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Abstract While Deep Learning (DL) experts often have prior knowledge about which hyperparameter

settings yield strong performance, very few Hyperparameter Optimization (HPO) algorithms

exist that leverage such prior knowledge and none incorporate priors overmultiple objectives.

As DL practitioners often need to optimize not just one but many objectives, such as

predictive performance, inference cost, fairness, or interpretability, this is a blind spot in the

algorithmic landscape of HPO. To address this shortcoming, we introduce PriMO, the first
HPO algorithm that integrates multi-objective user beliefs, and further, uses a novel initial

design strategy tailored to DL tasks. PriMO achieves state-of-the-art performance across 8 DL

benchmarks, comparing against prominent multi-objective baselines, and single-objective

prior-based algorithms that we adapted to the multi-objective setting. Using statistical

significance analysis, we underline PriMO’s performance gains under good prior conditions

and superior recovery strength when prior knowledge is misleading.

1 Introduction

Modern Deep Learning (DL) pipelines [1–3] are highly sensitive to the choice of their hyperparam-

eters, the manual tuning of which has become an increasingly time-consuming and costly task.

Despite substantial advances in algorithms for Hyperparameter Optimization (HPO) [4–7], many

researchers continue to rely on manual tuning [8], which allows intuitive incorporation of domain

expertise and prior beliefs about the best performing hyperparameter settings.

While HPO researchers have formulated desiderata for HPO algorithms that include incorpo-

rating such user beliefs, existing research has focused exclusively on single-objective optimiza-

tion [7, 9–11]. However, for DL, it is often necessary to optimize over several objectives, such

as computational cost, training time, latency or fairness [12–15]. Thus, integrating prior knowl-

edge into multi-objective optimization is a crucial research area that remains unexplored, and the

desiderata in the existing literature incomplete. We therefore complete the desiderata for HPO

algorithms for DL [6, 7, 16] as follows:

1. Utilize cheap approximations: Modern HPO algorithms must not only support optimization

over multiple objectives, but should also be able to utilize cheap proxies of an objective function,

if available, to speed up the optimization.

2. Integration of MO expert priors: Expert prior knowledge of hyperparameters is often available

for real-world DL tasks. A modern multi-objective hyperparameter optimization (MO-HPO)

algorithm must be able to integrate and properly utilize such beliefs over multiple objectives.

3. Robustness to misleading priors: Prior-based MO-HPO algorithms must also be able to mean-

ingfully recover from misleading prior information.

4. Strong anytime performance: MO-HPO algorithms should identify promising configurations

early in the optimization.
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Table 1: Comparison of PriMO and prominent baselines with respect to the identified desiderata. A ✓
indicates that the method satisfies the criterion; a ✕ indicates it does not. ✓* denote partial

fulfillment or fulfillment with additional assumptions.

Criterion RS EA RS+MOMF MF-BO MO-BO BO+Prior MF+ Prior PriMO

Good anytime performance ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓
Good final performance ✕ ✓* ✓* ✓ ✓ ✓ ✓ ✓
Utilize cheap approximations ✕ ✕ ✓ ✓ ✕ ✕ ✓ ✓
Multi-objective ✓ ✓ ✓ ✕ ✓ ✕ ✕ ✓
Compute Efficient for MO ✕ ✕ ✕ ✕ ✓ ✕ ✕ ✓
MO Expert priors ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓

5. Strong final performance: The ultimate goal of HPO is to find the best performing configurations

with larger budgets, as these are the most relevant for deployment.

6. Efficiency: MO-HPO algorithms must be compute-efficient, i.e., under limited budget, they must

find candidates that significantly improve the dominated Hypervolume.

7. Simplicity: MO-HPO algorithms should be conceptually simple and easy to apply to real-world

DL problems. Such simplicity is essential for practitioners to understand and adopt these

methods, as well as for HPO tools to implement them.

Table 1 shows that the existing HPO algorithms fulfill at most half of the criteria. To address

this gap, we propose PriMO, which is the first HPO algorithm to incorporate expert knowledge over

the optima of multiple objectives, while also employing a novel initial design to leverage cheap

approximations of expensive objective functions. Our contributions are as follows:

1. We are the first to incorporate user-provided prior distributions over multiple objectives.

2. We employ a novel initial design strategy tailored to DL, which uses cheap approximations to

speed up the optimization process for the subsequent model and prior-based strategy.

3. We empirically demonstrate state-of-the-art performance of PriMO across a variety of DL

benchmarks, and perform statistical significance analysis to support our results.

4. We show that PriMO effectively leverages good priors, and is robust to misleading priors.

2 Problem Statement
To capture all the above desiderata, we consider the minimization of a vector-valued objective

function 𝑓 , while exploiting cheap approximations of its individual objectives and expert priors. In

this section we define our problem setup. For related works and further background see Section 5

and Appendix A.

To extend expert priors over a single objective [11] to the MO setting, we consider a factorized

prior as follows. For each objective 𝑓𝑖 of the vector-valued function 𝑓 , prior beliefs 𝜋𝑓𝑖 (𝜆) represent
a probability distribution over the location of the optimum of 𝑓𝑖 . Specifically, the prior will have

a high value in regions that the user believes have an optimum. Formally, we define 𝜋𝑓𝑖 (𝜆) =
P (𝑓𝑖 (𝜆) =min𝜆′∈Λ 𝑓𝑖 (𝜆′)), yielding the compound prior Π𝑓 (𝜆) =

{
𝜋𝑓𝑖 (𝜆)

}𝑚
𝑖=1

.

To also leverage cheap approximations of the individual objectives, let
ˆ𝑓𝑖 (𝜆, 𝑧) denote the

low-fidelity proxy for 𝑓𝑖 , where configuration 𝜆 is evaluated at the fidelity level 𝑧, where 𝑓𝑖 (𝜆) =
ˆ𝑓𝑖 (𝜆, 𝑧𝑚𝑎𝑥 ). Therefore, our goal is to solve

argmin

𝜆∈Λ
𝑓 (𝜆) = argmin

𝜆∈Λ

(
ˆ𝑓1(𝜆, 𝑧𝑚𝑎𝑥 ), ..., ˆ𝑓𝑛 (𝜆, 𝑧𝑚𝑎𝑥 )

)
, guided by Π𝑓 (𝜆), (1)

using inexpensive evaluations of 𝑓 , while addressing the challenge that the priors may bemisleading.
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3 PriMO: Prior Informed Multi-objective Optimizer

In this section we introduce the first multi-objective (MO) HPO algorithm, PriMO, that leverages
MO user priors and fulfills all the desiderata of modern HPO. We discuss how PriMO, a Bayesian
Optimization algorithm, makes use of MO user priors via its acquisition function and also introduce

its novel initial design strategy. We provide additional details and pseudo code in Appendix B.

We weight the acquisition function of the BO with the the PDF of the selected priors, raised

to an exponent 𝛾 = 𝑒𝑥𝑝
(
−𝑛2

BO/nd
)
. To formulate an acquisiton function, we convert the vector-

valued objective function into a single-objective optimization problem, using a linear scalarization

function [17] with randomly sampled weights, which is not only simple but also scalable with the

number of objectives. Furthermore, to aid in recovery from misleading priors, we additionally

incorporate a simple exploration parameter 𝜖 , which controls how often we augment the acquisition

function with the prior. Thus, with priors over n objectives, the acquisition function becomes

𝛼𝜖𝜋 (𝜆,D𝑚) ≜
{
𝛼 (𝜆,D𝑚), with prob. 𝜖

𝛼 (𝜆,D𝑚) · 𝜋 𝑗 (𝜆)𝑒𝑥𝑝 (−𝑛
2

BO
/𝑛𝑑), with prob. 1 − 𝜖, 𝑗 ∼ U (1, . . . , 𝑛) .

(2)

To leverage cheap approximations of the objective functions, we propose a novel initial design

strategy that is similar to multi-fidelity optimization to sample initial seed points to speed up the

optimization process. First, we set a threshold of (equivalent) full function evaluations based on the

initial design size, for which PriMO’s initial design strategy is run. Once the threshold is reached,

only the samples at the maximum fidelity are selected for the BO. Next, we choose one of the priors

over multiple objectives, uniformly at random, during each iteration. The sampled initial points

then kickstart the BO along with the decaying prior-augmented acquisition function.

4 Experiments

To fulfill the desiderata outlined in the Introduction, we address the following research questions:

RQ1: Does PriMO outperform prominent baselines in terms of anytime and final performance?

RQ2: Does PriMO’s novel initial design result in performance gains compared to random sampling?

RQ3: Can PriMO effectively leverage multi-objective expert priors?

RQ4: Does PriMO recover from misleading priors and maintain its robustness?

RQ5: Are all components of PriMO necessary and helpful?

State-of-the-art performance. The relative rankings (Figure 1, left) show that PriMO effectively
leverages good-good priors, is the best algorithm initially and significantly outperforms all baselines,

except 𝜋BO+RW, towards the end of the optimization (RQ1). We notice that compared to BO+RW

and 𝜋BO+RW which use random sampling and prior-based sampling for their initial designs

respectively, PriMO’s initial relative ranking is significantly better (RQ2), which is further utilized

by the MO-prior-weighted BO phase, leading to strong final performance (RQ3). In Appendix J we

perform a significance analysis that confirms these results. We show detailed experimental results

using dominated Hypervolume and Pareto front plots in Appendix G.

Robustness to prior conditions. Under overall-bad priors in Figure 1 (middle), we see that PriMO is
already the best early on and achieves the best relative ranking at the end of the optimization run.

This highlights PriMO’s ability to effectively recover in the presence of misleading priors (RQ4).
The relative ranking plot in Figure 1 (right) shows that throughout the optimization run, PriMO
remains the best ranked HPO algorithm under all (overall-all) prior conditions.
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Figure 1: Relative ranking averaged across 9 benchmarks comparing PriMO against the baselines, under
various prior conditions. Left: Relative ranks when priors for both objectives are helpful.

Middle: Relative ranks when the prior for one or both objectives are misleading. Right:
Relative ranks under all priors averaged.

Ablation study. We perform an ablation study in Appendix I.1 that shows that the components of

PriMO indeed work best in conjunction with each other and support the design of PriMO (RQ5).

5 Related Work

MO optimization traditionally considers large budgets [18–21] however, DL is very expensive

and can only make use of few evaluations. To make HPO for DL feasible, specialized strategies

have been explored. Exploiting user priors, have been explored in a few works, but only for

the single-objective optimization case. Most similar to our approach (albeit for single-objective

optimization) is Priorband [7], which, in addition, to exploiting user priors also makes use of cheap

approximations, in contrast to us, they use these throughout the optimization and not as an initial

design. We explored adapting Priorband to the MO setting, but found it does not perform well

(Section 4). 𝜋BO [11], like PriMO, also augments the acquisition function with the priors, although

it does so for a single objective only, can not utilize cheap approximations, and adapting it directly

to the MO setting does not perform well under misleading priors (Section 4). While exploiting

expert priors is novel for multi-objective HPO, cheap proxies have been explored [13, 14, 22], again,

not as an initial design and our approach outperforms these by a wide margin (Section 4). We

discuss background and related work in more detail in Appendix A.

6 Conclusion and Limitations

PriMO distinguishes itself as the first algorithm to integrate MO priors, leading to state-of-the-art

performance. As such, PriMO is, to date, the only HPO algorithm that fulfills all the desiderata of

modern HPO, making it fit for efficient optimization under constrained budgets for practical DL.

Limitations. In line with previous work [7, 10, 11], we only consider Gaussian distribution for

our priors, although PriMO supports priors with any distribution. While it may be more beneficial

in the MO setting to generate priors based on an approximate Pareto front, this remains a non-

trivial challenge. Additionally, instead of linear scalarization, an approach such as Hypervolume
scalarization [21] could be beneficial to PriMO as it has provable guarantees.
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A Background and more related work

A.1 Hyperparameter optimization for Deep Learning

Multi-fidelity optimization. The high computational cost of DL model evaluations has motivated

research in multi-fidelity optimization. Multi-fidelity (MF) [24] optimizers use cheap proxies to
approximate promising candidates and speed up the search. Bandit-based methods [5, 25] are the

most popular in the Automated Machine Learning community for multi-fidelity optimization. These

have been further extended by replacing their Random Search (RS) component with evolutionary

[26] andmodel-based Falkner et al. [6] search, and increasing efficiency for large-scale parallelization

Li et al. [27].

Instead of optimizing the expensive objective function 𝑓 as a blackbox, multi-fidelity optimiza-

tion leverages evaluations of 𝑓 at lower fidelities. For example, when training a Neural network

with a particular hyperparameter configuration for 100 epochs, a lower-fidelity proxy would be

the validation score obtained by training the model with the same hyperparameter configuration

for 15 epochs. More formally, for a hyperparameter configuration 𝜆 ∈ Λ at a fidelity level 𝑧 ∈ 𝑍
where 𝑍 := {𝑧𝑚𝑖𝑛, ..., 𝑧𝑚𝑎𝑥 }, |𝑍 | =𝑚 is the fidelity space, a cheap proxy function of 𝑓 is defined as

ˆ𝑓 (𝜆, 𝑧). Therefore, when 𝑧 = 𝑧𝑚𝑎𝑥 (the maximum fidelity), the proxy function
ˆ𝑓 converges to the

true objective function 𝑓 . Hence, 𝑓 = ˆ𝑓 (𝜆, 𝑧𝑚𝑎𝑥 ).
In an optimization setup with continuations, the function evaluation

ˆ𝑓 (𝜆, 𝑧) for a configuration
𝜆 at fidelity 𝑧 can be continued up to a fidelity 𝑧′ to yield

ˆ𝑓 (𝜆, 𝑧′), given 𝑧 < 𝑧′. For example, let us

assume that we would like to train a network with a hyperparameter configuration 𝜆 for a total of

200 epochs, and have already trained it with 𝜆 for 50 epochs. Then we can simply continue training

with 𝜆 for 150 more epochs instead of restarting from scratch. For such a continual setup, we define

equivalent function evaluations as 𝑧/𝑧𝑚𝑎𝑥 .

Prior-based optimization for a single objective. Prior-based single objective optimization can be

defined as:

𝜆∗ = argmin

𝜆∈Λ
𝑓 (𝜆), guided by 𝜋 (𝜆), (3)

where prior 𝜋 (𝜆) is a probability distribution over the location of the optimum of the objective

function 𝑓 .

PrBO [10] combines expert prior distributions 𝑃𝑔 (𝜆) and 𝑃𝑏 (𝜆) with respective models𝑀𝑔 (𝜆)
and 𝑀𝑏 (𝜆) in a Tree-structured Parzen Estimator (Bergstra et al. [4]) (TPE)-based approach to

construct pseudo-posteriors 𝑔(𝜆) and 𝑙 (𝜆) respectively. The candidates are then chosen from these

pseudo-posteriors by maximizing the EI as described in Bergstra et al. [4]. 𝜋BO [11] directly

augments the acquisition function 𝛼 with the unnormalized user-specified prior distribution 𝜋 (𝜆)
which decays over time, controlled by a parameter 𝛽 : 𝛼𝑛𝜋 (𝜆) = 𝛼 (𝜆) · 𝜋 (𝜆)

𝛽

𝑛 , where 𝑛 refers

to the 𝑛𝑡ℎ iteration. Unlike PrBO, 𝜋BO generalizes to acquisition functions other than EI and

offers convergence guarantees. However, as we saw see in Section 4, 𝜋BO’s longer dependence

on the Priors has major downsides. PriMO addresses this issue using a novel MO-priors-based

augmentation of the BO component that we introduced in Section 3.

Mallik et al. [7] introduce Priorband which extends the integration of expert priors to multi-

fidelity optimization. Priorband uses a novel ensemble sampling policy (ESP) E𝜋 , which combines

random sampling U (·), prior-based sampling 𝜋 (·) and incumbent-based sampling
ˆ𝜆(·), with their

proportions denoted by 𝑝U , 𝑝𝜋 and 𝑝 ˆ𝜆
respectively. Initially,

ˆ𝜆(·) is inactive. Given the constraint

𝑝U + 𝑝𝜋 = 1, E𝜋 selects from U (·) and 𝜋 (·) according to 𝑝U and 𝑝𝜋 . When
ˆ𝜆(·) becomes active, 𝑝𝜋

is split into 𝑝𝜋 and 𝑝 ˆ𝜆
according to weighted scores S𝜋 and S ˆλ, calculated by first computing the

likelihood of the top performing configurations under 𝜋 (·) and ˆ𝜆(·), which capture how much trust
should be placed on each.
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While the aforementioned algorithms efficiently integrate user priors in the HPO problem, they

only apply to the single-objective optimization case. To the best of our knowledge, we are the first

to incorporate priors over multiple objectives, whilst also employing a novel initial design strategy

to leverage cheap proxies of the objective function.

A.2 Multi-objective optimization

Formany real-world problemswe are often interested in optimizing not one, butmultiple, potentially

competing objectives. MO [19, 20, 28, 29] deals with optimizing a vector-valued objective function
𝑓 (𝜆) composed of 𝑛 distinct objective functions, where 𝑓 : 𝜆 → R𝑛

, 𝜆 ∈ R. Without loss of

generality, we assume minimization of all objectives. More formally, the MO problem can be

defined as:

argmin

𝜆∈Λ
𝑓 (𝜆) = argmin

𝜆∈Λ
(𝑓1(𝜆), 𝑓2(𝜆), ..., 𝑓𝑛 (𝜆)) . (4)

Pareto optimality. Typically, there does not exist a single best solution for MO problems that

minimizes all the objectives simultaneously. Rather, there exists a set of solutions, consisting of

points in the domain Λ.
Given two candidates 𝜆1, 𝜆2 ∈ Λ, we say that 𝜆2 dominates 𝜆1 if and only if 𝑓 (𝜆2) < 𝑓 (𝜆1).

Formally, we write 𝜆2 ≺ 𝜆1. For 𝑓 (𝜆2) ≤ 𝑓 (𝜆1), we write 𝜆2 ⪯ 𝜆1 and say that 𝜆1 weakly dominates

𝜆2.

For a vector-valued function f, we say that 𝜆2 Pareto dominates 𝜆1, i.e. 𝜆2 ≺ 𝜆1 under two

conditions:

• ∀𝑖 ∈ {1, ..., 𝑛} : 𝑓𝑖 (𝜆2) ≤ 𝑓𝑖 (𝜆1), and,

• ∃𝑘 ∈ {1, ..., 𝑛} : 𝑓𝑘 (𝜆2) < 𝑓𝑘 (𝜆1) .

A candidate 𝜆 that is not dominated by any other candidate 𝜆′ is called Pareto Optimal, and the

set of Pareto Optimal candidates is known as the Pareto Set P , defined as:

P :=
{
𝜆 ∈ Λ

���𝜆′ ∈ Λ with 𝑓 (𝜆′) < 𝑓 (𝜆)
}

. (5)

The set of solutions, i.e., set the corresponding values of an MO function for each of the Pareto

Optimal candidates is called the Pareto Front. Formally, a Pareto front is defined as:

F =
{
𝑓 (𝜆) ∈ R𝑛

�� 𝜆 ∈ Λ,�𝜆′ ∈ Λ with 𝑓 (𝜆′) < 𝑓 (𝜆)
}

. (6)

Hypervolume indicator. The true Pareto front of a real-world MO problem is generally unknown.

Thus, the goal of MO Optimization algorithms is to return a set of non-dominated candidates from

which we can obtain an approximated Pareto front. To assess the quality of this approximation, the

S-Metric or Hypervolume (HV) Indicator [30] is the most frequently used measure as it does not

require prior knowledge of the true Pareto front.

Given a reference point 𝑟 and an approximate Pareto set A, the Hypervolume IndicatorH is

defined as:

H𝑟 (A) = 𝜇 ({𝑥 ∈ R𝑛 |∃𝑎 ∈ 𝐴 : 𝑎 ≤ 𝑥 ∩ 𝑥 ≤ 𝑟 }) , (7)

where 𝜇 is the Lebesgue measure. Throughout this work, for our experiments, we will be

using the Hypervolume Improvement (HVI) metric as a cumulative performance indicator for MO

algorithms with respect to function evaluations. Given a new set of candidates 𝛾 , an existing Pareto

set P and a reference point 𝑟 , the HVI is formally defined as:

𝐻𝑉 𝐼 (𝑃, 𝑟,𝛾) =H𝑟 (𝑃 ∪ 𝛾) −H𝑟 (𝑃) . (8)
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A.3 Multi-objective optimization for Deep Learning

For DL, it is often necessary to optimize not only the validation error (or validation accuracy) but also

a costmetric, such as the inference time of a Neural Network or Floating Point Operations per Second.

It is easy to imagine that a cost metric would be cheap to evaluate since it is a simple observation,

unlike an objective such as accuracy (which would require the network to be trained first) [12].

Additionally, we might also be interested in a third objective like fairness or interpretability of

the DL model. However, from a DL perspective, optimizing predictive performance typically (but

not always) comes at the cost of degrading other objectives. In the context of Machine Learning,

multi-objective algorithms for HPO [31] have been adapted mainly from the general MO literature.

Scalarization-based Bayesian Optimization. Scalarization-based multi-objective Bayesian Op-

timization (MO-BO) approaches proposed by [17, 20, 21, 32] use a function: 𝑠 : R𝑛 × 𝛼 ↦→ R
that maps the vector-valued MO function into a scalar value, thus effectively converting the MO

problem into a single-objective optimization problem. These approaches vary in the choice of the

scalarization function [20] or the distribution from which the weights are sampled [17, 32]. Knowles

[20] introduces ParEGO, which uses a Tchebycheff norm over the objective values as opposed to a

linear weighted sum approach. These methods are highly scalable and easy to implement, which is

why we employ random scalarizations during the BO phase of PriMO.

Multi-objective Bayesian Optimization using acquisition function modifications. Other MO-BO

approaches directly modify the acquisition function in BO to account for multiple objectives.

Emmerich [33] proposed the Expected Hypervolume Improvement (EHVI) acquisition function

wherein a surrogatemodel is fitted for each objective separately, and then the Expected Improvement

(EI) [34] of the HV contribution is calculated. Several improvements to calculate EHVI have been

proposed, such as in Yang et al. [35] and Daulton et al. [36]. EHVI is also used in Ozaki et al. [37] to

extend the TPE [4] to MO TPE. Ponweiser et al. [38] introduced the S-Metric Selection-based EGO

(SMS-EGO) which, instead of using EHVI, selects new candidates by directly maximizing the HV

contribution based on the predictions of the surrogate model, using the Lower Confidence Bound

[39] acquisition function. Izquierdo et al. [12] modified EHVI by fitting surrogate models only

on the expensive objectives, such as validation accuracy. MO Information-theoretic acquisition

functions, such as maximum entropy search [40] (MESMO) and predictive entropy search [41]

(PESMO), aim to reduce the entropy of the location of the Pareto front.

Evolutionary algorithms. EvolutionaryMOAlgorithmsmutate configurations from a diverse initial

population to identify promising candidates closer to the Pareto front. Deb et al. [19] proposed

the popular Non-dominated Sorting Genetic Algorithm (NSGA-II) which uses non-dominated

sorting [28] to rank candidates from multiple non-dominated fronts and conducts survival selection

(tie-breaking) using crowding-distance sort [19]. S-Metric Selection Evolutionary Multi-objective

Optimization Algorithm (SMS-EMOA) [42] also employs non-dominated sorting from [28] and [19]

for the initial ranking of candidates, but then uses each candidate’s contribution to the dominated

HV for survival selection. Evolutionarymethods, however, are quite compute-inefficient, requiring a

high budget to significantly improve the dominated HV. Compute efficiency is one of the desiderata

we identify in Table 1 and therefore is a key aspect of PriMO.

Multi-objective multi-fidelity optimization. Izquierdo et al. [12] extended SMS-EMOA to the MF

domain by augmenting it with SH rungs. Furthermore, they introduced MO-BOHB, which replaced

the TPE component with MO-TPE. Schmucker et al. [13] adapted HyperBand (HB) to MO using

a randomly scalarized objective value (HB+RW) to select and promote promising configurations.

Salinas et al. [14] and Schmucker et al. [22] further build on [13] by modifying the promotion

strategy of HB and ASHA respectively, using non-dominated sorting for the initial ranking of

candidates, and a greedy epsilon-net (𝜖-net) strategy for exploration.
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MF-OSEMO (Belakaria et al. [43]) and iMOCA(Belakaria et al. [44]) extend the information-

theoretic method MESMO to discrete and continuous fidelities, respectively. Irshad et al. [45]

propose a novel modification to the EHVI acquisition function which optimizes a multi-objective

function and the fidelity of the data source jointly. They achieve this by defining a trust-based cost
objective which is directly proportional to the fidelity level. However, these MOMF-BO algorithms

are quite computationally expensive, requiring vast amounts of resources and longer optimization

runtimes. Although they integrate cheap approximations of the objective function, their high

overall computational costs make them unsuitable for DL.

Apart from a few notable exceptions, MO algorithms have been largely been used for general

optimization problems. Their usage in practical DL applications have been relatively limited

compared to single-objective optimization, and only a handful of studies exist where MO optimizers

are benchmarked on real-world DL tasks. We aim to bridge this gap between general multi-

objective optimization and multi-objective hyperparameter optimization by demonstrating PriMO’s
effectiveness in both synthetic MO problems, as well as DL benchmarks.

B Algorithm details

Algorithm 1 Initial design strategy

1: function init_design(𝑛init,Λ, 𝜂, 𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 , 𝑓 ,w)

2: Initialize: 𝑏 ← 0,D← ∅
3: while 𝑏 < 𝑛init do
4: 𝜆, 𝑧 ← moasha(Λ, 𝜂, 𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 )
5: y← 𝑓 (𝜆, 𝑧)
6: if 𝑧 = 𝑧𝑚𝑎𝑥 then
7: y← w⊤y
8: D← D ∪ {(𝜆, y)}
9: end if
10: 𝑏 ← 𝑏 + 𝑧

𝑧𝑚𝑎𝑥

11: end while
12: return D
13: end function

Algorithm 2 Bayesian Optimization with multi-

objective priors

1: function moprior_bo(Λ, 𝜂,D,Π𝑛, 𝑛BO, 𝜖)

2: Select prior 𝜋 𝑗 (𝜆), where 𝑗 ∼ U (1, . . . , 𝑛)
3: 𝛾 ← exp(−𝑛2

BO
/𝑛𝑑 )

4: 𝑢 ∼ U (0, 1)
5: if 𝑢 < 𝜖 then
6: 𝛼 (𝜆) ← 𝛼 (𝜆,D)
7: else
8: 𝛼 (𝜆) ← 𝛼 (𝜆,D) · 𝜋 𝑗 (𝜆)𝛾
9: end if
10: 𝜆 ← argmax𝜆∈Λ 𝛼 (𝜆,D)
11: return 𝜆

12: end function

Algorithm 3 PriMO

1: Input: Vector-valued objective function 𝑓 , search space Λ with dimension 𝑛𝑑 , MO priors Π𝑛 = {𝜋𝑖 (𝜆)}𝑛𝑖=1, initial
design size 𝑛init, reduction factor 𝜂, fidelity range [𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 ], budget 𝐵 and exploration parameter 𝜖 .

2: function PriMO(Input)

3: Sample weights w ∼ U (0, 1)𝑛 and normalize

4: D← init_design(𝑛init,Λ, 𝜂, 𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 , 𝑓 ,w)
5: Initialize: 𝑏 ← 𝑛init, 𝑛BO ← 0

6: while 𝑏 < 𝐵 do
7: λ𝑛𝑒𝑤 ← moprior_bo(Λ, 𝜂,D,Π𝑛, 𝑛BO, 𝜖)
8: 𝑛BO ← 𝑛BO + 1
9: y← 𝑓 (λ𝑛𝑒𝑤, 𝑧𝑚𝑎𝑥 )
10: y← w⊤y
11: D← D ∪ {(λ𝑛𝑒𝑤, y)}
12: 𝑏 ← 𝑏 + 1
13: end while
14: return P𝑓 (D)
15: end function

The pseudo-codes for all the major constituents for PriMO are provided in Algorithm 1, Algo-

rithm 2 and Algorithm 3. All these parts of PriMO were implemented in the NePS [46] package. For

PriMO’s initial design strategy we used MOASHA which we implemented in NePS, borrowing the
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code for the 𝜖-net MO promotion strategy from the Syne Tune repository, which is the original

implementation by its authors [22]. We set 𝜂 = 3 and the initial design size to 5 which we will see

in Appendix I.2 to be the best choice.

For the base acquisition function in the prior-augmented BO, we used qLogNoisyEI from

BoTorch as it has been proven to significantly outperform ordinary EI implementations [47]. The

NePS package already contains code for the WeightedAcquisition function for 𝜋BO, which we

borrow for PriMO.

C Construction of priors
For the construction of priors, we closely follow the procedure described by Mallik et al. [7]. Our

priors are hyperparameter settings, perturbed by a Gaussian noise with a 𝜎 depending on the prior

quality. In all our experiments we use two kinds of priors for every objective - good and bad priors.

The good priors represent areas of the hyperparameter space where we expect the corresponding

objective to have a value close to its optimum. The bad priors represent inaccurate configurations
which yield poor values for the objective function. The hyperparameter configurations for these

priors are generated using the methods listed below:

• Class "good" priors: To generate good priors, we begin by uniformly sampling 100,000

hyperparameter configurations at random using a fixed global seed for all prior generation

runs. We then evaluate these configurations on the corresponding benchmark at the highest

available fidelity, 𝑧𝑚𝑎𝑥 . Afterwards, we rank the configurations based on the objective values

derived from their evaluations. Since we always aim to minimize each objective, for objectives

intended to be maximized, we take their negative values to find the minimum. The configuration

that yields the best objective value is perturbed by a Gaussian noise with 𝜎 = 0.01. This slight

perturbation reflects a realistic scenario where prior knowledge is good or near-optimal, but

never precisely so.

• Class "bad" priors: Similar to the good prior case, for the bad priors, we sort the configurations

based on the corresponding objective value. From this, we select the configuration with the worst

seen value and do not perturb it any further. This forms our bad prior configuration.

After locating the hyperparameter configurations that constitute these priors, we create a Gaussian

distribution over each, N (𝜆, 𝜎2), where 𝜎 = 0.25 for all priors.

D Baselines
We compare PriMO against a host of prominent MO baselines representing different classes of

optimization algorithms for MO. These include scalarized Bayesian Optimization approaches like

BO with random weights (BO+RW) and ParEGO [20], multi-fidelity optimizers such as HyperBand

with Random Weights (HB+RW) [13] and multi-objective asynchronous successive halving [22]

(MOASHA), and an evolutionary algorithm – NSGA-II [19].

Prior-based baselines (RS + Prior, MOASHA + Prior, 𝜋BO [11], Priorband [7]) are modified

to randomly chose and sample from one of the MO priors at each iteration. We further augment

𝜋BO with random scalarizations and modify Priorband’s ensemble sampling policy using scalarized
incumbents for MO to build MO-Priorband. It is important to note here that for all scalarized

BO algorithms, we set the initial design size to the number of search space dimensions. The

implementation and hyperparameter setting of all baselines used in this paper are individually

detailed below:

Bayesian Optimization with Random Weights (BO+RW). BO with random weights is a popular

MO baseline which converts the MO function into a SO optimization problem. We extend the BO im-

plementation in the NePS [46] package by scalarizing the multivariate objective function 𝑓 with ran-

domly chosenweights for every seed, at the beginning of the optimization process. The initial design
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size of the BO is set to be the same as the dimensionality of the corresponding benchmark’s search

space. The BO implementation in the NePS library uses the q-Log-Noisy Expected Improvement
acquisition function from BoTorch, which has been shown to perform significantly better than

ordinary Expected Improvement implementations ([47]).

ParEGO. Just like BO+RW, ParEGO is another BO baseline with the Chebyshev norm as the

scalarization function. We use the ParEGO implementation from the SMAC3 package and leave

the initial design design size of the BO as the package default (search space dimensions).

NSGA-II. NSGA-II is an EA algorithm which uses non-dominated sorting to identify promising

configurations and crowding-distance sort as a tie-breaker. It is a popular baseline but EAs are quite

sample-inefficient and hence not super practical for DL as a standalone optimization algorithm.

Thus, we use NSGA-II as a representative EA baseline and borrow its implementation from the

Nevergrad package. The parameters of the algorithm are set to the defaults values defined in

Nevergrad.

HyperBand with RandomWeights (HB+RW). HB is a common bandit-based baseline for all MF

benchmarking studies. The NePS package provides an implementation of HB which allows for

continuations, that we modify with random weights in the same way as BO+RW above. For all our

experiments, we set the 𝜂 to 3.

Multi-objective Aynchronous Successive Halving (MOASHA). MOASHA is an infinite horizon

MO optimizer and currently one of the state-of-the-art baselines for multi-objective optimization,

using bandit-based ASHA as the base. Like ASHA, MOASHA can also run very efficiently on

HPO setups with many parallel workers, reducing idle-time. However, even for single worker

setups, MOASHA is able to leverage its asynchronous promotion strategy to achieve competitive

performance [22], and that is what we employ for the experiments in this paper. We implement our

own version of MOASHA in the NePS package using the official code for 𝜖-net from Syne Tune

[48]. Just like HB+RW above, we set 𝜂 = 3 in MOASHA.

𝜋BO with random weights (𝜋BO+RW). 𝜋BO is a SO, blackbox optimization algorithm which

augments the acquisition function with user-specified priors. We use the 𝜋BO implementation

from the NePS package and extend it to MO with random weight just like BO+RW above. For use

with MO priors, we modify 𝜋BO to randomly chose and sample from one of the MO priors at each

iteration. The original 𝜋BO paper [11] uses 𝛾 =
𝛽

𝑛
to denote the power to which the prior PDF

term is raised when multiplied by the values of the acquisition function, where 𝑛 refers to the n-th
iteration and the value of 𝛽 is set to 10. In the NePS package, however, 𝛾 is completely different and

is set to 𝑒−𝑛𝐵𝑂/𝑛𝑑 , where 𝑛𝐵𝑂 refers to the number of BO samples and 𝑛𝑑 indicates the dimensions

of the search space. Like BO+RW, we set the initial design size to 𝑛𝑑 , and sample from a randomly

chosen prior for each of the initial points.

MO-Priorband. Priorband integrates cheap proxies unlike 𝜋BO to achieve good anytime perfor-

mance. It employs an ESP strategy for sampling proportionately from the priors, the incumbent
and at random. We extend Priorband to the MO domain by first replacing the MF component

with an MOMF component. Then, to calculate the top_k configurations, we scalarize the MO

vectors using weights, randomly chosen during each iteration. Additionally, to integrate MO priors,

MO-Priorband chooses one of the available priors at random at each iteration. We note that a

MOASHA base and scalarization-based incumbent modification works better for MO-Priorband,

than a HB base (used in the original Priorband algorithm) and Pareto front incumbent such as 𝜖-net,

respectively. Additionally, we set MO-Priorband’s 𝜂 = 3, just like in MOASHA.
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E Benchmarks

In this paper we use 9 benchmarks from 3 different families representing image classification,

language translation and learning curves for Deep Neural Networks. We chose the synthetic

MOMF-Park benchmark from BoTorch (Balandat et al. [49]), 4 LCBench benchmarks from the

Yahpo-Gym Suite [50] and 4 from the PD1 (HyperBO [51]) set of benchmarks. We use the MOMF-

Park benchmark’s 2 objectives and select the corresponding validation error and cost objectives
from the LCBench and PD1 benchmarks. Therefore, in this section, we study the effect of the prior

combination good-good, the average over bad prior combinations overall-bad (bad-bad and bad-
good), as well as the average over all three of these combinations overall-all. Our main experiments

in Section 4 include the synthetic benchmark - MOMF-Park, and surrogate benchmarks LCBench-

126026, LCBench-146212, LCBench-168330, LCBench-168868 from Yahpo-Gym and cifar-100,

imagenet, translate-wmt-xformer, lm1b-transformer from the PD1 suite.

E.1 Multi-objective Multi-fidelity Park Problem

The single-objective, 4-dimensional Park 1 and Park 2 functions from Park [52] are first individually

modified by Irshad et al. [45] to incorporate a fidelity parameter 𝑠 , allowing for multi-fidelity

evaluations. These are then merged to create an MO problem. The MOMF-Park test problem is

available in BoTorch, which we wrapped using hpoglue to create a benchmark. The individually

modified functions are:

𝑃1(x
′
, 𝑠) = 𝐴(𝑠)

[
𝑇1 +𝑇2 − 𝐵(𝑠)

22

]
− 0.8 , (9)

the modified Park 1 function, where,

𝑇1 = 0.5 [𝑥1 + 0.001(1 − 𝑠)] .
[√︂

1 + (𝑥2 + 𝑥2
3
) 𝑥4
𝑥2
1

]
,

𝑇2 = (𝑥1 + 3𝑥4) exp[1 + sin(𝑥3)] ,

and,

𝑃2(x
′
, 𝑠) = 𝐴(𝑠)

[
5 − 2

3
exp (𝑥1 + 𝑥2) − (𝑥4) sin (𝑥3)𝐴(𝑠) + 𝑥3 − 𝐵(𝑠)

4

]
− 0.7 , (10)

the modified Park 2 function. For both these functions, 𝐴(𝑠) = (0.9 + 0.1𝑠) and 𝐵(𝑠) = 0.1(1 − 𝑠).
In our experiments we indicate the Park 1 function as the objective value1 and Park 2 as value2.

The reference point used for calculating the dominated Hypervolume in our experiments is listed in

Table 2. Although Irshad et al. [45] assume a continuous fidelity space 𝑠 ∈ (0, 1), we use a discrete
space 𝑧 ∈ [1, 100] to ensure numerical stability in bandit-based optimizers like HyperBand with

Random Weights and MOASHA. Table 3 gives a detailed overview of the Hyperparameter space of

the MOMF-Park Benchmark.

Table 2: Reference values for value1 and value2 objectives in the MOMF-Park benchmark, for calcu-

lating the Hypervolume Improvement. Please note that the original MOMF-Park benchmarks

are designed to maximize their objectives. We negate the values in all our optimization runs.

Benchmark Name value1 (max) value2 (max)

MOMFPark 1.0 1.0
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Table 3: Search space of the synthetic multi-objective multi-fidelity Park benchmark, including the

discretized fidelity space z.

Hyperparameter Type Log-scaled Range Space Type Notes

x0 float [0.0, 1.0] continuous

x1 float [0.0, 1.0] continuous

x2 float [0.0, 1.0] continuous

x3 float [0.0, 1.0] continuous

z integer [1, 100] discrete fidelity

E.2 PD1 (HyperBO)

PD1 from HyperBO (Wang et al. [51]) is a collection of XGBoost surrogates trained on the learning

curves of near state-of-the-art DL models on a diverse array of practical downstream DL tasks

including image classification, language modeling and language translation. Overall, PD1 contains

24 benchmarking tasks, with each consisting of a task dataset, a DL model, and a broad search

space for Nesterov Momentum (Nesterov [53]).

From these 24, we select 4 benchmarks from mf-prior-bench (Bergman et al. [54]) providing

a well-rounded representation of DL models and the aforementioned tasks. For each of these

benchmarks, we select the valid_error_rate as the error objective and train_cost as the cost
objective. All of these benchmarks have a single fidelity epoch. We list the static reference points

for calculating the HVI for the PD1 benchmarks in Table 4. The individual benchmarks are further

detailed below:

1. cifar100-wide_resnet-2048 benchmark contains the optimization trace of a WideResnet
(Zagoruyko and Komodakis [55]) model on the CIFAR-100 (Krizhevsky [56]) dataset with a

batch size of 2048. The hyperparameter space of this benchmark is given in Table 5.

2. imagenet-resnet-512 surrogate is trained on the learning curve of a ResNet50 (He et al. [57])
on the ImageNet (Russakovsky et al. [58]) dataset with a batch size of 512. See Table 6 for the

detailed search space of this benchmark.

3. lm1b-transformer-2048 is a surrogate trained on the HPO runs of a transformer model (Roy

et al. [59]) on the One Billion Word statistical language modeling benchmark (Chelba et al. [60]).

Table 7 lists the search space of the benchmark.

4. translatewmt-xformer-64 surrogate is trained on the HPO runs of an xformer (Lefaudeux et al.
[61]) transformer model on the WMT15 German-English text translation dataset (Bojar et al. [62]).

For the detailed search space, see Table 8.

Table 4: Reference values for valid_error_rate and train_cost objectives across PD1 benchmarks

for HVI calculation.

Benchmark Name valid_error_rate (max) train_cost (max)

cifar100-wide_resnet-2048 1.0 30

imagenet-resnet-512 1.0 5000

lm1b-transformer-2048 1.0 1000

translatewmt-xformer-64 1.0 20000

E.3 LCBench surrogate benchmarks (YAHPO-Gym)

Yahpo-Gym (Pfisterer et al. [50]) is a large collection of multi-objective multi-fidelity surrogate

benchmarks trained on a wide array of tasks with fidelities including epochs as well as dataset
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Table 5: Hyperparameter search space table of the cifar-100-wide_resnet-2048 benchmark, includ-

ing the hyperparameter ranges and fidelity bounds of epoch, as given in mf-prior-bench .

Hyperparameter Type Log-scaled Range Space Type Notes

lr_decay_factor float [0.010093, 0.989012] continuous

lr_initial float ✓ [0.000010, 9.779176] continuous

lr_power float [0.100708, 1.999376] continuous

opt_momentum float ✓ [0.000059, 0.998993] continuous

epoch integer [1, 52] discrete fidelity

Table 6: Approximate hyperparameter search space table of the imagenet-resnet-512 benchmark,

including hyperparameter ranges and fidelity bounds of epoch. Exact ranges are provided by

mf-prior-bench .

Hyperparameter Type Log-scaled Range Space Type Notes

lr_decay_factor float [0.010294, 0.989753] continuous

lr_initial float ✓ [1𝑒−5, 9.774312] continuous

lr_power float [0.100225, 1.999326] continuous

opt_momentum float ✓ [5.9𝑒−5, 0.998993] continuous

epoch integer [1, 99] discrete fidelity

Table 7: Hyperparameter search space of the lm1b-transformer-2048 benchmark, with the fidelity

epoch as given in mf-prior-bench .

Hyperparameter Type Log-scaled Range Space Type Notes

lr_decay_factor float [0.010543, 0.9885653] continuous

lr_initial float ✓ [1𝑒−5, 9.986256] continuous

lr_power float [0.100811, 1.999659] continuous

opt_momentum float ✓ [5.9𝑒−5, 0.9989986] continuous

epoch integer [1, 74] discrete fidelity

Table 8: Search space and fidelity epoch of the translatewmt-xformer-64 benchmark, as given in

mf-prior-bench .

Hyperparameter Type Log-scaled Range Space Type Notes

lr_decay_factor float [0.0100221257, 0.988565263] continuous

lr_initial float ✓ [1.00276𝑒−5, 9.8422475735] continuous

lr_power float [0.1004250993, 1.9985927056] continuous

opt_momentum float ✓ [5.86114𝑒−5, 0.9989999746] continuous

epoch integer [1, 19] discrete fidelity

fractions. Yahpo-Gym also contains surrogates for the LCBench (Zimmer et al. [63]) set of bench-

marks that consists of surrogates trained on the learning curves of DL models, on several OpenML

(Vanschoren et al. [64]) datasets. Out of these, we choose 4 task OpenML IDs for the experiments

in this paper – 126026, 146212, 168330 and 168868. The fidelity for these tasks is epoch and we

select the val_cross_entropy and time objectives for our experiments. Table 9 lists the maximum

bounds used as the reference points for calculating the Hypervolume Improvement, for each of the

selected LCBench task IDs. All LCBench benchmarks share a common search space, detailed in

Table 10.
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Table 9: Reference values for val_cross_entropy and time objectives across selected LCBench tasks,

for HVI calculation.

Task ID val_cross_entropy (max) time (max, seconds)

126026 1.0 150

146212 1.0 150

168330 1.0 5000

168868 1.0 200

Table 10: Hyperparameter search space table of the yahpo-lcbench benchmarks. This includes the

hyperparameter ranges and types as typically defined in the YAHPO-Gym benchmark suite.

Hyperparameter Type Log-scaled Range Space Type Notes

batch_size integer ✓ [16, 512] discrete

learning_rate float ✓ [1e−4, 0.1] continuous

momentum float [0.1, 0.99] continuous

weight_decay float [1e−5, 0.1] continuous

num_layers integer [1, 5] discrete

max_units integer ✓ [64, 1024] discrete

max_dropout float [0.0, 1.0] continuous

epoch integer [1, 52] discrete fidelity

F Evaluation protocol and analysis

We report the mean dominated HV along with standard error bars against function evaluations

across 25 seeds, for each HPO algorithm on all benchmarks. The HV is computed with respect to a

static reference point set for each benchmark (Appendix E). Additionally, for every baseline, we

report the Pareto front aggregated across all seeds per benchmark in line with existing literature

[12, 13, 22], with the primary (error) objective on the x-axis and the cost objective along the y-axis.

Each optimizer-benchmark-seed combination was run for 20 equivalent function evaluations. For

blackbox optimizers like BO+RW, NSGA-II and ParEGO, every optimization iteration is equal to

a function evaluation since they evaluate 𝑓 at the maximum fidelity 𝑧𝑚𝑎𝑥 . For optimizers such

as MOASHA, HB+RW and PriMO that use cheap proxies of the objective, we calculate equivalent

function evaluations as 𝑧/𝑧𝑚𝑎𝑥 where 𝑧 is the fidelity at which 𝑓 is evaluated at a given iteration.

We note here that for all MF optimizers, we leveraged continuations and plot the HV only when an

equivalent full function evaluation has been performed, i.e., when the benchmark is evaluated at its

highest fidelity 𝑧𝑚𝑎𝑥 . Further details about the experiment repository, resources and licenses of

packages used in this paper can be found in Appendices K, L and M respectively.

G Additional experiments and discussion

In this section, we present and discuss the performance of PriMO against prominent baselines, to

highlight its novelty and robustness across a variety of benchmarks and multiple seeds, under

various prior conditions. First, we present a naive approach for incorporating multi-objective priors.

We then evaluate the performance of PriMO when integrating good-good priors, and assess its

robustness under misleading prior conditions. In each of these two sections, we compare PriMO
against the strongest non-prior-based MO baselines, including RS, HB+RW, MOASHA, NSGA-II,

ParEGO, and BO+RW. We further engage in a detailed discussion of the study results in both

sections, highlighting the key attributes of PriMO that contribute to its strong performance.

G.1 Naive solution for incorporating multi-objective priors does not work

For single-objective optimization, Mallik et al. [7] provide empirical evidence that the naive approach

of simply augmenting existing algorithms with priors is not the best solution. In Figure 2 we study
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Figure 2: Comparing MOASHA, a good MO baseline against the naive methods for incorporating

expert priors - MOASHA + Prior and RS + Prior. In each iteration, both the prior-augmented

optimizers sample from one of the 2 (randomly selected) MO priors.

the effect of solving Equation (1) using a naive approach for MO. Instead of RS in MOASHA,

configurations are sampled from one of the MO priors chosen randomly at every iteration. As

we would expect, this is not the most robust solution. In the presence of good prior knowledge,

MOASHA + Prior is able to identify good configurations and considerably outperforms the non-

prior MOASHA, but leads to drastically poor performance with misleading priors. Therefore, we

propose PriMO, to benefit from good MO prior beliefs while simultaneously having the ability to

recover from bad priors.

G.2 State-of-the-art performance of PriMO under good priors

Initial observations. . Figure 3 demonstrates that PriMO starts off really strong and by about the 4
th

(equivalent) function evaluation, is already the best performing algorithm across all benchmarks,

based on the mean dominated HV. This is in part due to the novel initial design strategy which

provides a strong head-start even before the BO phase has even begun. For the first few evaluations,

we notice that the performance coincides with that of MOASHA, which is by design expected. From

Figure 3 it is clear that the points sampled by PriMO’s initial design are already better compared to

those sampled randomly for BO+RW. Using these configurations, the BO phase of PriMOmaintains

its strong anytime performance. Here, PriMO is able to effectively utilize the priors, which augment

the acquisition function, and achieve state-of-the-art final performance across all benchmarks.

Closely examining Figure 4 leads to the conclusion that PriMO typically samples non-dominated

configurations, some of which in a few of the benchmarks are only weakly dominated by BO+RW.

Nevertheless, we clearly notice that PriMO provides a better coverage of the overall Pareto front.

Further discussion. PriMO benefits from good-good priors that, after the end of its initial design,

provides an additional boost in its performance. We observe this effect throughout the optimization

run across all benchmarks, where the dominated HV consistently improves. By the final evaluation,

PriMO outperforms all baselines. Designed with the practical DL use case in mind, where most

practitioners operate onmodest budgets, PriMO reduces its dependence on priors after approximately

10 BO samples, governed by our chosen 𝛾 setting (see Section 3).

G.3 Robustness of PriMO under bad prior conditions

Initial observations. We present the results of PriMO under the average of the bad prior combina-

tions - bad-good and bad-bad, denoted as overall-bad.
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Figure 3: Shown here is the comparison in mean dominated Hypervolume with respect to function

evaluations across 25 seeds and 9 benchmarks, between PriMO and some state-of-the-art

non-prior MO baselines - Bayesian Optimization with RandomWeights (BO+RW), MOASHA,

HyperBand with Random Weights (HB+RW), ParEGO, NSGA-II and Random Search. PriMO
is under the good-good prior setting here.

In Figure 5 we see that, with the notable exception of the LCBench-168330 benchmark, PriMO
starts off really strong again. Initially outperformed on a few benchmarks by BO+RW, as the

optimization process continues, we clearly see PriMO’s strong recovery from these inaccurate priors,

resulting in a competitive final performance.

The Pareto front plot in Figure 6 shows that, on average, PriMO is the best algorithm along with

BO+RW as they locate more non-dominated points compared to the rest of the baselines.

Further discussion. We attribute PriMO’s strong recovery under misleading priors to our design of

the decaying MO-prior-weighted acquisition, influenced by two key parameters – 𝛽 and 𝜖 .

The aggressive 𝛽 setting ensures the prior’s influence diminishes rapidly — an important

property for practical DL scenarios where HPO is not expected to be run for long. Additionally,

the parameter 𝜖 in the acquisition function controls how much the prior contributes while it is

still active, thus encouraging exploration of the search space. Together, these two effects ensure

that PriMO does not become overly dependent on the prior and, under inaccurate priors, can still

effectively explore and discover better hyperparameter configurations than its counterparts.
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Figure 4: Shown here are the Pareto fronts obtained by PriMO, compared to other non-prior MO

baselines under good-good prior conditions.

G.4 A note on compute efficiency

PriMO stands out as being extremely compute-efficient, on average, achieving significant performance

gains with minimal HPO evaluations, i.e., with a low compute budget. We see this under good-

good prior conditions in the HV plots across most benchmarks in Figure 3. Given that we set

PriMO’s initial design size to 5, an asynchronous MF optimizer like MOASHA (in a continual setup)

effectively requires only about 3.5 equivalent function evaluations, which on average results in 3

configurations sampled at 𝑧𝑚𝑎𝑥 . Therefore, compared to other BO algorithms whose initial design

size we set to the number of dimensions, PriMO effectively uses fewer max-fidelity configurations to

fit the GP in the BO phase. Despite fewer samples, PriMO already achieves much better performance

in the beginning compared to all baselines, due to the use of its initial design strategy.

In summary, these findings support our claim that PriMO is a robust and general purpose

multi-objective hyperparameter optimization algorithm designed for real-world DL workloads,

fulfilling all the desiderata outlined in Table 1.

H Observed speedups

We ran PriMO against the baselines over a longer budget of 100 evaluations. We notice significant

speedups offered by PriMO across most benchmarks, with the highest being approximately a 15x
speedup on the translate-wmt-xformer benchmark (Figure 7).
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Figure 5: Mean dominated HV across 9 benchmarks, showcasing consistent performance and good

recovery (from bad priors) of PriMO against some common non-prior baselines. PriMO is

under the overall-bad (bad-bad and bad-good) prior combination here.

I Ablations for PriMO

I.1 General ablations

Here, we dive into the various design ablations of PriMO to answer RQ5.

Experiment outline. Here, we consider different design ablations of PriMO under the overall-all
priors average. Specifically, we study how the various parts of PriMO work individually and in

combination with each other. For this, we also include the previously used baselines BO+RW and

𝜋BO+RW which, in a way, can also be considered ablated versions of PriMO. We divide PriMO
into its constituent components, namely – MOMF initial design, Priors and Model (including the

random weights), and label it as such. We denote BO+RW as just Model since it only comprises

the Model + random weights component of PriMO, while 𝜋BO+RW is indicated as Priors + Model.

The vanilla variant of PriMO without Priors is just an MOMF initial design with the final BO phase.

We denote this as MOMF initial design + Model. Finally, the model component is replaced with

Random Search which is designated MOMF initial design + RS.

Observations. Figure 8 presents the rankings of different algorithm designs under good-good,

overall-bad, and overall-all priors. A standalone MOMF initial design with random sampling

performs significantly worse after its initial head start from the MOMF component across most

benchmarks, as expected. Interestingly, we also observe that Priors + Model – i.e. 𝜋BO – performs
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Figure 6: We compare the non-dominated solutions obtained by PriMO and some popular MO baselines.

PriMO is under overall-bad priors and yet showcases its recovery strength by finding the best

Pareto fronts across most benchmarks.
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Figure 7: Shown here is a typical plot of the dominated Hypervolume against function evaluations

on a DL benchmark, demonstrating that PriMO offers speedups of up to ∼15x, compared to

some of the strongest MO baselines that we consider in our study.

notably worse than MOMF initial design + RS under both overall-bad and overall-all priors, and
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Figure 8: Overall relative ranking plots design ablations of PriMO under all prior combinations. Left:
ranking under good-good prior conditions. Middle: relative ranks under overall-bad priors

averaging over bad-bad and bad-good prior conditions. Right: relative ranks under all prior
conditions averaged.

only begins to improve over MOMF initial design + RS in the final evaluations under overall-all

priors. We find that the MOMF initial design gives a substantial early boost to BO, as MOMF +

BO+RW starts much stronger than vanilla BO+RW. This initial advantage tends to persist for a

significant number of evaluations. Overall, while the MOMF initial design provides meaningful

early speedups to BO, it does not sustain strong performance in the long run unless paired with

the full MO priors-augmented BO. These findings, taken together, support our final design choice

for PriMO (RQ5).

I.2 Ablation study for initial design size
Experiment overview. In this appendix, we evaluate how varying the initial design (init) size of

PriMO affects optimization performance. Specifically, we compare PriMOwith init sizes of 5, 7, and 10,
using BO+RW as a baseline across all benchmarks. We include multiple prior combinations—good-

good, overall-bad, and overall-all - to assess how the init size influences PriMO’s performance under

good priors and its ability to recover from poor ones. As expected, a smaller initial design size

leads to a shorter MOASHA phase and a longer BO phase, and vice versa. However, the duration

of prior influence is unaffected by the init size, as it is governed solely by the 𝛾 hyperparameter

which we fix as a design choice. We also tested an init size of 3, but this setting failed to return

any configurations evaluated at 𝑧𝑚𝑎𝑥 in several runs - likely because the shorter MOMF phase

prevented its ASHA base from promoting candidates to the highest fidelity rung.

Results and discussion. Figure 9 (left) compares the different init sizes under good-good priors.

An init size of 5 performs best early on, as it activates the prior-augmented BO phase sooner than

the others. This head start is exploited by the longer BO phase that follows, further improving

relative ranking. Under overall-bad priors (Figure 9) (middle), the differences across init sizes are

less pronounced initially, but init = 5 again emerges as the most robust - showing the strongest

recovery and best final performance. This can be attributed to the longest BO phase, where the

influence of the misleading prior decays sooner, allowing more room for the optimizer to recover.

The relative ranking under the overall-all setting (Figure 9) (right) reflects a similar trend, with init

= 5 clearly achieving the best final relative rank across all benchmarks.

J Significance analysis
In this appendix, we perform statistical significance tests using Linear Mixed Effect Models (LMEMs)

to verify the results obtained in our experiments. Our choice for using LMEMs is supported by
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Figure 9: Overall relative ranking plots comparing PriMO with 3 initial design size choices and a

BO+RW baseline. Left: ranking under good-good prior conditions. Middle: relative ranks
under overall-bad priors averaging over bad-bad and bad-good prior conditions. Right:
relative ranks under all prior conditions averaged.

Riezler and Hagmann [65] who proposed LMEM-based significance testing for Natural Language

Processing tasks. Further, Geburek et al. [66] argued for the usage of LMEM-based significance

analysis for HPO benchmarking.

J.1 Data preparation and sanity checks

To prepare the data for the significance analysis, we computed and used normalized Hypervolume

regret scores, as the scale of HV can vary considerably across benchmarks. After aggregating

the normalized HV regret values at each function evaluation, we conducted sanity checks to

ensure statistical validity. We then performed a post-hoc analysis and used Critical Difference (CD)

diagrams to compare the early and final performance of PriMO against all other algorithms.

Seed independency check. We fitted two LMEMs:

normalized_hv_regret ∼ algorithm , (11)

and,

normalized_hv_regret ∼ (0 + algorithm | seed) , (12)

on the data and performed a Generalized Likelihood Ratio Test (GLRT) to verify that the seed is

not a significant effect.

Benchmark informativeness. Using GLRT, we compared the likelihoods of the LMEMs:

normalized_hv_regret ∼ 1 , (13)

and,

normalized_hv_regret ∼ algorithm , (14)

which confirmed that our benchmarks are informative, as the second model (Equation (14)) was

shown to be significantly better. This further indicates that there are indeed significant differences

between the performance of algorithms across all benchmarks, justifying the use of CD diagrams

for comparison.
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Figure 10: Critical Difference diagrams at 10 evaluations comparing early performance of PriMO
against the baselines – BO+RW, 𝜋BO+RW, MO-Priorband (MO-PB), MOASHA, RS(RS),

ParEGOand NSGA-II, under various prior conditions. Left: CD diagram for good-good prior

conditions. Middle: CD diagram for overall-bad priors. Right: CD diagram for overall-all –

all prior combinations averaged.

J.2 Critical difference diagrams

We perform pairwise Tukey HSD (Tukey [67]) tests using LMEMs to obtain individual p-values for

each comparison. Using this, we plot the CD diagrams.

Here, we consider the statistical differences in the early and final performance between PriMO
and other algorithms. Figure 10 shows CD plots for 10 function evaluations, i.e., halfway through our
entire allocated budget. Figure 10 (left) shows that PriMO is able to efficiently leverage good priors

very early during the optimization, and significantly better than all baselines except 𝜋BO+RW.

Under overall-bad priors, Figure 10 (middle) demonstrates PriMO’s recovery strength and it is

already the best ranked algorithm after 10 evaluations, being significantly better than more than

half of the other algorithms. However, averaging all prior conditions in Figure 10 (right), we observe

a significant difference between PriMO and all other optimizers. PriMO is shown to be the best

ranked algorithm with significantly strong early performance.
In Figure 11, we show the CD diagrams for 20 function evaluations, i.e., at the end of our

optimization budget. As observed in our relative ranking plots before, there is negligible critical

difference between PriMO and 𝜋BO+RW under good-good priors, while both are significantly better

than other algorithms (Figure 11 left). Figure 11 (middle) verifies the final performance of PriMO
under overall-bad priors, highlighting a strong recovery, where, with the notable exception of

BO+RW, PriMO is shown to be significantly better than all baselines. Finally, under overall-all prior

conditions in Figure 11 (right), PriMO is clearly shown to be the algorithm with the highest rank,

indicating the strongest final performance. Thus, Figures 10 and 11 confirm our relative ranking

plots and statistically verify PriMO’s state-of-the-art performance, proving that overall, PriMO is
significantly better than all other algorithms used in our study.

K Code repository

The Python code for generating the priors and running the experiments presented in this paper is

publicly available in the GitHub repository: mo_mf_priors. This repository also contains the code

used to generate all plots, along with a comprehensive README.md file that provides reproducibility
guidelines, explains the output data structure, and outlines the steps required to run all baselines

on the benchmarks used in this work. The priors over the objectives for the various benchmarks

are also included. Additionally, the raw results from the all optimization runs of PriMO used in this

paper are hosted at this URL.
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Figure 11: CD diagrams at 20 evaluations comparing final performance of PriMO against other non-
prior and prior-guided (adapted to MO) baselines, under various prior conditions. Left: CD
diagram for good-good prior conditions. Middle: CD diagram for overall-bad priors. Right:
CD diagram for overall-all – all prior combinations averaged.

L Resources used
We ran all the algorithms in this paper on inexpensive surrogate and synthetic benchmarks. To

perform all our experiments, we only used a CPU compute cluster and 30 cores of Intel(R) Xeon(R)

Gold 6242 CPU @ 2.80GHz. For runs up to 20 function evaluations, each seed of an HPO algorithm

on a single benchmark took approximately 0.02 CPU hours, or 0.6 core hours on average. While

MF optimizers such as MOASHA and HB+RW completed in just a few seconds (∼0.15 core hours),
model-based baselines such as BO+RW and 𝜋BO+RW required significantly longer on average –

typically over 5 minutes (∼2.5 core hours).
For the main experiments in Section 4, we ran 9 optimizers in total – 6 non-prior and 3

prior-based, including PriMO. Each prior-based optimizer was evaluated under 3 different prior

combinations. Each run lasted 20 evaluations and we evaluated each optimizer on 9 benchmarks

across 25 seeds. In total, this amounted to ∼67.5 CPU hours, or ∼2025 core hours to generate the

results presented in Section 4.

M Licenses
• Experiments repository mo_mf_priors: BSD 3-Clause License

• NePS package (including our algorithm implementation): Apache License, Version 2.0

• hpoglue: BSD 3-Clause License

• mf-prior-bench: Apache License, Version 2.0

• Yahpo-Gym : Apache License, Version 2.0

• HyperBO PD1: Apache License, Version 2.0

• BoTorch: MIT License

• Nevergrad: MIT License

• SMAC: BSD 3-Clause License

• Syne Tune (code for 𝜖-net): Apache License, Version 2.0

• lmem-significance: MIT License
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