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Abstract

This study investigates the experimental design problem for identifying the arm with the
highest expected outcome, referred to as best arm identification (BAI). In our experiments,
the number of treatment-allocation rounds is fixed. During each round, a decision-maker
allocates an arm and observes a corresponding outcome, which follows a Gaussian distri-
bution with variances that can differ among the arms. At the end of the experiment, the
decision-maker recommends one of the arms as an estimate of the best arm. To design an
experiment, we first discuss lower bounds for the probability of misidentification. Our anal-
ysis highlights that the available information on the outcome distribution, such as means
(expected outcomes), variances, and the choice of the best arm, significantly influences the
lower bounds. Because available information is limited in actual experiments, we develop
a lower bound that is valid under the unknown means and the unknown choice of the
best arm, which are referred to as the worst-case lower bound. We demonstrate that the
worst-case lower bound depends solely on the variances of the outcomes. Then, under the
assumption that the variances are known, we propose the Generalized-Neyman-Allocation
(GNA)-empirical-best-arm (EBA) strategy, an extension of the Neyman allocation proposed
by Neyman (1934). We show that the GNA-EBA strategy is asymptotically optimal in the
sense that its probability of misidentification aligns with the lower bounds as the sample
size increases infinitely and the differences between the expected outcomes of the best and
other suboptimal arms converge to the same values across arms. We refer to such strategies
as asymptotically worst-case optimal.

1 Introduction

Experimental design is crucial in decision-making (Fisher, 1935; Robbins, 1952). This study investigates
scenarios involving multiple arms1, such as online advertisements, slot machine arms, diverse therapeutic
strategies, and assorted unemployment assistance programs. The objective of an experiment is to iden-
tify the arm that yields the highest expected outcome (the best arm), while minimizing the probability of
misidentification. This problem has been examined in various research areas under a range of names, in-
cluding best arm identification (BAI, Audibert et al., 2010), ordinal optimization (Ho et al., 1992)2, optimal
budget allocation (Chen et al., 2000), and policy choice (Kasy & Sautmann, 2021). We mainly follow the
terminologies in BAI. BAI has two formulations: fixed-budget and fixed-confidence BAI; this study focuses
on the fixed-budget BAI3.

1The term ’arm’ is used in the bandit literature (Lattimore & Szepesvári, 2020). There are various names for this concept,
including ’treatment arms’ (Nair, 2019; Athey & Imbens, 2017), ’policies’ (Kasy & Sautmann, 2021), ’treatments’ (Hahn et al.,
2011), ’designs’ (Chen et al., 2000), ’populations’ (Glynn & Juneja, 2004), and ’alternatives’ (Shin et al., 2018).

2Ordinal optimization often considers non-adaptive experiments, and BAI primarily addresses adaptive experiments. How-
ever, there are also studies on adaptive experiments in ordinal optimization and non-adaptive experiments in BAI.

3The fixed-confidence BAI formulation resembles sequential testing, where a sample size is a random stopping time.
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2 Problem Setting

We consider a decision-maker who conducts an experiment with a fixed number of rounds T , referred to as
a sample size or a budget, and a fixed set of arms [K] := 1, 2, . . . , K. In each round t ∈ [T ] := 1, 2, . . . , T ,
the decision-maker allocates arm At ∈ [K] to an experimental unit and immediately observes outcome Yt

linked to the allocated arm At. The decision-maker’s goal is to identify the arm with the highest expected
outcome, minimizing the probability of misidentification at the end of the experiment.

Potential outcomes. To describe the data-generating process, we introduce potential outcomes following
the Neyman-Rubin model (Neyman, 1923; Rubin, 1974). Let P be a joint distribution of K-potential
outcomes (Y 1, Y 2, . . . , Y K). Let PP and EP be the probability and expectation under P , respectively, and
let µa(P ) = EP [Y a] be the expected outcome. Let a∗(P ) := arg maxa∈[K] µa(P ) be the best arm under P ,
and P be the set of all possible joint distributions such that a∗(P ) is unique for all P ∈ P. This study
focuses on an instance P ∈ P where (Y 1, Y 2, . . . , Y K) follows a multivariate Gaussian distribution with a
unique best arm a∗(P ) ∈ [K], defined as

PG(a∗, ∆, ∆) :=

{
P ∈ P | ∀a ∈ [K] Y a ∼ N

(
µa, (σa)

2
)
)

,

∀a ∈ [K] µa ∈ R
K , ∀a ∈ [K] µa (σa)

2 ∈ [C, C]K , ∀a ∈ [K]\{a∗} ∆ ≤ µa∗ − µa ≤ ∆

}
,

where N (µ, v) is a Gaussian distribution with a mean (expected outcome) µ ∈ R and a variance v > 0, ∆ and
∆ are constants independent of T such that they are lower and upper bounds for a gap µa∗ −maxa∈[K]\{a∗} µa

(0 < ∆ ≤ ∆ < ∞ holds), and C and C are unknown universal constants such that 0 < C < C < ∞. Note

that C and C are just introduced for a technical purpose to assume that (σa)
2

is bounded, and we do not
use them in designing algorithms. We refer to PG(a∗, ∆, ∆) as a Gaussian bandit model 4

Experiment. Let P0 ∈ PG(a∗, ∆, ∆) be an instance of bandit models that generates potential outcomes
in an experiment, which is decided in advance of the experiment, and fixed throughout the experiment. The
decision-maker knows the true values of the variances ((σa)2)a∈[K] but does not know a∗ and (µa)a∈[K].
We use P0 when emphasizing the dependency on the data-generating process (DGP). An outcome in round
t ∈ [T ] is Yt =

∑
a∈[K] 1[At = a]Y a

t , where Y a
t ∈ R is a potential independent outcome (random variable),

and (Y 1
t , Y 2

t , . . . , Y K
t ) be an independent (i.i.d.) copy of (Y 1, Y 2, . . . , Y K) at round t ∈ [T ] under P0. Then,

we consider an experiment with the following procedure of a decision-maker at each round t ∈ [T ]:

1. A potential outcome (Y 1
t , Y 2

t , . . . , Y K
t ) is drawn from P0.

2. The decision-maker allocates an arm At ∈ A based on past observations {(Ys, As)}t−1
s=1.

3. The decision-maker observes a corresponding outcome Yt =
∑

a∈A 1[At = a]Y a
t

At the end of the experiment, the decision-maker estimates a∗(P0), denoted by âT ∈ [K]. Here, an outcome
in round t ∈ [T ] is Yt =

∑
a∈[K] 1[At = a]Y a

t .

Probability of misidentification. Our goal is to minimize the probability of misidentification, defined as

PP (âT 6= a∗(P )).

To evaluate the exponential convergence of PP (âT 6= a∗(P )) for any P , we employ the following measure,
called the complexity:

− 1

T
logPP (âT 6= a∗(P )).

4Kaufmann et al. (2016) considers a Gaussian bandit model P :=

{
PG(a∗, ∆, ∆) ⊂ P | ∀a∗ ∈ [K]

}
. In this study, we

explicitly define the existence of universal constants C, C, ∆, and ∆. Although Kaufmann et al. (2016) omits them, their
results do not hold without such constants; that is, boundedness of the means and variances are essentially required. For
example, if variances are zero or infinity, their lower bounds become infinity or zero. Additionally, under such cases, their
proposed strategy (α-Elimination) becomes ill-defined, since their allocation rule cannot be defined well.
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The complexity − 1
T

logPP (âT 6= a∗) has beeen widely employed in the literature on ordinal optimization
and BAI (Glynn & Juneja, 2004; Kaufmann et al., 2016). In hypothesis testing, Bahadur (1960) suggests
the use of a similar measure to assess performances of methods in hypothesis testing. Also see Section A.3.

Strategy. We define a strategy of a decision-maker as a pair of ((At)t∈[K], âT ), where (At)t∈[K] is the alloca-
tion rule, and âT is the recommendation rule. Formally, with the sigma-algebras Ft = σ(A1, Y1, . . . , At, Yt),
a strategy is a pair ((At)t∈[T ], âT ), where

• (At)t∈[T ] is an allocation rule, which is Ft−1-measurable and allocates an arm At ∈ [K] in each round t
using observations up to round t − 1.

• âT is a recommendation rule, which is an FT -measurable estimator of the best arm a∗ using observations
up to round T .

We denote a strategy by π. We also denote At and âT by Aπ
t and âπ

T when we emphasize that At and âT

depend on π. Let Π be the set of all possible strategies.

This definition of strategies allows us to design adaptive experiments where we can decide At using past
observations. In this study, although we develop lower bounds that work for both adaptive and non-adaptive
experiments,5 our proposed strategy is non-adaptive; that is, At is decided without using observations ob-
tained in an experiment. As we show later, our lower bounds depend only on variances of potential outcomes.
By assuming that the variances are known, we design a non-adaptive strategy that is asymptotically op-
timal in the sense that its probability of misidentification aligns with the lower bounds. If the variances
are unknown, we may consider estimating them during an experiment and using Ft−1-measurable variance
estimators at each round t. However, it is unknown whether an optimal strategy exists when we estimate
variances during an experiment. We leave it as an open issue (Section 8).

Notation. When emphasizing the dependency of the best arm on P , we denote it by a∗(P ) :=
arg maxa∈[K] µa(P ). Let ∆a(P ) := µa∗(P )(P ) − µa(P ). For P ∈ P, let P a be a distribution of a reward of
arm a ∈ [K].

3 Open questions about Optimal Strategies in Fixed-Budget BAI

The existence of optimal strategies in fixed-budget BAI has been a longstanding issue, which is related to
tight lower bounds and corresponding optimal strategies.

3.1 Conjectures about Information-theoretic Lower Bounds

To discuss tight lower bounds, we consider restricting a class of strategies. Following the existing studies
such as Kaufmann et al. (2016), we focus on consistent strategies that recommend the true best arm with
probability one as T → ∞.

Definition 3.1 (Consistent strategy). We say that a strategy π is consistent if PP0
(âπ

T = a∗(P0)) → 1 as
T → ∞ for any DGP P0 ∈ P. We denote the class of all possible consistent strategies by Πcons.

Kaufmann et al. (2016) discusses lower bounds for both fixed-budget and fixed-confidence BAI and
presents lower bounds for two-armed Gaussian bandits in fixed-budget BAI. Based on their arguments,
Garivier & Kaufmann (2016) presents a lower bound and optimal strategy for fixed-confidence BAI. They
also conjecture a lower bound for fixed-budget BAI as − 1

T
logPP (âT 6= a∗(P )) ≤ maxw∈W Γ∗(P, w) for all

5Non-adaptive experiments are also referred to as static experiments. The difference between adaptive and non-adaptive
experiments is the dependency on the past observations. In non-adaptive experiments, we first fix {At}t∈[T ] at the beginning of

an experiment and do not change it. Both in adaptive and non-adaptive experiments, âT depends on observations {(At, Yt)}T

t=1.

3



Under review as submission to TMLR

Table 1: Comparison of lower and upper bounds. Among several metrics for fixed-budget BAI, we com-
pare our proposed the worst-case metric mina∗∈[K] inf

P ∈PG(a∗,∆,∆)
lim supT →∞ − 1

T
logPP (âπ

T 6= a∗) with

− 1
T

logPP (âT 6= a∗), infP ∈P H(P ) lim infT →∞ − 1
T

logPP (âT 6= a∗) (minimax), and (Bayes). In the table,
the “Bounded models” denotes the set of distributions with bounded mean parameters, and the “Bernoulli
models” denotes the set of Bernoulli distributions. The “General models” denotes a set of general distribu-
tions, and we omit the detailed definitions (see each study). In all cases, we consider bandit models in which
only mean parameters vary, including Gaussian models with fixed variances. We use the following quanti-

ties: Γ∗(P, w) := mina∈[K]\{a∗(P )} infµa<va<µa∗(P )

{
w(a∗(P ))K̃L

(
va, µa∗(P )(P )

)
+ w(a)K̃L

(
va, µa(P )

)}
and

Λ∗(P, w, H) := infµa<va<µa∗(P ) H(P )
∑

a∈[K] w(a)K̃L
(
va, µa(P )

)
, where K̃L denotes the KL divergence be-

tween two distributions whose means are (µ)a∈[K] and (µa(P ))a∈[K] and H(P ) denotes some quantity that
represents the difficulty of the problems. The definition of H(P ) differs among existing studies.

Lower and upper Bounds Multi-arm
Strategy class Bandit model P

Lower bound Upper bound (K ≥ 3)
(Upper bound of ) (Lower bound of )

Metric − 1
T

logPP (âT 6= a∗(P )).

Glynn & Juneja (2004) - maxw∈W Γ∗(P0, w) X -
General models

(Full information)

Kaufmann et al. (2016)

(
µ1−µ2

)2

2(σ1+σ2)2

(
µ1−µ2

)2

2(σ1+σ2)2 K = 2 Cons. General models

Garivier & Kaufmann (2016)
maxw∈W Γ∗(P, w) - N/A N/A -

(Conjecture)

Carpentier & Locatelli (2016) CCarpentier

(
1

log(K)H

)
DCarpentier

(
1

log(K)H2

)
X Any Bounded models

(Non-asymptotic) CCarpentier 6= DCarpentier are universal constants.

Ariu et al. (2021) ∃P ∈ P, C
log(K) maxw∈W Γ∗(P, w) - X Any Bernoulli bandits

Degenne (2023)
maxw∈W , Γ(P0, w)

maxw∈W Γ∗(P0, w)
X Inv. (& Cons.) General models

(Theorem 1) (under the full information)

Wang et al. (2023)
∀P ∈ P, Γ∗(P, wUni)

Γ∗(P, wUni) K = 2 Cons. & Stable Bernoulli
wUni = (1/2, 1/2)

Metric infP ∈P H(P ) lim infT →∞ − 1
T

logPP (âT 6= a∗(P )).
Komiyama et al. (2021) supw∈W infP ∈P Λ∗(P, w, H) Theorem 5 in Komiyama et al. (2022) X Any Bounded

Degenne (2023)
infP ∈P maxw∈W Λ∗(P, w, H) Theorem 5 in Degenne (2023) X Cons. General models

(Theorem 3)

3
80 log(K) - X Any

Gaussian models
with σa = 1 for all a ∈ [K]

Metric infP ∈P) lim supT →∞ − 1
T

logPP (âπ
T 6= a∗(P )).

Ours
maxw∈W mina∗∈[K]

∆
2

2Ωa∗,a(w)
maxw∈W mina∗∈[K]

∆2

2Ωa∗,a(w)
X Cons.

Gaussian models

The lower and upper bound matches as ∆ − ∆ → 0. with known variances

P ∈ P̃ for some well-defined bandit models P,67 where

Γ∗(P, w) := min
a∈[K]\{a∗(P )}

inf
µa<va<µa∗(P )

{
w(a∗(P ))K̃L

(
va, µa∗(P )(P )

)
+ w(a)K̃L

(
va, µa(P )

)}
, (1)

where K̃L denotes the KL divergence between two distributions parameterized by mean parameters, and W
is the probablity simplex defined as

W =



w : [K] → (0, 1) |

∑

a∈[K]

w(a) = 1



 .

This conjectured lower bound is a straightforward extension of the basic tool developed by Kaufmann et al.
(2016) and an analogy of the lower bound for fixed-confidence BAI shown by Garivier & Kaufmann (2016).
However, while a lower bound for two-armed Gaussian bandits is derived for any consistent strategies, this
lower bound cannot be derived only under the restriction of any consistent strategies. Summarizing these
early discussions, Kaufmann (2020) clarifies the problem and points out that there exists the reverse KL
divergence problem, which makes the derivation of the lower bound difficult.

6In a more rigorous analysis, we should use supw∈W Γ∗(P, w) and then discuss the existence of the maximum. However, for
simplicity, we use maxw∈W Γ∗(P, w) in literature review.

7Note that lower bounds (resp. upper bounds) for PP (̂aπ

T
6= a∗) corresponds to upper bounds (resp. lower bounds) for

− 1
T

log PP (̂aπ

T
6= a∗).
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3.2 Impossibility Theorem

Following these studies, the existence of optimal strategies is discussed by Kasy & Sautmann (2021) and
Ariu et al. (2021). Ariu et al. (2021) proves that there exists a distribution P under which a lower bound is
larger than the conjectured lower bound maxw∈W Γ∗(P, w) by showing that for any strategies,

∃P ∈ P, − 1

T
logPP (âT 6= a∗(P )) ≤ 800

log(K)
sup

w∈W
Γ∗(P, w),

where 800
log(K) supw∈W Γ∗(P, w) ≤ supw∈W Γ∗(P, w) holds when K is sufficiently large. Qin (2022) summarizes

these arguments as an open question.

3.3 Worst-case Optimal Strategies with the Problem Difficulty

Komiyama et al. (2022) tackles this problem by considering the minimax evaluation of
lim supT →∞ − 1

T
logPP (âπ

T 6= a∗(P )), defined as

inf
P ∈P

H(P ) lim inf
T →∞

− 1

T
logPP (âT 6= a∗),

where H(P ) represents the difficulty of the problem P . See Komiyama et al. (2022) for a more detailed
definition. This approach allows us to avoid the reverse KL problem in the lower bound derivation.

Degenne (2023) explores the open question and shows that for any consistent strategies, a lower bound is

given as infP ∈P H(P ) lim infT →∞ − 1
T

logPP (âT 6= a∗) ≤ maxw∈W Λ∗(P, w, H) for any P ∈ P̃, where

Λ∗(P, w, H) := inf
µa<va<µa∗(P )

H(P )
∑

a∈[K]

w(a)K̃L
(
va, µa(P )

)
.

Note that Degenne (2023)’s lower bound is tighter than Komiyama et al. (2022)’s.

3.4 Asymptotically Invariant (Static) Strategies

A candidate of an optimal strategy is the one proposed by Glynn & Juneja (2004), which is feasible only when
we know the full information about the DPG P0. Although their upper bound aligns with the conjectured
lower bound maxw∈W Γ∗(P, w), it does not match the lower bounds by Ariu et al. (2021) and Degenne (2023)
for any consistent strategies. One of the reason for this difference is the knowledge about the DGP P0; if we
do not have the full information and need to estimate it, the upper bound does not match maxw∈W Γ∗(P, w)
for the estimation error about the information.

To fill this gap between the lower and upper bounds, we and Degenne (2023) consider restricting the strategy
class to asymptotically invariant (static) strategies, in addition to consistent strategies. For an instance
P ∈ P and a strategy π ∈ Π, let us define an average sample allocation ratio κπ

T,P : [K] → (0, 1) as

κπ
T,P (a) := EP

[
1
T

∑T

t=1 1[Aπ
t = a]

]
, which satisfies

∑
a∈[K] κπ

T,P (a) = 1. This quantity represents the average

sample allocation to each arm a over a distribution P ∈ PG(a∗, ∆, ∆) under a strategy π. Then, we define
asymptotically invariant strategies as follows.8

Definition 3.2 (Asymptotically invariant strategy). A strategy π is called asymptotically invariant if there
exists wπ ∈ W such that for any DGP P0 ∈ P, and all a ∈ [K],

κπ
T,P0

(a) = wπ(a) + o(1) (2)

holds as T → ∞. We denote the class of all possible consistent strategies by Πinv.

8Note that Degenne (2023) independently considers a similar class of strategies and refers to them as static strategies.
Degenne (2023) considers strategies that are completely independent of the DGP P0, while we consider strategies that are
asymptotically independent of P0. This is because we aim to include strategies that estimate the variance from P0 under a
bandit model with fixed variances. Therefore, we keep our terminology.
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Asymptotically invariant strategies allocate arms with the proportion wπ under any distribution P ∈
PG(a∗, ∆, ∆) as T approaches infinity (see Definition 3.2); that is, the strategies does not depend on the
DGP P0 asymptotically.

Degenne (2023) shows that any consistent and asymptotically invariant strategies π satisfy

∀P ∈ P̃, − 1

T
logPP (âπ

T 6= a∗) ≤ max
w∈W

, Γ(P, w),

where P̃ ⊂ P is a well-defined general bandit models, while any strategies π satisfy

∃P ∈ PG
σ=1, − 1

T
logPP (âπ

T 6= a∗) ≤ 80

3 log(K)
max
w∈W

, Γ(P, w),

where PG
σ=1 :=

{
PG(a∗, ∆, ∆) ⊂ P | ∀a∗ ∈ [K], ∀a ∈ [K] σa = 1

}
.

Note that although the lower bound is given as maxw∈W , Γ(P, w), the allocation should be constructed
to be independent of P0 due to the definition of asymptotically invariant strategies. We can still define
the allocation as w∗ = arg maxw∈W , Γ(P0, w) for the DGP instance P0. However, we can construct w∗,
depending on P0. In this sense, the meaning of a strategy implied from the lower bound of Degenne (2023)
will be significantly different from the strategy by Glynn & Juneja (2004), although they look similar.

This result implies that for any strategies π and the problem difficulty defined as H(P ) =(
maxw∈W , Γ(P, w)

)−1

,

inf
P ∈P

H(P ) lim inf
T →∞

− 1

T
logPP (âπ

T 6= a∗) < 1,

holds; that is, maxw∈W , Γ(P, w) is unattainable unless we assume the access to the full information about
the DGP P0.

3.5 Open Questions

We list the open questions raised in Kaufmann et al. (2016), Garivier & Kaufmann (2016), Kaufmann (2020),
Kasy & Sautmann (2021), Ariu et al. (2021), Qin (2022), Degenne (2023), and Wang et al. (2023). We also
summarize related arguments below to clarify what has been elucidated and what remains unelucidated.9

Open question 1. Does there exist a desirable strategy class Π̃ and a well-defined function Γ̃∗ : P → R

that satisfy the following?: any strategy π ∈ Π̃ satisfies

∀P ∈ P, lim inf
T →∞

− 1

T
logPP (âπ

T 6= a∗(P )) ≤ Γ̃(P ),

and there is a strategy π ∈ Π̃ whose probability of misidentification satisfies

∀P ∈ P, lim inf
T →∞

− 1

T
logPP (âπ

T 6= a∗(P )) ≥ Γ̃(P ).

There are several impossibility theorems for this open question, as follows:

• Ariu et al. (2021) shows that for any strategies π ∈ Π, ∃P ∈ P, − 1
T

logPP (âT 6= a∗) ≤
800

log(K) supw∈W Γ∗(P, w).

• Degenne (2023) shows that for any strategies π ∈ Π, ∃P ∈ PG
σ=1, − 1

T
logPP (âT 6= a∗) ≤

80
3 log(K) maxw∈W , Γ(P, w). Note that maxw∈W , Γ(P, w) ≤ Γ∗(P, w) holds when K is sufficiently

large, and Degenne (2023)’s lower bound is tighter than Ariu et al. (2021)’s lower bound.

9Degenne (2023) also raises another open question in his Section 4, which focuses on Bernoulli bandits. Because this study
focuses on Gaussian bandits, we omit introducing the open question.
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Here, Γ∗(P, w) corresponds to an upper bound of the strategy proposed by Glynn & Juneja (2004) and a
lower bound of consistent strategies shown by Kaufmann et al. (2016). Note that Glynn & Juneja (2004)
requires full information about bandit models, including the mean parameters. They show that there is an
instance P ∈ P such that its lower bound is larger than maxw∈W Γ∗(P, w).

Open question 2. Does there exist a strategy other than the uniform allocation that performs no worse
than the uniform allocation for all P ∈ P?

A next open question is whether there is a strategy whose probability of misidentification is smaller than
those using uniform allocation (allocating arms with equal sample sizes; that is, κπ

T,P = 1/K for all a ∈ [K]
and any P ∈ P). For consistent strategies, Kaufmann et al. (2016) notes that a strategy using the uniform
allocation is nearly optimal when outcomes follow two-armed Bernoulli bandits. Furthermore, they show that
a strategy allocating arms in proportion to the standard deviations of outcomes is asymptotically optimal in
two-armed Gaussian bandits if the standard deviations are known. Such a strategy, known as the Neyman
allocation, is conjectured or shown to be optimal in various senses under Gaussian bandits (Neyman, 1934;
Hahn et al., 2011; Glynn & Juneja, 2004; Kaufmann et al., 2016; Adusumilli, 2022).

Open question 3. Does there exist a strategy that strictly outperform the asymptotically invariant strategy?

Lastly, we introduce an open question about the asymptotically invariant strategy. The open question is
whether a strategy that outperforms the asymptotically invariant strategy exists. This problem is raised
by existing studies such as Degenne (2023) and Wang et al. (2023). From its definition, the asymptotically
invariant strategy cannot depend on P . Therefore, as we point out in Sections 5.2 and 5.3, such a strategy
would be the uniform allocation or depend on some parameters invariant across P . Specifically, in Sections 5.2
and 5.3, we find that the best arm itself should be known in advance of an experiment. Degenne (2023) uses
such a strategy as a baseline and compares feasible strategies to it. As a result, Degenne (2023) shows that
there exists P under which the probability of misidentification of any strategies cannot align with the lower
bound.

4 Main Results: Worst-Case Optimal Fixed-Budget BAI with Matching Constants

This section provides our main results. In fixed-budget BAI, the following problems have not been fully
explored:

• Ariu et al. (2021) and Degenne (2023) show that there exists P such that a lower bound is larger than
maxw∈W , Γ(P, w). However, there is still possibility that for well-chosen P, for any consistent strategy,
there exist matching lower and upper bounds related to maxw∈W Γ∗(P, w) (Open questions 1).

• Degenne (2023) discusses the problem difficulty by using a lower bound for static (asymptotically invari-
ant) strategies. However, it is unclear what strategy we obtain from the lower bound maxw∈W , Γ(P, w),
which seems to be the same as Glynn & Juneja (2004) but cannot depend on the DGP P0. Is it different
from the uniform allocation strategy or the Neyman allocation (Open question 2)?

• Does there exist a strategy that returns a smaller probability of misidentification compared to asymptot-
ically invariant strategies with distributional information (Open questions 2 and 3).

This study tackles these problems by providing the following results:

1. A tight worst-case lower bound for multi-armed Gaussian bandits under restricted bandit models.

2. An asymptotically optimal strategy whose upper bound aligns with the lower bound as the budget ap-
proaches infinity and the difference between ∆ and ∆ approaches zero.

In this section, we first show the lower bound in Section 4.1. Then, based on the lower bound, we develop a
non-adaptive strategy in

7
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Algorithm 1 GNA-EBA strategy

Parameter: Fixed budget T .
Allocation rule: generalized Neyman allocation.

Allocate At = 1 if t ≤
⌈
wGNA(1)T

⌉
and At = a if

⌈∑a−1
b=1 wGNA(b)T

⌉
< t ≤

⌈∑a
b=1 wGNA(b)T

⌉
for

a ∈ [K]\{1}.
Recommendation rule: empirical best arm.
Recommend âEBA

T following equation 3.

4.1 Worst-case Lower Bound

In Section 5, we derive lower bounds for strategies based on available information. Specifically, we focus
on how the available information affects lower bounds and the existence of strategies whose probability of
misidentification aligns with these lower bounds. We find that lower bounds depend significantly on the
amount of information available regarding the distribution of rewards for arms prior to the experiment.

From the information theory, we can relate the lower bounds to the Kullback–Leibler (KL) divergence
KL(Qa, P a

0 ) between the DGP P0 ∈ P and an alternative hypothesis Q ∈ ∪b 6=a∗P(b, ∆, ∆) (Lai & Robbins,
1985; Kaufmann et al., 2016). From the lower bounds, we can compute an ideal expected number of times
arms are allocated to each experimental unit; that is, κπ

T,P0
. When the lower bounds are linked to the KL di-

vergence, the corresponding ideal sample allocation rule also depends on the KL divergence (Glynn & Juneja,
2004).

If we know the distributions of arms’ outcomes completely, we can compute the KL divergence, which allows
us to design a strategy whose probability of misidentification matches the lower bounds of Kaufmann et al.
(2016) as T → ∞ (Glynn & Juneja, 2004; Chen et al., 2000; Gärtner, 1977; Ellis, 1984). However, the full
information requires us to know which arm is the best arm, and without the knowledge, the strategy is
infeasible. Since optimal strategies are characterized by distributional information, the lack of full infor-
mation hinders us from designing asymptotically optimal strategies. Therefore, we reflect the limitation by
considering the worst cases regarding the mean parameters and the choice of the best arm. Specifically, we
consider the worst-case lower bound defined as

inf
P ∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP (âπ

T 6= a∗(P )).

While the lower bounds with full information are characterized by the KL divergence (Lai & Robbins, 1985;
Kaufmann et al., 2016), the worst-case lower bounds are characterized by the variances of potential outcomes.
Hence, knowledge of at least the variances is sufficient to design worst-case optimal strategies.

Then, the following theorem provides a worst-case lower bound. The proof is shown in Appendix D.

Theorem 4.1 (Best-arm-worst-case lower bound). For any 0 < ∆ ≤ ∆ < ∞, any consistent (Definition 3.1)
strategy π ∈ Πcons ∩ Πinv satisfies

inf
P ∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP (âπ

T 6= a∗) ≤ LowerBound(∆) := max
w∈W

min
a∗∈[K]

∆
2

2Ωa∗,a(w)
,

where Ωa∗,a(w) =

(
σa∗
)2

w(a∗) +

(
σa
)2

w(a) .

Additionally, in Section 5.6, we discuss that a lower bound for any consistent strategies is the same as that
for any consistent and asymptotically invariant strategies when we consider the worst-case lower bound
characterized by ∆.

4.2 The GNA-EBA Strategy

Based on the lower bounds, we design a strategy and show that its probability of misidentification aligns
with the lower bounds. In the experimental design, we assume that the variances of outcomes are known.

8
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Then, we propose the Generalized-Neyman-Allocation (GNA)-empirical-best-arm (EBA) strategy, which can
be interpreted as a generalization of the Neyman allocation proposed by Neyman (1934). The pseudo-code
is shown in Algorithm 1.

Allocation rule: Generalized Neyman Allocation (GNA). First, we define a target allocation ratio,
which is used to determine our allocation rule, as follows:

wGNA = arg max
w∈W

min
a∗∈[K],a∈[K]\{a∗}

1

2Ωa∗,a(w)
,

which is identical to that in equation 6. Then, we allocate arms to experimental units as follows:

At =





1 if t ≤
⌈
wGNA(1)T

⌉

2 if
⌈
wGNA(1)T

⌉
< t ≤

⌈∑2
b=1 wGNA(b)T

⌉

...

K if
⌈∑K−1

b=1 wGNA(b)T
⌉

< t ≤ T

.

Recommendation rule: Empirical Best Arm (EBA). After the final round T , we recommend âT ∈
[K], an estimate of the best arm, defined as

âEBA
T = arg max

a∈[K]

µ̂a
T , µ̂a

T =
1

⌈wGNA(a)T ⌉
T∑

t=1

1[At = a]Yt. (3)

Our strategy generalizes the Neyman allocation because for wGNA in the GNA allocation rule, wGNA =(
σ1

σ1+σ2 , σ2

σ1+σ2

)
when K = 2, which is a target allocation ratio of the Neyman allocation. The EBA

recommendation rule is one of the typical recommendation rules and used in other strategies in fixed-budget
BAI, such as the Uniform-EBA strategy (Bubeck et al., 2009; 2011).

4.3 Probability of Misidentification of the GNA-EBA strategy

This section shows an upper bound for the probability of misidentification of the GNA-EBA strategy. The
proof is shown in Appendix E.

Theorem 4.2 (Upper Bound of the GNA-EBA strategy). For any 0 < ∆ ≤ ∆ < ∞, any a∗ ∈ [K], and
any P0 ∈ PG(a∗, ∆, ∆), the GNA-EBA strategy satisfies

lim inf
T →∞

− 1

T
logPP0

(
âEBA

T 6= a∗
)

≥ ∆2

2Ωa∗,a(wGNA)
.

Then, the worst-case upper bound is given as the following theorem.

Theorem 4.3 (Worst-case upper bound of the GNA-EBA strategy). For any 0 < ∆ ≤ ∆ < ∞, the
GNA-EBA strategy satisfies

inf
P ∈∪a∗∈[K]PG(a∗,∆,∆)

lim inf
T →∞

− 1

T
logPP

(
âEBA

T 6= a∗
)

≥ UpperBound(∆) := min
a∗∈[K]

∆2

2Ωa∗,a(wGNA)
= max

w∈W
min

a∗∈[K]

∆2

2Ωa∗,a(w)
.

Proof. By taking mina∗∈[K] inf
P ∈PG(a∗,∆,∆)

in both LHS and RHS in the upper bound of Theorem 4.2, we

obtain the statement.

4.4 Worst-case Asymptotic Optimality

9
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Figure 1: An idea in the derivation of the lower bounds.
To lower bound the probability of misidentification (upper
bound − 1

T
logPP (âπ

T 6= a∗(P ))) it is sufficient to consider
a case in the right figure.

By comparing the lower bound in Theorem 4.1
and the upper bound in Theorem 4.3, the fol-
lowing theorem shows that they approach as
∆ − ∆ → 0 and match when ∆ = ∆. This
case implies a situation in which the difference
between the expected outcome of the best arm
and the next best arm is equal to the differ-
ence between the expected outcome of the best
arm and the worst arm. In such a situation,
it is possible to construct an optimal algorithm
even if the expected outcomes are unknown.
This concept is illustrated in Figure 1.

Theorem 4.4. As ∆ − ∆ → 0, we have

LowerBound(∆) − UpperBound(∆) → 0.

Additionally, for any 0 < ∆ < ∞ and for PG
(∆) :=

{
P ∈ PG(a∗, ∆, ∆) | a∗ ∈ [K], ∆ = ∆ = ∆

}
, we have

sup
π∈Πcons

inf
P ∈P

G
(∆)

lim inf
T →∞

− 1

T
logPP

(
âEBA

T 6= a∗(P )
)

≤ max
w∈W

min
a∗∈[K]

∆2

2Ωa∗,a(w)

= max
w∈W

inf
P ∈P

G
(∆)

Γ(P, w) ≤ inf
P ∈P

G
(∆)

lim inf
T →∞

− 1

T
logPP

(
âEBA

T 6= a∗(P )
)

.

Proof. From Theorem 4.1, we have inf
P ∈∪a∗∈[K]PG(a∗,∆,∆)

lim supT →∞ − 1
T

logPP (âπ
T 6= a∗) ≤

LowerBound(∆). From Theorem 4.3, we have inf
P ∈∪a∗∈[K]PG(a∗,∆,∆)

lim infT →∞ − 1
T

logPP

(
âEBA

T 6= a∗
)

≥
UpperBound(∆).

From the definitions of LowerBound(∆) and UpperBound(∆), we directly have LowerBound(∆) −
UpperBound(∆) → 0 as ∆ − ∆ → 0.

Furthermore, if ∆ = ∆ = ∆ holds, then LowerBound(∆) = UpperBound(∆) = maxw∈W mina∗∈[K]
∆2

2Ωa∗,a(w)

holds. Note that maxw∈W mina∗∈[K]
∆2

2Ωa∗,a(w)
= inf

P ∈P
G

(∆)
maxw∈W , Γ(P, w) holds (see Section 5.5). Thus,

the proof completes.

This result implies that inf
P ∈P

G
(∆)

maxw∈W Γ∗(P, w) is lower and upper bounds for any consistent

strategies (LowerBound(∆) = UpperBound(∆) = inf
P ∈P

G
(a∗,∆)

maxw∈W Γ∗(P, w)), although there ex-

ists P ∈ PG
σ=1 such that a lower bound is larger than maxw∈W Γ∗(P, w) (Degenne, 2023). Thus,

without contradicting the existing results by Ariu et al. (2021) and Degenne (2023), we show the existence
of an optimal strategy for a lower bound conjectured by Kaufmann et al. (2016) and Garivier & Kaufmann
(2016). We illustrate this result in Figure 2. Our findings do not present a contradiction to the results by
Ariu et al. (2021) and Degenne (2023) because we restrict the bandit models.

Figure 2: The region where there exists matching lower and upper bounds.
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Additionally, when ∆ = ∆ and the variances are known, we design an asymptotically worst-case optimal
strategy, which is not based on the uniform allocation.

Note that our optimality criterion is closely related to local optimality that has been used in various studies,
including the bandit problem and statistical testing. For example, the optimality under a small-gap setting
such that µa∗(P )(P )−µa(P ) → 0 for all a ∈ [K]\{a∗} is a particular case of our optimality. Such a small-gap
optimality has been discussed in Jamieson et al. (2014) and Shin et al. (2018), where the former is a study
about fixed-confidence BAI, and the latter is about fixed-budget BAI. The local Bahadur efficiency is also a
closely related optimality criterion, which has been used in the literature of statistical testing (Wieand, 1976;
Akritas & Kourouklis, 1988; He & Shao, 1996). In many cases, such a location has been employed to discuss
the optimality of the main performance measure while ignoring estimation errors of other parameters.

From the viewpoints of open questions, we answer them as follows:

• For Open questions 1 and 3: we prove that there exist matching lower and upper bounds under the
worst case metric (inf

P ∈∪a∗∈[K]PG(a∗,∆,∆)
lim supT →∞ − 1

T
logPP (âπ

T 6= a∗(P ))) and the restricted

bandit models (∆ = ∆). Additionally, even if we restrict the class to asymptotically invariant
strategies, the lower bound cannot be improved.

• For Open question 2: we prove that a variance-based strategy performs better than the uniform
allocation in Gaussian bandit models.

As a side-product of our study, we propose a novel setting called hypothesis BAI (HBAI) in Section 6. The
results shown above consider a lower bound that is valid for any choices of the mean parameters and the
best arm, reflecting a situation where they are unknown. However, we can consider a situation where there
is a conjecture of the best arm prior to an experiment. For example, as well as hypothesis testings, we can
set null and alternative hypotheses such that a conjectured best arm ã ∈ [K] is truly best (alternative) or
not (null). Under this setting, if we set ã as a proxy of a∗ and conduct an experiment, then the probability
of minimization is minimized when ã = a∗ (the alternative hypothesis is true). As an analogy of hypothesis
testing, we call this setting HBAI.

Results of simulation studies are shown in Section 7. We discuss related work in Appendix A. In Appendix 5,
we explain intuitive ideas about the lower bounds, which include the preliminary of the proof of Theorem 4.1.

4.5 Discussion

Finally, we discuss our results in comparison to existing results. This section aims to clarify our study’s
contribution by showing how we approach the open question raised in existing studies.

Comparison with Komiyama et al. (2022) and Degenne (2023). First, we compare our results
with those in Komiyama et al. (2022) and Degenne (2023). While Komiyama et al. (2022) and Degenne
(2023) measure a performance by infP ∈P) H(P ) lim supT →∞ − 1

T
logPP (âπ

T 6= a∗), we measure it by

infP ∈P) lim supT →∞ − 1
T

logPP (âπ
T 6= a∗), where the main difference is the existence of the problem diffi-

culty term H(P ). Degenne (2023) shows a lower bound infP ∈P H(P ) lim infT →∞ − 1
T

logPP (âT 6= a∗) ≤
maxw∈W Λ∗(P, w, H), which is tighter than the lower bound in Komiyama et al. (2022). We compare this
lower bound to ours. Let us consider a case H(P ) is constant independent of P and T ; that is, H(P ) = H
holds for a constant H independent of P and T . Then, from Degenne (2023)’s lower bound, we have

infP ∈P lim infT →∞ − 1
T

logPP (âT 6= a∗) ≤ infµa<va<µa∗(P )

∑
a∈[K] w(a)K̃L

(
va, µa(P )

)
≤ LowerBound(∆),

which aligns with our lower bound. This difference comes from how we interpret the difficulty of the prob-
lem of interest. Degenne (2023) considers a lower bound under P, instead of introducing some difficulty
term H(P ). In contrast, we consider a lower bound that matches the upper bound when ∆ − ∆ → 0, which
implies that we restrict the class of P when considering the asymptotic optimality.

Asymptotically invariant Strategy. In fixed-budget BAI, the strategy proposed by Glynn & Juneja
(2004) has been considered a candidate for asymptotically optimal strategies. We and Degenne (2023) show
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that it is actually an asymptotically optimal strategy among a class of consistent and asymptotically invariant
(static) strategies. Degenne (2023) proves that there exists P ∈ P under which a lower bound for consistent
strategies does not match that for consistent and asymptotically invariant (static) strategies. In contrast, in
the following corollary, we show that under the worst-case analysis, the lower bound for consistent strategy
is the same as that for consistent and asymptotically invariant (static) strategies, and the upper bound of
the GNA-EBA strategy matches the lower bound. This result implies that (i) we cannot obtain a strategy
with a smaller probability of misidentification even if relaxing the class of strategies, and (ii) there exists
an asymptotically optimal strategy, at least if we know variances. This result challenges the conclusion of
Degenne (2023), which states that there exists no optimal strategy in the sense that its upper bound aligns
with that of asymptotically invariant strategies. Our result does not contradict to his result because we
restrict the bandit models P, rather than the strategy class.

Corollary 4.5. For any 0 < ∆ < ∞ any PG(a∗, ∆, ∆, any consistent strategies have a lower bound
LowerBound(∆) same as any consistent and asymptotically invariant strategies, which aligns with an upper
bound UpperBound(∆) of the GNA-EBA strategy.

Matching lower and upper bounds. Instead of considering restricted bandit models (∆ − ∆ → 0), we
develop tight lower and upper bounds that match as ∆ − ∆ → 0. Degenne (2023) considers a lower bound
characterized by a problem difficulty terms, where there is a gap from upper bounds. In other words, we
derive matching lower and upper bounds for restricted bandit models under ∆ − ∆ → 0, while Degenne
(2023) derives a lower bound whose leading factor aligns with an upper bound (but it is not a perfect match)
for global bandit models P (there is no restriction such that ∆ − ∆ → 0).

Applications of interest. Thus, there are two frameworks, asymptotic optimality for restricted bandit
models and that depending on the problem difficulty. The former is closely related to large-deviation-
based asymptotically optimal strategies such as Glynn & Juneja (2004), while the latter is closely related to
the standard fixed-budget BAI strategies such as the successive halving. The remaining question is which
framework is appropriate, and it depends on applications. The asymptotic optimality for restricted bandit
models is often considered in epidemiology and economics, where the number of arms is not large, and we
need to identify the best arm among the other arms whose expected outcomes are close to but less than
that of the best arm. For example, van der Laan (2008) and Hahn et al. (2011) consider local models,
where parameters have 1/

√
T -perturbation (van der Vaart, 1998), and discuss asymptotic optimality in such

models. In contrast, the use of optimality based on the problem difficulty is appropriate for recommendation
systems and online advertisements, where the number of arms is significantly large. In this case, as well as
the successive halving, it is desirable to remove suboptimal arms as early as possible, depending on how fast
and accurately we can remove them depending on the problem difficulty.

5 Intuition behind Lower Bounds and the Proofs of Theorem 4.1 and Corollary 4.5

This section provides intuitive ideas behind Theorem 4.1 and Corollary 4.5 with preliminaries for their
proofs. Our arguments about lower bounds are based on the information-theoretical approach. We reveal
that different available information yields different lower bounds. Finally, we develop the worst-case lower
bound for multi-armed Gaussian bandits.

5.1 Existence of Asymptotically Optimal Strategies

The existence of asymptotically optimal strategies is a longstanding open question (Kaufmann, 2020;
Ariu et al., 2021; Degenne, 2023). Kaufmann et al. (2016) provide a lower bound and an asymptotically
optimal strategy for two-armed Gaussian bandits with known variances. However, when the number of arms
is three or more (K ≥ 3), even the lower bounds remain unknown (see Table 1).

There are multiple reasons why this problem is challenging, and it is difficult to offer a single clear explanation.
For instance, factors affecting the upper bounds of strategies include (i) the estimation error of distributional
information, (ii) the class of strategies, and (iii) the dependency of optimal sample allocation ratios on the
best arm.
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To address this problem, we develop novel lower bounds by extending those shown by Kaufmann et al.
(2016), focusing on the lack of distributional information.

5.2 Transportation Lemma

Our arguments about lower bounds start from a (conjectured) lower bound shown by Kaufmann et al. (2016)
and Garivier & Kaufmann (2016).

Lemma 5.1 (Lower bound given known distributions). For any 0 < ∆ ≤ ∆ < ∞, any a∗ ∈ [K], and any
P0 ∈ PG(a∗, ∆, ∆), any consistent (Definition 3.1) strategy π ∈ Πcons satisfies

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ lim sup

T →∞
inf

Q∈∪b 6=a∗ P(b,∆,∆)

∑

a∈[K]

κπ
T,Q(a)KL(Qa, P a

0 ).

Here, Q is an alternative hypothesis that is used for deriving lower bounds and not an actual distribution.
Note that upper (resp. lower) bounds for − 1

T
logPP0

(âπ
T 6= a∗) corresponds to lower (resp. upper) bounds

for PP0
(âπ

T 6= a∗).

For two-armed Gaussian bandits, the lower bound can be simplified (See Theorem 12 in Kaufmann et al.

(2016)). In this case, it is known that by allocating arm 1 and 2 with sample sizes σ1

σ1+σ2 T and σ2

σ1+σ2 T ,
we can design asymptotically optimal strategy. Strategies using this allocation rule are called the Neyman
allocation (Neyman, 1934).

5.3 Lower Bound given Known Distributions

However, when K ≥ 3, there occur several issues in the derivation of lower bounds, and there does not
exist an asymptotically optimal strategy whose upper bound aligns with the conjectured lower bound in
Lemma 5.1 (Kaufmann, 2020; Ariu et al., 2021; Degenne, 2023). One of the difficulties comes from the fact
that the term κπ

T,Q(a) does not correspond to sample allocation under the DGP P0 (Kaufmann, 2020), which
incurs a problem called the reverse KL problem (Kaufmann, 2020).

To derive lower bounds, we consider restricting strategies to ones such that the limit of κπ
T,P (a)

(limT →∞ κπ
T,P (a)) is the same across P ∈ PG(a∗, ∆, ∆). Such a class of strategies are defined as asymp-

totically invariant strategies in Definition 3.2. Note that κπ
T,P is a deterministic value without randomness

because it is an expected value of 1
T

∑T
t=1 1[Aπ

t = a]. A typical example of this class of strategies is one
using uniform allocation, such as the Uniform-EBA strategy (Bubeck et al., 2011). Another example is a
strategy using the allocation rule only based on variances, such as the Neyman allocation (Neyman, 1934).

Given an asymptotically invariant strategy π, there exists wπ ∈ W such that for all P ∈ PG(a∗, ∆, ∆), and

a ∈ [K],
∣∣∣wπ(a) − 1

T

∑T

t=1 EP [1[At = a]]
∣∣∣ → 0 holds.

Therefore, for any consistent and asymptotically invariant strategy π, the following lower bounds hold. The
proof is shown in Appendix B.

Lemma 5.2 (Lower bound given known distributions). For any 0 < ∆ ≤ ∆ < ∞, any a∗ ∈ [K], and any
P0 ∈ PG(a∗, ∆, ∆), any consistent (Definition 3.1) and asymptotically invariant (Definition 3.2) strategy
π ∈ Πcons ∩ Πinv satisfies

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ sup

w∈W
min

a∈[K]\{a∗}

(∆a(P0))
2

2Ωa∗,a(w)
.

We refer to a limit of the average sample allocation deduced from lower bounds as the target allocation ratio
and denote it by w∗. We can derive various w∗ in different lower bounds. For example, in Lemma 5.2,

because maxw∈W mina∈[K]\{a∗} inf (µb)∈RK

µa>µa∗

w(a) (µa−µa(P0))2

2(σa)2 exists, we define the target allocation ratio as

w∗ = arg max
w∈W

min
a∈[K]\{a∗}

(∆a(P0))
2

2Ωa∗,a(w)
. (4)
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The target allocation ratio w∗ works as a candidate about optimal sample allocation of optimal strategies.
Here, note that the average sample allocation ratio is linked to an actual strategy, and we can compute w∗

independently of each instance P0.

For the asymptotically invariant strategy, we can show that the strategy proposed by Glynn & Juneja (2004)
is feasible if we can compute KL(Qa, P a

0 ), and under the strategy, the probability of misidentification aligns
with the lower bound with asymptotically invariant strategies. This result is also shown by Degenne (2023)
for more general distributions.

5.4 Uniform Lower Bound

As discussed by Glynn & Juneja (2004) and us, when we know distributional information completely, we
can obtain an asymptotically optimal strategy whose probability of misidentification matches the lower
bounds in Lemma 5.2. However, when we do not have full information, the strategy by Glynn & Juneja
(2004) is infeasible. Furthermore, there exists P0 ∈ PG(a∗, ∆, ∆) whose lower bound is larger than that of
Kaufmann et al. (2016).

For example, in Lemma 5.2, the target allocation ratio is given as equation 4. However, the target allocation
ratio depends on unknown mean parameters µa(P0) and the true best arm a∗. Therefore, strategies using
the target allocation ratio are infeasible if we do not know those values.

We elucidate this problem by examining how our available information affects the lower bounds. Specifically,
we consider lower bounds that are uniformly valid regardless of the missing information. First, we consider
characterizing the lower bound in Lemma 5.2 by ∆, an upper bound of ∆a(P0) as the following lemma.

Theorem 5.3 (Uniform lower bound). For any 0 < ∆ ≤ ∆ < ∞, any a∗ ∈ [K], and any P0 ∈ PG(a∗, ∆, ∆),
any consistent (Definition 3.1) and asymptotically invariant (Definition 3.2) strategy π ∈ Πcons∩Πinv satisfies

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ ∆

2

2
(

σa∗ +
√∑

a∈[K]\{a∗} (σa)
2
)2 .

The proof is shown in Appendix C. Here, the target allocation ratio is given as

w∗(a∗) =
σa∗

σa∗ +
√∑

b∈[K]\{a∗} (σb)
2

, (5)

w∗(a) =

(
σb
)2

/
√∑

b∈[K]\{a∗} (σb)
2

σa∗ +
√∑

b∈[K]\{a∗} (σb)
2

= (1 − w∗(a∗))
(σa)

2

∑
b∈[K]\{a∗} (σb)

2 , ∀a ∈ [K]\{a∗}.

Note that the lower bounds are characterized by the variances and the true best arm a∗. If we know them,
we can design optimal strategies whose upper bound aligns with these lower bounds.

When designing strategies, variances and the best arm are required to construct the target allocation ratio.
However, assuming that the best arm a∗ is known is unrealistic. We also cannot estimate it during an
experiment because such a strategy violates the assumption of asymptotically invariant strategies. For
example, Shin et al. (2018) estimates a∗ during an experiment under the framework of Glynn & Juneja
(2004), but such a strategy does not satisfy the asymptotically invariant strategies because a∗ and w∗ can
differ across the choice of P0. When considering asymptotically invariant strategies, we need to know a∗

before starting an experiment.

To circumvent this issue, one approach is to fix ã, independent of P0, before an experiment. We then

construct a target allocation ratio as w†(ã) = σã

σã+

√∑
b∈[K]\ã

(σb)2
and w†(a) = (1 − w†(ã)) (σa)2∑

b∈[K]\ã
(σb)2 for

all a ∈ [K]\ã. arms are then allocated following this target allocation ratio. Under a strategy using such
an allocation rule, if ã equals a∗, the target allocation ratio w† aligns with w∗ in equation 5. We refer to
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this setting as hypothesis BAI (HBAI), as the formulation resembles hypothesis testing. For details, see
Section 6.

However, when ã is not equal to a∗, the target allocation ratio w† does not equal w∗, under which the
strategy becomes suboptimal. In the following section, we consider a best-arm agnostic lower bound by
contemplating the worst-case scenario for the choice of a∗.

Remark 1. When K = 2, the target allocation ratio has a closed-form such that wGNA(a) = σa

σ1+σ2 for
a ∈ [K] = {1, 2}. Note that the target allocation ratio becomes independent of a∗ in this case. Allocation
rules following this target allocation ratio are referred to as the Neyman allocation (Neyman, 1934).

5.5 Best-Arm-Worst-Case Lower Bound

As discussed above, a∗ is unknown in practice, and we consider the worst-case analysis regarding the choice
of the best arm. We represent the worst-case for all possible best arms by using the following metric:

inf
P0∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗(P )).

Thus, by taking the worst case over P0, we obtain the following lower bound.

Theorem 5.4 (Best-arm-worst-case lower bound). For any 0 < ∆ ≤ ∆ < ∞, any consistent (Definition 3.1)
and asymptotically invariant (Definition 3.2) strategy π ∈ Πcons ∩ Πinv satisfies

inf
P0∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗(P0)) ≤ LowerBound(∆).

Proof. From Lemma 5.2, for each w ∈ W, we have

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗(P0)) ≤ ∆

2

2Ωa∗,a(w)
.

Therefore, by taking mina∗∈[K] in both LHS and RHS, we have

min
a∗∈[K]

inf
P0∈PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗(P0)) ≤ min

a∗∈[K]
inf

P ∈PG(a∗,∆,∆)

∆
2

2Ωa∗,a(w)
.

By taking the maximium over w, we complete the proof.

The target allocation ratio deduced from this lower bound is

w∗ = arg max
w∈W

min
a∗∈[K], a∈[K]\{a∗}

1

2Ωa∗,a(w)
. (6)

Here, note that maxw∈W maxa∗∈[K] mina∈[K]\{a∗}
∆2

2Ωa∗,a(w)
does not have a closed-form solution and requires

numerical computations.

Note that when K = 2, the target allocation ratio has a closed-form solution such that w∗(a) = σa

σ1+σ2 for
a ∈ [2]. Additionally, the lower bound is given as

inf
P0∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗(P )) ≤ ∆

2

2 (σ1 + σ2)
2 .

This target allocation ratio and lower bound are equal to those in the lower bound for two-armed Gaussian
bandits shown by Kaufmann et al. (2016).

The target allocation ratio is independent of a∗. Therefore, we can avoid the issue of dependency on a∗,
which cannot be estimated in an experiment.
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Remark 2 (Inequalities of lower bounds). Note that for the derived lower bounds, LowerBound(∆) ≤
∆

2

2

(
σa∗ +

√∑
a∈[K]\{a∗}

(σa)2

)2 holds. The larger lower bounds imply tighter lower bounds; that is, PP0
(âπ

T 6= a∗)

is smaller as the lower bounds become larger.

Remark 3 (Two-armed Gaussian bandits). When K = 2, the above serial arguments about the lower bound
can be simplified. The reason why we cannot use Theorem 5.3 is because the target allocation ratio depends
on a∗. However, when K = 2, the target allocation ratio is independent of a∗ and given as the ratio of
the standard deviations. This is because the comparison between the best and suboptimal arms plays an
important role, which requires the best arm a∗. However, when K = 2, a pair of comparisons is unique;
that is, we always allocate arms comparing arms 1 and 2, regardless of which arm is best. Therefore, we
can simplify the lower bounds when K = 2. Specifically, optimal strategies just allocate treatment with the
ratio of the standard deviation, which is also referred to as the Neyman allocation (Neyman, 1934). Also,
see Theorem 12 in Kaufmann et al. (2016) for details.

5.6 Relaxing the Strategy Class Restrictions

In Theorem 5.4, we restrict the strategies to consistent and asymptotically invariant ones. How-
ever, the latter restriction can be removed. We introduced the restriction of asymptoti-
cally invariant strategies to derive a lower bound from lim supT →∞ − 1

T
logPP0

(âπ
T 6= a∗) ≤

lim supT →∞ inf
Q∈∪b 6=a∗ P(b,∆,∆)

∑
a∈[K] κπ

T,Q(a)KL(Qa, P a
0 ) in Lemma 5.1. Although we discussed

inf
P0∈∪a∗∈[K]PG(a∗,∆,∆)

lim supT →∞ − 1
T

logPP0
(âπ

T 6= a∗(P )) as a result of information-theoretical analysis,

we can derive a lower bound from

inf
Q∈∪a∗∈[K]PG(a∗,∆,∆)

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗(Q)) ≤ lim sup
T →∞

inf
Q∈∪b 6=a∗ P(b,∆,∆)

∑

a∈[K]

κπ
T,P0

(a)KL(P a
0 , Qa).

This metric is mathematically equivalent to inf
P0∈∪a∗∈[K]PG(a∗,∆,∆)

lim supT →∞ − 1
T

logPP0
(âπ

T 6= a∗(P )),

but we can derive a lower bound without using the asymptotically invariant strategy restriction. This is
because κπ

T,P0
(a) appears in the lower bound, instead of κπ

T,Q(a).

We show the lower bound in Theorem 4.1 and the proof in Appendix D.

Additionally, from the lower bounds in Theorems 5.4 and 4.1 and the upper bound in Theorem 4.3, we obtain
Corollary 4.5. This corollary implies that when ∆ = ∆, we can obtain an asymptotically optimal strategy if
we know variances.

6 Hypothesis BAI

Based on the arguments in Section 5.4, we design the Hypothesis GNA-EBA (H-GNA-EBA) strategy that
utilizes a conjecture ã ∈ [K] of a∗, instead of considering the worst-case for a∗. We refer to ã as a hypothetical
best arm.

In the H-GNA-EBA strategy, we define a target allocation ratio as wH-GNA(ã) = σã

σã+

√∑
b∈[K]\{ã}

(σb)2
and

wH-GNA(a) =
(
1 − wH-GNA(ã)

) (σa)2∑
b∈[K]\{ã}

(σb)2 for all a ∈ [K]\{ã}. If ã is equal to a∗, the upper bound of the

H-GNA-EBA strategy for the probability of misidentification aligns with the lower bound in Theorem 5.3.

This strategy is more suitable under a setting different from BAI, where there are null and alternative
hypotheses such that H0 : a∗ 6= ã ∈ [K] and H1 : a∗ = ã; that is, the null hypothesis corresponds to a
situation where the hypothetical best arm is not the best. In contrast, the alternative hypothesis posits that
the hypothetical best arm is the best. Then, we consider minimizing the probability of misidentification
when the alternative hypothesis is true. This probability corresponds to power in hypothesis testing. Our
aim is to minimize the misidentification probability when the null hypothesis is false, corresponding to the
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K = 2 K = 3

Figure 3: Experimental results (K = 2 and K = 3). The left figure shows the result with K = 2, and the
right figure shows the result with K = 2. The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis for each
K = 2 and K = 3.

power of the test. We refer to this setting as Hypothesis BAI (HBAI). We present two examples for this
setting.

Example 1 (Online advertisement). Let ã ∈ [K] be an arm corresponding to a new advertisement. Our null
hypothesis a∗ 6= ã implies that the existing advertisements a ∈ [K]\{ã} are superior to the new advertisement.
Our goal is to reject the null hypothesis with a maximal probability when the null hypothesis is not correct;
that is, the new hypothesis is better than the others.

Example 2 (Clinical trial). Let ã ∈ [K] be a new drug. Our null hypothesis a∗ 6= ã implies that the existing
drug a ∈ [K]\{ã} is superior to the new drug (equivalently, the new drug is not good as the existing drugs).
Our goal is to reject the null hypothesis with a maximal probability when the new drug is better than the
others.

The asymptotic efficiency of hypothesis testing is referred to as the Bahadur efficiency (Bahadur, 1960; 1967;
1971) of the test10.

7 Simulation Studies

Using simulation studies, we investigate the performances of our GNA-EBA and the H-GNA-EBA strategies.
We compare them with the Uniform-EBA strategy (Uniform, Bubeck et al., 2011), which allocates arms with
the same allocation ratio (1/K), the successive rejects strategy (SR, Audibert et al., 2010), and the strategy

10Note that the Bahadur efficiency of a test evaluates P -values (random variable), not the probability of misidentification
(non-random variable). However, these are closely related. See Bahadur (1967).
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K = 5 K = 10

Figure 4: Experimental results (K = 5 and K = 10). The left figure shows the result with K = 5, and the
right figure shows the result with K = 10. The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis for each
K = 5 and K = 10.

for ordinal optimization (OO) proposed by (Glynn & Juneja, 2004). Note that the OO requires full knowledge
about distributions, including mean parameters and which arm is the best arm. However, if we know it, the
OO yields the theoretically lowest probability of misidentification (Glynn & Juneja, 2004; Kaufmann, 2020;
Degenne, 2023). Therefore, we regard the OO as a practically infeasible oracle strategy. We investigate two
H-GNA-EBA strategies by setting ã = 1 and ã = 2. The SR strategy is often regarded as the most practical
strategy.

Let K ∈ {2, 5, 10, 20}. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of suboptimal arms
0.75 (µa(P ) = 0.75 for all a ∈ [K]\{1}). The variances are drawn from a uniform distribution with support
[0.5, 5]. We continue the strategies until T = 100, 000. We conduct 100 independent trials for each setting.
For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}, we plot the empirical probability of misidentification in
Figures 3– 5. For each result, we show three figures with different scales on the x-axis and y-axis to observe
the details.

Our theoretical results imply that the strategies with the highest performance are the OO and then the
H-GNA-EBA strategy with ã = 1 (their performances are equal). Then, the GNA-EBA strategy and
the Uniform strategy follow them. The other strategies follow these three strategies, but the order of the
performances is not predictable from the theory.

From the results, as the theory predicts, strategies that use more information can achieve a lower probability
of misidentification; that is, the OO and the H-GNA-EBA strategy with ã = 1 are the best strategies.
Then, the GNA-EBA strategy follows them. Note that the OO and H-GNA-EBA strategies with ã = 1
are oracle strategies, which are feasible only when we can conjecture which arm is the best arm in advance.
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K = 20.

Figure 5: Experimental results (K = 20). The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis.

Interestingly, the SR strategy performs well in early rounds, but the other asymptotically optimal strategies
outperform it in late rounds.

In Appendix F, we conduct the additional three experiments. In the first experiment in the Appendix, the
expected outcomes of suboptimal arms are drawn from a uniform distribution with support [0.75, 0.90] for
a ∈ [K]\{1, 2}, while µ2(P ) = 0.75. The variances are drawn from a uniform distribution with support
[0.5, 5]. We continue the strategies until T = 10, 000. We conduct 100 independent trials for each setting.
For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}, we plot the empirical probability of misidentification in
Figures 9– 18. In this case, our theoretical results imply that the highest performance is the OO, and then the
H-GNA-EBA strategy with ã = 1, the GNA-EBA, and the Uniform strategies follow. The other strategies
follow them, but the order of the performances is not predictable from the theory. In this experiment, the
strategies show the predicted performances.

In the remaining two experiments, we conduct experiments with the same setting as the previous two
experiments, but we changed the variances are drawn from a uniform distribution with support [0.5, 10],
while the variances are drawn from a uniform distribution with support [0.5, 5] in the previous experiments.
We plot the empirical probability of misidentification in Figures 3– 5. In those cases, our proposed strategies
outperform the others due to the larger diversity of the variances. However, because the convergence also
becomes slow, the SR outperforms in the early stages longer than the previous experiments, though our
strategies outperform it in late rounds.

8 Conclusion

We investigated scenarios in experimental design, known as BAI or ordinal optimization. We found that
the optimality of strategies significantly depends on the information available prior to an experiment. Based
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on our findings, we developed the novel worst-case lower bounds for the probability of misidentification and
then proposed a strategy whose worst-case probability of misidentification matches these worst-case lower
bounds.

Lastly, we propose two important extensions of our results. First, we suggest the potential extension of our
results to BAI with general distributions. In this study, we developed lower bounds for multi-armed Gaussian
bandits. By approximating the KL divergence of distributions in a broader class under the small-gap regime,
we can apply our results to various distributions, including Bernoulli distributions and general nonparametric
models. In fact, Kato et al. (2023b) extends our results, developing lower bounds for more general distribu-
tions using semiparametric theory (Bickel et al., 1998; van der Vaart, 1998). These extended results, which
refine those of Kato et al. (2023b), will be published later. It is important to note that in the small-gap
regime, asymptotically optimal strategies for one-parameter bandit models, such as Bernoulli distributions,
utilize uniform allocation because variances of outcomes become equal as gaps approach zero11. The results
from Kato et al. (2023b) align with the conjecture in Kaufmann et al. (2016). From the results of Kato et al.
(2023b), we can interpret the GNA-EBA strategy as an extension of the Uniform-EBA strategy proposed by
Bubeck et al. (2009; 2011), which recommends uniform allocation in bandit models with bounded supports.

The second extension is optimal strategies that estimate variances during an experiment, instead of assuming
known variances. If variances are estimated during an experiment, the estimation error affects the probability
of misidentification. We conjecture that an optimal strategy exists that estimates variances during an
experiment because similar results can be obtained under the central limit theorem (van der Laan, 2008;
Hahn et al., 2011; Hadad et al., 2021; Kato et al., 2020; 2023a). However, its existence remains unproven
due to the difficulty in evaluating tail probabilities. Related work, such as that by Kato et al. (2023a) and
Jourdan et al. (2023), may help to resolve this issue.
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A Related Work

This section introduces related work.

A.1 Historical Background of Ordinal Optimization and BAI

Researchers have acknowledged the importance of statistical inference and experimental approaches as es-
sential scientific tools (Peirce & Jastrow, 1884; Peirce & de Waal, 1887). With the advancement of these
statistical methodologies, experimental design also began attracting attention. Fisher (1935) develops the
groundwork for the principles of experimental design. Wald (1949) establishes fundamental theories for sta-
tistical decision-making, bridging statistical inference and decision-making. These methodologies have been
investigated across various disciplines, such as medicine, epidemiology, economics, operations research, and
computer science, transcending their origins in statistics.

Ordinal Optimization. Ordinal optimization involves sample allocation to each arm and selects a certain
arm based on a decision-making criterion; therefore, this problem is also known as the optimal computing
budget allocation problem. The development of ordinal optimization is closely related to ranking and selec-
tion problems in simulation, originating from agricultural and clinical applications in the 1950s (Gupta, 1956;
Bechhofer, 1954; Paulson, 1964; Branke et al., 2007; Hong et al., 2021). A modern formulation of ordinal
optimization was established in the early 2000s (Chen et al., 2000; Glynn & Juneja, 2004). Existing research
has found that the probability of misidentification converges at an exponential rate for a large set of prob-
lems. By employing large deviation principles (Cramér, 1938; Ellis, 1984; Gärtner, 1977; Dembo & Zeitouni,
2009), Glynn & Juneja (2004) propose asymptotically optimal algorithms for ordinal optimization.

BAI. A promising idea for enhancing the efficiency of strategies is adaptive experimental design. In this
approach, information from past trials can be utilized to optimize the allocation of samples in subsequent
trials. The concept of adaptive experimental design dates back to the 1970s Pong & Chow (2016). Presently,
its significance is acknowledged (CDER, 2018; Chow & Chang, 2011). Adaptive strategies have also been
studied within the domain of machine learning, and the multi-armed bandit (MAB) problem (Thompson,
1933; Robbins, 1952; Lai & Robbins, 1985) is an instance. The Best Arm Identification (BAI) is a paradigm
of this problem (Even-Dar et al., 2006; Audibert et al., 2010; Bubeck et al., 2011), influenced by sequen-
tial testing, ranking, selection problems, and ordinal optimization (Bechhofer et al., 1968). There are two
formulations in BAI: fixed-confidence (Garivier & Kaufmann, 2016) and fixed-budget BAI. In the former,
the sample size (budget) is a random variable, and a decision-maker stops an experiment when a certain
criterion is satisfied, similar to sequential testing Wald (1945); Chernoff (1959). In contrast, the latter fixes
the sample size (budget) and minimizes a certain criterion given the sample size. BAI in this study corre-
sponds to fixed-budget BAI (Bubeck et al., 2011; Audibert et al., 2010; Bubeck et al., 2011). There is no
strict distinction between ordinal optimization and BAI.

A.2 Optimal Strategies for BAI

We introduce arguments about optimal strategies for BAI.

Optimal Strategies for Fixed-Confidence BAI. In fixed-confidence BAI, several optimal strategies
have been proposed, whose expected stopping time aligns with lower bounds shown by Kaufmann et al.
(2016). One of the remarkable studies is Garivier & Kaufmann (2016), which proposes an optimal strategy
called Track-and-Stop by extending the Chernoff stopping rule. The Track-and-Stop strategy is refined
and extended by the following studies, including Kaufmann & Koolen (2021), Jourdan et al. (2022), and
Jourdan et al. (2023). From a Bayesian perspective, Russo (2020), Qin et al. (2017), and Shang et al. (2020)
propose Bayesian BAI strategies that are optimal in terms of posterior convergence rate.

Optimal Strategies for Fixed-Budget BAI. Fixed-budget BAI has also been extensively studied,
but the asymptotic optimality has open issues. Kaufmann et al. (2016) and Carpentier & Locatelli (2016)
conjecture lower bounds. Garivier & Kaufmann (2016), Kaufmann (2020), Ariu et al. (2021), and Qin (2022)
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discuss and summarize the problem. In parallel with our study, Komiyama et al. (2022), Degenne (2023),
Atsidakou et al. (2023), and Wang et al. (2023) further discuss the problem.

Instead of a tight evaluation of the probability of misidentification, several studies focus on evaluating the
expected simple regret. Bubeck et al. (2011) discusses the optimality of uniform allocation. Kato et al.
(2023a) demonstrates the asymptotic optimality of a variance-dependent strategy. Komiyama et al. (2021)
develops a Bayes optimal strategy. Kato et al. (2023a) shows that variance-dependent allocation improves the
expected simple regret compared to uniform allocation in Bubeck et al. (2011). However, there is a constant
gap between the lower and upper bounds in Kato et al. (2023a), and it is still unknown whether allocation
rules in optimal strategies depend on variances when we consider tighter evaluation in the probability of
misidentification.

A.3 Complexity of strategies and Bahadur efficiency

The complexity − 1
T

logPP0
(âπ

T 6= a∗), has been widely adopted in the literature of ordinal optimization
and BAI (Glynn & Juneja, 2004; Kaufmann et al., 2016). In the field of hypothesis testing, Bahadur (1960)
suggests the use of a similar measure to assess statistics in hypothesis testing. The efficiency of a test under
the criterion proposed by Bahadur (1960) is known as Bahadur efficiency, and the complexity is referred
to as the Bahadur slope. Although our problem is not hypothesis testing, it can be considered that our
asymptotic optimality of strategies corresponds to the concept of Bahadur efficiency. Moreover, our global
asymptotic optimality parallels global Bahadur efficiency.

A.4 Efficient Average Treatment Effect Estimation

Efficient estimation of ATE via adaptive experiments constitutes another area of related literature.
van der Laan (2008) and Hahn et al. (2011) propose experimental design methods for more efficient esti-
mation of ATE by utilizing covariate information in treatment assignment. Despite the marginalization of
covariates, their methods are able to reduce the asymptotic variance of estimators. Karlan & Wood (2014)
applies the method of Hahn et al. (2011) to examine the response of donors to new information regarding
the effectiveness of a charity. Subsequently, Tabord-Meehan (2022) and Kato et al. (2020) have sought to
improve upon these studies, and more recently, Gupta et al. (2021) has proposed the use of instrumental
variables in this context.

A.5 Other related work.

Our problem has close ties to theories of statistical decision-making (Wald, 1949; Manski, 2000; 2002; 2004),
limits of experiments (Le Cam, 1972; van der Vaart, 1998), and semiparametric theory (Hahn, 1998). The
semiparametric theory is particularly crucial as it enables the characterization of lower bounds through the
semiparametric analog of Fisher information (van der Vaart, 1998).

Adusumilli (2022; 2023) present a minimax evaluation of bandit strategies for both regret minimization
and BAI, which is based on a formulation utilizing a diffusion process proposed by Wager & Xu (2021).
Furthermore, Armstrong (2022) and Hirano & Porter (2023) extend the results of Hirano & Porter (2009)
to a setting of adaptive experiments. The results of Adusumilli (2022; 2023) and Armstrong (2022) employ
arguments on local asymptotic normality (Le Cam, 1960; 1972; 1986; van der Vaart, 1991; 1998), where the
class of alternative hypotheses comprises "local models," in which parameters of interest converge to true
parameters at a rate of 1/

√
T

Variance-dependent strategies have garnered attention in BAI. In fixed-confidence BAI, Jourdan et al. (2023)
provides a detailed discussion about BAI strategies with unknown variances. There are also studies using
variances in strategies, including Sauro (2020), Lu et al. (2021), and Lalitha et al. (2023). However, they do
not discuss optimality based on the arguments of Kaufmann et al. (2016). In fact, our proposed strategy
differs from the one in Lalitha et al. (2023), and our results imply that at least the worst-case optimal
strategy is not the one in Lalitha et al. (2023).
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Extending our result, Kato et al. (2023b) discusses that we can characterize the lower bounds by using the
variance when the gaps between the best and suboptimal arms approach zero (small-gap regime). This
is because we can approximate the KL divergence of a wide range of distributions by the semiparametric
influence function (a semiparametric analog of the Fisher information in parametric models) under the
small-gap regime. Based on this finding, Kato et al. (2023b) points out that under the small-gap regime,

• when K = 2, and outcomes follow a distribution in the two-armed one-parameter exponential family, the
uniform allocation is asymptotically optimal for consistent strategies.

• when K ≥ 3, and outcomes follow a distribution in the two-armed one-parameter exponential family, the
uniform allocation is asymptotically optimal for consistent and asymptotically invariant strategies.

This finding corresponds to a refinement of a comment by Kaufmann et al. (2016).

Furthermore, these observations are further related to Wang et al. (2023), which supports the optimality of
the uniform allocation.

B Proof of Lemma 5.2

Proof of Lemma 5.2. From Lemma 5.1 and equation 2 in Definition 3.2, there exists wπ such that

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ inf

Q∈∪b 6=a∗ P(b,∆,∆)

∑

a∈[K]

wπ(a)KL(Qa, P a
0 ).

Then, we bound the probability as

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ sup

w∈W
inf

Q∈∪b 6=a∗ P(b,∆,∆)

∑

a∈[K]

w(a)KL(Qa, P a
0 ).

Note that wπ(a) is independent of Q. Because KL(Qa, P a
0 ) is given as (µa(Q)−µa(P0))2

2(σa)2 for P, Q ∈
∪b 6=a∗P(b, ∆, ∆), we obtain

lim sup
T →∞

− 1

T
logPP0

(âπ
T 6= a∗) ≤ sup

w∈W
inf

(µb)∈RK :

arg maxb∈[K] µb 6=a∗

∑

a∈[K]

w(a)
(µa − µa(P0))

2

2 (σa)
2 .

Here, we have

inf
(µb)∈RK :

arg maxb∈[K] µb 6=a∗

∑

a∈[K]

w(a)
(µa − µa(P0))

2

2 (σa)
2

= min
a∈[K]\{a∗}

inf
(µb)∈RK :

µa>µa∗

∑

a∈[K]

w(a)
(µa − µa(P0))

2

2 (σa)
2

= min
a∈[K]\{a∗}

inf
(µb)∈RK :

µa>µa∗
, µc=µc(P0)

∑

a∈[K]

w(a)
(µa − µa(P0))

2

2 (σa)
2

= min
a∈[K]\{a∗}

inf
(µa∗

,µa)∈RK :

µa>µa∗

{
w(a∗)

(
µa∗ − µa∗

(P0)
)2

2 (σa∗)
2 + w(a)

(µa − µa(P0))
2

2 (σa)
2

}

= min
a∈[K]\{a∗}

min
µ∈[µa(P0),µa∗ ]

{
w(a∗)

(
µ − µa∗

(P0)
)2

2 (σa∗)
2 + w(a)

(µ − µa(P0))
2

2 (σa)
2

}
.

Then, by solving the optimization problem, we obtain

min
a∈[K]\{a∗}

min
µ∈[µa(P0),µa∗ ]

{
w(a∗)

(
µ − µa∗

(P0)
)2

2 (σa∗)
2 + w(a)

(µ − µa(P0))
2

2 (σa)
2

}
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= min
a∈[K]\{a∗}

(
µa∗

(P0) − µa(P0)
)2

2

((
σa∗
)2

w(a∗) +

(
σa

)2

w(a)

) .

Thus, we complete the proof.

C Proofs of Theorem 5.3

Proof. Because there exists ∆ such that µa∗

(P0) − µa(P0) ≤ ∆ for all a ∈ [K], the lower bound is given as

min
a∈[K]\{a∗}

(∆a(P0))
2

2

((
σa∗
)2

w(a∗) +

(
σa

)2

w(a)

) ≤ min
a∈[K]\{a∗}

∆
2

2

((
σa∗
)2

w(a∗) +

(
σa

)2

w(a)

) .

Therefore, we consider solving

max
w∈W

min
a6=a∗

1

(σa∗)
2

w(a∗) + (σa)2

w(a)

.

We consider maximising R > 0 such that R ≤ 1/

{(
σa∗)2

w(a∗) + (σa)2

w(a)

}
for all a ∈ [K]\{a∗} by optimizing

w ∈ W. That is, we consider the following non-linear programming:

max
R>0,w={w(1),w(2)...,w(K)}∈(0,1)K

R

s.t. R

((
σa∗)2

w(a∗)
+

(σa)
2

w(a)

)
ζ − 1 ≤ 0 ∀a ∈ [K]\{a∗},

∑

a∈[K]

w(a) − 1 = 0,

w(a) > 0 ∀a ∈ [K].

The maximum of R in the constraint optimization is equal to maxw∈W mina6=a∗
1

(σa∗)
2

w(a∗)
+

(σa)2

w(a)

.

Then, for (K − 1) Lagrangian multiplies λ = {λa}a∈[K]\{a∗} and γ such that λa ≤ 0 and γ ∈ R, we define
the following Lagrangian function:

L(λ, γ; R, w) = R +
∑

a∈[K]\{a∗}

λa

{
R

((
σa∗)2

w(a∗)
+

(σa)
2

w(a)

)
− 1

}
− γ




∑

a∈[K]

w(a) − 1



 .

Note that the objective (R) and constraints (R

((
σa∗)2

w(a∗) + (σa)2

w(a)

)
− 1 ≤ 0 and

∑
a∈[K] w(a) − 1 = 0) are

differentiable convex functions for R and w. Therefore, the global optimizer R† and w† = {w†(a)} ∈ (0, 1)KN

satisfies the KKT condition; that is, there are Lagrangian multipliers λa†, γ†, and R† such that

1 +
∑

a∈[K]\{a∗}

λa†

((
σa∗)2

w†(a∗)
+

(σa)
2

w†(a)

)
= 0 (7)

− 2
∑

a∈[K]\{a∗}

λa†R†

(
σa∗)2

(w†(a∗))2
= γ† (8)
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− 2λa†R† (σa)
2

(w†(a))2
= γ† ∀a ∈ [K]\{a∗} (9)

λa†

{
R†

((
σa∗)2

w†(a∗)
+

(σa)
2

w†(a)

)
− 1

}
= 0 ∀a ∈ [K]\{a∗} (10)

γ†




∑

c∈[K]

w†(c) − 1



 = 0

λa† ≤ 0 ∀a ∈ [K]\{a∗}.

Here, equation 7 implies λa† < 0 for some a ∈ [K]\{a∗}. This is because if λa† = 0 for all a ∈ [K]\{a∗},
1 + 0 = 1 6= 0.

With λa† < 0, since −λa†R† (σa)2

(w†(a))2 > 0 for all a ∈ [K], it follows that γ† > 0. This also implies that∑
c∈[K] wc† − 1 = 0.

Then, equation 10 implies that

R†

((
σa∗)2

w†(a∗)
+

(σa)
2

w†(a)

)
= 1 ∀a ∈ [K]\{a∗}.

Therefore, we have

(σa)
2

w†(a)
=

(
σb(P0)

)2

w†(b)
∀a, b ∈ [K]\{a∗}. (11)

Let (σa)2

w†(a)
=

(σb(P0))
2

w†(b)
= 1

R† −
(

σa∗)2

w†(a∗)
= U . From equation 11 and equation 7,

∑

b∈[K]\{a∗}

λb† = − 1

(σa∗)
2

w†(a∗)
+ U

(12)

From equation 8 and equation 9, we have

(
σa∗)2

(w†(a∗))2

∑

b∈[K]\{a∗}

λb† = λa† (σa)
2

(w†(a))2
∀a ∈ [K]\{a∗}. (13)

From equation 12 and equation 13, we have

−
(
σa∗)2

(w†(a∗))2
= λa† (σa)

2

(w†(a))2

((
σa∗)2

w†(a∗)
+ U

)
∀a ∈ [K]\{a∗}. (14)

From equation 7 and equation 14, we have

w†(a∗) =

√√√√(σa∗)
2

∑

a∈[K]\{a∗}

(w†(a))2

(σa)
2 .

In summary, we have the following KKT conditions:

w†(a∗) =

√√√√(σa∗)
2

∑

a∈[K]\{a∗}

(w†(a)2

(σa)
2
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(
σa∗)2

(w†(a∗))2
= −λa† (σa)

2

(w†(a))2

(((
σa∗)2

w†(a∗)
+

(σa)
2

w†(a)

))
∀a ∈ [K]\{a∗}

− λa† (σa)
2

(w†(a))2
= γ̃† ∀a ∈ [K]\{a∗}

(σa)
2

w†(a)
=

1

R†
−
(
σa∗)2

w†(a∗)
∀a ∈ [K]\{a∗}

∑

a∈[K]

w†(a) = 1

λa† ≤ 0 ∀a ∈ [K]\{a∗},

where γ̃† = γ†/2R†. From w†(a∗) =
√

(σa∗)
2∑

a∈[K]\{a∗}
(w†(a))2

(σa)2 and −λa† (σa)2

(w†(a))2 = γ̃†, we have

w†(a∗) = σa∗
√ ∑

a∈[K]\{a∗}

−λa†/
√

γ̃†

w†(a) =
√

−λa†/γ̃†σa.

From
∑

a∈[K] w†(a) = 1, we have

σa∗
√ ∑

a∈[K]\{a∗}

−λa†/
√

γ̃† +
∑

a∈[K]\{a∗}

√
−λa†/γ̃†σa = 1.

Therefore, the following holds:

√
γ̃† = σa∗

√ ∑

a∈[K]\{a∗}

−λa† +
∑

a∈[K]\{a∗}

√
−λa†σa.

Hence, the target allocation ratio is computed as

w†(a∗) =
σa∗
√∑

a∈[K]\{a∗} −λa†

σa∗
√∑

a∈[K]\{a∗} −λa† +
∑

a∈[K]\{a∗}

√
−λa†σa

w†(a) =

√
−λa†σa

σa∗
√∑

a∈[K]\{a∗} −λa† +
∑

a∈[K]\{a∗}

√
−λa†σa

,

where from

(
σa∗)2

(w†(a∗))2 = −λa† (σa)2

(w†(a))2

((
σa∗)2

w†(a∗)
+ (σa)2

w†(a)

)
, (λa∗

)a∈[K]\{a∗} satisfies,

1∑
a∈[K]\{a∗} −λa†

=


 σa∗

√∑
a∈[K]\{a∗} −λa†

+
σa

√
−λa†




σa∗

√ ∑

c∈[K]\{a∗}

−λc† +
∑

c∈[K]\{a∗}

√
−λc†σc

0




=


σa∗

+
σa

√
−λa†

√ ∑

c∈[K]\{a∗}

−λc†




σa∗

+

∑
c∈[K]\{a∗}

√
−λc†σc

0∑
c∈[K]\{a∗} −λc†

√ ∑

c∈[K]\{a∗}

−λc†


 .

Then, the following solutions satisfy the above KKT conditions:

R†


σa∗

+

√ ∑

b∈[K]\{a∗}

(σb)
2




2

= 1
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w†(a∗) =
σa∗
√∑

b∈[K]\{a∗} (σb)
2

σa∗

√∑
b∈[K]\{a∗} (σb)

2
+
∑

b∈[K]\{a∗} (σb)
2

w†(a) =
(σa)

2

σa∗

√∑
b∈[K]\{a∗} (σb)

2
+
∑

b∈[K]\{a∗} (σb)
2

λa† = − (σa)
2

γ† = 2 (σa)
2

.

Note that a target allocation ratio w in the maximum corresponds to a limit of an expectation of allocation
rule 1

T

∑T

t=1 1[At = a] from the definition of asymptotically invariant strategies.

D Proof of Theorem 4.1

Proof. Fix P0 and a∗ = a∗(P0). From Lemma 1 in Kaufmann et al. (2016), under any Q ∈ ∪b 6=a∗P(b, ∆, ∆),
any consistent strategy satisfies

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗) ≤ lim sup
T →∞

∑

a∈[K]

κπ
T,P0

(a)KL(P a
0 , Qa).

Therefore, we have

inf
Q∈∪b 6=a∗ P(b,∆,∆)

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗) ≤ inf
Q∈∪b 6=a∗ P(b,∆,∆)

lim sup
T →∞

∑

a∈[K]

κπ
T,P0

(a)KL(P a
0 , Qa).

Here, for Gaussian bandit models P0 and Q, KL(P a
0 , Qa) = (µa(Q)−µa(P0))2

2(σa)2 holds. Therefore,

inf
Q∈∪b 6=a∗ P(b,∆,∆)

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗(Q)) ≤ inf
(µb)∈RK :

arg maxb∈[K] µb 6=a∗

lim sup
T →∞

∑

a∈[K]

κπ
T,P0

(a)
(µa − µa(P0))

2

2 (σa)
2 ,

which yields

inf
Q∈∪b 6=a∗ P(b,∆,∆)

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗(Q)) ≤ min
a∈[K]\{a∗}

∆
2

2

( (
σa∗
)2

κπ
T,P0

(a∗) +

(
σa

)2

κπ
T,P0

(a)

)

from the proof of Lemma 5.2 (Appendix B). Lastly, by taking mina∗∈[K], we obtain

min
a∗∈[K]

inf
Q∈∪b 6=a∗ P(b,∆,∆)

lim sup
T →∞

− 1

T
logPQ(âπ

T 6= a∗(Q)) ≤ sup
w∈W

min
a∗∈[K]

min
a∈[K]\{a∗}

∆
2

2

((
σa∗
)2

w(a∗) +

(
σa

)2

w(a)

) .
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E Proof of Theorem 4.2

Proof of Theorem 4.2. Note that the probability of misidentification can be written as

PP0

(
µ̂a∗

t ≤ µ̂a
t

)
= PP0

(
T∑

t=1

{
Ψa∗

t (P0) + Ψa
t (P0)

}
≤ −T∆a(P0)

)
,

where

Ψa∗

t (P0) =
1[At = a∗]

{
Y a∗

t − µa∗

(P0)
}

w̃(a∗)
,

Ψa
t (P0) = −1[At = a] {Y a

t − µa(P0)}
w̃(a)

,

and w̃(a) = 1
T

∑T

t=1 1[At = a]. Note that w̃(a) is a non-random variable by the definition of the strategy
and converges to wGNA(a) as T → ∞.

By applying the Chernoff bound, for any v < 0 and any λ < 0, we have

PP0

(
T∑

t=1

{
Ψa∗

t (P0) + Ψa
t (P0)

}
≤ v

)

≤ EP0

[
exp

(
λ

T∑

t=1

{
Ψa∗

t (P0) + Ψa
t (P0)

})]
exp (−λv)

= EP0

[
exp

(
λ

T∑

t=1

Ψa∗

t (P0)

)]
EP0

[
exp

(
λ

T∑

t=1

Ψa
t (P0)

)]
exp (−λv) . (15)

First, we consider EP0

[
exp

(
λ
∑T

t=1 Ψa∗

t (P0)
)]

. Because Ψa∗

1 , Ψa∗

2 , . . . , Ψa∗

T are i.i.d., we have

EP0

[
exp

(
λ

T∑

t=1

Ψa∗

t (P0)

)]
=

T∏

t=1

EP0

[
exp

(
λΨa∗

t (P0)
)]

= exp

(
T∑

t=1

logEP0

[
exp

(
λΨa∗

t (P0)
)])

.

By applying the Taylor expansion around λ = 0, we have

EP0

[
exp

(
λΨa∗

t (P0)
)]

= 1 +

∞∑

k=1

λk
EP0

[
(Ψa∗

t (P0))k/k!
]

.

holds.

Here, for t ∈ [T ] such that At = a∗,

EP0

[
Ψa∗

t (P0)
]

= EP0

[
1

w̃(a∗)

{
Y a∗

t − µa∗

(P0)
}]

= 0,

and

EP0

[(
Ψa∗

t (P0)
)2
]

= EP0

[
1

(w̃(a∗))2

{
Y a∗

t − µa∗

(P0)
}2
]

=

(
σa∗)2

(w̃(a∗))2

hold. Additionally, EP0

[(
Ψa∗

t (P0)
)k
]

= 0 holds for k ≥ 3 because Y a∗

follows a Gaussian distribution.

For t ∈ [T ] such that At 6= a∗, EP0

[(
Ψa∗

t (P0)
)k
]

= 0 hold for k ≥ 1.
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Note that the Taylor expansion of log(1 + z) around z = 0 is given as log(1 + z) = z − z2/2 + z3/3 − · · · .
Therefore, we have

logEP0

[
exp

(
λΨa∗

t (P0)
)]

=
{

λEP0

[
Ψa∗

t (P0)
]

+ λ2
EP0

[
(Ψa∗

t (P0))2/2!
]

+ O
(
λ3
)}

− 1

2

{
λEP0

[
Ψa∗

t (P0)
]}2

= λ2

(
σa∗

(P0)
)2

(w̃(a∗))2
.

Thus,

T∑

t=1

logEP0

[
exp

(
λΨa∗

t (P0)
)]

= T
λ2

2

(
σa∗)2

w̃(a∗)

holds.

Similarly,

T∑

t=1

logEP0
[exp (λΨa

t (P0))] = T
λ2

2

(σa)
2

w̃(a)

holds.

Therefore, from equation 15, we have

PP0

(
T∑

t=1

{
Ψa∗

t (P0) + Ψa
t (P0)

}
≤ v

)
≤ exp

(
T

λ2

2

(
σa∗)2

w̃(a∗)
+ T

λ2

2

(σa)
2

w̃(a)
− λv

)
.

Let v = TλΩa∗,a(wGNA) and λ = − ∆a(P0)

Ωa∗,a(w̃)
. Then, we have

PP0

(
T∑

t=1

{
Ψa∗

t (P0) + Ψa
t (P0)

}
≤ −T∆a(P0)

)
≤ exp

(
−T (∆a(P0))

2

2Ωa∗,a(w̃)

)
.

Finally, we have

− 1

T
logPP0

(
µ̂a∗

T ≤ µ̂a
T

)
≥ (∆a(P0))2

2Ωa∗,a(w̃)
.

Because w̃ → wGNA(a) as T → ∞, we have

lim inf
T →∞

− 1

T
logPP0

(âEBA
T 6= a∗) ≥ lim inf

T →∞
− 1

T
log

∑

a6=a∗

PP0
(µ̂a∗

T ≤ µ̂a
T )

≥ lim inf
T →∞

− 1

T
log

{
(K − 1) max

a6=a∗
PP0

(µ̂a∗

T ≤ µ̂a
T )

}
≥ min

a6=a∗

(∆a(P0))
2

2Ωa∗,a(wGNA)
≥ min

a6=a∗

∆2

2Ωa∗,a(wGNA)
.

Thus, the proof of Theorem 4.2 is complete.

F Additional Experimental Results

This section shows the experimental results discussed in Section 7. For the details, see Section 7.
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K = 2 K = 3

Figure 6: Experimental results (K = 2 and K = 3). The left figure shows the result with K = 2, and the
right figure shows the result with K = 2. The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis for each
K = 2 and K = 3.
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K = 5 K = 10

Figure 7: Experimental results (K = 5 and K = 10). The left figure shows the result with K = 5, and the
right figure shows the result with K = 10. The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis for each
K = 5 and K = 10.
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K = 20.

Figure 8: Experimental results (K = 20). The y-axis and x-axis denote the probability of misidentification
and T , respectively. We show the same results with different three scales of the y-axis and x-axis.

K = 2.

Figure 9: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of sub-
optimal arms 0.90. The variances are drawn from a uniform distribution with support [0.5, 10]. We con-
tinue the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each
T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification
and T , respectively.
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K = 3.

Figure 10: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of suboptimal
arms 0.90 (µa(P ) = 0.90 for all a ∈ [K]\{1}). The variances are drawn from a uniform distribution with
support [0.5, 10]. We continue the strategies until T = 100, 000. We conduct 100 independent trials for each
setting. For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of
misidentification and T , respectively.

K = 5.

Figure 11: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of suboptimal
arms 0.90 (µa(P ) = 0.90 for all a ∈ [K]\{1}). The variances are drawn from a uniform distribution with
support [0.5, 10]. We continue the strategies until T = 100, 000. We conduct 100 independent trials for each
setting. For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of
misidentification and T , respectively.
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K = 10.

Figure 12: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of suboptimal
arms 0.90 (µa(P ) = 0.90 for all a ∈ [K]\{1}). The variances are drawn from a uniform distribution with
support [0.5, 10]. We continue the strategies until T = 100, 000. We conduct 100 independent trials for each
setting. For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of
misidentification and T , respectively.

K = 20.

Figure 13: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of suboptimal
arms 0.90 (µa(P ) = 0.90 for all a ∈ [K]\{1}). The variances are drawn from a uniform distribution with
support [0.5, 10]. We continue the strategies until T = 100, 000. We conduct 100 independent trials for each
setting. For each T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of
misidentification and T , respectively.
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K = 2.

Figure 14: Experimental results. The best arm is arm 1 and µ1(P ) = 1. The expected outcomes of
suboptimal arms 0.75. The variances are drawn from a uniform distribution with support [0.5, 10]. We
continue the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each
T ∈ {100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification
and T , respectively.

K = 3.

Figure 15: Experimental results. The expected outcomes of suboptimal arms 0.75 (µa(P ) = 0.75 for all
a ∈ [K]\{1}). The variances are drawn from a uniform distribution with support [0.5, 10]. We continue
the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each T ∈
{100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification and
T , respectively.
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K = 5.

Figure 16: Experimental results. The expected outcomes of suboptimal arms 0.75 (µa(P ) = 0.75 for all
a ∈ [K]\{1}). The variances are drawn from a uniform distribution with support [0.5, 10]. We continue
the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each T ∈
{100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification and
T , respectively.

K = 10.

Figure 17: Experimental results. The expected outcomes of suboptimal arms 0.75 (µa(P ) = 0.75 for all
a ∈ [K]\{1}). The variances are drawn from a uniform distribution with support [0.5, 10]. We continue
the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each T ∈
{100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification and
T , respectively.
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K = 20.

Figure 18: Experimental results. The expected outcomes of suboptimal arms 0.75 (µa(P ) = 0.75 for all
a ∈ [K]\{1}). The variances are drawn from a uniform distribution with support [0.5, 10]. We continue
the strategies until T = 100, 000. We conduct 100 independent trials for each setting. For each T ∈
{100, 200, 300, · · · , 99, 900, 100, 000}. The y-axis and x-axis denote the probability of misidentification and
T , respectively.

41


	Introduction
	Problem Setting
	Open questions about Optimal Strategies in Fixed-Budget BAI
	Conjectures about Information-theoretic Lower Bounds
	Impossibility Theorem
	Worst-case Optimal Strategies with the Problem Difficulty
	Asymptotically Invariant (Static) Strategies
	Open Questions

	Main Results: Worst-Case Optimal Fixed-Budget BAI with Matching Constants
	Worst-case Lower Bound
	The GNA-EBA Strategy
	Probability of Misidentification of the GNA-EBA strategy
	Worst-case Asymptotic Optimality
	Discussion

	Intuition behind Lower Bounds and the Proofs of Theorem 4.1 and Corollary 4.5
	Existence of Asymptotically Optimal Strategies
	Transportation Lemma
	Lower Bound given Known Distributions
	Uniform Lower Bound
	Best-Arm-Worst-Case Lower Bound
	Relaxing the Strategy Class Restrictions

	Hypothesis BAI
	Simulation Studies
	Conclusion
	Related Work
	Historical Background of Ordinal Optimization and BAI
	Optimal Strategies for BAI
	Complexity of strategies and Bahadur efficiency
	Efficient Average Treatment Effect Estimation
	Other related work.

	Proof of Lemma 5.2
	Proofs of Theorem 5.3
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Additional Experimental Results

