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Abstract

We propose efficient methods for solving stochastic simple bilevel optimization
problems with convex inner levels, where the goal is to minimize an outer stochas-
tic objective function subject to the solution set of an inner stochastic optimization
problem. Existing methods often rely on costly projection or linear optimization
oracles over complex sets, limiting their scalability. To overcome this, we propose
an iteratively regularized conditional gradient approach that leverages linear opti-
mization oracles exclusively over the base feasible set. Our proposed methods em-
ploy a vanishing regularization sequence that progressively emphasizes the inner
problem while biasing towards desirable minimal outer objective solutions. In the
one-sample stochastic setting and under standard convexity assumptions, we es-
tablish non-asymptotic convergence rates of O(t_l/ 4) for both the outer and inner
objectives. In the finite-sum setting with a mini-batch scheme, the corresponding
rates become O(t_l/ 2). When the outer objective is nonconvex, we prove non-
asymptotic convergence rates of O~(t*1/ ™) for both the outer and inner objectives

in the one-sample stochastic setting, and O(¢t~'/4) in the finite-sum setting. Ex-
perimental results on over-parametrized regression and dictionary learning tasks
demonstrate the practical advantages of our approach over existing methods, con-
firming our theoretical findings.

1 Introduction

We consider stochastic simple bilevel optimization problems, where the goal is to minimize an outer
stochastic objective function subject to the solution set of an inner stochastic convex optimization
problem. Formally, the problem is defined as

Fopt == Helg}i {F(z) :=E[f(z,0)] : © € Xopt} , where X := argmin {G(z) := E[g(z, )]} .

zeX 0
Here X C R?is a compact convex set, and both I/ and G are smooth with G is additionally
convex, making the optimization problem (1) a possibly nonconvex problem with convex domain.
This framework has broad applicability, including hyper-parameter optimization [16, 17, 39], meta-
learning [17, 42], reinforcement learning [32] and game theory [50]. In particular, problem (1) arises
in learning applications where G is the prediction error of a model x on data, and F' is an auxiliary
objective (e.g., regularization, or a validation data set). The dependence on data is through the
expectation operators and the random variables 6, £. The bilevel formulation provides a tuning-free
alternative to the usual regularization approach where we optimize o F'(x) + G(x) for a carefully
tuned parameter o.

Despite its wide applications in machine learning there are three primary challenges in solving (1).
First, we do not have an explicit representation of the optimal set X, in general, preventing us
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from using some common operations in optimization such as projection onto or linear optimization
over Xqpt. An alternative is to reformulate (1) using its value function formulation

;rél)r(l F(z) st G(z) < Gopy = irél)r(l G(z). ()
However, this leads to our second challenge. Problem (2) is inherently ill-conditioned: by defini-
tion of Gopt, there exists no € X such that G(z) < Gopt, hence (2) does not satisfy Slater’s
condition. As a result, the Lagrangian dual of (2) may not be solvable, complicating the use of
standard primal-dual methods. In addition, we do not know Gy a priori, so an alternative is to
approximate it with G < Gopt + €4, and consider the constraint G(x) < G instead. However, this
approach does not solve the actual bilevel problem (1), and may still introduce numerical instability.
The third challenge comes from the stochastic nature of the objectives. Since F' and G are defined
as expectations, their exact computation may be intractable when dealing with large-scale datasets.
In single-level optimization, this is typically addressed through sampling-based methods that op-
erate on mini-batches drawn from the distributions of # and £ instead of the actual distributions
themselves. However, such stochastic approximations introduce noise into the optimization process,
necessitating new techniques to control the noise and ensure convergence.

1.1 Related works

Simple bilevel optimization problems with nonconvex outer objectives This setting has been
studied by Jiang et al. [29] in the deterministic case and by Cao et al. [4] in the stochastic case. These
works propose conditional gradient methods that require performing linear optimization over inter-
sections of the base domain X with a halfspace. In contrast, our approach removes this requirement
by relying solely on linear optimization over X. We note that we do not address the more general
case with both nonconvex inner and outer objectives considered in [5, 21, 24]. In the remainder of
this section, we will focus on simple bilevel problems with convex inner and outer objectives.

Iterative regularization methods. Simple bilevel optimization extends Tikhonov regulariza-
tion [52] beyond ¢, penalties by considering a blended objective o F'(x) + G(x), where o > 0 modu-
lates the trade-off between inner and outer objectives. As o — 0, the problem converges to a bilevel
form that prioritizes the inner objective. Friedlander and Tseng [18] established fundamental condi-
tions ensuring solution existence for o > 0, forming the basis for iterative regularization, where o is
gradually reduced. This idea was first implemented by Cabot [3] in the unconstrained case X = R?
using a positive decreasing sequence oy, and later extended to general convex constraints by Dutta
and Pandit [14]. While these methods use proximal steps, which can be computationally expensive,
Solodov [49] proposed a more efficient gradient-based alternative. Helou and Simdes [23] further
generalized the framework to non-smooth settings via an e-subgradient method. These works show
asymptotic convergence but lack convergence rates. Amini and Yousefian [1] analyzed an iterative
regularized projected gradient method and established a convergence rate of O(t~(1/2=%)) for the
inner objective, assuming non-smooth F' and G, compact X, and strong convexity of f. Kaushik
and Yousefian [30] later removed the strong convexity assumption and proved rates of O(t~?) and
O(t=(1/2=)) for the inner and outer objectives, respectively, for any b € (0,1/2). Malitsky [35]
studied an accelerated variant based on Tseng’s method [53], achieving an o(¢t~!) rate for the in-
ner problem. More recently, Merchav et al. [37] proposed an accelerated proximal scheme with a
O(log(t + 1)/t) rate under smoothness assumption and O(¢~2) and O(1/t>~7) for inner and outer
objectives, respectively, under a Holderian error bound condition with modulus v € (1,2). Our
work also follows an iterative regularization approach, but avoids expensive projections or proximal
operations by leveraging linear optimization oracles.

Projection-free methods. Several important applications have domains X where projection-based
operations are inefficient, yet linear optimization over X is easier. To address the limitations of
projection-based methods, recent work has focused on projection-free bilevel optimization via linear
optimization oracles. Jiang et al. [29] approximated X, by replacing the constraint G(x) < Gopt
with a linear approximation, which removed the need for Slater’s condition, and applying the con-
ditional gradient method, refining the approximation at each step. They established O(t~*) conver-
gence rates for both objectives under smoothness and compactness assumptions in case f is convex.
Under non-convex setting, they claimed the convergence rates of O(t~'/2) to the stationary point
of the problem. However, their method requires a pre-specified tolerance parameter ¢4, and only



guarantees (e,/2)-infeasibility. Doron and Shtern [12] proposed an alternative approach based on
sublevel sets of the outer function F'. Their method performs conditional gradient updates over sets
of the form X x {x : F(z) < o}, with a surrogate G, that is updated iteratively. They achieved rates
of O(t™1) for the inner and O(t~1/2) for the outer objective under composite structure in G' and an
error bound on F'. While linear optimization over X may be efficient, this is not always true for sets
like X N H, where H is a halfspace, or {F/(x) < «} unless F' has a special structure. To address
this, Giang-Tran et al. [20] introduced a conditional gradient-based iterative regularization scheme
that only requires linear optimization over X, albeit with slower rates: O(¢t~?) and O(t~(~P)) for
the inner and outer problems, respectively, for any p € (0,1). We extend this framework to the
stochastic setting, maintaining the same oracle-based reliance on linear optimization over X.

Stochastic methods. Stochastic bilevel optimization remains less explored. Jalilzadeh et al. [27]
developed an iterative regularization-based stochastic extragradient algorithm, requiring O(1/ e‘]%)

and O(1/ 63) stochastic gradient queries to achieve e-optimality for both objectives. Cao et al. [4]
extended the projection-free framework of Jiang et al. [29] to the stochastic setting. Their methods
achieve O(t~') convergence rate when the noise distributions have finite support, and O(t~1/?)
convergence rates under sub-Gaussian noise. However, their method requires linear optimization
over intersections of X with a halfspace. In contrast, our work relaxes this requirement by relying
solely on linear optimization over the base set X .

Other methods and bilevel problem classes. Several alternative approaches exist for simple
bilevel optimization, including sequential averaging schemes [36, 44, 46], sublevel set-based meth-
ods [2, 6, 21, 58], accelerated algorithms [6, 7, 45, 54] and primal-dual strategies [47]. These
methods are less related to our framework and do not address the stochastic setting. More general
bilevel problems have seen considerable attention, particularly in Stackelberg game formulations
where the upper and lower levels model leader-follower dynamics [8, 10, 19, 28, 31, 33, 34, 56].
Recent extensions include contextual bilevel optimization with exogenous variables [25, 51, 55] and
problems with functional constraints at the lower level [30, 40]. Our focus in this paper, however, is
restricted to the stochastic simple bilevel problems.

1.2 Contributions

We present two iterative regularization methods for solving problem (1) in both stochastic and finite-
sum settings. The key idea is to introduce a decreasing regularization sequence {0y };>1, and at each
iteration ¢, perform a gradient-based update on the composite objective o, F' + G. As oy decreases,
the algorithm gradually shifts focus from F' to G, thereby steering x; toward points in Xp¢. At the
same time the o F' term encourages x; towards a point in X, that minimizes F'. In the stochastic
formulation (1), computing exact gradients of the upper and lower objectives is computationally
expensive. To address this, we employ sample-based gradient estimators. Specifically, we use the
STOchastic Recursive Momentum (STORM) estimator [9] in the one-sample stochastic setting, and
the Stochastic Path-Integrated Differential EstimatoR (SPIDER) [15, 38] in the finite-sum setting.

The key contributions of this paper are summarized below.

o One-sample stochastic setting: We develop a projection-free method for stochastic simple
bilevel optimization that under convexity of F' on the base set X achieves high-probability con-
vergence rates of O(t~/*,/log(dt2/4)) for the outer-level problem and O(t~'/%, /log(d/$)) for
the inner-level problem, with probability at least 1 — §. Without convexity of F', the method
enjoys the non-asymptotic convergence rates of O(t_% log(dt?/§)) for both the outer- and inner-
level objectives. Compared to the state-of-the-art approach by Cao et al. [4, Algorithm 1], which
achieves the O(t~1/2,/log(td/5)) rate under convex settings and O(t~'/3/log(td/§)) under
nonconvex settings for both the outer and inner problems, our method offers several key advan-
tages. First, it eliminates the need for optimization over intersections of the base domain with a
halfspace, requiring only linear optimization over the original constraint set. Second, it removes
the dependency on their pre-specified tolerance parameter €4, and the associated computationally
expensive initialization procedure to find an €4-optimal starting point. Third, our algorithm en-
joys anytime guarantees. Overall, the proposed algorithm is a simple, single-loop procedure that
is significantly easier to implement than that of [4].



¢ Finite-sum setting: For problems with n component functions, we establish convergence rates
of O(t~1/2,/1og(t2/6)) (outer) and O(t~1/2/log(1/6)) (inner) with probability 1 — §. Without
convexity of F, the method enjoys the non-asymptotic convergence rates of O(t~7 log(dt2/6))
for both the outer- and inner-level objectives. Although Cao et al. [4, Algorithm 2] achieves
improved O(t~ ! log(t)+/log(t/4)) rates under convex settings and O(t~*/2 /log(t/5)) rates un-
der nonconvex settings for both objectives, it again relies on more computationally demanding
halfspace-intersection oracles, requires an additional initialization step, depends on a fixed step-
size, and does not offer anytime guarantees.

¢ Numerical validation: We demonstrate the practical efficiency of our methods on over-
parametrized regression and dictionary learning tasks, showing significant speedups over existing
projection-based and projection-free approaches. The experiments validate both the convergence
rates and computational advantages of our framework.

The supplementary material is organized in the appendices as follows. Appendix A establishes the
preparatory lemmas used throughout our analysis. Appendices B and C contain the detailed proofs
for the results presented in Section 2 and Section 3, respectively. Appendix D provides additional
material, including analyses of the convergence rate coefficients as well as details of the numerical
implementations in Section 4.

2 Algorithm and convergence results for the one-sample stochastic setting

In this section, we introduce the Iteratively Regularized Stochastic Conditional Gradient (IR-SCG)
method, summarized in Algorithm 1. This approach is a conditional gradient method that leverages
the STORM estimator to progressively reduce noise variance via momentum-based updates, assuming
sub-Gaussian noise. While the use of the STORM estimator in projection-free methods was first
explored in [60], our IR-SCG algorithm offers several key advantages. Notably, unlike the method
of Cao et al. [4], IR-SCG is an anytime algorithm that does not require careful initialization, preset
step sizes, or knowledge of the total number of iterations 7" in advance.

Algorithm 1: Iteratively Regularized Stochastic Conditional Gradient (IR-SCG) Algorithm.

Data: Parameters {a; }1>0 C [0, 1].{o¢}+t>0 C Ryy.
Result: sequences {xy, 2 }1>1.

Initialize zg € X;

fort=0,1,2,...do

if t = 0 then

Compute

VF, = Vo f(x,04), VG, = Vag(xt, &)

else
Compute

VF; = (1— a)VE_1 + Vaf(ze,0) — (1 — )V f(zi_1,0:)
ﬁ;t =(1- at)@t—l + Vaeg(x,&) — (1 — @) Vaeg(xi—1,&)

CBmpute
_ _N\T
vp € arg min { (O’tVFt + VGt) v}
veX
Tpq1 = Ty + (v — T4)
St41 1= (t + 2)(t + 1)Ut+1 + Z (’L + 1>’L'(0'i,1 - 0‘1‘)
€ [t+1]
(t + 2)(t + 1)Ut+1$t+1 + Zie[t+1] (’L + 1)2'(0'1'_1 — O'Z‘)in
Zt41 =
L St+1




To establish convergence rates for Algorithm 1, we impose the following standard assumptions on
the simple bilevel problem (1). In the following, all norms refer to the Euclidean norm.

Assumption 1. The following hold.

(a) X C RY is convex and compact with diameter D < o0, i.e., |x—y|| < D foranyz,y € X.

(b) Functions F,G are convex over X and continuously differentiable on an open neighbor-

hood of X.

(c) For any 6, f(-,0) is Lg-smooth on an open neighborhood of X, i.e., it is continuously
differentiable and its derivative is L y-Lipschitz:

IVaf(x,0) = Vaf(y,0)ll < Lyllz =yl
forany x,y € X.
(d) Foranyé&, g(-,&) is Lg-smooth on an open neighborhood of X.

(e) For any x € X, the stochastic gradients noise is sub-Gaussian, i.e., there exists some
oyf,04 > 0such that

E [exp (||VIf(9c, 0) — VF(x)||2/0J2c)] < exp(1),
E [exp (Hvzg(x,f) — VG(:E)\|2/0§)] < exp(1).

First, we present the result for the case that F' is convex.

Theorem 1. Let {z:}>1 be the iterates generated by Algorithm 1 with oy = 2/(t + 2) for any
t > 0, and regularization parameters oy := s(t + 1) P for some chosen ¢ > 0, p € (0,1/2). Under
Assumption 1, for any t > 1, with probability at least 1 — 0, it (jointly) holds that

F(z) — Fopy <O <t7(1/271’)\/log (e /5)) , G(2) — Gopt <O (fp\/log (d/é)) .

Moreover, with probability 1, we have

lim F(x) = Fops, tlggo G(z¢) = Gopt-

t—o0

Theorem 1 provides the formal convergence guarantees for the IR-SCG algorithm in the convex
setting. If we set p = 1/4, Algorithm 1 achieves an e-level optimality gap for both the outer and
inner problems with a sample complexity of O(1/¢?).

We next extend our analysis to the more general case where F' is not necessarily convex. In this
setting, we require a different measure for stationarity. We define our stationarity measure using the
Frank-Wolfe gap, which for a convex function F(x) = 0 if and only if « is optimal. This provides a
natural generalization for the non-convex case. Accordingly, for all z € X, we define the functions

F(z):= max VF(z) (z —v), G(x):=G(x)— Gopt. 3)

vEXopt

To avoid clutter, we present the result using the optimally tuned parameters of Algorithm 1.

Theorem 2. Let {x;}>( denote the iterates generated by Algorithm I with stepsizes o, = (t+1)™%

and regularization parameters oy = s(t+1)7P for any t >0, with p= % and w= % If Assumption |

holds with the exception that F' may be nonconvex, then with probability at least 1 — 0, for every
t > 0, it (jointly) holds that
Zf:o oiF ()
T
2 i=0 0

Moreover, with probability 1, we have

<O (t*% log (dt2/5)> , Gz) <O (t*% log (dt2/5)) .

htrgérolff(xt) =0, tlgglo G(xy) =0.



3 Algorithm and convergence results for the finite-sum setting

In this section, we address the case where the expectations in (1) are finite sums over n components.
We introduce the Iteratively Regularized Finite-Sum Conditional Gradient (IR-FSCG) method, sum-
marized in Algorithm 2, where [n] := {1,...,n}. This approach is a conditional gradient method
that leverages the SPIDER estimator, achieving variance reduction through periodic gradient recom-
putations with mini-batches of size q. While the SPIDER estimator has been previously integrated
into projection-free methods [22, 48, 57, 59], here we show how it can be effectively adapted to our
regularized setting. The primary advantage is that, unlike the method of Cao et al. [4], IR-FSCG
preserves the desirable anytime properties of our approach while achieving a faster convergence rate
that capitalizes on the finite-sum structure. Additionally, it does not require careful initialization,
preset step sizes, or knowledge of the total number of iterations 7" in advance.

To establish its convergence, we again rely on Assumption 1, noting that condition Assumption 1(e)
holds automatically in this finite-sum setting. First, we present the result when F' is convex.

Theorem 3. Suppose F' and G in (1) are expectations over uniform distributions on [n]. Let {z}+>1
be the iterates generated by Algorithm 2 with oz = log(q)/q for 0 < t < q, ax = 2/(t + 2) for
any t > g, and o, := ¢(max{t,q} + 1)~P for some chosen < > 0, p € (0,1) and S = q. Under
Assumption 1, with probability at least 1 — 0, for any t > q, it holds that

F(z) — Fopt <O <c(t,q)t_(1_”)\/log (t2/5)) . G(z) = Gopy < O (t_p\/log (1/5)) )
where c(t,q) = max {1, ¢log(q)/t}. Moreover, with probability 1, we have
lim F(x¢) = Fops, tlim G(z¢) = Gopt-

t—o0

Algorithm 2: Iteratively Regularized Finite-Sum Conditional Gradient (IR-FSCG) Algorithm.

Data: Parameters {a; }1>0 C [0,1], {o¢ }i>0 C Ry, S, q € [n].
Result: sequences {xy, 2 }1>1.

Initialize zg € X;

fort=0,1,2,...do

ift =0 mod ¢ then

Compute
ﬁt = VF<$t), €Gt = VG(xt)
el;e
Draw S new i.i.d. samples Sy = {01,...,05}, Sg = {&1,. .., &s)s
Compute
ﬁ‘t = ﬁtfl + Vf,sf (l't) — stf ((Etfl)
%’t = ﬁ;tfl + Vgsg (xt) — Vggg (.Z‘tfl).
CBmpute
_ _\T
vy € arg min { (otVFt + VGt) v}
veX
T4l = T + O[t(”Ut — l‘t)
if £ > ¢ then
Compute

St+1 = (t + 2)(t + 1)0}4.1 + Z (’L + 1)i(0’i_1 — O'i)
i€[t+1]\[q]

(t + 2)(t + 1)O't+1iEt+1 + Zie[t+1]\[q] (’L + 1)i(0i_1 — O'Z')l’i
St+1 '

241 =




Theorem 3 provides the formal convergence guarantees for the IR-FSCG algorithm in the convex
setting. Moreover, when we set S = ¢ = |/n] and p = 1/2, Algorithm 2 achieves an e-level opti-
mality gap for both the outer and inner problems with a sample complexity of O(y/n/€?). Besides,
Algorithm 2 can be readily extended when the outer- and inner-level problems involve different
numbers of component functions (ny # ngy) by introducing (S, ¢5) for the outer level and (.S, q,)
for the inner level. Details are omitted for brevity.

We next extend our analysis to the more general case where [’ is not necessarily convex, using the
auxiliary function (3) to assess stationarity. To avoid clutter, we present the result using the optimally
tuned parameters of Algorithm 2.

Theorem 4. Let {x;},>¢ denote the iterates generated by Algorithm 2 with stepsizes a, = log(q +
/(g+ 1) forany0 <t < q o = 1/(t + 1)¥ forany t > q and S = q, and regularization
parameters oy = ¢(max{t,q+ 1} + 1)F withp = 5 and w = Z If Assumption 1 holds with the
exception that F' may be nonconvex, then with probability at least 1 — 0, for every t > q, it (jointly)
holds that

Zé’:ﬁ ofﬁ E‘ri) <O (¢4 log (d2/5)), Glw) <O (t H10g (d12/9)),

where

ao(g+ 1) log(g + 1) <1_ 10g(q+1)>q_l 0<i<q

Bi = q+1 q+1

“4)

Moreover, with probability 1, we have

liminf F(x;) =0, lim G(x) = 0.
t—o0 t—o0

4 Numerical results

We showcase the performance of our proposed algorithms in an over-parametrized regression and a
dictionary learning problems. For performance comparison, we implement four algorithms: SBCGI
[4, Algorithm 1], SBCGF [4, Algorithm 2], aR-IP-SeG [27], and the stochastic variant of the dynamic
barrier gradient descent (SDBGD) [21]. All implementation details follow those in the corresponding
papers and available in Appendix D. To ensure reproducibility, all source codes are made available
at https://github.com/brucegiang/CG-StoBilvl.

4.1 Over-parameterized regression

We first consider a simple bilevel optimization problem with a convex outer-level objective function

min F(x) := |Ava® — byat]|3 st z € argmin G(2) :=

Az — by|?, 5
reRe |Dva| =l <5 Do \H bl @

where the goal is to minimize the validation loss by choosing among optimal solutions of the training
loss constrained by the ¢1-norm ball. We use the same training and validation datasets, (A, by)
and (Aya, byar), from the Wikipedia Math Essential dataset [43], as in [4]. This dataset consists of
n = 1068 samples and d = 730 features.

We evaluate the performance of different algorithms across 10 experiments with random initializa-
tions and report their average performance within a 4-minute execution limit. Figure | shows the
convergence behavior of different algorithms for the inner-level (left) and outer-level (right) opti-
mality gaps in terms of execution time. Our proposed stochastic methods outperform existing ap-
proaches. In particular, IR-FSCG achieves high-accuracy solutions for the outer-level objective while
maintaining strong inner-level feasibility, surpassing its mini-batch counterpart, SBCGF. Similarly,
IR-SCG outperforms its single-sample counterpart, SBCGI. We also observe that both SBCGI and
SBCGF exhibit degradation in their inner-level optimality gaps over time. This behavior aligns with
the theoretical guarantees in [4], where the inner-level convergence can only be bounded by €,/2
without monotonic improvement guarantees. Furthermore, neither aR-IP-SeG nor SDBGD makes
significant progress in optimizing the outer-level objective function.
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Figure 1: The inner-level optimality gap (left) and the outer-level absolute optimality gap (right)
over time for different algorithms on the over-parametrized regression problem (5).

The table below also reports the average number of iterations and stochastic oracle calls over the
4-minute time limit for each algorithm. Our projection-free method completes more iterations
within the fixed time budget, benefiting from a simpler linear minimization oracle compared to
the projection-free approach in [4]. We also observe that SDBGD and IR-SCG perform a similar num-
ber of iterations, as the /;-norm projection oracle has comparable computational cost to the linear
minimization oracle.

I Method || Average # of iterations || Average # of oracle calls ||
IR-SCG 1182617.0 2365234.0
IR-FSCG 369952.5 28240425.0
SBCGI 6726.9 7428681.9
SBCGF 6713.4 7935076.2
aR-IP-SeG (short step) 807700.2 3230800.8
aR-IP-SeG (long step) 799725.0 3199300.0
SDBGD (short step) 1250392.6 2500782.2
SDBGD (long step) 1243720.1 2487440.2

4.2 Dictionary learning

In the dictionary learning problem, the goal is to learn a compact representation of the input data
A ={a1,...,a,} € R™. Formally, we aim to find a dictionary D = [d; - --d,] € R™*P such
that each data point a; can be approximated by a linear combination of the basis vectors in D. This
leads to the following optimization problem

%1’1)1(1 o Z lla; — D3
16 [n]
st. DeR™P X =[x - x,] € RP*"
||dj||2 <1, Vje [p]v ”‘%'1”1 <o, Vie [n}’

where we refer to X as the coefficient matrix. In practice, data points usually arrive sequentially and
the representation evolves gradually. Hence, the dictionary must be updated sequentially as well.

Assume that we already have learned a dictionary D € R™*? and the corresponding coefficient
matrix X € RP*" for some data set A. As a new dataset A’ = {d},...,a’,} C R™ arrives,
we intend to enrich our dictionary by learning D € R™*4 (¢ > p) and the coefficient matrix
X € R7*" for the new dataset while malntamlng good performance of D on the old dataset A as
well as the learned coefficient matrix X .
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Figure 2: The inner-level optimality gap (left) and the outer-level objective function (right) over time
for different algorithms on the dictionary learning problem (6).

This leads to the following simple bilevel problem with a nonconvex outer-level objective function

; N v 1 I a2
min F(D,X) = _;} |a; — D)2

st. DEeR™, X =i &) e R, ||#i|y <6, Vie ], (©6)
~ 1
De argmin g¢g(Z):=— l|a; — Z:Eng,
ll2;12<1,Vj€lq] 2n iez[;ﬂ

where we denote z; as the prolonged vector in R? by appending zeros at the end. We consider
problem (6) on a synthetic dataset with a similar setup to [4, 29].

We evaluate the performance of different algorithms across 10 experiments with random initializa-
tions and report their average performance within a 1-minute execution limit. Figure 2 shows the
convergence behavior of different algorithms for the inner-level (left) and outer-level (right) prob-
lems in terms of execution time. Our proposed stochastic methods outperform existing approaches.
In particular, IR-FSCG achieves better solutions for the outer-level objective while maintaining
strong inner-level feasibility, surpassing its mini-batch counterpart, SBCGI. Similarly, IR-SCG out-
performs its single-sample counterpart, SBCGI. We again observe that both SBCGI and SBCGF exhibit
degradation in their inner-level optimality gaps over time.

The table below reports the average number of iterations and stochastic oracle calls over the 1-minute
time limit for each algorithm. Our projection-free method completes more iterations within the fixed
time budget, benefiting from a simpler linear minimization oracle compared to the projection-free
methods in [4]. We also observe that SDBGD performs fewer iterations than IR-SCG, as it relies on a
more costly projection oracle.

I Method || Average # of iterations || Average # of oracle calls ||
IR-SCG 32736.1 65472.2
IR-FSCG 30532.6 1872851.0
SBCGI 466.3 7440.6
SBCGF 361.84 6147916.0
aR-IP-SeG (short step) 6290.0 25160.0
aR-IP-SeG (long step) 6278.1 251124
SDBGD (short step) 11441.3 22882.6
SDBGD (long step) 12239.3 24478.6
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A Preparatory Lemmas

Throughout all appendices, we employ the notation ®;(z) := o4 F'(x)+G(x) and Vd, = 0, VE,+
VG, to denote the gradient estimate at step £. We also denote Zops € Xopt as an optimal solution to
(1). All norms refer to the Euclidean norm.

For any sequence {x;};>o generated by either Algorithm 1 or Algorithm 2, we observe that by
construction, xg,v; € X . Hence, under convexity of X, z;4; € X as it is a convex combination
of z; and v;, and X is assumed to be convex. By a simple induction argument, one can easily show
that the sequence {z;};>0 € X.

A.1 Convex outer-level

Lemma 1. Let {x;};>0 denote the iterates generated by Algorithm 1 or Algorithm 2 with some
given stepsizes {c }1>o. If Assumption 1 holds, then for every t > k, we have
(Lyor+Ly)D*a?

(I)t(l't—i-l)_q)t(ivopt)g(1—C¥t)((1)t($t)—®t(dfopt))+ 2 - +2£¥tD HV@t(xt)—%f‘

Proof of Lemma 1. Recall that

N7
ZTer1 = T + (v — x¢), where wv; € argmin { (V(bt) U} )
veX
As both functions F' and G are assumed to be convex and smooth, it is easy to show that ® is convex
and o,L; + Lg-smooth. By smoothness of ®; and the assumption that diam(X) = D, one can
show that

oL+ L,)a?
Dy (we11) < Pul@e) + o VO () T (v — ) + %Hvt —z?

(01Ly + Lg) D%}

S (I)t(.Tt) + OthCI)t(xt)T(’ut — l't) + 9

Note that for any w; € X and any gradient estimator V®,, we have

vy — Tt) + %:(vt — T4)

ve — ) + ﬁ:—(wt —Iy)

= (V& (21) = V) (v — 20) + (VB — V() T (wr — 24) + VP, (1) T (wy — )
< 2D|[V®, — V&, (2,)|| + VP, (a0) T (w; — z),

IN
<
Ly
&
\
<
©
a5

where the first inequality follows from the definition of v;, and the second inequality uses the
Cauchy-Schwarz inequality, and the assumption that diam(X) = D. Thus, by smoothness of @,

for any w; € X and any gradient estimator V®,, we have
(0¢L¢+Ly)D%*a?
5 .

and set wy = Zopt. Thanks to the convexity of ®;, one can easily show that V&, (z¢) " (Topt — 1) <
Dy (xopt) — Pi(z¢). Thus, we obtain

q’t($t+1) - (I)t(fopt)
< @) = @i (wops) + 1 (@) = Bila) + 2D VP, — V()] ) +

(01Ly + Lg)D?of
) .

The proof concludes by using the definition of the stepsizes . O

(I)t(mt-&-l) S q)t(xt)+atV<I>t(a:t)T(wt—xt)—i—QDatHﬁt —Vfbt(xt) || + (7)

(0:Ly + Lg)D?a}
2

= (1= ) (@4(wopt) — Pe(1)) + 204 D|[V D, — VB (y)]| +

13



Lemma 2. Let {x,},>0 denote the iterates generated by Algorithm I or Algorithm 2 with stepsizes
{at}i>0 given by ap = 2/(t+2) for any t > k. If Assumption 1 holds, then for eacht > k, we have

t(t+ 1) (By(w1) = Delwope)) + D (i+ 1)i0s1 — 03)(F(@:) = Fop)
i€[t]\[K]

< (k+ Dk (®r(xr) — Pr(opt)) + 2(00Ls + Lg)D*(t — k) (8)

+ Z 4ZDH§$171_VCI)271($171)”
ie[t]\[k]

Proof of Lemma 2. By definition of ®;, we have

q’t($t+1)—q’t($opt) = 0t+1(F(9Ct+1) - Fopt)+G($t+1)—Gopt+(0t - Ut+1)(F(9Ct+1) - Fopt)
= 1 1(2441) — Pot1(Topt) + (08 — Tr41) (F(T441) — Fop)-

To simplify the derivations, we introduce the shorthands h; := ®4(x;) — P4 (xopt,) and

2(Lyoy + Ly) D? 4D ==
i K2 | DT, — V1 (a0)] ~ (00— o041) (Plores) = Fop).

Applying Lemma 1 with stepsize oy = 2/(t+2) for all t > k gives the recursion hy 11 < w5 he 41
for any ¢ > k. This can be re-expressed as

(t+ )the < Ut — Dhe—y + 1t + 1)1
forany ¢t > k + 1. Thus, for t > k + 1, it holds that
(t+Dthy — (k+ Dkhe = > ((i+ 1)ihi — (i = D)ihi1) < Y (i + 1)ini1.
i€[t]\[K] i€ [t]\[K]

By definition of h; and 7, and using the inequalities ¢ /(¢ + 1) < 1 and 0,1 < o for i € [t] \ [k],
we arrive at

(t+ 1)t (Pe(xe) — Pe(@opt)) — (b + 1)k (Pr(2k) — Pr(wopt))
< 2(0oLy + Lg)D*(t — k) = 3 (@ + Diloi1 — 03) (F(2) — Fopt)

+ 2 iepp g HDIVPi—1 = Vi (2i-1)]],

which implies (8). This completes the proof. O

Proposition 1. Let {x,};>( denote the iterates generated by Algorithm 1 or Algorithm 2 with step-
sizes {ou }1>0 given by ay = 2/(t + 2) for any t > k. If Assumption 1 holds, then for each t > k,
we have

(k + 1)k (B (zx) — Pr(zop)) . 2(00Ls + Ly)D2(t — k)
G(x1) — Gopt < D) + 22 )

Z 4ZDH%£_1 - V@i_l(a:i_l)ﬂ

9
e tt+1) 9
. Zi (Z —+ ].)Z(O'Z_ — 0'1‘)
+ (Fopt —gél)r{lF(x)) (Ut el ) - ) )
and
(t+ Dto () — Fopt) + 3 (4 Diloim1 — 0,) (F(s) — Fopr)
i€[t]\[4]

< (k+ 1)k (®p(zr) — P(zopt)) +2(c0 Ly + Lg)D*(t — k) (10)

+ Z 4ZD||%1_17V@1_1($1_1)H
i€[t]\[K]

14



Proof of Proposition 1. By definition of the function ®,, the first term in (8) satisfies
Ht+1) (D4 (w0) = Po(wopt)) =t(t+1) (G(2r) = G(@opt)) + (4 1)or (F (1) = F(opt)) - (11)

Since z; € X, we have min, ey F'(z) — Fopy < F(xy) — Fope for all ¢ > 0. Using this bound
together with the identity in (11), we can further lower bound the left-hand side of inequality (8),
and arrive at the bound (9). This completes the proof of the first claim.

For the second claim, since {z;};>0 € X is feasible in the lower-level problem, it follows directly
that G(z;) > Gopt. Combining this inequality with (11) and (8), we obtain (10), which concludes
the proof. O

A.2 Nonconvex outer-level

When F' is possibly nonconvex, we start by establishing a bound, akin to Lemma 2.

Lemma 3. Let {x,};>0 denote the iterates generated by Algorithm 1 or Algorithm 2 with
{ag, 00 >0 given by o = (t+ 1) Y and o, = s(t+ 1) P fort > k with0 < p < w. If
Assumption 1 holds with the exception that F may be nonconvex, then for every t > k, we have

(t 4+ 1)“G(x141) — k“G(ay) < 25 sup |F(2)|(t + 1)¥ 7P + o F(x,) Zm (2)
zeX

n (O'iLf + Lg)D2>

t
+§ <2D"V<I>i—V<I>i(a:i) T

Proof of Lemma 3. Using the definition of ®; = o, F' + G, for any ¢ > k, we have
JtF(ZL't+1) + G(l’tJrl) S UtF(SCt) + G(xt) + oy 1I]I1€1§(1(O'tVF((L't) + VG(CCt))T('U — l’t)

(o¢Ly + Lg)DQOz%
2

where the inequality follows directly from (7) and by minimizing over w; € X. We emphasize
that (7) does not involve any convexity assumptions on ®; and relies solely on its smoothness.
Furthermore, notice that for any z € X,

min (6VF(z) + VG(z))" (v —2) < min (6VF(z)+ VG(x))" (v - x)

+ 2Dat||ﬁt — Vd)t(xt)H +

vEX vEXopt
< uén;%?m {oVF(2)" (v—2)+ G(v) — G(z)}
= —oF(z) = G(x),

where the last equality follows from the definition of F and G. Using the above bound, we may thus
conclude that

UtF(ﬂ?t+1) + G($t+1) S O'tF(Z‘t) + G(Z‘t) — Oét(O't.F(th) + g(xt))
(oeLy + Lg)DQO‘t2
B) .

+ 2Dy || VP, — VO, (2)| +

A simple re-arrangement and using the definition of G then yields the bound
ar(ouF () + G(@1)) < 0o (F(31) — F(@i41)) + G(@0) — G(@e41)
(0¢L¢ + Ly)D?*a3 (12)
5 .
Using the definition of «; and the fact that (¢ + 1) < ¥ — 1 for any ¢ > 0, we arrive at
(t+1)%G(@e41) < G () + (t + 1) 00 (F(@e) — F@i41)) — 00 F (1)
(O'th + L )D2
2(t+ 1)~

+ 2Dy |V P, — V&, (2)|| +

+2D|VO, — V&, (2 +
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Unwinding this recursion back to ¢ = k, we obtain

t t

(t+1)“G(@r1) < kG(an) + Y (i + 1)“0u(Fai) = Flzir1))) = ) oiF ()

i=k i=k

t
— (0;Ls + L,)D?
+y° (2D|V<I>i — V()| + M :

i=k

Since p < w, we have (i + 1)¥o; — i“0;_1 > 0. Therefore, we deduce that

M=~

(i + 1)%0i(F(z:) — F(xit1))
1=k

= (F(xi)((i +1)%0; — i“’ai_l)) FopF (k) — (t+1)%0 F(20s1)
i=k
< sup |F(2) ; (G +1)%0i = i010)) + owF () + (1 + 1) sup | F(:)]

< 2 sup |F(2)|(t+ 1)* 7P + o F(xy).
zeX

This completes the proof. O

To establish asymptotic convergence of the proposed methods under nonconvex outer-level, we rely
on an observation that function F is Lipschitz continuous on X.

Lemma 4. If Assumption 1 holds, the function F as defined in (3) is Ly D + max,cx ||VF(2)||-
Lipschitz continuous over X.

Proof of Lemma 4. Given z,y € X, we observe that
Fly) = max {VF(y)'(y —v)}

= max {(VF(y) — VF(2))"(y —v) + VF(z) " (y - 2) + VF(2) " (z — v)}

vE€Xopt
= nax {(VF(y) - VF(2)) (y —v) + VF(z) (y — 2) + VF(2) " (z - v)}
< max {[VE(y) = VE(@)lllly = vll+ VF(z)" (y —2) + VF(z) " (z - v)}

< s {Lle D+ VF@) (5~ 2) + VF@) (- )
— LDl —yll+ V@) (s - 2) + F(a)
< (L0 -+ g VR Iy - ol + Fa),

where the first and third inequality follows from Cauchy-Schwartz inequality, while the second
inequality follows from the L ;-smoothness of I

By interchanging the role of y and x, we deduce that

F)=F@) < (504 mag IFE ) Iyl

This concludes the proof. O

B Proofs of Section 2

B.1 Proof of Theorem 1

We restate Theorem | with exact upper bounds on sub-optimality gaps.
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Theorem 1. Let {z;},>1 be the iterates generated by Algorithm 1 with o, = 2/(t + 2) for any
t > 0, and regularization parameters {o;}i>o given by oy = s(t + 1)~P for some chosen ¢ > 0,
p € (0,1/2). Under Assumption 1, for any t > 1, with probability at least 1 — §, we have

F(z) — Fyp < 2(Ly + Lg/§)D2 + de(4(Ly + Lg/S)D +3(0f + 04/5)) \/m7

(t+1)t-» (t+1)t/2-p
and
G(Zt) — G()p[
2—p — min F(x 2
< (1 + min{1,2(1 _p)}> [(1 + 2p) (Fo,,, miy F( )> S+2(sLy+ Ly)D

+4c (8(Lys + Ly) D* + 3 (045 + 04) D) \/(1_2217)6 +1log (8d/9) | (t+1)7P,

where c is some absolute constant. Moreover, with probability 1, we have

tlg(r)lo F(zy) = Fopt, 75li)r(r)lo G(z¢) = Gopt-
The proof proceeds by applying Proposition 1 with £ = 0. In this case, the main random component
in (9) and (10) is the term ;) 4iD||V®;_1 =V ®;_ (2;—1)||. We first derive a probabilistic upper
bound for this term, then carefully set the parameters in Algorithm 1 to establish the convergence
rate for both the lower- and upper-level problems.

We begin by bounding the gradient estimator used in Algorithm 1.

Lemma 5. Ler {x,};>0 denote the iterates generated by Algorithm 1 with stepsize o, = 2/(t + 2)
Sorany t > 0. If Assumption 1 holds, then for any t > 1, given § € (0, 1), with probability at least
1 — 9, for some absolute constant ¢, it (jointly) holds that

IVF, — VF(z,)|| < V2 (4L;D + 307) (tlf%ci@
(13)
VG log(4d/d)
IVG: — VG(a4)|| < evV2 (4LyD + 30,4) T

Proof of Lemma 5. The proof closely follows the argument in [4, Lemma 4.1]. In particular, the
bounds in [4, Lemma B.1] still hold under the modified stepsize oy = 2/(¢t+2), instead of 1/(¢+1).
The constant inside the logarithmic term changes from 6 to 4, as we now apply a union bound over
two events rather than three. Additionally, the constants of the upper bounds is doubled due to use
of the modified stepsize. We omit the details for brevity. O

Proposition 2. Let {z;},>( denote the iterates generated by Algorithm 1 with o, = 2/(t + 2) for
any t > 0. If Assumption I holds and the parameters {0y }>0 are non-increasing and positive, then
given § € (0, 1), with probability at least 1 — 0, for some absolute constant ¢ and any t > 1, we have

Z ZH%z—l — V@i_l(xi_l)ﬂ
1€[t]
< c(4(ooLs 4 Ly)D + 3(000 s + a4)) (t + 1)3/2y/log (8dt2/5).
Proof of Proposition 2. Giveni > 1 and 6 € (0,1), by Lemma 5, with probability at least 1 —
§/i(i + 1), we have
i[V®i_y — V1 (wi-1)|| < i(0il|VFi—1 — VF(wi_1)|| + [VGio1 — VG(xin1)])
<i(00l|VFi—1 = VF(zi1)| + | VGioy — VG (1))
< eV2(4(ooLs + Ly)D + 3(0oos + a4)) VVilog (4di(i + 1)/9)
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Thus, using the union bound, with probability atleast 1 —¢ » .., 1/i(i+1) = 1—4, forany i € [t],
we have B

STV — VO (x| £ Y eV2(A(00Ls + Ly)D + 3(000f + 0y)) \/ilog (8d#2/6)
i€[t] i€(t]

< c(4(ooLy + Ly)D + 3(090 s + a,)) (t 4+ 1)3/%/log (8dt2/5),
where the second inequality follows from bounding ) . el Vi < %(t + 1)3/2 via the Riemann sum
approximation, and observing that 24/2 < 3. O

To establish the desired convergence results for Algorithm 1, we need to impose certain conditions
on the regularization parameters {o }+>0, stated below.

Condition 1. The regularization parameters {o, }, > are non-increasing, positive, and converge to 0.
Condition 2. There exists L € R such that

limt( It —1> — L.
t—o0 Ot41

Condition 3. (t + 1)o7, | > to} forany t > 0, and log(t) = o(to}) ast — oco.

The following parameters will appear in our analysis and convergence rates

(i 1)i(oq —0y 2
C = sup{(Fopt_Hg)I(lF(x)> <1+ZZEM(Z+ Jilois U)>+2(G°Lf+L-")D } (14a)

t>1 (t+1)t0t (t+1)0’t
_ 8c(4(ooLs+ L,)D?* + 3 D
Gy o sup 4 e Ulooly & Lo)D* 4 3(ovos + 09)D) oy | (14b)
t>1 (t+1)20,
Cs:=Cs + C, (14¢)
Zie[t] (i + Di(oi—1 — 04)o;
V.= itzul) { T 1)io? . (144)

While it is not obvious a priori, Lemma 17 in Appendix D.1 guarantees that these quantities remain
finite for any parameter choice satisfying Conditions 1-3. In particular, Conditions 1-3 hold when
ot = (t 4+ 1)7P for any p € (0, 1), which is what is used in Theorems | and 3, and Lemma 8
provides explicit bounds for this case. We now analyze the sequence {z; };>¢ in Algorithm 1 for the
inner-level problem.

Lemma 6. Let {x,}¢>0 denote the iterates generated by Algorithm 1 with oy = 2/(t + 2) for any
t > 0, and let C5 be defined as in (14a). If Assumption 1 and Conditions 1-3 hold, with probability
at least 1 — 6, it holds that

G(z¢) — Gopy < Cso, (15)
foranyt > 0.

Proof of Lemma 6. Combining (9) from Proposition 1 with the probabilistic bound in Proposition 2,
and after some straightforward calculations, with probability at least 1 — d, we have

- 8¢ (4(coLy + Ly)D? + 3(090s + 04)D)
- (t+1)1/2

2 L L D2 i 7;+1Z.0i, —0;
+ M+(Fept_néi§(lF($)> (UH-Z e[t]( Jiloina )> .

G(x¢) — Gopt log (8dt2/4)

(t+1) (t+ 1)t

By definition of Cj, the right-hand side is at most C'soy for any ¢ > 1. This completes the proof. [

We next analyze the convergence of the sequence {z; };>¢ in Algorithm 1 for both outer- and inner-
level problems.
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Lemma 7. Let {z },>1 denote the iterates generated by Algorithm 1 with o, = 2/(t + 2) for any
t > 0, and let Cs,V be defined as in (14). If Assumption 1 and Conditions 1-3 hold, then with
probability at least 1 — ¢, it (jointly) holds that

2(00Ls + Ly)D?*  4c(4(ooLy + Ly)D + 3(cgo s + 0y))
F —Fo < V1 dt?/6),
(2t) pt = (t+ 1)oy + (t+ 1)1/20’t og (8dt?/4)
G(Zt) — Gopt S C(s(l + V)O't,

foranyt > 1.

Proof of Lemma 7. Recall from Algorithm 1 that we have defined

Sipr =+ 2)t+ Dovsr + ey (@ + 1i(oio1 — 03)

Zg41 = ﬁ ((t +2)(t+ Dovp1@er1 + ey (@ + Di(oior — Ji)xz’) ;

thus z; is simply a convex combination of xg, ..., x; for every ¢ > 1. Therefore, as F' is convex, we
can apply Jensen’s inequality to the left-hand side of the inequality (10) with £ = 0, and after some
tedious calculation, we arrive at

2(0()Lf + Lg)D2t + Z 42D||ﬁ271 - v@i,1($i,1)||

F(Zt) - Fopt S St St

1€[t]

Using the inequality S; > (t+1)to;, which holds thanks to Condition 1, and applying Proposition 2,
with probability at least 1 — §, we have

2(0oLs + Ly)D*  8c(4(ooLs + Ly)D + 3(000f + 0y))
F(z) — Foyy < : : ) flog (8di%/9).
(Zt) pt = (t + 1)0—15 + (t + 1)1/2Jt Og( / )

This completes the proof of the first claim.

For the second claim, we follow the same procedure. In particular, applying Jensen’s inequality with
respect to the convex function G to the left-hand side of (15) and using the inequality S; > (t+1)toy,
with probability at least 1 — §, we have

C& 2 . .
G(z —GO Si t+ 1)t + 14+ 1)2 i—1 — 0;)0;
( t) pt t(t + I)O't ( ) Oy Zez[t]( ) (U 1 g )U
The proof concludes by using the definition of V. O

Lemma 7 establishes a convergence result in terms of the regularization parameters {o};>0. The
next lemma specifies an update rule for these parameters and provides bounds on the quantities
introduced in (14).

Lemma 8. Consider the sequence oy := ¢(t + 1)7P for t > 0 and the quantities defined in (14).

(i) Ifp € (0,1), then {0} }+>0 satisfies Condition I and Condition 2 with L = p. Furthermore,

. 2(sLy + L9>D2 2p
< _ N g —_— .
C<(1+2p) (Fopt ;nelggF(m)) T c T T min{1,2(1 - p)}

(ii) If p € (0,1/2), then {0} }+>0 satisfies Condition 3, and we have

C5 < de (8 (Lf + Lj) D?+3 <of + ”j) D) \/(1—22;.»@ +log (8d/5).

Proof of Lemma 8. As for assertion (i), it is trivial to see that the sequence {0 };>0 satisfies Condi-
tions 1. To validate Condition 2, observe that

1 P t 1+6)P -1
lim ¢ gt —1)=lim¢ 1+—— | —1) = lim -lim( +9) =p,
t—o00 Opt1 t—00 t+1 t—woot+1 60 1)
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where the last equality holds as the derivative of y? at y = 1 equals p. We next establish the bound
for C. For ¢ > 1, it follows from the mean value theorem that there exists b; € (¢,¢ + 1) such that

tr—(t+1)7" = —pbt_(p+1)(t —t—1)= pbt_(p'H) < pt=(+D),
Hence, we observe that
Zie[t] (t+1)i(o—1 —03) < 2p Eie[t] PP < 2¢pt2P,

where the first inequality is due to ¢ + 1 < 2t and the second inequality holds because ¢! 7 is an
increasing function in ¢. This implies

Zie[t] (l + 1)7:(0’1‘_1 — Ui) 2pt27p <y
(t+ 1)toy St )ie = D.

Since min;>o(t + 1)o; = ¢, we obtain

2(cLs + L,)D?

C<(1+2p) (Fopt - ar}g)r{l F(x)) + .

We next establish the bound for V. Using similar arguments, we observe that
Yic i+ 1)i(oi—1 —0i)o; < 2¢%p > el i,
If 1 — 2p > 0, then t'~2 is an increasing function in ¢ and thus
Zie[t] (i 4+ 1)i(oi—1 — 04)o; < 2p2t2(1=p)
Dividing both sides by t(t + 1)03, we deduce that V' < 2p. When 1 — 2p < 0, we have
Yicp i+ 1)i(oio1 — 07)o; < 2ps? (1 + 55y (P77 = 1)) < 2 ?tr),

where the first inequality is due to the Riemann sum approximation y_, ;4" > <1+ fle il=2rds.
Dividing both sides by t(t + 1)o2, we deduce that V < p/(1 — p), thus the claim follows.

As for assertion (ii), it is trivial to see that Condition 3 holds. We thus focus on bounding Cs. Using
the fact that sup,~4 log(t)/t = 1/e, for any ¢ > 1, we may conclude that

8¢ (4(ooLy + Ly)D? + 3(000y + 04)D)
(t+1)1/20,

= 8¢ <4 <Lf + Lj) D*+3 <af+°;g) D) \/(7f . 11)1_21) (1 _22p log (t12p)+log(8d/5)>

<8 (4 (Lf 4 Lj) D’ 3 <af + ?) D) \/(1_22]@6 +log (8d/5).

The claim then follows from the definition of Cj. L]

log (8dt2/4)

Proof of Theorem 1. The first claim on the non-asymptotic convergence guarantee follows directly
from Lemmas 7 and 8. As for the second claim on the asymptotic convergence, we prove a more
general result: even if oy is not set as (¢ 4+ 1) 77, the iterates of Algorithm 1 still converge almost
surely, provided the regularization sequence satisfies the conditions in Lemma 6.

Lemma 6 implies that lim;_, o, G(2¢) = Gopt With probability at least 1 — ¢. As J can be arbitrarily
small, we may conclude that lim,_,, G(z;) = Gopt, almost surely. This implies that any limit point
of {z}4>0 is in Xopt almost surely. Since F' is convex, hence lower semi-continuous over X, and
by definition of F,,p¢, we have liminf, o, F'(z;) > Fop almost surely.

Besides, by combining Propositions | and 2, we deduce that for any § € (0, 1), with probability at
least 1 — 4, we have, forall t > 1,

4c¢ (4(ogLy + Lg)D* 4 3(0goy + 04)D)
F(.'Et) - Fopt S (t T 1)1/20't

log (8dt2/9)
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2(ooLy + Ly)D? N Yie (i + 1)i(oi1 — 03) (Fopy — F(x))
(t+ 1o tt+1)oy
< 4c¢ (4(ooLy + Lg)D? + 3(0goy + 04)D)
- (t+1)1/20,
2ooLy + Ly)D?  2ie i+ 1)iloi1 — oi) max{Fope — F(x:),0}
(t+ 1o t(t+ 1)oy

log (8dt2/4)

b

where the second inequality holds due to Condition 1. We claim that all terms on the right hand side
converge to 0 as t — oo. This is obvious except for the last term.

Recall that almost surely liminf, .o, F'(x¢) > Fope. Therefore we have limsup,_, . (Fopt —
F(z¢)) < 0 and hence lim;_,o max{Fo,, — F(z;),0} = 0 almost surely. Applying the
Stolz—Cesaro theorem and (33) leads to

Yicp(+ 1)i(oi—1 — 0i) max{Fopy — F(z;),0}

li =0
00 t(t+ 1)oy ’

almost surely. Then each term on the right hand side of the inequality converges to 0 as t — oco. It
follows that with probability at least 1 — &,

lim sup(F(x;) — Fopy) < 0.

t—o00

Thus, since this holds for any § € (0, 1), it holds almost surely. In conclusion, we have shown
that limsup,_, . (F'(z¢) — Fopy) < 0 and liminf, o (F(x;) — Fopy) > 0, which implies that
limy_, o0 F'(2) = Fopt almost surely. This completes the proof. O

B.2 Proof of Theorem 2

We restate Theorem 2 with explicit upper bounds on the stationary gaps and for a more general
choice of p and w. Toward the end of the proof, we show that the optimal parameters are p = 2/7
andw = 6/7.

Theorem 2. Let {x;}+>0 denote the iterates generated by Algorithm 1 with stepsizes oy = (t+1)%
and regularization parameters oy = <(t + 1)7P for any t > 0. If Assumption 1 holds with the
exception that F' may be nonconvex, then with probability at least 1 — 6, for every t > 0, it (jointly)
holds that

Siooli+ 1) 7P F ()
Zzzo(i +1)~P
< 4(1—p)sup |[F(2)|(t + 1)¥ 1 +2(1 — p)F(wo)(t + 1P~ 4+ 202 Lr+La) D% 1y | qyp—w
zeX

s(1—w)

3w

4c(1-p)V2(2(sLy+Lg) D+ g — (o4 +04)) D
+ s(1-w/2) (

t+ 1)”_“’/2\/log (4d(t +2)2/9),
and

(sLy + Lg)D2 e
1—w

tl—p—w
G(z¢) < s sup |F(2)] <2t_p + =7 ) +cF(zo)t™ +

zeX
2cv/2(2(sLy + Ly)D + 52 (o5 + 04))D
+
1—w/2

#1739/ /log (4d(t + q)2/9),
where c is some absolute constant.

Proof of Theorem 2. Following the proof of [4, Lemma 4.1], for any ¢ > 0, one can easily show
that, with probability at least 1 — 7;, we have

. 3w 4d
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Setting 7; applying a union bound, and using the fact that o; < 09 = ¢ we have that

— d
T GHDE+2)?
with probability at least 1 — ¢ Z:ZO m > 1 — 4, the following holds:

t

— . 2
> <2qu>i — VO, (z;)| + M)

2 20 + 1)~
2v/2¢(2(sLy + Ly)D + %(Uigf"‘gg))D 4d(t + 2)* (cLy+ Lg)
= Z ( e \/10g ( 5 ) e O

) 2\/§c(2(<Lf + Lg)D + 53 (so5 + 04)) D 4172, g Ad(t + 2)?
= 1—w/2 g
(gLf + Lg)D2
1-w
Applying Lemma 3 with k£ = 0, with probability at least 1 — J, we thus have
t
G(zi11)<2 su§|F(z)|(t+1) P+ ¢F () Za}" x;)(t+1)" —|—M(t—|—l)1 2w
ze i=0 (16)

+ 2\/7C(2(§Lf+L 1)3;@_1 (<Uf+o'g))D (t+1)1—3w/2 log (4d(t;—2)2)

t+1)t

Note that the maximum in the definition of function F is with respect to X,p¢, not X. Therefore,
F(z;) can take both positive and negative values since x; € X. However, we can derive the follow-
ing bound

t+ 1)~
S iF (@) < sup |7(2) |Zal<gsup|f< L

=0 =0 p
which further implies that

(sLy+ Lg)D2 2w
1—w

tl—p—w
G(x:) < gsup |F(z)] <2t_p + ) +cF(zo)t™ +
zeX 1 -D

N 20\/5(2(§Lf + Lgl)lj :/351(<0f + Ug))Dtl_Bw/Q\/log <4d(t;— q)z). a7

We next focus on the upper-level problem. Since G(z111) > 0, using (16), we have

L;+ L,)D?
Zm (z:) < 2 sup |F(z )|(t+1)w*p+gF(z0)+M

t4 1)1
i—0 ze€X 1-w ( )

. 2cv/2(2(sLy + Lg)D + 525 (soy + ag))D(t 112, Jlog 4d(t + 2)2
1—w/2 ) '

Dividing both sides by Z’;:O o0, and furthermore exploiting the bounds
t

t+2)1-P —1 t+1)-p
S o> U2 > 7
1-p 2(1-p)

i=0
we arrive at

Liso TP ) g1y up [P (4 19+ 2(1 - p)F(ao)(t 4+ 1P

ZE:O a; z€X
2(1 — L L,)D?
( p)(§ ft g) (t—|—1)p7
(1 -w)
c o ort+o 4d(t 2 2
| 4e= ph/lszf;f 5353 Y (cost Q)D( 4—1)p“/2VAog < ( ;— ) ).

(18)
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Both bounds involving G and F hold with probability > 1 — §. Hence, the first claim on the non-
asymptotic convergence guarantee follows. Moreover, by optimizing over the parameters p and w,
we aim to ensure that the right-hand sides of both bounds converge to 0. To achieve this, we select
p and w to minimize the slowest rate with respect to ¢:
. 1
min = max{-p,1 —p—w,—w,1 —2w,1 -3w/2,w—1,p—1,p—w,p—w/2} = —=
p,w:0<p<w 7
which is realized by setting p = 2/7, w = 6/7 as required. Substituting these values yields the
bound presented in the main body of the paper.

As for the second claim on asymptotic convergence, we prove a more general result: If
max{-p, 1 —p—w,—w,1 —2w,1 —3w/2,w—1,p—1,p —w,p —w/2} <0,
then it holds that
liminf F(z;) = lim G(z;) = 0.
t—o0 t—o0

Under this additional assumption and the fact that G(z;) > 0, we deduce that lim;_,, G(2;) = 0
from taking the limit on both sides of (17). From the continuity of G, we deduce that any limit
point of {z;};>¢ is in Xop¢. the continuity of F from Lemma 4 and the fact that F(x) > 0 for any
x € Xopt, we deduce that lim infy_, ., F(x¢) > 0. Recall that

tim f Fl) = [, Jnf P,

and

Yo OiF (@) | Yo 0iinfixi Flan)
Zf:o o ZE:O Gi '
Combining these observations and (18), we have
S, 0iinfrs Flay)
Z;:O i
<4(1-p) sup [F()I(t+ 1) +2(1 = p) Fao)(t + 1)~

2(1— p)(§Lf + Lg)D2

t+ )P
1—o) (t+1)

4e(1-p)VZ(2(SLy+Ly) D+ 585 (so4+04))D —w 4d(t +2)*
+ u R =T (t+1)P /2\/10g (5 .

By the Stolz—Cesaro theorem (since p € (0,1), >,~, 0 = 00) and taking the limit on both sides

of the above inequality, we obtain lim inf;_, .. F(z;) < 0. Since this holds with probability at least
1 — ¢ forany § € (0,1), it should hold almost surely. Thus, we conclude the proof. O

C Proofs of Section 3

C.1 Proof of Theorem 3

We restate Theorem 3 with exact upper bounds on sub-optimality gaps.

Theorem 3. Suppose the expectations defining F and G in (1) are from uniform distributions over
finite sets of size [n]. Let {z}1>1 be the iterates generated by Algorithm 2 with o, = log(q)/q for
0<t<gq apr=2/(t+2)foranyt > q, and oy := ¢(max{t,q} + 1)~? for some chosen ¢ > 0,
p € (0,1) and S = q. Under Assumption 1, with probability at least 1 — 0, for any t > g, it holds
that

F(Zt) — Fopt
max {F(w0) = Fop, 0} + (G(20) = Gopr) /s + (Ly + Ly /s) D? (; +16,/log (“?2)) log(q)
(q+1)~ 1t +1)t-rt

<

23



2Ly + Ly/S)D?(t — q) + (8v/2t — 4q) (Ly + Ly/) D* [log (157)
(t+ 1)1t ’

G(Zt) — G()pl

< ((1 +2p) (Fl,pf ~ min F(x)) s +2(sLy +L,)D* + (maxF(x) - f(xo)> S

zeX

2
z€X 1 2 e(l—p)

+ max g(z) — g(xo) + %p (Lys + Ly) D? (1 + 16\/ + log (16/5))

9 1 o 2p —p
+8V2(Lys+ Ly) D \/e(lp) +1 g(16/5)> (1+min{172(1p)}) (t+1)

Moreover, with probability 1, it holds that
lim F(l’f) == FOpt7 tlim G(I’t) == Gopt-

t—o0

The proof proceeds by applying Proposition 1 with & = ¢. Unlike the proof of Theorem 1,
here we have two main random components in (9) and (10): (g + 1)q (®4(xq) — Pg(zopt)) and

Yien g YDl Vo, 1~V (zi—1)]]- We first derive probabilistic upper bounds for these terms,
then carefully set the parameters in Algorithm 2 to establish the convergence rate for both lower-
and upper-level problems. In the following we use the notation

= % Z filz), G(z)= % Z gi(z)
i€[n) i€[n]

For simplicity, we assume that F' and G have the same size support, though our arguments are easily
extended to the more general case. Also, given S C [n], we write

()= 5 S o) = gy D)

We begin with a probabilistic bound on the gradient estimator used in Algorithm 2.

Lemma 9. Let {x,}:>0 denote the iterates generated by Algorithm 2 with oy = log(q)/q for any
0<t<qanda; =2/(t+2)foranyt > q. If Assumption 1 holds, then for any t > 0, given
0 € (0,1), with probability at least 1 — 0, it (jointly) holds that

VF; — +) e\d log (8/4),
H VFa:H<8LD1 9 Aoz 379)

octe) 4
Hvat VG(a)| < 8L,D \}‘LS log (8/9),
provided that 0 < t < q, and
Hﬁ“t - VF(a:t)H < 8L;D S(H Do 5T VI8 B
(20)

Hﬁt — VG(xy)

< é;L D o~ < \/ 1() 8 (5
Whe’e St i — (Z t/q y plowded lhal t > q.

Proof of Lemma 9. If t = s,, we have VF, = VF (x¢). Otherwise, let S; C [n] be the index set of
size S chosen at iteration ¢, and for i € S; define

€t = % (Vfl(l‘t) - vfi(xt—l) - VF(JJt) + VF(l‘t_l)) .
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From the update rule for z;, we have ||x; — z1—1|| = ag—1||ve—1 — 24—1|| < ay—_1 D forany t > 1.
As a result,

2L;D

Qp_1,

levill < 5 (19 i) = Vi) |+ IVE () ~ VR )] <

foranyt € {s;+1,...,8:+q} and i € [S]. For any ¢ such that ¢ # s;, we have from the definition
of VF; that
VF, = VF(x)) = VFi_1 = VF(xi1) + Y €

i€[S]
Thus, we deduce that
V.~ VPG| - Z S e
s=st+1i€Ss
Since Z 1 Dic s, €s,i 18 @ martingale with bounded increments, we apply a concentration in-

equality [41 Theorem 3. 5] to get

/\2
4L D2
2
425 s¢+1 S Qg1

P (|, - vFG)| 2 3) < e ( -

If1 <t <gq,wehave

t 4L2-D2 4L2 D2 1 2 1 2
e e Rt q ( og(q)) —_a2p?los (9)
R S S q qS

P (|7 rten] 20) < ho (- et ).

and thus

If t > g, we observe that

¢ , t 1 Podu A —sy)
2, a2 (s+1>2§4/st (w+1)? (4 D(s+1)

Then, we have

P (Hﬁt - VF(JCt)H > /\) < 4exp (—)\QS(t +1)(se + 1)> .

64L3¢D2(t — St)

Arguing similarly for ﬁ?t, we have

P (Hﬁ;t —VG(x)

A2¢S
2 ) <dexp (‘mlg(q)) :
g

N2S(t+1)(s; + 1)
64L2D2(t — 1) )’

if 1 <t<gand

P (Hﬁ\at —VG(x)

> )\) < 4exp (

ift > q. Given 6 € (0,1) and 1 < t < g, setting the right hand side = §/2 and solving for A, we

have
log(q) g
>8L;D—— NGES v/ log (8/(5)) < 3

log(q)
Y Jox570)) <

Applying union bound, we deduce that with probability at least 1 — 9§, (19) holds. Arguing similarly
for t > ¢, we also deduce that (20) holds with probability at least 1 — §. O

(va V()

and
(HVGt VG(a)| 2 82,025L g
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To establish convergence results for Algorithm 2, we replace Condition 3 with the following.

Condition 4. 0, = o for 0 < t < ¢, (t + 1)oy41 > toy for any t > 0, and log(t) = o(toy)
ast — oo.

Note that o is fixed during the initialization phase, and o7 in Condition 3 is replaced by o7 in
Condition 4. Unlike the proof of Theorem 1, where we set k = 0, the proof of Theorem 3 requires
setting k = ¢. We therefore begin by analyzing the sequence {z;};>o generated by Algorithm 2
over the first ¢ iterations.

Lemma 10. Ler {x;}:>o denote the iterates generated by Algorithm 2 with oy = log(q)/q for any
0<t<qandS = q. If Assumption 1 and Condition 4 hold, we have then given 6 € (0, 1), with
probability at least 1 — 63 ., 1/(i +1)(i + 2), for any t > q, it holds that

By(y) — Bo(Tope) < (1 - lgq(q)) (Po(0) — Do(zop)

2
+ (Lyoo + L) D? (; + 164 /log <16;>> logq@.

Proof of Lemma 10. By Lemma 1, for any 0 < ¢ < g, we have
Pi(wi41) — Pi(Topt) < (1 — i) (Pi(@i) — Pi(@opt)) +

+2D0;|V®;(2;) — V.
By Condition 4, we have ag = - - - = a4 and
og =+ =0y :>(I)O:...:(I)q7
where the implication follows from the definition of function ®,. Thus, we may conclude that
Py(xg) — Pg(wopt)

< (1= ap)(Po(xg—1) — Po(opt)) +

(Lyoi + Lg)D*a?
2 @1)

(Lyoo + Ly) D*af

+2Dag | VP 1 (24—1) — VO,

2
a-! 2 2
L L,)D )
< (1= ap)? (Po(wo) — Po(opt)) + (L0 +2 g)D ag (1 - ap)’
i=0
q—1
+ 0 2Dag |V, () — V|(1 — ag)™ 7,
i=0

where both inequalities are direct consequences of Condition 4 and (21). Note that
q—1 q—1 S

—1—i i i 1
D l-a)™ = (1-a) <Y (1—ag) = —,
=0 i=0 =0 o
where the last equality follows from convergence of geometric series. We thus arrive at
q—1 2
Liog+ L,)D*«
B, (24) — Byope) < (1~ )" (@(an) — Pp(age)) + Y 70T L) D00
- = (22)
+> 2D Vy(x;) - V.
i=0

Note that by the definition of ®; and the triangle inequality, we have
IV@i(2:) = V&i|| < 00| VE; = VF()] +[|VG: — VG(a)].

Hence, applying Lemma 9 along with a union bound argument implies that, for any ¢ € (0, 1), with
probability at least 1 — 0 37, 1/(i + 1)(i + 2), we have

q—1 qg—1 . .
- log(q) 8(+1)(i+2)
; VDo () — V|| < ;SD(UoLf +L,) s \fleel )
Plugging the above probabilistic bound into (22), noting that ¢ > ¢ and S = ¢, and using the
definition of oy complete the proof. O
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We next analyze the sequence {z; };>( generated by Algorithm 2 after the first ¢ iterations.

Proposition 3. Let {x,},>o denote the iterates generated by Algorithm 2 with o, = log(q)/q for
any 0 < t < q, ap = 2/(t +2) foranyt > qand S = q. If Assumption 1 holds and the
parameters {0 }1>0 are non-increasing and positive, then given 6 € (0, 1), with probability at least
1 =083 e g 1/i(i + 1), for any t > q, it holds that

— 6t2
Z i|V®i—1 — VO, _1(zi—1)] < (8\/§t - 4(1) (ooLy + Lg)Dy [log ( 5 > (23)
i€[t]\[q]
Proof of Proposition 3. For any ¢ > 1, we have
V81 — V&1 (zi1)|| < (051 VEFim1 — VE(zi1)|| + IVGiot — VG(wim1)])
< (00l|VFio1 — VF(zi1)|| + Vit — VG(zis1)])). (24

Given § € (0,1) and ¢ < i < 2¢, by Lemma 9 and the inequality (24), with probability at least
1—10/i(i 4+ 1), we have

o fic1—g 8i(i +1)
o, 1 —Vo,_ i < L L,)Diy | ———4/1 _
iIV®;i—1 — V@1 (xi—1)]] < 8(ooLy + Ly) Z\/qi(q—kl)\/og( 5 )

D1 8i(i+1
< 8(ooLys + Lg)?Z log (Z(ZH>

§
Hence, if ¢ < ¢ < 2¢, with probability atleast1 — &> _, ., 1/i(i + 1), we have

= Di 16¢2
> ilVeiy = VO ()] <Y 8(00Lf+Lg)? log ()

)
q<i<t q<i<t

612
< (00Ls + Ly) D(8V3t — 4q), [log ( 5 )
where the second inequality holds as é > gei<t 1 < V2t — q/2 forall ¢ < t < 2q. Similarly, given

6 € (0,1) and ¢ > 2¢, by Lemma 9 and the inequality (24), with probability at least 1 — 6 /i(i + 1),
we have

i(ql(i—1)/q

8i( 1)
SUoLf—‘y-L \/ \/ ZZ+ )

< 8v2(0oLy + Ly) Dy |log <81(15+1)>

where the second inequality follows since ¢[ (i — 1)/¢] + 1 > i — g, and the third inequality follows
since i/(i—gq) < 2wheni > 2q. Thus, if ¢ > 2q, with probability atleast 1-6 >, _, ., 1/i(i+1) =
1 — &, we have B

— 16¢2
> iVei = Vi (i) < Y 8V2(00Ly + Ly)D log( )

)
2g<i<t 2¢<i<t

16¢2
=8V2(0oLs 4 Ly)D(t — 2q)4/log 5 )

For ¢ > 2g, with probability atleast 1 — 6> _,, 1/i(i + 1), the sum over all ¢ < <t is thus

Z iH%i—l — Vq)i—l(xi—l)”

q<i<t
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< (0oL 4 Ly)D(8V2(2q) — 4q)4 | log (16t2

5> +8V2(00Ls + Lg) D(t — 29) [log (1&)

]

- (Sﬁt N (16\/5 —16V2 + 4)Q) (0oL + Lg)Dy/log (1?2>

16¢2
= (8\@15 — 4q) (ocoL¢ + Ly)Dy/log )
Therefore, regardless of whether ¢ < ¢ < 2q or t > 2¢, (23) holds. O

The following parameters will appear in our analysis and convergence rates

i i+ 1i(o;—1 — 0y
Fopt *HHHF(CC) 1+ Zle[t]( ) ( i—1 1)
rzeX (t T 1)t0_t
C, := sup | -
t>q +2(00Lf + Ly)D(t — q)
(g+1) (max{{)o(aco)—@o(zopc),o}-&-(LfaOJ,.Lg)Dz (%-&-16 log( 102 )) log(q)>
C (t+1)to
C(S’q = Sup | (25b)
t>q (8\/§t74q)(goLf+Lg)D2\/m
N (t+1)to:
Cs,q = Cs.4 + Cy, (25¢)
. i+ 1)i(o;_1 — ;)0
Vg i=sup Lieiig( )i( : 1 ) ‘ -
t2q (t + 1)to;

Lemma 17 in Appendix D.1 guarantees that these quantities remain finite for any parameter choice
satisfying Conditions 1-2 and 4. In particular, these conditions hold when o; = <(¢ + 1) for
any p € (0,1), which is what is used in Theorem 3. We now analyze the sequence {z;};>¢ in
Algorithm 2 for the inner-level problem.

Lemma 11. Let {x;};>¢ denote the iterates generated by Algorithm 2 with o, = log(q)/q for
0<t<qoy=2/(t+2)foranyt > q S = q and let Cs , be defined as in (25¢). If Assumption 1
and Condition 1, 2 and 4 hold, then with probability at least 1 — 6, it holds that

G(It) - Gopt < C’é,qgtv (26)

foranyt > q.
Proof of Lemma 11. Combining (9) from Proposition 1 with the probabilistic bounds in Lemma 10

and Proposition 3, and after some straightforward calculations, with probability at least 1 — §, we
have

G(It) — Gopt

(g+1) (max {®(x0) — Po(@opt), 0} + (Lyoo + Lg)D? (é + 164/log (1(?;2)) log(q))
<
= (t+ 1)t

2(0oLs + Lg)D(t — q) + (82t — 4q) (00Ly + Ly)D?/log (12)
+ T
. Yie i+ 1)i(oi—1—0)
+ <F0pt—£ré1)1}F(x)) (O’t—l— E ) )

Here, the right-hand side is at most Cj 4, and therefore, G(z;) — Gopy < Cs 40y forany t > ¢q. 0O

We next analyze the convergence of the sequence {z; };>¢ in Algorithm 2 for both outer- and inner-
level problems.
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Lemma 12. Let {x;},>0 denote the iterates generated by Algorithm 2 with o, = log(q)/q for
0<t<qoy =2/(t+2) foranyt > q S = g, and let Cs4 and V, defined as in (25). If
Assumption 1 and Condition 1, 2 and 4 hold, then with probability at least 1 — 0, it (jointly) holds
that

F(Zt) — Fopt
(g+1) <max{<1>0(:v0) — Do (opt), 0} + (Lyoo + Lg)D2 (é + 164/log (166752)) log(q)>
S (t + Do,
. 2(ooLs + Lg)D*(t — q) + (8V2t — 4q) (0oL + Ly)D?/log (152)
(t+ 1)toy ’

G(Zt) — Gopt S C(;,q<]. —+ ‘/q)O't,
foranyt > q.

Proof of Lemma 12. Recall from Algorithm 1 that we have defined
St—i—l = (t + 2)(t + 1)Ut+1 + Zie[tJrl]\[q} (Z + 1)i(0’i_1 — O'i)

Zg41 = ﬁ ((t +2)(t + D)orp12e1 + e g ¢+ Diloi-1 — Ji)$i> ;

thus z; is simply a convex combination of xg, . .., x; for every ¢t > q. Therefore, as F' is convex, we
can apply Jensen’s inequality to the left-hand side of the inequality (10) with & = ¢, and after some
tedious calculation, for any ¢ > ¢, we arrive at

2(ooLs + Ly)D2t 1)q (P — &, (z0
F(z) — Fopy < (o0 f;; oD%t (g4 1)a( q(gi) g(Topt))
4iD|[VP;_y — VP, 1 (z;1)|
+> 2 .

1€[t]

Using the inequality S; > (¢ 4 1)toy, which holds thanks to Condition 1, and applying Lemma 10
and Proposition 2, with probability at least 1 — §, we have

F(Zt) — Fopt
(a+ 1) (s (@oan) = Bolene), 0} + (g + £)D? ( -+ 16y o () ) tox(a)
<
- (t + 1)t0’t
N 2(o0Ls + Ly)D*(t — q) + (8\/§t - 4q) (ooLs + Ly)D?*y/log (16(;2)
(t + l)tO't

for every ¢ > ¢. This completes the proof of the first claim.

For the second claim, we follow the same procedure. In particular, applying Jensen’s inequality with
respect to the convex function G to the left-hand side of (26) and using the inequality S; > (t+1)toy,
with probability at least 1 — §, we have

Cﬁq 2 . .
_ < ? 1 1 . — . .
G(2) — Gopt < s (t + 1)to; +_€[§t]m(z+ i(oi—1 — 04)0i
i q

The proof concludes by using the definition of V. O

Lemma 13. Consider the sequence o, := s(t +1)7P for t > 0 and the quantities defined in (25). If
p € (0, 1), then the sequence {0 }+>0 satisfies Condition 1, 2 and 4 with L = p. Furthermore,

) N 2(¢Ly + Ly)D? 2p

Cy < (1+2p) (Fopt—ininF(x) c VS e )}

€X
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and

Csq < max F'(x) — f(zo) + MaXrex g(gx) — 9(x0)

2 Ly\ o (1 2

+8v2 (Lf + ng) DQ\/e(llp) +log (16/5).

Proof of Lemma 13. We observe that Cy, V;; can be bounded from above by C, V' defined in (14)
under the conditions in Lemma 8. Therefore, we focus on Cs , for the remainder of the proof. Using
the basic inequality log(z)/z < 1/e for any 2 > 0, observe that for any ¢ > ¢

(g+1) (max {®@o(x0) — Po(Topt), 0} + (L oo + Ly)D? (é + 164/log (1§f2)> log(q))

(t + 1)t0’t
max {®¢(xo) — Po(Topt), 0} + (Lss + L,)D? (é + 164 /log (1‘?2)> log(t)
< - .
We have

Bo(0)~Bo(ze) = 00 (F(20) ~ Fope) o)~ Gl < & (1 F(0) = Foe ) -410059(0)~ G,

which implies

max {‘I)o(iEo) — CI)O(Iopt)v O}

< F — F, — .
<g (glg{c (z) 0pt) +I;1€a;(<g(ﬂf) Gopt

gtl-r
We also have
log(t) 2 log(t(1=P)/2) < 2
ta=p)/2 " 1—p ¢(A-p)/2 — e(l—p)’
and
1 16¢2 1 2 log(tlfp) 2
1 = log (16/6 —— 2 2 <Zlog(16/8 _—
Therefore,

(Lys+ Ly)D? (; + 164 /log (16;2)> log(t)

ctl-p

2 Ly\ (1 2

Similarly, we have

(8\/§t — 4q) (ooLy + Lg)D2 /log (%) - 8\/5(

(t + l)t(jt

L\ . [ 1
Ly+ g) D \/e(lp) +log (16/0)

This concludes the proof. O

Proof of Theorem 3. The first part is an immediate consequence of Lemmas 12 and 13. Thus, we
devote this proof for the second part by proving that a slightly more general result that as long as
Conditions 1-2 and Condition 4 hold, the asymptotic convergence remains.

Lemma 11 implies that lim;_,o, G(x1) = Gopt With probability at least 1 —4. As J can be arbitrarily
small, we conclude that lim;_, o, G(2¢) = Gopt, almost surely. This implies that any limit point of
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{2t }1>0 18 in X,py, almost surely. Since F is convex, hence lower semi-continuous over X, and by
definition of Fyp, we have lim inf;_, o F'(x;) > Fopy almost surely.

Besides, by combining Proposition 1, Lemma 10 and Proposition 3, with probability at least 1 — 4,
we have

F(l’t) — Fopt
(g+1) <max {®¢(x0) — Po(@opt), 0} + (Lyoo + Lg)D? (; +164/log (1?2)) log(q)>
< (t+ 1)toy
2(ooLys + Ly)D*(t — q) + (8V2t — 4q) (00Ly + Lg)DQ\/W
+ (t + 1)toy
N Zie[t] (l + ].)7;(0'1',1 — 0'7;) maX{Fopt - F(xl)’o}

t(t + 1)0’t
Similar to the proof of Theorem 1, all terms on the right-hand side converge to 0 as ¢ — oo, implying
that lim sup,_, . (F'(z¢) — Fopy) < 0 which holds with probability at least 1 — ¢ for any § € (0, 1).
Thus, lim sup,_, . (F(z;) — Fopt) < 0 almost surely. Combined with lim inf, oo (F'(z;) — Fopt) >
0, this yields lim;_, o, F'(z;) = Fopt, almost surely, concluding the proof. O

C.2 Proof of Theorem 4

Here, we restate Theorem 4 with exact upper bounds on stationary gaps.

Theorem 4. Let {x;};>( denote the iterates generated by Algorithm 2 with stepsizes o, = log(q +
D/(g+ 1) forany0 <t < q o = 1/(t + 1)* forany t > q and S = q, and regularization
parameters oy = ¢(max{t,q + 1} + 1)7P withp = % and w = %. If Assumption 1 holds with
the exception that F' may be nonconvex and the sequence {f;}1>¢ is defined as in (4), then with
probability at least 1 — 0, for every t > q, it (jointly) holds that

Yo BiF (i) _ (G(xo) —Gop

+ @l + 0P <0+ 2) ) sup [P (a4 07)

S B (g + 1)t zeX
2 2
n (ooLy ;(ji%ll_of(q +1) (1 + 164 /log (8(q :; 2) )) (a+bt' )"
—g)l—w 2
n 8(aoLy + Ly)D(t — q) log 8(t+2) (a+ btl—p)*l
1—w )

+ 26 sup |[F(=)|(t + 1) (a+ bt 7)

z€X

2
+ 7(@]?_%)19 (t+ 1) (at+ bt 7)1
G(a)‘()) - Gop, -~ _ ) _
< (R (9g(g 4 1)9F 2)~" F(z)| )t
o) < (SIS E 4 (2504 07 4 sta-+2) ) sup [P

Lj+ L,)D?1 1 8(q +2)2

+ (<L —;(qg_)i_ 1)1(1%1;((] 1) (1 + 164 /log ((qz))> v

L L)D?(t—1—g)l—wt—w 1)2 L L,)D?
+8<§ r+ Ly DA(t q) t log <8(t‘§ ) >+ (sLy+Ly) 2w

1—w 1—w

_ 7 t+ )P —gtPN
49 sup [F(2)[t7 + <<<q+1>w N ) i’ )t © sup |F(2)|,
z€X 1 —p z€X

where 3;’s are defined in (4) and a, b are constants that satisfy
+2)07P P — (g 1)LP
MG (¢+1)
3 1—p

=a+bt'P,
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The proof relies on several intermediate results. We begin with the following probabilistic bound.

Lemma 14. Let {x,};>0 denote the iterates generated by Algorithm 2 with o, = v forany 0 < t < ¢
and oy = (t+ 1) with w > %for any t > q. If Assumption I holds with the exception that F'
may be nonconvex, then for any t > 0, given 6 € (0, 1), with probability at least 1 — ¢, it (jointly)

holds that
— 2
HVFt - VF(xt)H < 8LfD\/%\/log(8/6)

27
5@, w6t < 5,0y 22 Vo 575
provided that 0 < t < q, and
o (-2 = 5i2%)
HVFt ~VF(z)| <sL fD\/ ey Vs B/ .
== (12w — 5%
Hvat —VG(z)|| < 8LgD\/ S ey VD).

where s; := q|t/q|, provided that t > q.

Proof of Lemma 14. Recall from the proof of Lemma 9 that, employing the concentration inequality
in [41, Theorem 3.5] yields

)\2

4L D2
2
4 Ze s¢+1

Cksfl
A28
> >\> <4 SR
=) =R < 16L?D2qoz2>

P (Hﬁ?t ~VF(x,)

ZA) <dexp | —

If 1 <t < ¢, one can easily show that

P (Hﬁt ~VF(x)

If t > q, we observe that

Thus, we have

P (Hﬁt - VF(””)H = A) < dexp (‘m@gziglmmii-””)) '

Arguing similarly for @t, we have

P (H@t - VG(ast)H > /\) < dexp (—mL?QDS;an) :
g

if 0 <t <gand

P (Hﬁt - VG(MH = A> < dexp <_ 64L§l;\22§$£2_w2—wz%_2w)> ’

ift > q. Given § € (0,1) and 1 < ¢ < g, setting the right hand side = §/2 and solving for \ yields

P (Hﬁt - VF@)| 2 8@1)@@) < g

and
P (HvAat V@) 2 SLgD@m> < g

Applying union bound, we deduce that with probability at least 1 — 4§, (19) holds. Arguing similarly
for t > ¢, we also deduce that (20) holds with probability at least 1 — §. O

32



We next analyze the sequence {z; };>( generated by Algorithm 2 over the first ¢ iterations.

Lemma 15. Let {x,};>0 denote the iterates generated by Algorithm 2 with oo, = o for any 0 < t <
qand S = q. If Assumption 1 holds with the exception that F' may be nonconvex and Condition 4
is satisfied, then given & € (0, 1), with probability at least 1 — 0 3 ;. 1/(i + 1)(i + 2), for any
0 <t <q-+1,itholds that o

G(zy) < (1 —)'G(xg) + 200 su);z |F(2)] — 0o z_:(l — o) T aF ()
zE i=0

2 2
+ (90Ly +2LQ)D < <1 + 164 /log (8(75;2) )) .

Proof of Lemma 15. Applying the bound (12) and after a straightforward re-arrangement, under
Condition 4, for any 0 < ¢ < ¢, we obtain

G(@iv1) < (1= )G(@i) + oo(F(2i) — aF (2:) — F(wis1))
(LfO’o + Lg)D2a2
5 .

Given ¢ € (0, 1), we apply Lemma 14 to deduce that with probability at least 1 — d/(¢ + 1)(¢ + 2),
we have

G(wit1) < (1= a)G(x;) + oo (F () — aF (2;) — F(2i+1))

, , -
+8(coLs + Lg)D2a2\/log (8(2 + 1;(2 + 2)) N (L oo +2Lg)D o

Applying the union bound, for any 0 < ¢ < ¢, with probability atleast 1—6 Y ., ., 1/(i+1)(i+2),
we obtain -

+2Da|| VP (z:) — V&, || +

G(@it1) < (1= )G (wo) + Y oo(F(wi) = aF (2i) = Flzi1))(1 — )™

=0
t t
. . . 2 2 .
+8(O’0Lf+Lg)D2042 Z(l —q)t~ /log (8(z+1§(1+2)>+(Lfocr|r[2/g)D o z(l —a)tt
i=0 =0

Using the geometric series bound Zfzo(l — a)t~" < 1/a and observing that
t

Z(F(xz) — F(zip1))(1 — o)t

=0
= Z Flz) (1= )™ = (1= )™ 7") 4+ F(z0)(1 — )" — F(x441)
i€[t]

= aF(z;)(1 - )" + Fag)(1 - o) — F2i41)
i€[t]
< sup |[F(2)] (e o1 —a)' ™" + (1 =)' +1) < 25up,cx | F(2)
zE
conclude the proof. O

We finally analyze the sequence {z, };>o generated by Algorithm 2 after the first ¢ iterations.

Proposition 4. Let {x,},>0 denote the iterates generated by Algorithm 2 with o, = « for any
0<t<gqoy=(t+1)""withw > 3§ foranyt > qand S = q. If Assumption | holds with the
exception that F may be nonconvex and the parameters {0, }¢>0 are non-increasing and positive,
then given 0 € (0, 1), with probability at least 1 — & Zie[t]\[q] m,for anyt > gq, it holds that

< 8(ooLy + Ly)D(t — q)' =™ log 8(t +2)? .
1—w 6

3 Hﬁ% — V() 29)

i€[t]\[g]
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Proof of Proposition 4. For any i > 0, we have
V@i = V@i(zi)|| < (03l VF; = VE(zi)|| + [|[VGi — VG(zi)]])
< (00| VF; = V()| + VG = VG(2i) ). (30)

Moreover, for any i > ¢, by the mean value theorem there exists ¢; € [s;, 7] such that

(=2 = st

- S —2w q
-_— = C. — S; [
(1—2w) = s) < G

Given 0 € (0,1) and i > ¢, by Lemma 14 and the inequality (30), with probability at least 1 —
0/(i+1)(i +2), we have

B, U (]| < SO0Ls + LD | - (8(i+1)(i+2)
||V¢z V(I)Z( z)“ < (Z _q)w \/l g( ) )

Hence, if t > ¢, with probability atleast 1 — 63> _,, 1/(i + 1)(i + 2), we have

_ 8(ooLs + Lg)D 8(i+1)(i+2
S 55, - Vi) < 3 Solet LD %Og (Srbiea)

g<i<t q<i<t (i —q)*
—g)l—w 2
< 8(ooLy+ Ly)D(t — q) log 8(t+2)
1—w 0
where the last inequality follows from the Riemann sum approximation. O

We now instantiate the regularization parameter and analyze Algorithm 2.

Lemma 16. Let {z;},>( denote the iterates generated by Algorithm 2 with o, = o := log(q +
D/(g+ 1) forany0 <t <gq oy =1/(t+1)¥ foranyt > qand S = q. If Assumption 1 holds
with the exception that F may be nonconvex and Condition 4 is satisfied, then given § € (0, 1), with
probability at least 1 — 6, ., 1 1/(i +1)(i + 2), for any t > q + 1, it holds that

w G(zo) e _
t Q(xt)é W—k(%(q—kl) p+§(q+1) p) zSél)}; |F(Z)|
(ooLs + Lg)D?log(q + 1) 8(q +2)?
+ g+ 1w 1+164/log - —
2(+ 1 _ \1—w 2 2
4 8(§Lf + Lg)D (t—1—-q) log (S(t +1) ) + (gLf + Lg)D f-w
1—w ) 1—-w
q . t—1
+ 26 sup [F(2)[t“7 = oo(q+ 1)* Y aF (z)(1— )™ = > o3 F ().
zeX i=0 i=q+1

Proof of Lemma 16. By Lemma 3, for any ¢ > ¢ + 1, we have
(t+1)%G(@e11) < (4 1)“G(g11) + 25 sup [F(2)[(t + 1“7 + 011 F(2g41)
zeX

t

= > aiF@)+ Y <2||ﬁ>iv<1>i(xi)||p+

(oily + Lg)DQ)
i=q+1 1=q+1

2(i 4 1)»
Applying Lemma 15, with probability at least 1 — 0 3, ., 1/(i + 1)(i + 2), we have

q
G(xg41) < P 79(0) + 200 sup [F(2)] = o0 ; aF (a;)(1 — )™
(ooLs + Ly)D?log(q + 1) (8(q+2)2)
+ 2+ 1) 1+164/log — |

34



Combining these two bounds with Proposition 4 then yields

(141G 1) < Tz (o) + 25(a + )7 sup [F()
(0oL s + Lg)D*log(q + 1) 8(q+2)
+ g+ 1 <1 + 164 /log (5)>

1—w )
((Lf + Lg)D2

4 8oy + LD =)' (8(75 + 2)2)

+ 20 sup [F()|(t+ 1) P + (t+ 1) + 01 F(2gi)

zeX 1—-w
a , t
—oo(q+ 1)~ Za}'(wi)(l —a)? — Z o F(x;).
i=0 i=q+1

The proof concludes using the simple inequality 0441 F(2q41) < s(¢+2) " Psup,cx |F(z)]. O
We are now well-equipped to prove Theorem 4.

Proof of Theorem 4. We first focus on the terms involving F(z;) in Lemma 16. Note that the func-
tion F is defined with respect to X,p¢, not X. Therefore, F(x;) can take both positive and negative
values since z; € X. However, we can derive the following bound
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where o = log(q + 1)/(qg + 1), and the second and third inequalities follow from the geometric
series bound and the definition of ;. Using this bound together with Lemma 16, we arrive at
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We next focus on the upper-level problem. Since G(z41) > 0, using Lemma 16 and the definition
of the sequence {0, };>0, we obtain
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Observe next that
t 1—
tP—(¢g+1
32 la+2) g+ 00 - (1 -y S OEDE
i=0
2)w—p ti-p — 1i-p
(a+2) (@+D'" e

3 +< T—p

where @ and b are constants defined to make the equality hold. Combining these bounds, we arrive
at
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Both bounds involving G and F hold with probability at least 1 — §. We want the right hand side of
both bounds — 0. In order to guarantee this, we choose p, w to minimize the slowest rate in terms

of t: )
i —Lw—1,p—w,—w, —p1—2w1—w—p}=—-
omin  max{p—1,w—1p—w—w-pl-2wl-w-p}=-—g,
which is realized by setting p = 1/2, w = 3/4 as required.

As for the second claim on asymptotic convergence, we prove a more general result: If
max{p—L,w—1,p—w,—w,—p,1 —2w,1 —w —p} <0,

then the asymptotic convergence holds. Under this additional assumption and the fact that G(x;) >
0, we deduce that lim;_, ., G(x;) = 0 from taking the limit on both sides of (31). Recall that

hmlnf}'(zt) = hm inf F(zk),
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and
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Combining these observations and (32), we have
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By the Stolz—Cesaro theorem (since p € (0,1), > ,~, ¢ = 00) and taking the limit on both sides
of the above inequality, we obtain lim inf;_, . F(z;) < 0. Since this holds with probability at least
1—4 forany § € (0, 1), it also holds almost surely. Due to the fact that any limit point of {z;}+ is in
Xopt» the continuity of F from Lemma 4 and the fact that F(z) > 0 for any z € X, we deduce
that lim inf;_, o, F(x) > 0. Thus, we conclude the proof. O

(t+ 1) (a+ bt 7).

D Additional Discussions

D.1 Finiteness of constants

The following lemma establishes that the quantities introduced in (14) are finite.

Lemma 17. If Assumption 1 and Conditions 1-3 hold, then C,Cj5,Cs defined in (14) are finite.
Furthermore, if L defined in Condition 2 is strictly less than 1, then V defined in (144d) is finite.

Proof of Lemma 17. We first show that under Condition 1 and Condition 3, when the limit in Con-
dition 2 exists, the parameter L satisfies 0 < L < 1. While it is trivial to see L > 0 thanks to
Condition 1, L < 1 needs some justifications. For the sake of contradiction, suppose L > 1. Then
for some sufficiently large ¢, we have

t+1
t < ot - 1) >1 <— i > — < (t+ 1)Jt+1 < tO't.
Ot+1 Ot+1 t

This further implies

(t+1op,, < (t+ o100 < tof,
which always contradicts Condition 3. Thus, we have 0 < L < 1 under our blanket assumptions.
We now show that C' is finite. Observe that
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where the first equality is obtained by diving both the numerator and the denominator by toy and the
second equality follows from Condition 2. Moreover, we have
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Using Concljtion 2, we have mintzo(t + 1)oy > 0. Thus, C is finite. It is also straightforward to
verify that Cs is finite by Condition 3. Consequently, C; is finite as well.

To conclude, we show V is finite. From Condition 3, {to; }+>¢ and {(¢ + 1)o7 }+>¢ are increasing
and diverge to co. Note that
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where the first equality is implied by the Stolz-Cesaro theorem, the second equality is obtained
from dividing both the denominator and the numerator by (¢ + 1)o? " 1, and the third equality comes
from Condition 3 and

1
lim 2t :1+lim~t<0t —1)=1.
t—00 041 t—oo t Ot41

Note that L/2(1 — L) € [0, 00) since L € [0, 1). Thus, V is finite. This completes the proof. [

The following lemma establishes that the quantities introduced in (25) are finite.

Lemma 18. If Assumption 1, Condition 1, 2 and 4 hold, then C, é&q defined in (25b), and (25¢)
are finite. Furthermore, if L defined in Condition 2 is less than 1, then V;, defined in (25d) is finite.

Proof of Lemma 18. The proof follows a similar argument to that of Lemma 17. Details are omitted
for brevity. O

D.2 Over-parameterized regression: implementation details

The implementation details are as follows. For IR-SCG, presented in Algorithm 1, we set o; =
(t + 1)1/, where ¢ = 10, along with oy = 2/(t + 2). For IR-FSCG, presented in Algorithm 2,
we set S = q = |\/n], oy = s(max{t,q} + 1)~'/2, where ¢ = 10, along with o, = 2/(t + 1)
for every t > ¢ and oy = log(q)/q for every ¢ < ¢. Our linear minimization oracle involves
optimization over an ¢;-norm ball, which admits an analytical solution; see [26, Section 4.1]. We
compare our proposed methods against SBCGI with stepsize 7, = 0.01/(¢t+ 1), SBCGF with constant
stepsize ¢y = 107° (both using K; = 1074/t + 1,5 = q = [/n]), aR-IP-SeG with long
(v¢ = 1072 /(t 4 1)3/*) and short stepsizes (y; = 1077 /(t + 1)3/4, p; = 103(t + 1)/4, r = 0.5),
and SDBGD with long (¢ = 1072) and short (, = 107) stepsizes. We initialized all algorithms
with randomized starting points. For SBCGI and SBCGF, we generated the required initial point x,
by running the SPIDER-FW algorithm [57, Algorithm 2] on the inner-level problem in (5), using
a stepsize of 7; = 0.1/(t + 1). The initialization process terminated either after 10° stochastic
oracle queries or when the computation time exceeded 100 seconds, with the resulting point serving
as xo for both SBCGI and SBCGF. The implementation of these algorithms rely on certain linear
optimization or projection oracles. For SBCGI and SBCGF, a linear optimization oracle over the
£1-norm ball intersecting with a half-space is required, which we employ CVXPY [11] to solve the
problems, similar to the implementation in [4, Appendix F.1]. To compute the projection onto the
feasible set required for aR-IP-SeG, we used [13, Algorithm 1]. To approximate the outer- and
inner-level optimal values Fyp¢, Gopt, We again employ CVXPY to solve the inner-level problem and
the reformulation (2) of the bilevel problem.

D.3 Dictionary learning: implementation details

In our experiment, we obtain A, A’, X from the code provided by Cao et al. [4] with n = n/ = 250
and p = 40,q = 50 . In addition, we also choose § = 3. For IR-SCG, presented in Algorithm 1,
we set 0y = ¢(t +1)"2/7 and oy = (t + 1)7%/7, where ¢ = 0.1. For IR-FSCG, presented in
Algorithm 2, we set S = ¢ = |v/n|, 0y = s(max{t,q + 1} + 1)~'/2, where ¢ = 0.1, along
with oy = (t 4+ 1)"%/% forevery t > ¢+ 1 and oy = log(q + 1)/(q + 1) for every t < ¢. In
both experiments, the linear optimization oracle over the £5-norm ball admits an analytical solution;
see [26, Section 4.1]. For performance comparison, we implement four algorithms: SBCGI [4,
Algorithm 1] with stepsize v; = 0.1(¢t + 1)*2/ 3, SBCGF [4, Algorithm 2] with constant stepsize
7: = 1073 (both using K; = 0.01(t + 1)"%/3, S = ¢ = [/n]), aR-IP-SeG [27] with long
(v¢ = 1072/(t+1)3/4) and short stepsizes (v, = 107%/(t+1)3/4, p; = (t-+1)"/%,r = 0.5), and the
stochastic variant of the dynamic barrier gradient descent (SDBGD) [21] with long (v; = 1072) and
short (7; = 5 x 1072) stepsizes. We initialized all algorithms with randomized starting points. For
SBCGI and SBCGF, we generated the required initial point x{, by running the SPIDER-FW algorithm
[57, Algorithm 2] on the inner-level problem in (5), using a stepsize of v = 0.1/(¢t + 1). The
initialization process terminated either after 10° stochastic oracle queries, with the resulting point
serving as xg for both SBCGI and SBCGF. The implementation of these algorithms rely on certain
linear optimization or projection oracles. For SBCGI and SBCGF, a linear optimization oracle over
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the 5-norm ball intersecting with a half-space is required, which we employ CVXPY [11] to solve the
problems, similar to the implementation in [4, Appendix F.1]. To compute the projection onto the
feasible set required for aR-IP-SeG, we used [13, Algorithm 1] to compute projection on ¢; norm
ball and projection onto ¢ norm ball admits an analytical solution. To approximate inner-level
optimal value G, we again employ CVXPY to solve the inner-level problem.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have reviewed all claims made and checked that they accurately reflect
the contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We describe explicit limitations throughout the work, and in particular in the
experimental section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All claims are precise, and are either referenced, or proven in the appendix.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, all details are provided in the main text and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code is provided in supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment details are fully described in the main text and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, all experiments include sample sizes to assess variability.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper only studies relatively small-scale problems compared to other
machine learning areas, and each individual experiment can run on an ordinary laptop.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have checked and believe that we conform to the guidelines.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
 The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA|

Justification: This is a theory-and-methods-focused paper with no explicit societal applica-
tion or impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not release a dataset or model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We do not use any assets except publicly-available Python packages, which
are documented as dependencies for our code, and their companion papers are cited.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: We do not introduce any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA|
Justification: There are no human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There are no human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: There are no LLM usage.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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