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ABSTRACT

Large vision-language models (VLMs) such as CLIP have demonstrated impres-
sive performance in zero-shot image classification tasks. These models usually
leverage prompts to align the text and image distributions. However, existing
prompting techniques have limitations in terms of interpretability or dynamic
alignment of distributions. Specifically, the discrete prompt learning methods can-
not effectively perform dynamic alignment of distributions, while the soft prompt
learning method have very limited interpretability, rendering them challenging
to comprehend and enhance. To jointly solve these issues, we leverage the in-
terpretable descriptions to facilitate the soft prompt learning. In this paper, we
introduce a novel training-free strategy to mitigate the distribution gap between
plain text and image-text corpus, leveraging the power of pretrained models like
GPT-3 to enhance image classification performance. Furthermore, we propose a
new few-shot learning pipeline that incorporates a prompt learning and reweight-
ing strategy to dynamically mitigate the image and text distribution gap. This
method overcomes the limitations of existing prompting techniques and offers a
more effective and interpretable solution for image classification tasks. Extensive
experiments show the effectiveness of our method and illustrate the interpretabil-
ity of our descriptions.

1 INTRODUCTION

Large Vision-language models (VLMs), such as CLIP (Radford et al., 2021), have shown remark-
able ability on zero-shot image classification task. However, these VLMs necessitate prompts to
effectively synchronize the text and image distributions. To this end, numerous methods for prompt
learning have emerged (Zhou et al., 2022b;a; Menon & Vondrick, 2023), which aim to refine prompts
to align with distinct image categories, thereby enhancing the accuracy of image classification. But
those methods have their limitations. Discrete prompt learning methods struggle to dynamically
align the image and text distribution for specific datasets, leading to sub-optimal results. In contrast,
standard soft prompting methods, such as COOP (Zhou et al., 2022b), cannot provide an explana-
tion of the reasoning process, as the prompts they learn tend to be meaningless. This deficiency
undermines the reliability of predictions and impedes improvements of the results.

In our investigation, as depicted in Figure 1, a notable distribution discrepancy emerges in current
prompt learning models and vision-language models. This misalignment is evident not just between
the text corpus and the image-text corpus but also between the image-text corpus and the images
themselves. This discrepancy holds significant implications for the broader realm of machine learn-
ing. Specifically, distribution misalignment can detrimentally impact the performance of VLMs,
such as CLIP. When the text distribution internalized by these models does not align with the text
corpus or certain image distributions, their effectiveness will be undermined. Our findings provide a
new aspect that addressing this distribution gap has the potential to boost not only the performance
of current models but also offers insights that can be universally applied to other prompt learning
methods and models. The insights on distribution discrepancies derived from our work can serve as
a foundational reference for enhancing future model designs and training paradigms.

In order to jointly tackle those challenges inherent in diverse prompting techniques, we propose a
novel training-free strategy to minimize the shift in text distribution between plain text and image-
text corpus. We first leverage the latent knowledge inherent in LLMs, such as GPT3 (Brown et al.,
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Figure 1: An illustration of
the distribution gap between
images and different types of
texts. The coordinate rep-
resents the embedding space.
Each circle and ring represent
their distributions. For ex-
ample, the white circle indi-
cates the image distribution,
and the first outer ring rep-
resents the image-text corpus
distribution. The closer to the
origin, the similar distribution
gap they have.

2020), to mitigate the distribution shift between the text corpus and the image-text corpus. These
models have demonstrated remarkable capabilities in generating various texts, making them promis-
ing candidates for effectively mitigating the distribution gap between various of texts. Thus, we
design a prompting method on GPT3 and GPT3.5, enabling them to generate semantic descriptions
related to designated labels, while maintaining similarity to the image-text corpus that aligns with
the distribution of the image-text model.

Furthermore, we present a few-shot reweighting strategy incorporating soft prompt learning method-
ology to further mitigate the distribution discrepancy between text and images. This approach ad-
justs the prompt weights based on their relevance to the target domain, ensuring a better alignment
of the distributions and enhancing classification performance.

In summary, our contributions can be summarized as follows: (1) We design a zero-shot training-free
strategy to generate descriptions that are interpretable and benefit for image-text retriever. (2) We
propose a framework that learns soft prompts that dynamically align image distribution and text dis-
tribution while preserving the interpretability. (3) The extensive experiments show the effectiveness
and interpretability of our method.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODELS

Large pre-trained models recently show great potential in representation learning, which have greatly
advanced many downstream applications in natural language understanding and computer vision.
Following the seminal work Transformer (Vaswani et al., 2017), many generative AI models emerge
rapidly. The GPT series models (Radford et al., 2018; 2019; Brown et al., 2020; OpenAI, 2023;
Touvron et al., 2023) have shown their powerful ability in text mining and reasoning. There are also
many methods (Menon & Vondrick, 2023; Wei et al., 2021) that try to leverage the reasoning ability
to improve downstream tasks. However, large language models are always trained on pure text data
from Internet, so it is hard to align image distributions. On the other hand, large vision-language
models (Radford et al., 2021; Li et al., 2022; 2023; Rombach et al., 2022; Jia et al., 2021; Singh et al.,
2022) are able to bridge the images and texts in the latent space. Particularly, CLIP (Radford et al.,
2021) is trained from a large set of image-text pairs, and it successfully mitigates the distribution
discrepancy between text and images with the contrastive loss. It also shows tremendous zero-shot
ability on the image classification task. However, its classification ability is highly dependent on the
enormous training data. CLIP (Radford et al., 2021) takes the advantages of selected 400 million
image-text pairs (Schuhmann et al., 2021), while ALIGN (Jia et al., 2021) takes 1.8 billion noisy
image-text pairs. This training paradigm is largely dependent on training data. In other words, if the
training data cover the specific domain, such as animals, food, or daily appliances, the model can
perform well. However, when it comes to some unseen or uncommon domains, such as handwriting
digits or medical images, the model would have quite poor performance. It reveals that even in
large pre-trained models, it still has the domain gap issue. To address that issue, we come up with
a method which leverages the reasoning ability of large language models, such as GPT-3 (Brown
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Figure 2: The overview of our proposed framework. Except for the learnable prompts Vp, Vq , and the
learnable weights W , all other models, including GPT, Text Encoder, and Image Encoder, are fixed.
The green color denotes the matched image and category. Initially, GPT is prompted to generate
descriptions for each category. And then we learn soft prompts and learnable weights based on
these descriptions to align the text distribution more closely with the image distribution, using the
contrastive loss as a measure.

et al., 2020), to generate some descriptions that have semantic information, like features, alias, and
some related concepts. In this way, it can mitigate the distribution shift between plain text category
and image-text corpus, which is better aligned with the CLIP model distribution.

2.2 PROMPT LEARNING

Prompt learning is originated from the NLP area, which constructs prompts to help language models
better understand questions. As the large language model is to predict the next words, the previous
context plays a very important role in text generation.

While prompt learning achieves great performance on model tuning and downstream tasks, it is
still underexplored in computer vision and visual language modeling. Pre-trained visual language
models are incorporated with text information, and according to recent work (Radford et al., 2021;
Zhou et al., 2022b), the text prompt also makes a difference on image classification. To exploit text
prompt in classification problem, discrete prompts (Zang et al., 2022; Radford et al., 2021; Menon
& Vondrick, 2023) are adopted to infer domain-specific knowledge. However, those methods may
meet the sub-optimal issue which may not align with the specific domain distribution. To address
this problem, some soft prompt learning methods (Zhou et al., 2022b;a; Hantao Yao, 2023; Lu et al.,
2022; Zhu et al., 2022; Gao et al., 2021; Zhang et al., 2022) have been proposed. They take a few
image samples to guide the text prompt to be aligned with the image distribution. For example,
CLIP-adapter (Gao et al., 2021) adapts both image and text embeddings to a new embedding space.
COOP (Zhou et al., 2022b) is the most related work to ours, which expands the labels with several
learnable prompts and optimizes them with few-shot image samples. However, discrete prompt
learning method may face the sub-optimal problem, while soft prompt learning methods have very
limited interpretability. To overcome these issues, we propose a new method which jointly learns
soft prompts while preserving the interpretability. We first generate some descriptions by a large
language model which provides the prior knowledge and mitigates the pure text distribution and
image-text distribution. Furthermore, we learn soft prompts to mitigate the distribution discrepancy
between images distributions and text distributions. In this case, our method can preserve the prior
knowledge of descriptions and provide explanations.

3 APPROACH

An overview of our framework is shown in Figure 2. In this section, we first briefly introduce our
motivation and the overview of our framework. Then we present our technical details of our model
in three main parts, namely Generating Descriptions; Prompt Tuning; Reweighting Aggregation.
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3.1 OVERVIEW

Our objective is to enhance image classification using existinglarge pretrained model while simul-
taneously delivering interpretable explanations. To accomplish this, we introduce our framework,
illustrated in Figure 2. This framework consists of two principal components. The first part is the
static description generation, which leverages the reasoning ability of large language models, such
as GPT-3 (Brown et al., 2020) to provide semantic description while aligning text distributions. The
other part is the prompt learning pipeline. With the prior knowledge provided by large language
model, few-shot images further guide the learnable prompts and learnable weights to adapt the de-
scription distribution to align with the image distribution.

3.2 GENERATING DESCRIPTIONS

Figure 3: Illustration of how our descrip-
tions work. (a) The original image-text re-
trieval solution is shown, where two images
from different categories may have similar
or even reversed similarity scores with their
respective labels. For instance, an image
of a rooster may have the same similarity
score with both rooster and hen. (b) To ad-
dress this issue, we expand the labels using
their features, aliases, and concepts, leverag-
ing prior knowledge and a closer image-text
distribution. This approach leads to a higher
error-tolerant rate, ultimately resulting in im-
proved classification performance.

Although the CLIP model shows its strong zero-shot
ability, it still has domain bias due to the training
data (Radford et al., 2021). Specifically, the distri-
bution shift not only happens between images and
texts, but also exists in natural languages. For exam-
ple, a lot of natural language fine-grained categories,
such as textures, landscapes, are less likely to appear
in image-text corpus. The fact that the image-text
corpus often comprises a higher frequency of key-
words and a diminished occurrence of formal sen-
tence structures reflects the distribution gap. (Schuh-
mann et al., 2021) In order to address the text distri-
bution shift issue, we broaden the scope of labels by
encompassing multiple descriptions which are more
similar to image-text corpus and impart the prior
knowledge by leveraging the reasoning and gener-
ative ability of large language models. Figure ?? il-
lustrates the expanding details.

Given a particular category, our approach involves
harnessing the capabilities of large language mod-
els to generate a set of text descriptions, denoted as
D. These descriptions serve the purpose of enrich-
ing the label information while conforming to a distribution analogous to that of the image-text
corpus. This process can be formulated as can be formulated as:

Dc = g(c), (1)

where g() represents any generic large language models, and Dc refers to the descriptions regarding
the category c. The descriptions will be employed to enhance the effectiveness of the visual language
classification model.

Basically, we use LLMs to conclude several common phrases that are typically appeared in image-
text corpus. Inspired by the prompt work (Menon & Vondrick, 2023), we design a text prompt to
guide GPT-3 to generate related descriptions as:

Q: Conclude the common phrases in image-text pairs corpus that describe a {category}.
A: Some of the most common phrases used to describe a {category} include:

We also designed a similar prompt for ChatGPT. Further implementation details and comparisons
can be found in Appendix.

Furthermore, it’s essential to firmly anchor the generated descriptions to their corresponding labels.
This is especially crucial in fine-grained classification tasks, where a single description might be
applicable to multiple closely related categories. For example, “man’s best friend” or “ four legs”
can describe all fine-grained dog categories, like wheaten terrier and scottish terrier. Thus, to narrow
its meaning, we formulate a training-free zero-shot prompt as “an image of [CLASS], which relates
to [DESCRIPTION].”
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3.3 PROMPT TUNING

In our Prompt Tuning module, we aim to generate soft prompts for a set of images X that can effec-
tively bridge the domain gap between text and image distributions. Meanwhile, it should align with
the latent distribution of CLIP. Consequently, as illustrated in Figure 2, we propose a description-
based prompt tuning framework to reduce the distribution gap between the generated descriptions
and images in a specific domain. Specifically, we introduce two soft prompts Vm, Vn for the cate-
gory label and its descriptions, respectively. Inspired by (Zhou et al., 2022b;a; Hantao Yao, 2023),
we use the unified prompt for all classes and descriptions, which shares the soft prompts across all
descriptions. The prompt is designed as:

t = [Vp][classname][Vq][description], (2)

where Vp is the class soft prompt and Vq is the description prompt. Each v ∈ {Vp, Vq} has the same
dimension as the word embedding. Vp and Vq have p and q soft prompts respectively where p and q
are hyperparamethers. Notably, each t only corresponds to a single description.

Formally, we define the texture embedding encoded by CLIP text encoder θ as Dci = θ(tci), Where
c ∈ [0,m] refers to the class and i ∈ [0, n] refers to the ith description corresponding to c. Addition-
ally, m is the number of categories and n is the number of descriptions of one specific category. In
this way, each prompted description will have one unique text embedding.

3.4 REWEIGHTING AGGREGATION

Existing work (Zhou et al., 2022b;a; Hantao Yao, 2023) primarily delves into prompting labels
within a single text embedding. Nevertheless, our approach differs because we deal with scenarios
where a single class could be described in multiple ways. This necessitates the aggregation of these
descriptions into a single class embedding to compute similarity with image embeddings.

However, descriptions are typically generic and might not align perfectly with all images across dif-
ferent domains or datasets. Therefore, a simplistic averaging of all descriptions could still introduce
significant domain shift. To address this, we further attenuate the distribution difference between
text descriptions and image distributions, specifically focusing on a limited set of target domain
images denoted as X .

We propose enhancing category representation by incorporating typical text description d ∈ D that
have a high correlation with the image-text corpus. This allows us to compute a more accurate and
interpretable similarity score for a category via weighted summation.

In other words, we introduce a learnable weight matrix W = Rm∗n as shown in Figure 2. The
weight matrix has the same dimension as the description embedding matrix. To aggregate the de-
scription embeddings into category embeddings, we perform a weighted summation as follows:

Hc =

n∑
i

Dci ×
Wci∑n

k=1 Wck
, (3)

where D is the description embeddings and W is the weight matrix. Once we obtain the category
embeddings H , we are able to calculate the similarity of images and texts and reduce the contrastive
loss:

Lcon = −
∑
x∈X

log
exp(ϕ(Hcx , x))∑m
i=1(exp(ϕ(Hci , x))

, (4)

where cx is the true category of the image x, m is the number of categories, and ϕ() represent
the similarity score of text embeddings and image embeddings. The similarity score of the correct
category should be the higher than other categories in order to make right predictions.

4 EXPERIMENTS

In this section, we first introduce the experiment setting. Then we evaluate our approach in the
following four problem settings: 1) evaluating the quality of descriptions. 2) training-free zero-shot
image classification; 3) few-shot prompt tuning image classification; 4) evalutating the explainable
results; and 5) Robustness evaluation.
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Average DTD Food101 OxfordPets
model CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours
RN50 51.2 51.8 52.8 40.3 38.6 extbf42.0 74.5 74.9 76.8 82.2 81.8 83.2

VITB32 55.3 55.7 56.8 43.8 43.1 45.5 78.3 78.9 80.3 83.0 84.9 85.5
VITB16 59.5 60.4 61.2 44.4 46.3 46.9 85.2 84.3 85.9 86.9 86.6 87.3

Imagenet Flower102 FVGCAircraft EuroSAT
model CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours CLIP CBD Ours
RN50 58.2 58.9 59.5 60.5 63.1 63.8 17.00 17.3 17.6 25.5 28.2 26.5

VITB32 61.8 62.8 63.1 63.5 64.1 66.1 18.6 19.4 19.3 38.4 36.6 38.0
VITB16 67.4 67.7 68.3 68.6 69.7 71.5 23.0 23.1 24.3 40.9 45.4 44.2

Table 1: Comparison of our training free model with two baselines. We test our model on 7 datasets
with 3 CLIP backbones. Our results show consistent improvement across all settings. The number
indicates the image classification accuracy. The best results are shown in bold.

4.1 DATASETS AND SETTINGS

Datasets. We employ 7 publicly available image classification datasets used in CLIP: Ima-
genet (Deng et al., 2009) OxfordPets (Parkhi et al., 2012), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), DTD (Cimpoi et al.,
2014), and EuroSAT (Helber et al., 2019). These datasets constitute a comprehensive benchmark,
which covers a diverse set of image distributions. For example, Food101, Flower102, and Oxford-
Pets have images that are very common in daily life and dominant in CLIP training distributions.
In addition, FGVCAircraft, DTD, and EuroSAT are less likely to appear in CLIP distributions and
result in poor zero-shot performance. Imagenet, however, covers generic objects and fine-grained
categories, which has a comprehensive neural distribution.

Baselines We compare our method with four existing baselines, including two zero-shot base-
lines and two prompt-tuning baselines. The zero-shot baselines are zero-shot CLIP (Radford et al.,
2021), CBD (Menon & Vondrick, 2023). Zero-shot CLIP (Radford et al., 2021) is the original CLIP
model. For a fair comparison, we adopt the standard handcraft prompt as “an image of a [CLASS]”.
CBD (Menon & Vondrick, 2023) is another training-free method that divides a category into several
visual attributes. They further prompt these visual attributes and calculate the similarity score with
images. Since our method can be done in the training-free setting, we compare our training-free
version with these two training-free baselines. Additionally, the prompt tuning baselines are linear
probe CLIP and COOP (Zhou et al., 2022b). The linear probe CLIP leverages the image embed-
dings generated by CLIP image encoder, and it trains a linear classifier on top of that. It also requires
labeled training data. We followed the training process used by (Zhou et al., 2022b; Radford et al.,
2021). COOP is the direct rival that learns soft prompts in a few-shot manner. It learns soft prompts
to align image distributions.

Implementation Details For the description generation, we use GPT-3 (Brown et al., 2020) to
generate descriptions. For the prompt tuning and reweighting aggregation method, we adopt 4/8/16-
shot learning. We set m,n as 4, so we have 8 shared learnable soft prompts. We initialize our
learnable prompts by drawing from a zero-mean Gaussian distribution with standard deviation equal
to 0.02. SGD is adopted as the optimizer, and an initial learning rate is set as 0.002, which is
decayed by the cosine annealing rule. we use the warm-up trick by fixing the learning rate to 1e-
5, as suggested in (Zhou et al., 2022b), only for the first epoch. We train 200 epochs for other
datasets and 50 for Imagenet. To validate the generalization ability, we test our model on three CLIP
backbones, RN50, VITB32, and VITB16. Our model is trained on an Nvidia A5000 GPU.

4.2 DESCRIPTION GENERATION

Figure 4 illustrates a selection of generated descriptions spanning both frequent, such as animals
and less common domains, such as describable textures and fine-grained aircraft. On studying these
descriptions, we discerned three primary types: features, aliases, and related concepts.

The feature type encapsulates both visual and non-visual attributes pertinent to a category. They
provide supplementary information that can facilitate a more comprehensive understanding of cat-
egories for the CLIP model. For instance, descriptions such as “shattered lines”, “jagged edges”,
“cracked lines”, and “cracked surface” pertain to the “crack” texture, capturing nuances related to the
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Figure 4: Examples of generated descriptions. We manually divided them into three types, namely
features, alias, related concepts, which are shown in yellow, green, and black, respectively.
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Figure 5: Main results of few-shot setting of our model on 7 datasets. We use RN50 as the CLIP
backbone. Overall, our method can outperform other baselines. Comparing with the closest rival
coop, we consistently outperform it over all datasets.

appearance of edges, the pattern of cracks, and the overall surface manifestation. This detailed fea-
ture aids the CLIP model in comprehending the composition and semantics of a category. The alias
type incorporates alternate terminology likely to be employed in the image-text corpus. This broad-
ens the label into multiple anchors, fostering a more comprehensive understanding. To illustrate,
“707-320” refers to a specific aircraft model; however, devoid of context, it could be misconstrued
as a number sequence or even a telephone number. By introducing aliases such as “iconic airliner”
or “pioneering jet”, we provide additional anchors, thereby reducing potential misinterpretations by
the CLIP model. Lastly, the related concepts type includes common concepts that frequently oc-
cur in the image-text corpus. For instance, a “rooster” is often associated with a “barnyard”. This
association allows the model to leverage the additional context these concepts provide. In sum,
our generated descriptions provide a higher level of interpretability and have closer distribution to
image-text corpus, facilitating the CLIP model in better understanding and classifying images.

4.3 TRAINING-FREE ZERO-SHOT IMAGE CLASSIFICATION

In the training-free setting, the weights of each description are the same, so each description will
equally contribute to the classification. For each category, it has 9 to 10 descriptions. For each
description, we construct the zero-shot prompt template as “an image of [CLASS], which relates to
[DESCRIPTION].” We compare our model with two baseline models, namely CLIP (Radford et al.,
2021) and CBD (Menon & Vondrick, 2023), across three different architectures: RN50, VITB32,
and VITB16. From the Table 1, we can observe that our training-free model consistently surpasses
the performance of both baseline models across nearly all configurations and datasets. Specifically,
our method showcases a consistent 3-5% improvement over the CLIP model, and also achieves 1-
3% enhancement over CBD (Menon & Vondrick, 2023). Specifically, for certain datasets such as
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DTD EuroSAT FVGCAircraft
model shots CLIP COOP Ours CLIP COOP Ours CLIP COOP Ours

4 40.30 52.27 55.90 25.50 68.77 71.43 17.00 20.27 21.90
RN50 8 40.30 58.07 59.77 25.50 73.37 78.50 17.00 21.30 24.27

16 40.30 62.43 63.60 25.50 78.67 81.27 17.00 24.93 27.67
4 43.80 54.17 54.57 38.40 69.90 68.77 18.60 22.80 24.60

VITB32 8 43.80 59.87 60.97 38.40 74.40 75.50 18.60 23.90 27.30
16 43.80 65.40 65.40 38.40 78.57 81.17 18.60 26.70 30.77
4 44.40 59.03 60.03 40.90 74.07 72.93 23.00 29.93 33.00

VITB16 8 44.40 63.90 64.33 40.90 77.97 78.47 23.00 32.20 36.73
16 44.40 68.23 68.50 40.90 83.83 84.03 23.00 35.40 40.20

Table 2: Comparison of our prompt tuning model on few-shots settings with COOP (Zhou et al.,
2022b). We test our model on 3 major uncommon datasets with 3 CLIP backbones to validate
our robustness and effectiveness. Compared to baselines, our results show consistent improvement
across all settings. The number indicates the image classification accuracy. Higher is better. The
best results are shown in bold.

Figure 6: Examples predic-
tions of our training free zero-
shot model(left, blue) and CLIP
model(right, grey). Visual com-
parison of predictions from both
CLIP and our model with the
ground truth labels beneath the re-
spective images. The bar charts
illustrate the descriptions corre-
sponding to each category and the
similarity scores of these descrip-
tions. Our predictions demon-
strate accuracy, and the similarity
scores of descriptions possess the
evidence to substantiate this claim
detailing why our model avoids
selecting incorrect labels.

DTD (Cimpoi et al., 2014) and flower (Nilsback & Zisserman, 2008), our method have around 6%
improvement. This consistent improvent suggests that augmenting prior knowledge and bringing
the image-text distribution closer can promote image-text alignment in the CLIP embedding space,
leading to superior image classification accuracy. Additionally, our method exhibits noteworthy im-
provements in fine-grained and less common domains such as flowers and descriptive textures. In
contrast, more prevalent domains like pets show relatively smaller enhancements. This suggests
that our approach effectively applied across diverse image domains. For categories characterized
by larger domain gaps, our method assists the CLIP model in comprehending semantic informa-
tion by attenuating the domain shift. Conversely, for more popular categories, the benefits of our
approach may be marginal, as these categories inherently align closely with the image distribution.
These observations substantiate our hypothesis that the prediction accuracy of VLMs is significantly
influenced by the domain gap.

4.4 FEW-SHOT PROMPT TUNING IMAGE CLASSIFICATION

In the few-shot domain prompt tuning setting, our objective is to further mitigate the distribution
gap between images and descriptions, as there may exist some misalignment between them. To
evaluate the effectiveness of our approach, we conducted experiments on seven different types of
datasets, each representing distinct image distributions. The results, as shown in Figure 5, consis-
tently confirm the superior performance of our model over COOP across all settings. Specifically,
we have around 2% average improvement to COOP. Notably, the most signifiant improvement hap-
pens in FVGCAricraft (Maji et al., 2013), which has 11% improvement on average. This outcome
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reinforces the notion that our techniques of description generation and reweighting indeed facilitate
superior alignment between text and image distributions within the CLIP latent embedding space.
Remarkably, our method exhibits even greater improvements on fine-grained and uncommon image
datasets, such as FGVCAircraft, DTD, and EuroSAT, compared to popular image datasets. This
observation highlights the robustness of our approach when dealing with significant distribution dis-
crepancies. It implies that our model effectively leverages prior knowledge and aligns distributions
more accurately, enabling enhanced performance on datasets with larger distribution gaps.

4.5 EXPLAINABLE QUALITATIVE RESULTS

Since we have incorporated additional descriptions, we can now interpret predictions based on the
similarity between each description and the image. Figure 6 provides illustrative examples across
different image types. We showcase some images from various domains including texture images
(Cimpoi et al., 2014), satellite images (Helber et al., 2019), and animal images (Deng et al., 2009).
These examples demonstrate how the additional information influences the final decision.

Consider an instance from the prevalent animal domain, where we encounter an image of a tiger.
In the original CLIP model, the prediction might be incorrect due to the similarities between a tiger
and a tiger shark at the textual level. However, by expanding the label with descriptions, CLIP
gains a better understanding of the actual label. As we can see in the examples, descriptions of
“striped hunter,” “big cat,” and “wild cat” exhibit relatively higher similarity to the image, correctly
indicating the animal’s classification as a tiger. Conversely, the descriptions associated with the tiger
shark, such as “oceanic,” result in lower similarity with the image, correctly distinguishing it as a
different category.

On the other hand, as for the uncommon domains, our descriptions also provide some precise infor-
mation. For example, the “criss-cross” show the features of the grid texture and meanwhile using
the image-text manner to describe it. As a result, it obtains the highest similarity score and thus help
the model making the right prediction.

These examples showcase how our approach enables CLIP to consider multiple pieces of evidence
to make more accurate predictions. By leveraging descriptions and expanding the label space, CLIP
gains a deeper insight into the visual content and context, allowing for improved classification per-
formance across various image types and domains.

4.6 ROBUSTNESS EVALUATION

We examine the performance of our model on larger and more potent backbone CLIP architectures,
such as VITB32 and VITB16. In order to validate the description ability and the robustness of
our model on unseen domains, we select three less common image domains, which correspond to
DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), and FGVCAircraft (Maji et al., 2013).
The results are presented in Table 2. Compared to the baseline CLIP model, our model demonstrates
a considerable improvement in performance, validating our model’s domain adaptation capability.
The relatively poor performance of the CLIP model illustrates the substantial distribution discrep-
ancy between images and texts. Our model, with the help of descriptions and learnable prompts, can
bridge this distribution gap between images and texts, even in cases where the discrepancy is huge.
Furthermore, our model surpasses the performance of the related rival model COOP (Zhou et al.,
2022b), showcase the efficacy of our reweighting strategy. The consistent improvement across vari-
ous domains also validates the robustness of our method in diverse and challenging environments.

5 CONCLUSION

In this paper, we aim to improve the prompting methods for visual language modeling and mean-
while enhance the interpretability. Specifically, we introduce a new framework for zero-shot classi-
fication with vision-language models in a domain alignment direction. Extensive results on multiple
benchmark datasets show that our method provides explainable results, and it outperforms base-
lines on image classification. We further make use of the interpretable descriptions to align with
image distribution by soft prompt tuning. It further improves the performance of our model while
maintaining the interpretability.
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Figure 7: Qualitative comparison on descriptions generated by ChatGPT and GPT-3. Features, alias
and related concepts are shown in yellow, green, and black, respectively.

A APPENDIX

A.1 PROMPT GENERATION ON CHATGPT

Besides the GPT-3, we also evaluated the description quality on ChatGPT. Here is the prompt we
provide.

{”role”: ”user”, ”content”: ”Conclude the common phrases in image-text pairs corpus that de-
scribe a dog.”},
{”role”: ”assistant”, ”content”: ”””- man’s best friend - furry friend - puppy love - good boy/girl
- loyal companion - playful pup - fierce protector - canine cutie - furry family member - tail-wagging
friend ”””},
{”role”: ”user”, ”content”: ”Conclude the common phrases in image-text pairs corpus that de-
scribe a cat.”},
{”role”: ”assistant”, ”content”: ”””- feline friend - purr-fect pal - cuddly companion - furry
family member - playful kitty - curious critter - independent spirit - cattitude - four-legged friend -
meow-velous mouser ”””},
{”role”: ”user”, ”content”: ”Conclude the common phrases in image-text pairs corpus that de-
scribe a [class].”}

As illustrated in Fig. 7, analysis of the descriptions generated by the GPT-3 and ChatGPT models,
it is evident that both models demonstrate proficient understanding and generation of contextually
appropriate responses. They both successfully generate descriptions that capture typical charac-
teristics and behaviors associated with the given keywords. Their ability to generate descriptions
illuminates their capacity for enriching the understanding of the context. Since the descriptions gen-
erated by ChatGPT may not have consistent format in practice, we use descriptions generated by
GPT-3 instead.

A.2 BIDIRECTIONAL DOMAIN ALIGNMENT

While adapting text to image distribution have demonstrated substantial potential, they typically
harness only a text modality. We assume that adapting the image modality to the target distribution
could also result in superior distribution alignment. In pursuit of this, we explore the image variation
model (Rombach et al., 2022). We employ a stable diffusion image variation model to generate
similar images given an original image.

We synthesize a set of images similar to those in the distribution data, with the aspiration that this
could serve as an augmentation method effectively representing image distributions. However, the
quality of these images tends to be inconsistent. As depicted in Fig.8, for less common images like
EuroSAT(Helber et al., 2019), by training the soft prompt using both these augmented images and
the original one-shot image, we observe some performance improvement. However, when dealing
with more common images, such as those in the OxfordPets (Parkhi et al., 2012) dataset, the gen-
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Figure 8: Examples of image variation quality. The left part is the in distribution data in original
datasets and the right images are the generated images by image variation model given the single
one-shot original image.

Table 3: Results of image classification accuracy based on augmented images. We tested the 1,2,4-
shot image results.

Dataset 1-shot 2-shots 4-shots
EuroSAT 53.47 53.97 57.97

OxfordPets 76.13 67.83 65.77

erated images fail to represent the in-distribution data, leading to a decrease in image classification
performance. The detailed results of this investigation are presented in Tab. 3.

A.3 LIMIATATIONS ON LLMS

While Language Learning Models (LLMs) exhibit impressive capability in rendering semantic in-
formation, there are nonetheless certain limitations that influence their outcome, particularly in the
context of fine-grained image classification. For example, when encountering classes that demand
intricate descriptions, LLMs occasionally fall short in generating meaningful descriptions. Instead,
they tend to rendering generic descriptions that offer minimal distinctive information for fine-grained
categorization. For instance, in OxfordPets dataset (Parkhi et al., 2012), around 20% categories have
the description saying ”man’s best friend” which provide almost none additional information. One
possible solution is providing additional contextual information specific to the domain under consid-
eration. By doing so, LLMs could potentially filter out redundant descriptions, thereby enhancing
their ability to generate more detailed and distinguishing descriptors. The exploration of methods
to improve LLMs’ performance in these more complex scenarios represents an interesting direction
for future research.
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