 52] and aligning VLAs with preferences [51,
50, 20]. However, beyond pre-training and post-training, less
attention has been paid to scaling the amount of compute used
during deployment, as VLA models are typically designed to
generate a single action chunk per observation.

Humans naturally allocate more time when encountering
challenging problems. For Large Language Models (LLMs),
this principle has been validated by applying additional com-
pute at test time [5, 40, 34, 8, 41, 19]. Specifically, repeatedly
sampling candidate solutions from a model has been shown
to enhance the capabilities of LLMs across multiple domains,
including mathematics, coding, chat, and summarization [5, 7,
11]. This raises the question of whether test-time scaling with
repeated sampling may also benefit robotics. More precisely,
we ask in this work: given an observation and task instruction,
can we improve the precision and robustness of VLAs by
repeatedly sampling and verifying actions at deployment?

We answer this question in two parts. First, we system-
atically investigate the benefits of scaling test-time compute
in the domain of static manipulation tasks, using off-the-
shelf generalist VLA models as base policies. Through our
experiments, we find that the relationship between action error
and the number of generated samples follows an exponen-
tiated power law across a range of VLAs, demonstrating
the existence of inference-time scaling laws. This finding
aligns with the power-law scaling [36, 5] observed in LLMs
and suggests that, when paired with a robust verifier, re-
peated sampling can significantly boost the performance of
any off-the-shelf VLA model. Interestingly, different sam-
pling techniques—repeatedly sampling actions from VLAs,
Gaussian perturbation applied to a few actions, and random
sampling—exhibit a similar scaling pattern. Among these,
we find Gaussian perturbation to be the most cost-effective
approach and it is therefore adopted in deployment. To our
knowledge, our work is the first to characterize inference-time
scaling laws for VLAs.

Second, we investigate whether capitalizing on these scal-
ing laws with a learned action verifier can improve policy
robustness, guided by the intuition from classic complexity
theory that verifying proposals is often easier than generating
a solution to a task. To do so, we present a preference-
based learning recipe to automatically curate synthetic action

https://robomonkey-vla.github.io

comparisons for large-scale imitation learning datasets and use
it to train a 7B VLM-based action verifier. Our results show
that increasing the synthetic preference dataset size leads to
consistent performance improvements. We then introduce our
test-time scaling framework, RoboMonkey. During deploy-
ment, RoboMonkey samples a small batch of actions from
a VLA, applies Gaussian perturbation and majority voting to
construct an action proposal distribution, and then uses the
fine-tuned VLM-based verifier to select the optimal action.
Through extensive evaluations, we demonstrate that pairing
existing VLAs with RoboMonkey substantially enhances their
precision and robustness.

The contributions of this paper are summarized as follows:
1) We propose efficient methods for action sampling, and

demonstrate that the relationship between action error
and the number of samples follows an approximate
power law across a range of VLAs.

2) We present a scalable pipeline for automatically gener-
ating synthetic action preferences along with a method
for training a VLM-based action verifier.

3) We show that our test-time scaling framework signif-
icantly enhances VLA performance, achieving a 25%
absolute improvement in real-world out-of-distribution
tasks and 8% on in-distribution SIMPLER environments.

4) We demonstrate that fine-tuning both VLAs and action
verifiers yields a 7% performance increase compared to
fine-tuning VLAs alone on the LIBERO-Long bench-
mark.

II. RELATED WORK

Vision Language Action Models: Recent advancements in
robotics have seen a shift toward training multi-task generalist
robot policies [16] on large robotics datasets [46, 14] collected
on diverse scenes and robot embodiments. In this landscape,
several robotics foundation models have emerged. π0, Open-
VLA, PaLM-E, and RT-X [2, 18, 12, 3, 4] have demonstrated
strong generalization capabilities by combining Transformer
architectures [45] or diffusion policies [9] with imitation
learning. While these generalist policies demonstrate out-of-
the-box capabilities for controlling robots, they may still fail
due to distribution shift and compounding prediction errors.
Our evaluation demonstrates that RoboMonkey significantly
improves the robustness and generalization of these generalist
policies at deployment.

Out-of-Distribution Robustness: The challenge of
learning-based systems performing unreliably on data that
differs from their training distribution is documented across
robotics literature [38, 1, 39]. Researchers have approached
this challenge through various methodologies, including
robust training and adapting models to varying environmental
distribution shifts [38, 56, 27]. A significant breakthrough
came with the emergence of Foundation Models (FMs).
Recently, FM is widely adopted in robotics. For instance,
several prior works [23, 28, 37] explore employing VLMs to
generate sequences of high-level action plans, which are then
executed through low-level policy. In contrast, rather than

using them primarily for hierarchical planning, RoboMonkey
and several concurrent works [48, 47] employ FMs as action
verifiers that evaluate the low-level actions generated by robot
policies.

Repeated Sampling: The methodology of applying addi-
tional computation at test time has demonstrated remarkable
success across various domains. For LLMs, repeated sampling
has proven effective in enhancing performance across diverse
tasks, including mathematical problem-solving, coding, and
text summarization [7, 5, 13]. In robotics, V-GPS [29] adopts
a related strategy by training a value function with offline
RL to re-rank candidate actions, selecting those that lead to
better outcomes. RoboMonkey introduces a more scalable data
curation pipeline and model architecture for training the action
verifier. Our experimental results show that pairing existing
VLAs with our verifier substantially improves both task per-
formance and generalization compared to prior verifier-based
approaches. Instead of relying on naive action sampling from
robot policies, RoboMonkey uses Gaussian perturbation to
efficiently generate diverse candidate actions and integrates
inference-time techniques such as majority voting to guide the
verification process.

III. PRELIMINARIES

We consider a Markov Decision Process M =
(S, A, P, R), where S ⊆ Rn and A ⊆ Rm denote the robot’s
state and action spaces, respectively. In this work, both the
state and action spaces are 7-dimensional vector spaces corre-
sponding to the robot’s end effector pose and characterized by
three translational states (x, y, z) ∈ R3 and three rotational
states (u, v, w) ∈ R3, while the last dimension corresponds to
a binary state g ∈ {0, 1} indicating whether the end effector
gripper is open. at = [∆xt, ∆yt, ∆zt, ∆ut, ∆vt, ∆wt, gt]

′

indicates the desired magnitude and direction to augment each
state variable at time step t. Further, P (s′ | s, a) ∈ [0, 1]
represents the robot’s non-deterministic transition dynamics
from the current state s ∈ S with action a ∈ A to the
candidate state s′ ∈ S , and R : S × A × I → R provides
the reward for choosing action a ∈ A at state s ∈ S under
the language instruction I ∈ I, where I is the set of possible
instructions. Our framework assumes access to a language-
conditioned robot policy πθ : S × I → A, parameterized by
θ ∈ R|θ|, from which we can sample multiple actions given
the state at timestep t and the language instruction I ∈ I.
Additionally, we assume access to a dataset of ND expert
demonstrations performing a suite of manipulation tasks:
D = {(τ i, Ii)}ND

i=1, where each demonstration constitutes
a valid trajectory τ i = (si0, a

i
0, . . . , s

i
T) under the transition

dynamics to time horizon T ∈ N+. We further curate an
auxiliary dataset Dbuf ⊂ D comprising of tuples (st, a∗t , I),
where a∗t ∈ A is the ground-truth action taken by the expert
at state st under instruction I . We assume that the generalist
policy πθ is fine-tuned to imitate expert demonstrations on this
dataset by minimizing the standard imitation learning objective
as L(θ; D) = −E(sjt , aj

t , Ij)∼D

[
log πθ(a

j
t | s

j
t , Ij)

]
.

Fig. 1. Left: We observe that action error consistently decreases as we scale the number of generated actions across multiple sampling approaches,
assuming the presence of an oracle verifier. Repeatedly sampling actions from robot policies, applying Gaussian perturbation to a few sampled actions, and
even random sampling of action tokens all outperform single-attempt OpenVLA. Right: We find that the relationship between action error and the number
of samples generated through Gaussian perturbation follows an approximate power law across a range of VLA models, including CogACT, Octo, OpenVLA,
and SpatialVLA. For power law fitting, we model the logarithm of action error e as a function of the number of samples k: log(e) ≈ log(a) + b · log(k).

IV. INFERENCE-TIME SCALING LAW

The relationship between a VLA’s action error and its train-
ing compute [35, 24] has been well-documented. However,
the potential benefits of scaling test-time compute for VLAs
remain largely underexplored. To bridge this gap, we conduct
a detailed analysis on the Bridge V2 Dataset [46], examining
the relationship between the number of generated samples and
action error.

Concretely, we uniformly sample 1,000 (s, a∗, I) tuples
from our auxiliary dataset Dbuf. For each tuple, we gener-
ate 10,000 actions using various sampling approaches and
compute the Normalized Root Mean Squared Error (RMSE)
between the ground-truth action a∗ and each sampled actions
{a1, a2, . . . , a10,000}.

We evaluate three sampling approaches: Random sam-
pling: candidate actions are generated by uniformly sampling
discrete action tokens for each dimension based on the scheme
introduced by Brohan et al. [4] Policy sampling: actions are
repeatedly sampled from a robot policy πθ(a | s, I) with a
positive temperature. Gaussian perturbation: sampling only
4 actions from a robot policy πθ(a | s, I), then fitting a
Gaussian distribution from which all candidate actions are
drawn (see Section V-C for details).

The result is shown in the left plot of Figure 1. Assuming
the presence of an oracle verifier that always selects the action
with the lowest RMSE, we observed that as we scale the
number of generated samples, the action error consistently
decreases across all sampling methods. Our key findings are:
(1) sampling more than 100 actions uniformly at random
outperforms greedy decoding using OpenVLA; (2) using
policy sampling to repeatedly generate actions from a VLA
consistently yields the lowest action error; and (3) Gaussian
perturbation achieves nearly identical performance compared
to policy sampling while being computationally more efficient.
A comprehensive latency analysis is provided in Section VI-E.

The right plot of Figure 1 demonstrates that scaling the
number of generated samples with Gaussian perturbation is
effective across various generalist robot policies, including

CogACT, Octo, OpenVLA, and SpatialVLA [21, 43, 18, 32].
We find that the relationship between action error and the
number of samples often follows an exponentiated power
law. Specifically, for OpenVLA, the RMSE decreases by
59.3% when sampling 10,000 actions. Overall, we offer a
new perspective on how we might approach general robot
foundation models. Rather than framing robot control purely
as a generation problem, our results suggest that viewing it
through the lens of verification—generating diverse candidates
and verifying them—can substantially improve performance.
We hope our findings will motivate and guide the development
of scalable action verifiers for robot policies.

V. PROPOSED APPROACH: ROBOMONKEY

After establishing the potential for scaling test-time compute
for robotics in Section IV, we now present RoboMonkey, a
framework that leverages a learned action verifier to scale
test-time compute. We first describe our method for curating a
synthetic action preference dataset, followed by reward model-
ing and inference-time techniques used within RoboMonkey’s
generate-then-verify pipeline.

A. Synthetic Data Generation Pipeline

In this section, we outline our approach for generating
synthetic action comparisons, which leverages an existing
demonstration dataset D to produce action pairs with high-
quality preference labels without the need for human annota-
tion. Specifically, for each tuple (st, a

∗
t , I) from our auxiliary

dataset Dbuf, we use a reference robot policy to generate N
candidate actions. To ensure diversity among the samples,
we apply clustering algorithms, reducing these candidates
to K representative actions. Subsequently, we construct

(
K
2

)
pairwise comparisons and compute the RMSE between each
sampled action, {a1t , a2t , . . . , aKt }, and the ground-truth
action, a∗t . Then, the “winning” action, aWt , and the “losing”
action, aLt , between any two actions ait and ajt are determined

>

>

Synthetic Preferences

K
2()

𝜋𝜽(at | st , I)

at,1

at,N

Δ Translation

Δ Rotation

Gripper State

Stage 1: Training Action Verifier

Stage 2: Scaling Test-Time Compute

...

Pairs

Generalist
Robot Policy “Put knife in pot”

O
bs

er
va

ti
on

Gaussian
Perturbation

Majority Voting

Action
Verifier

𝜋𝜽(at | st , I)

at,1

at,N

...

Generalist
Robot Policy

a ~ N(μ,σ)

Open/Close

VLM

Clustering

at,1

at,K

...

at,1 at,2

at,2 at,3 VLM

RMSE Scoring

Fine-tuning

Robotics Dataset

Action
Verifier

Proposal
Distribution

at,K

at,1 at,2

...at,3 ^^

Fig. 2. Stage 1: Training the Action Verifier. Given an imitation learning dataset, we sample N candidate actions per state from a generalist robot policy,
and apply clustering to reduce them to K representative actions. We construct

(K
2

)
synthetic action comparisons and assign preferences based on the RMSE

between each sampled action and the ground-truth action. This synthetic preference dataset is then used to fine-tune a VLM-based action verifier. Stage 2:
Scaling Test-Time Compute. At deployment, we sample N̂ initial actions from the generalist robot policy based on the given task instruction and observation.
We fit a Gaussian distribution N (µ, σ) to the translation and rotation components (∆x, ∆y, ∆z, ∆u, ∆v, ∆w) of these actions, and use majority voting
to determine the gripper state. This creates an action proposal distribution from which we can efficiently sample candidate actions with negligible overhead.
Finally, we use the fine-tuned VLM-based verifier to evaluate these K̂ candidate actions and select the optimal action.

as follows:

(aWt , aLt) =

{
(ait, a

j
t) if RMSE(ait, a

∗
t) < RMSE(ajt , a

∗
t)

(ajt , a
i
t) otherwise

We use this procedure to instantiate our action preference
dataset Dcomp consisting of tuples (aWt , aLt , a∗t , st, I).
Following Ouyang et.al [31], we take all

(
K
2

)
pairwise com-

parisons from identical initial conditions (st, I) and group
these together as a single batch for training.

B. Reward Modeling

The loss function for training the reward model fol-
lows the Bradley-Terry model [44] with additional mod-
ifications to account for preference levels. Formally, we
define the ground truth preference level as ∆∗

t =∣∣RMSE(aWt , a∗t)− RMSE(aLt , a∗t)
∣∣ and the predicted pref-

erence level from our action verifier Rϕ : A ×
S × I → R, parameterized by ϕ ∈ R|ϕ|, as ∆̂t =∣∣Rϕ(a

W
t , st, I)−Rϕ(a

L
t , st, I)

∣∣. These components are
then integrated into our loss function for training the reward
model:
L(ϕ) = −E(aW

t , aL
t , a∗

t , st, I)∼Dcomp

[
log σ

(
Rϕ(a

W
t , st, I)

−Rϕ(a
L
t , st, I)− α

∥∥∥∆∗
t − ∆̂t

∥∥∥2
2

)]
(1)

where σ : R → [0, 1] is the sigmoid function and
α ∈ R is a hyperparameter to control the magnitude of the
preference level. We find that including the margin component∥∥∥∆∗

t − ∆̂t

∥∥∥2
2

improves the accuracy, particularly when distin-
guishing between clearly different actions. For more detailed
analysis and ablation studies, please refer to Appendices F.

The action verifier uses LLaVA-7B [26, 42] as the backbone
and replaces its final unembedding layer with a reward head.
The architecture integrates ViT-Large [33] as the vision en-
coder and uses a MLP to map the visual features into the same
dimensionality as the word embedding space of the language
model.

C. Action Sampling and Verification

A visualization of the pipeline is shown in Figure 2.
Formally, at each timestep t during deployment under in-
struction I , RoboMonkey first samples N̂ candidate actions
from a VLA model πθ(a | st, I; T) with a positive
temperature T , yielding a set of candidate actions Â =
{â1t , . . . , âN̂t } ∈ Rm×N̂ . Given these samples, we de-
termine the gripper action gt via majority voting over the
discrete gripper component: gt = mode({git}N̂i=1). We then
fit a Gaussian distribution N (µt,Σt) to both the translational
components {[∆x̂i

t, ∆ŷit, ∆ẑit]
′}N̂i=1 and rotational compo-

nents {[∆ûi
t, ∆v̂it, ∆ŵi

t]
′}N̂i=1. RoboMonkey then samples K̂

new actions from this proposal distribution and appends the
fixed gripper state gt to each, forming a refined action set
Ã = {ã1t , . . . , ãK̂t } ∈ Rm×K̂ . Finally, each action ãit is
scored using our reward model Rϕ(ã

i
t, st, I) from which

we select the action with the highest reward for execution
at = argmax

ãi
t∈{ã1

t , ..., ãK̂
t } Rϕ(ã

i
t, st, I). Algorithm 1

presents our detailed test-time scaling pipeline.

VI. EXPERIMENTS

The goal of our experiments is to evaluate the effectiveness
of scaling test-time compute for generalist robot policies. We
evaluate RoboMonkey across both simulated and real-world

Fig. 3. Scaling test-time compute significantly improves the precision and robustness of generalist robot policies across a wide range of manipulation tasks.
We observe an 8% increase in average success rate on in-distribution SIMPLER environments [22], and a 25% improvement in real-world out-of-distribution
experiments using the WidowX robot.

Algorithm 1: RoboMonkey Execution
Input: Generic VLA model πθ : S × I → A, reward

model Rϕ : A× S × I → R, initial state
s0 ∈ S, task instruction I ∈ I, temperature
T ∈ R++, time horizon T ∈ N+, number of
VLA samples N̂ ∈ N+, number of Gaussian
samples K̂ ∈ N+.

for t = 0, 1, . . . , T do
Sample Ât = {âit}N̂i=1 ∼ πθ(a | st, I; T)
Compute gripper state gt ← mode({ĝit}N̂i=1)
Fit Gaussian distribution N (µt, Σt) on
{[∆x̂i

t, ∆ŷit, ∆ẑit, ∆ûi
t, ∆v̂it, ∆ŵi

t]
′}N̂i=1

Sample Ãt = {ãit}K̂i=1 ∼ N (µt, Σt)
Set ãit ← [∆x̃i

t, ∆ỹit, ∆z̃it, ∆ũi
t, ∆ṽit, ∆w̃i

t, gt]
′

for all i ∈ {1, 2, . . . , K̂}
Select action
at ← argmax

ãi
t∈{ã1

t , ..., ãK̂
t } Rϕ(ã

i
t, st, I)

Execute at and observe st+1

environments using two different embodiments, across 4 real-
robot tasks and 14 simulation tasks.

A. Implementation Details

We use the Bridge V2 Dataset [46] as our primary train-
ing dataset, which includes over 40,000 real-world robotic
trajectories collected using the 6-DoF WidowX robot in 24
distinct environments. Following the procedure described in
Section V-A, we curated a synthetic action preference dataset
consisting of 20 million comparisons. Training was conducted
on 8 NVIDIA H100 GPUs with a batch size of 256 using
LoRA (r=512, α=128). We use OpenVLA as the base model
for all experiments. Both RoboMonkey and V-GPS [29] are
evaluated by pairing OpenVLA with their respective veri-
fier checkpoints. SIMPLER results were obtained using two
NVIDIA RTX 4090 GPUs, while real-world experiments and
latency analysis were conducted on a single NVIDIA H100.
LIBERO evaluations used an NVIDIA RTX 6000 Ada. For
more details about model training and deployment, please refer
to Appendix A.

B. Can RoboMonkey improve the precision of VLAs on in-
distribution tasks?

We first evaluate our model within the SIMPLER [22]
environment on in-distribution tasks. This simulation environ-
ment is specifically designed to bridge the real-to-sim gap
by replicating real-world conditions for WidowX robots. It
has demonstrated a strong correlation between performance in
SIMPLER and real-world results [22]. We evaluate RoboMon-
key and other baselines on four tasks: put eggplant in yellow
basket, put carrot on plate, put spoon on towel, and stack green
block on yellow block.

Figure 3 presents the evaluation results. RoboMonkey
achieves an average success rate of 46.3%, outperforming
OpenVLA by 7.8% on average. In the task of placing an
eggplant into a basket, RoboMonkey outperforms OpenVLA
by 17%. We observe that the base policy frequently collides
with the wall when attempting to move the eggplant toward the
basket. Similarly, in the block-stacking task, RoboMonkey sur-
passes OpenVLA by 7%. This task requires accurate grasping
and precise placement of small objects. Overall, these results
highlight that making local refinements to the base policy’s
actions can substantially improve precision. Additionally, we
observe that pairing V-GPS with OpenVLA results in worse
performance than both standalone OpenVLA and RoboMon-
key. See Appendices D for details on the task setup and the
ablation study on action selection.

C. Can RoboMonkey improve the robustness of VLAs on out-
of-distribution tasks?

For a more comprehensive evaluation, we design a set of
real-world manipulation tasks on a physical WidowX-250 S
robot to evaluate RoboMonkey in OOD settings. These tasks
include unseen instructions, objects, distractors, and shapes.
We evaluate each approach across 4 task suites with 10 trials
each, resulting in a total of 120 rollouts. Figure 3 compares
the performance of RoboMonkey, V-GPS, and OpenVLA
across a suite of tasks on the WidowX robot. RoboMonkey
consistently outperforms both baselines across diverse tasks,
including stacking cups, lifting a hammer, placing banana into
a yellow basket, and putting a pepper onto a plate. We find that
RoboMonkey effectively mitigates issues of imprecise grasp-

Fig. 4. Left: Average success rates across four tasks on SIMPLER as a function of synthetic dataset size. Scaling the dataset size (number of synthetic
action comparisons) consistently improves the performance of the RoboMonkey action verifier, leading to higher success rates during robot rollouts. Right:
Latency comparison between naive policy sampling and Gaussian perturbation across different number of actions.

ing, task progression failures, and collisions at deployment.
Detailed task breakdowns and failure analysis are provided on
our project page: https://robomonkey-vla.github.io.

Notably, RoboMonkey exhibits substantial improvements on
tasks requiring visual and semantic generalization. For exam-
ple, in the banana-in-basket task, OpenVLA achieved a success
rate of 0%, as it lacks the language and visual grounding to
differentiate between two yellow objects (banana and yellow
basket), thus making no progress in completing the task.
Furthermore, RoboMonkey achieves over 20% higher success
rates on fine-grained manipulation tasks such as cup stacking
and hammer lifting. These tasks require precise reasoning
about grasp points, particularly on novel objects and shapes.
Overall, RoboMonkey achieved an average success rate of
60%, compared to 35% from OpenVLA and 30% from V-GPS,
indicating that our action verifier is significantly less sensitive
to distribution shifts than the base policy. As such, these
results underscore RoboMonkey’s effectiveness in improving
the robustness and generalization in OOD scenarios.

D. How does scaling the synthetic training dataset impact
downstream success rate?

We demonstrate that RoboMonkey’s closed-loop success
rates on SIMPLER consistently improve as the synthetic
dataset size increases, with the average success rate rising
from 37.5% to 46.3% as shown in Figure 4. With action
verifiers trained on over 106 action comparisons, RoboMonkey
outperforms both OpenVLA and V-GPS. The improvements
are particularly pronounced in fine-grained manipulation tasks
like “Stacking Cube”, where success rates increase from 27%
to 37% to 42% as the synthetic dataset scales. We find that
the overall task performance grows nearly log-linearly with
synthetic dataset size, highlighting the potential of large-scale
synthetic data generation for enhancing action verification.

E. How does RoboMonkey enable practical deployment for
test-time scaling?

While RoboMonkey introduces additional computational
overhead from action sampling and verification, we mitigate
these costs with a practical serving solution. Specifically, we

implemented a VLA serving engine on top of SGLang [54]
to speed up repeated sampling of initial action candidates and
employ Gaussian perturbation to efficiently construct an action
proposal distribution, as detailed in Section V-C. With these
optimizations, RoboMonkey can sample and verify 16 candi-
date actions in approximately 650 ms (or 1.5 Hz), achieving
a 41.3% lower latency compared to naive policy sampling, as
shown in Figure 4 (right). Gaussian perturbation proves more
efficient because latency scales only with verification cost,
whereas naive policy sampling incurs increasing latency from
both sampling and verification as the number of candidate
actions grows. See Appendix H for a detailed analysis of the
trade-off between action error and compute budget.

Task OpenVLA RoboMonkey
Soup and Sauce in Basket 36% 59%
Cheese and Butter in Basket 70% 79%
Turn on Stove and Place Moka 58% 58%
Black Bowl in Drawer 36% 37%
Mugs on Plates 42% 55%
Book in Caddy 84% 86%
Mug and Pudding on Plate 48% 59%
Soup and Cheese in Basket 56% 62%
Moka Pots on Stove 26% 26%
Mug in Microwave 42% 44%
Average Success Rate 49.8% 56.5%

TABLE I
COMPARISON OF TASK SUCCESS RATES BETWEEN OPENVLA AND

ROBOMONKEY, BOTH FINE-TUNED AND EVALUATED ON THE
LIBERO-LONG BENCHMARK.

F. Can we effectively fine-tune the action verifier on new robot
setup and task?

We further evaluate RoboMonkey’s adaptability on a new
robot setup. In this section, we present the fine-tuning evalua-
tion of RoboMonkey on the LIBERO-Long benchmark, which
consists of long-horizon tasks with diverse object configura-
tions and layouts in simulation. In our experiments, we curated
a new action preference dataset using the procedure described
in Section V-A. The OpenVLA-LIBERO checkpoint used for

https://robomonkey-vla.github.io

comparison was trained via behavioral cloning on successful
demonstrations. All methods were evaluated across 500 trials.

Table I presents the results and we observe that RoboMon-
key can be effectively adapted to tasks in the LIBERO
environments. Fine-tuning both OpenVLA and action verifier
results in 6.7% improvement in average success rate compared
to simply fine-tuning OpenVLA on LIBERO-Long.

VII. DISCUSSION AND LIMITATIONS

In this paper, we presented RoboMonkey, a novel test-time
scaling framework that enhances the precision and robust-
ness of Vision-Language-Action (VLA) models. RoboMonkey
achieves significant performance improvements across both in-
distribution and out-of-distribution tasks, as well as on new
robot setups. Our findings demonstrate that scaling test-time
compute through a generate-and-verify paradigm provides a
practical and effective path towards building general-purpose
robotics foundation models. The current RoboMonkey frame-
work has several limitations that we leave for future work:

a) Computational Overhead: Since it requires sampling
multiple candidate actions from a VLA and employs a separate
VLM-based action verifier, it incurs increased computational
overhead during deployment. Although we mitigate these costs
with a practical serving solution—using a VLA serving engine
and Gaussian perturbation—the framework may still be less
suitable for tasks requiring high-frequency control. Future
work could explore more efficient model architectures for
action verification and apply system-level optimizations to
further reduce the memory footprint and latency of scaling
test-time compute.

b) Scaling Synthetic Datasets: Our results show that
increasing the size of the synthetic training dataset consistently
improves downstream robot performance. However, due to
compute constraints and the high cost of fine-tuning, we
limited our experiments to 20 million synthetic action com-
parisons on the Bridge V2 dataset. Scaling synthetic data
generation to larger robotics datasets across embodiments,
tasks, and environments is a promising direction for future
exploration.

c) Evaluation Scope: While our experiments focused
on two commonly used robotic arms—WidowX 250S and
Franka—future work should evaluate RoboMonkey across a
broader range of embodiments.

VIII. ACKNOWLEDGMENTS

This work was supported by DARPA and the National
Aeronautics and Space Administration under the University
Leadership Initiative program.

REFERENCES

[1] Christopher Agia, Rohan Sinha, Jingyun Yang, Zi ang
Cao, Rika Antonova, Marco Pavone, and Jeannette Bohg.
Unpacking failure modes of generative policies: Runtime
monitoring of consistency and progress, 2024. URL ht
tps://arxiv.org/abs/2410.04640.

[2] Kevin Black, Noah Brown, Danny Driess, Adnan Es-
mail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon
Jakubczak, Tim Jones, Liyiming Ke, Sergey Levine,
Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl
Pertsch, Lucy Xiaoyang Shi, James Tanner, Quan Vuong,
Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0:
A vision-language-action flow model for general robot
control, 2024. URL https://arxiv.org/abs/2410.24164.

[3] Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world
control at scale. arXiv preprint arXiv:2212.06817, 2022.

[4] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen
Chebotar, Xi Chen, Krzysztof Choromanski, Tianli Ding,
Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2:
Vision-language-action models transfer web knowledge
to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[5] Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. Large language monkeys: Scaling inference
compute with repeated sampling. arXiv preprint
arXiv:2407.21787, 2024.

[6] Chi-Lam Cheang, Guangzeng Chen, Ya Jing, Tao Kong,
Hang Li, Yifeng Li, Yuxiao Liu, Hongtao Wu, Jiafeng
Xu, Yichu Yang, Hanbo Zhang, and Minzhao Zhu. Gr-
2: A generative video-language-action model with web-
scale knowledge for robot manipulation. arXiv preprint
arXiv:2410.06158, 2024.

[7] Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan.
Alphamath almost zero: process supervision without pro-
cess. arXiv preprint arXiv:2405.03553, 2024.

[8] Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Pe-
ter Bailis, Ion Stoica, Matei Zaharia, and James Zou.
Are more llm calls all you need? towards scaling
laws of compound inference systems. arXiv preprint
arXiv:2403.02419, 2024.

[9] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau,
Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran
Song. Diffusion policy: Visuomotor policy learning via
action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[10] Jaden Clark, Suvir Mirchandani, Dorsa Sadigh, and
Suneel Belkhale. Action-free reasoning for policy gen-
eralization, 2025. URL https://arxiv.org/abs/2502.03729.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al.
Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

[12] Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu,
Wenlong Huang, Yevgen Chebotar, Pierre Sermanet,

https://arxiv.org/abs/2410.04640
https://arxiv.org/abs/2410.04640
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2502.03729

Daniel Duckworth, Sergey Levine, Vincent Vanhoucke,
Karol Hausman, Marc Toussaint, Klaus Greff, Andy
Zeng, Igor Mordatch, and Pete Florence. Palm-e: An
embodied multimodal language model, 2023. URL
https://arxiv.org/abs/2303.03378.

[13] Ryan Ehrlich, Bradley Brown, Jordan Juravsky, Ronald
Clark, Christopher Ré, and Azalia Mirhoseini. Codemon-
keys: Scaling test-time compute for software engineering,
2025. URL https://arxiv.org/abs/2501.14723.

[14] Hao-Shu Fang, Hongjie Fang, Zhenyu Tang, Jirong Liu,
Junbo Wang, Haoyi Zhu, and Cewu Lu. Rh20t: A
robotic dataset for learning diverse skills in one-shot. In
RSS 2023 Workshop on Learning for Task and Motion
Planning, 2023.

[15] Joey Hejna, Chethan Bhateja, Yichen Jiang, Karl Pertsch,
and Dorsa Sadigh. Re-mix: Optimizing data mixtures for
large scale imitation learning, 2024. URL https://arxiv.
org/abs/2408.14037.

[16] Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi
Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei, Anima
Anandkumar, Yuke Zhu, and Linxi Fan. Vima: General
robot manipulation with multimodal prompts. arXiv
preprint arXiv:2210.03094, 2(3):6, 2022.

[17] Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ash-
win Balakrishna, Sudeep Dasari, Siddharth Karam-
cheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

[18] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted
Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov,
Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla:
An open-source vision-language-action model. arXiv
preprint arXiv:2406.09246, 2024.

[19] Dacheng Li, Shiyi Cao, Chengkun Cao, Xiuyu Li,
Shangyin Tan, Kurt Keutzer, Jiarong Xing, Joseph E.
Gonzalez, and Ion Stoica. S*: Test time scaling for code
generation, 2025. URL https://arxiv.org/abs/2502.14382.

[20] Derun Li, Jianwei Ren, Yue Wang, Xin Wen, Pengxiang
Li, Leimeng Xu, Kun Zhan, Zhongpu Xia, Peng Jia,
Xianpeng Lang, Ningyi Xu, and Hang Zhao. Finetuning
generative trajectory model with reinforcement learning
from human feedback, 2025. URL https://arxiv.org/abs/
2503.10434.

[21] Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen,
Mozheng Liao, Fangyun Wei, Yu Deng, Sicheng Xu,
Yizhong Zhang, Xiaofan Wang, Bei Liu, Jianlong Fu,
Jianmin Bao, Dong Chen, Yuanchun Shi, Jiaolong Yang,
and Baining Guo. Cogact: A foundational vision-
language-action model for synergizing cognition and
action in robotic manipulation, 2024. URL https://ar
xiv.org/abs/2411.19650.

[22] Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier
Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa Lunawat,
Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu,
Chelsea Finn, Hao Su, Quan Vuong, and Ted Xiao.

Evaluating real-world robot manipulation policies in sim-
ulation. arXiv preprint arXiv:2405.05941, 2024.

[23] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy Zeng.
Code as policies: Language model programs for embod-
ied control, 2023. URL https://arxiv.org/abs/2209.07753.

[24] Fanqi Lin, Yingdong Hu, Pingyue Sheng, Chuan Wen,
Jiacheng You, and Yang Gao. Data scaling laws in
imitation learning for robotic manipulation, 2025. URL
https://arxiv.org/abs/2410.18647.

[25] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang
Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking
knowledge transfer for lifelong robot learning. arXiv
preprint arXiv:2306.03310, 2023.

[26] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. Visual instruction tuning, 2023.

[27] Peter Mitrano and Dmitry Berenson. Data augmentation
for manipulation, 2022. URL https://arxiv.org/abs/2205
.02886.

[28] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang,
Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao,
and Ping Luo. Embodiedgpt: Vision-language pre-
training via embodied chain of thought, 2023. URL
https://arxiv.org/abs/2305.15021.

[29] Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and
Sergey Levine. Steering your generalists: Improving
robotic foundation models via value guidance, 2025.
URL https://arxiv.org/abs/2410.13816.

[30] Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram
Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abra-
ham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar,
et al. Open x-embodiment: Robotic learning datasets and
rt-x models. arXiv preprint arXiv:2310.08864, 2023.

[31] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder, Paul
Christiano, Jan Leike, and Ryan Lowe. Training language
models to follow instructions with human feedback,
2022. URL https://arxiv.org/abs/2203.02155.

[32] Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao,
Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan Gu, Bin
Zhao, Dong Wang, and Xuelong Li. Spatialvla: Ex-
ploring spatial representations for visual-language-action
model, 2025. URL https://arxiv.org/abs/2501.15830.

[33] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

[34] Jon Saad-Falcon, Adrian Gamarra Lafuente, Shlok
Natarajan, Nahum Maru, Hristo Todorov, Etash Guha,
E Kelly Buchanan, Mayee Chen, Neel Guha, Christo-
pher Ré, et al. Archon: An architecture search frame-

https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2501.14723
https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2408.14037
https://arxiv.org/abs/2502.14382
https://arxiv.org/abs/2503.10434
https://arxiv.org/abs/2503.10434
https://arxiv.org/abs/2411.19650
https://arxiv.org/abs/2411.19650
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2410.18647
https://arxiv.org/abs/2205.02886
https://arxiv.org/abs/2205.02886
https://arxiv.org/abs/2305.15021
https://arxiv.org/abs/2410.13816
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2501.15830
https://arxiv.org/abs/2103.00020

work for inference-time techniques. arXiv preprint
arXiv:2409.15254, 2024.

[35] Sebastian Sartor and Neil Thompson. Neural scaling laws
in robotics, 2025. URL https://arxiv.org/abs/2405.14005.

[36] Rylan Schaeffer, Joshua Kazdan, John Hughes, Jordan
Juravsky, Sara Price, Aengus Lynch, Erik Jones, Robert
Kirk, Azalia Mirhoseini, and Sanmi Koyejo. How do
large language monkeys get their power (laws)?, 2025.
URL https://arxiv.org/abs/2502.17578.

[37] Lucy Xiaoyang Shi, Brian Ichter, Michael Equi, Liyiming
Ke, Karl Pertsch, Quan Vuong, James Tanner, Anna
Walling, Haohuan Wang, Niccolo Fusai, Adrian Li-Bell,
Danny Driess, Lachy Groom, Sergey Levine, and Chelsea
Finn. Hi robot: Open-ended instruction following with
hierarchical vision-language-action models, 2025. URL
https://arxiv.org/abs/2502.19417.

[38] Rohan Sinha, Apoorva Sharma, Somrita Banerjee,
Thomas Lew, Rachel Luo, Spencer M. Richards, Yixiao
Sun, Edward Schmerling, and Marco Pavone. A system-
level view on out-of-distribution data in robotics, 2023.
URL https://arxiv.org/abs/2212.14020.

[39] Rohan Sinha, Amine Elhafsi, Christopher Agia, Matthew
Foutter, Edward Schmerling, and Marco Pavone. Real-
time anomaly detection and reactive planning with large
language models, 2024. URL https://arxiv.org/abs/2407
.08735.

[40] Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. Scaling llm test-time compute optimally can be
more effective than scaling model parameters. arXiv
preprint arXiv:2408.03314, 2024.

[41] Yifan Song, Guoyin Wang, Sujian Li, and Bill Yuchen
Lin. The good, the bad, and the greedy: Evaluation of
llms should not ignore non-determinism. arXiv preprint
arXiv:2407.10457, 2024.

[42] Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui,
Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor
Darrell. Aligning large multimodal models with factually
augmented rlhf, 2023. URL https://arxiv.org/abs/2309.1
4525.

[43] Octo Model Team, Dibya Ghosh, Homer Walke, Karl
Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey
Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An
open-source generalist robot policy. arXiv preprint
arXiv:2405.12213, 2024.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. advances
in neural information processing systems. Advances in
neural information processing systems, 30(2017), 2017.

[46] Homer Rich Walke, Kevin Black, Tony Z Zhao, Quan

Vuong, Chongyi Zheng, Philippe Hansen-Estruch, An-
dre Wang He, Vivek Myers, Moo Jin Kim, Max Du,
et al. Bridgedata v2: A dataset for robot learning at
scale. In Conference on Robot Learning, pages 1723–
1736. PMLR, 2023.

[47] Yanwei Wang, Lirui Wang, Yilun Du, Balakumar Sun-
daralingam, Xuning Yang, Yu-Wei Chao, Claudia Perez-
D’Arpino, Dieter Fox, and Julie Shah. Inference-time
policy steering through human interactions, 2025. URL
https://arxiv.org/abs/2411.16627.

[48] Yilin Wu, Ran Tian, Gokul Swamy, and Andrea Bajcsy.
From foresight to forethought: Vlm-in-the-loop policy
steering via latent alignment, 2025. URL https://arxi
v.org/abs/2502.01828.

[49] Michał Zawalski, William Chen, Karl Pertsch, Oier
Mees, Chelsea Finn, and Sergey Levine. Robotic control
via embodied chain-of-thought reasoning, 2025. URL
https://arxiv.org/abs/2407.08693.

[50] Borong Zhang, Yuhao Zhang, Jiaming Ji, Yingshan
Lei, Josef Dai, Yuanpei Chen, and Yaodong Yang.
Safevla: Towards safety alignment of vision-language-
action model via safe reinforcement learning, 2025. URL
https://arxiv.org/abs/2503.03480.

[51] Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang,
Yi Li, Siwei Han, Chaoqi Wang, Mingyu Ding, Dieter
Fox, and Huaxiu Yao. Grape: Generalizing robot policy
via preference alignment, 2025. URL https://arxiv.org/
abs/2411.19309.

[52] Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu,
Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li, Qianli Ma,
Song Han, Chelsea Finn, Ankur Handa, Ming-Yu Liu,
Donglai Xiang, Gordon Wetzstein, and Tsung-Yi Lin.
Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models, 2025. URL https://arxiv.org/
abs/2503.22020.

[53] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and
Chelsea Finn. Learning fine-grained bimanual manip-
ulation with low-cost hardware, 2023. URL https:
//arxiv.org/abs/2304.13705.

[54] Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue
Sun, Jeff Huang, Cody Hao Yu, Shiyi Cao, Christos
Kozyrakis, Ion Stoica, Joseph E. Gonzalez, Clark Barrett,
and Ying Sheng. Sglang: Efficient execution of structured
language model programs, 2024. URL https://arxiv.org/
abs/2312.07104.

[55] Zhiyuan Zhou, Pranav Atreya, Abraham Lee, Homer
Walke, Oier Mees, and Sergey Levine. Autonomous im-
provement of instruction following skills via foundation
models, 2024. URL https://arxiv.org/abs/2407.20635.

[56] Eric Zhu, Mara Levy, Matthew Gwilliam, and Abhinav
Shrivastava. Nerf-aug: Data augmentation for robotics
with neural radiance fields, 2025. URL https://arxiv.org/
abs/2411.02482.

https://arxiv.org/abs/2405.14005
https://arxiv.org/abs/2502.17578
https://arxiv.org/abs/2502.19417
https://arxiv.org/abs/2212.14020
https://arxiv.org/abs/2407.08735
https://arxiv.org/abs/2407.08735
https://arxiv.org/abs/2309.14525
https://arxiv.org/abs/2309.14525
https://arxiv.org/abs/2411.16627
https://arxiv.org/abs/2502.01828
https://arxiv.org/abs/2502.01828
https://arxiv.org/abs/2407.08693
https://arxiv.org/abs/2503.03480
https://arxiv.org/abs/2411.19309
https://arxiv.org/abs/2411.19309
https://arxiv.org/abs/2503.22020
https://arxiv.org/abs/2503.22020
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2304.13705
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2312.07104
https://arxiv.org/abs/2407.20635
https://arxiv.org/abs/2411.02482
https://arxiv.org/abs/2411.02482

APPENDIX

A. Training

Our action verifier uses LLaVA-7B [26, 42] as the backbone
and replaces its final unembedding layer with a reward head.
The architecture integrates ViT-Large [33] as the vision en-
coder and uses a MLP to map the visual features into the same
dimensionality as the word embedding space of the language
model. We discretize each dimension of a continuous action
into 256 bins, following Brohan et al. [3], and overwrite the
256 least frequent tokens in the LLaMA tokenizer with these
discrete action tokens.

Training was conducted on 8 NVIDIA H100 GPUs using
LoRA (rank=512, α = 128), and our codebase builds on
top of LLaVA-RLHF [42]. We use a batch size of 256 and
train on a synthetic preference dataset comprising 20 million
comparisons derived from the Bridge V2 dataset. The model
is trained using the Adam optimizer with a learning rate of 2e-
5. Training is conducted for a single epoch. A margin weight
of 0.1 is applied to the modified Bradley-Terry loss. Example
prompt to action verifier is shown below:

USER: <image> shows the current
observation from the robot’s
wrist-mounted camera. The robot
manipulation arm is attempting to
[instruction].
What action should the robot take
to effectively accomplish the task?
ASSISTANT: The robot should take
the action [Discrete Action Tokens]
USER: Please evaluate the quality
of the robot action.
ASSISTANT: The quality score of the
robot action is

B. Deployment

For real-world evaluation, we first sample 5 initial actions
from OpenVLA with temperature 1.0. We fit a Gaussian dis-
tribution N (µ, σ) to the translation and rotation components,
and use majority voting to determine the gripper state. This
creates an action proposal distribution from which we sample
16 candidate actions. We then use the fine-tuned VLM-based
verifier to select the optimal action for execution. We conduct
10 trials per task and report the average success rate. In
simulation, we follow the same initial sampling procedure and
vary the number of candidate actions K̂ ∈ {8, 16, 32}. We
report the best results for each task. All simulated experiments
are conducted using a machine equipped with two NVIDIA
RTX 4090 GPUs over three random seeds.

C. Baselines

We use the publicly released OpenVLA checkpoint from ht
tps://huggingface.co/openvla/openvla-7b, and the V-GPS value
function checkpoint from https://github.com/nakamotoo/V-G
PS. In simulation, we follow the evaluation procedure outlined
in the V-GPS implementation, sweeping over the number of

samples {10, 50} and softmax temperatures {0, 0.1, 1.0}, and
report the best result for each task. For real-world evaluations,
we fix the number of samples to 10 and the temperature to
1.0. It is worth noting that we use our VLA serving engine to
enable efficient batch inference for all experiments.

D. Ablation over Action Selection Methods and Number of
Samples

To evaluate the effectiveness of our verifier, we adopt a
setup similar to that described in Section IV. Specifically, we
uniformly sample 1,000 (s, a∗, I) tuples from the auxiliary
dataset Dbuf, curated from the BridgeV2 [46]. For each tuple,
we generate 64 candidate actions using the reference policy,
OpenVLA, and apply various selection techniques—including
RoboMonkey, V-GPS, majority voting, and random selec-
tion—to identify the optimal action among the samples. We
report the normalized RMSE between the ground-truth action
and the selected action for each method. As shown in Figure 5,
RoboMonkey consistently achieves the lowest action error
across different sample sizes. When generating 64 samples,
RoboMonkey reduces the action error by 21% relative to the
greedy decoding baseline, highlighting the effectiveness of our
verifier in improving action precision. While prior work such
as V-GPS trained with offline RL also improves over greedy
decoding, its value function achieves only a 6% reduction
in action error. Furthermore, we observe that increasing the
number of samples leads to exploitation of the V-GPS value
function, resulting in performance degradation when sampling
more than 8 actions. In contrast, RoboMonkey remains robust
to reward hacking and demonstrates scalability with increased
test-time compute.

Fig. 5. Comparison of action error (average RMSE) across different
selection methods as the number of generated samples increases. RoboMonkey
consistently outperforms other baselines and scales effectively with additional
compute.

E. Ablation over Generalist Robot Policies

We conducted additional experiments to ablate the per-
formance of RoboMonkey when paired with different VLA
models. Following a similar evaluation setup to Appendix D,

https://huggingface.co/openvla/openvla-7b
https://huggingface.co/openvla/openvla-7b
https://github.com/nakamotoo/V-GPS
https://github.com/nakamotoo/V-GPS

Fig. 6. Effect of scaling test-time compute with RoboMonkey across different generalist robot policies. Action error (average RMSE) decreases as the number
of samples increases. Dashed lines denote the action error of each base policy when only generating a single action.

our ablation considers three generalist robot policies: CogACT,
Octo, and SpatialVLA.

CogACT is a 7B VLA model with a modular architecture
that separates cognitive reasoning from motor control. Built on
top of the Prismatic VLM (DINOv2 + SigLIP for vision and
LLaMA-2 for language), CogACT introduces a specialized
action module implemented as a diffusion transformer. We
use the CogACT-base variant in our experiments. Pairing
RoboMonkey with CogACT achieves RMSE of 0.133, reflect-
ing an 8% reduction from its single-attempt baseline of 0.145.

Octo is a generalist policy trained on 800K demonstrations
from the Open X-Embodiment (OXE) dataset. The policy
includes a CNN encoder and a ViT-style transformer back-
bone with a diffusion-based action head that predicts action
sequences. We use Octo-small for evaluation. Integrating
RoboMonkey with Octo achieves RMSE of 0.166, represent-
ing a 15.3% reduction from its greedy baseline (0.196).

SpatialVLA is a 3.5B parameter spatially grounded VLA
model trained on 1.1M robot episodes from OXE and RH20T.
The model uses Ego3D Position Encoding to integrate 3D
spatial context from depth estimates into visual features. It is
pre-trained on a PaLI-Gemma-2 backbone. For deployment,
we use a temperature of 0.5 for sampling. SpatialVLA +
RoboMonkey achieves RMSE of 0.1298, a 5.3% reduction
from its baseline of 0.137.

F. Ablation on Margin for Reward Modeling

α Precision Recall F1 Score

0 0.81 0.85 0.83
0.1 0.84 0.87 0.85
1.0 0.79 0.83 0.81

TABLE II
COMPARISON OF ACTION VERIFIER PERFORMANCE ACROSS DIFFERENT

MARGIN WEIGHTS α IN THE LOSS FUNCTION. WE FIND THAT
INCORPORATING A SMALL MARGIN (α = 0.1) IMPROVES PRECISION,

RECALL, AND F1 SCORE

As illustrated in Section V-B, the loss function for training
the action verifier follows the Bradley-Terry model [44] with
an additional margin component to account for preference
levels. To evaluate the effectiveness of this margin component,

we generated 10,000 synthetic action comparison pairs from
the Bridge V2 dataset following the procedure outlined in
Section 5.1. Each action pair consists of distinctly different
actions. We trained two variants of the action verifier with
margin terms (α ∈ 0.1, 1.0) and compared their performance
to a baseline model without a margin term (α = 0). Table II
reports the precision, recall, and F1 score for each setting.
The variant with α = 0.1 achieved the highest F1 score (0.85),
outperforming both the baseline without a margin (α = 0, F1 =
0.83) and the large-margin variant (α = 1.0, F1 = 0.81). These
results suggest that incorporating a margin term can improve
the action verifier’s performance, but an excessively large
margin may negatively impact verification accuracy. Based on
this analysis, we adopt the α = 0.1 variant for deployment.

G. Latency and Throughput Analysis for Sampling and Veri-
fication

Repeated sampling can exploit KV Cache optimizations and
batch processing to achieve higher throughput than greedy
decoding. However, most VLA models, including OpenVLA,
are built on top of Prismatic VLM and do not support
batching [18]. SGLang provides efficient serving with prefix
caching, overhead-free CPU scheduling, and paged attention.
Therefore, to make RoboMonkey practical for deployment, we
extended SGLang’s capabilities to properly support Prismatic
VLM [18] models, enabling us to achieve higher throughput
during repeated sampling. Users can easily port their Prismatic
VLM models to SGLang using our provided template.

We conducted experiments on a single H100 to measure the
latency and throughput of OpenVLA inference across varying
batch sizes. As shown in Table III, our optimized implemen-
tation significantly outperforms the naive version [18]. For
instance, at a batch size of 32, our serving engine reduces
latency by 74% and increases throughput by over 120x. Even
at smaller batch sizes (e.g. 4), our VLA serving engine
achieves a 54% reduction in latency.

Our action verifier also benefits significantly from batch
inference, achieving a throughput of 46 actions/s at a batch
size of 16. It is notably faster than OpenVLA, as it only
requires computation during the prefill stage, which can fully
leverage GPU parallelism. In contrast, OpenVLA involves

Batch OpenVLA OpenVLA + SGLang Action Verifier
Sizes Latency (s) Throughput Latency (s) Throughput Latency (s) Throughput

1 0.15 6.5 0.13 7.6 0.092 11
2 0.31 3.3 0.21 9.6 0.099 20
4 0.61 1.6 0.28 15 0.13 32
8 1.2 0.82 0.42 19 0.20 39

16 2.4 0.41 0.72 22 0.35 46
32 4.9 0.20 1.3 25 0.65 49
64 9.8 0.10 2.4 27 1.3 50
128 20 0.050 4.6 28 2.5 51

TABLE III
LATENCY (SECONDS) AND THROUGHPUT (SAMPLES/SECOND) COMPARISON ACROSS BATCH SIZES FOR OPENVLA, OPTIMIZED OPENVLA, AND 7B

ACTION VERIFIER.

both the prefill and decode stages—where action tokens must
be generated autoregressively—resulting in lower throughput.

Fig. 7. Action error (average RMSE) as a function of computational overhead
for policy sampling and Gaussian perturbation. Gaussian perturbation consis-
tently achieves lower action error under equivalent computational budgets

H. Trade-off between Action Error and Computational Over-
head

In this ablation study, we examine the trade-off between
action error and computational overhead. In Figure 7, we
reproduce the scaling curve from Section IV, but plotting
action error against latency. Under equivalent computation
budgets, Gaussian perturbation achieves significantly lower
oracle action error compared to policy sampling. We observe
that the gap between the two methods widens as compute
budgets increase. This growing performance gap reflects the
fact that Gaussian perturbation scales only with the verifier,
while policy sampling incurs additional overhead from both
the policy and verifier. These results highlight Gaussian per-
turbation as a more practical choice for deployment.

I. Evaluation Tasks

As described in Section VI-C, we evaluate RoboMonkey,
OpenVLA, and V-GPS on a physical WidowX-250 S robot
across four out-of-distribution (OOD) generalization tasks.
Real-world evaluations inherently introduce distribution shifts,

as we cannot exactly replicate the Bridge V2 setup. In partic-
ular, slight variations in camera placement, robot positioning,
lighting conditions, and background are unavoidable. We de-
scribe the four representative generalization tasks as follows:

• Stack Blue Cup on Pink Cup: The goal is to grasp the
blue cup and stack it on top of the pink cup. The language
instruction of this task was not included in the Bridge V2
dataset.

• Put Hammer into Yellow Basket: The robot must lift the
hammer and place it inside a yellow basket. Importantly,
the hammer represents an unseen object with a novel
shape not present in any Bridge V2 demonstration.

• Put Pepper onto Plate: This language grounding task
requires the robot to identify and approach the pepper
while ignoring distractors (e.g., sushi). The robot must
then differentiate between the yellow basket and a plate
before correctly placing the pepper.

• Put Banana into Yellow Basket: The objective of this
task is to place a banana from the sink into the yellow
basket. This task presents a particular challenge as the
system must differentiate between two yellow objects
(banana and yellow basket), requiring visual grounding
to complete the task successfully.

For details on the task setup for in-distribution and fine-
tuning evaluation, please refer to the SIMPLER [22] and
LIBERO-LONG [25] benchmark. We include task execution
examples in Figure 8.

Fig. 8. Representative task executions in real-world, SIMPLER, and LIBERO environments.

	Introduction
	Related Work
	Preliminaries
	Inference-Time Scaling Law
	Proposed Approach: RoboMonkey
	Synthetic Data Generation Pipeline
	Reward Modeling
	Action Sampling and Verification

	Experiments
	Implementation Details
	Can RoboMonkey improve the precision of VLAs on in-distribution tasks?
	Can RoboMonkey improve the robustness of VLAs on out-of-distribution tasks?
	How does scaling the synthetic training dataset impact downstream success rate?
	How does RoboMonkey enable practical deployment for test-time scaling?
	Can we effectively fine-tune the action verifier on new robot setup and task?

	Discussion and Limitations
	acknowledgments
	Appendix
	Training
	Deployment
	Baselines
	Ablation over Action Selection Methods and Number of Samples
	Ablation over Generalist Robot Policies
	Ablation on Margin for Reward Modeling
	Latency and Throughput Analysis for Sampling and Verification
	Trade-off between Action Error and Computational Overhead
	Evaluation Tasks

