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ABSTRACT

Periodic time series (PTS) forecasting plays a crucial role in a variety of industries
to foster critical tasks, such as early warning, pre-planning, resource scheduling,
etc. However, the complicated dependencies of the PTS signal on its inherent
periodicity as well as the sophisticated composition of various periods hinder the
performance of PTS forecasting. In this paper, we introduce a deep expansion
learning framework, DEPTS, for PTS forecasting. DEPTS starts with a decou-
pled formulation by introducing the periodic state as a hidden variable, which
stimulates us to make two dedicated modules to tackle the aforementioned two
challenges. First, we develop an expansion module on top of residual learn-
ing to perform a layer-by-layer expansion of those complicated dependencies.
Second, we introduce a periodicity module with a parameterized periodic func-
tion that holds sufficient capacity to capture diversified periods. Moreover, our
two customized modules also have certain interpretable capabilities, such as at-
tributing the forecasts to either local momenta or global periodicity and charac-
terizing certain core periodic properties, e.g., amplitudes and frequencies. Ex-
tensive experiments on both synthetic data and real-world data demonstrate the
effectiveness of DEPTS on handling PTS. In most cases, DEPTS achieves sig-
nificant improvements over the best baseline. Specifically, the error reduction
can even reach up to 20% for a few cases. All codes are publicly available at
https://github.com/weifantt/DEPTS.

1 INTRODUCTION

Time series (TS) with apparent periodic (seasonal) oscillations, referred to as periodic time series
(PTS) in this paper, is pervasive in a wide range of critical industries, such as seasonal electricity
spot prices in power industry (Koopman et al., 2007), periodic traffic flows in transportation (Lippi
et al., 2013), periodic carbon dioxide exchanges and water flows in sustainability domain (Seymour,
2001; Tesfaye et al., 2006). Apparently, PTS forecasting plays a crucial role in these industries
since it can foster their business development by facilitating a variety of capabilities, including early
warning, pre-planning, and resource scheduling (Kahn, 2003; Jain, 2017).

Given the pervasiveness and importance of PTS, two obstacles, however, largely hinder the perfor-
mance of existing forecasting models. First, future TS signals yield complicated dependencies on
both adjacent historical observations and inherent periodicity. Nevertheless, many existing stud-
ies did not consider this distinctive periodic property (Salinas et al., 2020; Toubeau et al., 2018;
Wang et al., 2019; Oreshkin et al., 2020). The performance of these methods has been greatly
restrained due to its ignorance of periodicity modeling. Some other efforts, though explicitly intro-
ducing periodicity modeling, only followed some arbitrary yet simple assumptions, such as additive
or multiplicative seasonality, to capture certain plain periodic effects (Holt, 1957; 2004; Vecchia,
1985b; Taylor & Letham, 2018). These methods failed to model complicated periodic dependencies
beyond much simplified assumptions. The second challenge lies in that the inherent periodicity of
a typical real-world TS is usually composed of various periods with different amplitudes and fre-
quencies. For example, Figure 1 exemplifies the sophisticated composition of diversified periods via
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Figure 1: We visualize the electricity load TS in a region of California to show diversified periods.
In the upper part, we depict the whole TS with the length of eight years, and in the bottom part, we
plot three segments with the lengths of half year, one month, and one week, respectively.

a real-world eight-years hourly TS of electricity load in a region of California. However, existing
methods (Taylor & Letham, 2018; Smyl, 2020) required the pre-specification of periodic frequencies
before estimating other parameters from data, which attempted to evade this obstacle by transferring
the burden of periodicity coefficient initialization to practitioners.

To better tackle the aforementioned two challenges, we develop a deep expansion learning frame-
work, DEPTS, for PTS forecasting. The core idea of DEPTS is to build a deep neural network that
conducts the progressive expansions of the complicated dependencies of PTS signals on periodicity
to facilitate forecasting. We start from a novel decoupled formulation for PTS forecasting by intro-
ducing the periodic state as a hidden variable. This new formulation stimulates us to make more
customized and dedicated designs to handle the two specific challenges mentioned above.

For the first challenge, we develop an expansion module on top of residual learning (He et al.,
2016; Oreshkin et al., 2020) to conduct layer-by-layer expansions between observed TS signals
and hidden periodic states. With such a design, we can build a deep architecture with both high
capacities and efficient parameter optimization to model those complicated dependencies of TS
signals on periodicity. For the second challenge, we build a periodicity module to estimate the
periodic states from observational data. We represent the hidden periodic state with respect to time
as a parameterized periodic function with sufficient expressiveness. In this work, for simplicity, we
instantiate this function as a series of cosine functions. To release the burden of manually setting
periodic coefficients for different data, we develop a data-driven parameter initialization strategy
on top of Discrete Cosine Transform (Ahmed et al., 1974). After that, we combine the periodicity
module with the expansion module to perform end-to-end learning.

To the best of our knowledge, DEPTS is a very early attempt to build a customized deep learn-
ing (DL) architecture for PTS that explicitly takes account of the periodic property. Moreover, with
two delicately designed modules, DEPTS also owns certain interpretable capabilities. First, the ex-
pansions of forecasts can distinguish the contributions from either adjacent TS signals or inherent
periodicity, which intuitively illustrate how the future TS signals may vary based on local momenta
and global periodicity. Second, coefficients of the periodicity module have their own practical mean-
ings, such as amplitudes and frequencies, which provide certain interpretable effects inherently.

We conduct experiments on both synthetic data and real-world data, which all demonstrate the su-
periority of DEPTS on handling PTS. On average, DEPTS reduces the error of the best baseline by
about 10%. In a few cases, the error reduction can even reach up to 20%. Besides, we also include
extensive ablation tests to verify our critical designs and visualize specific model components to
interpret model behaviors.

2 RELATED WORK

TS forecasting is a longstanding research topic that has been extensively studied for decades. After
a comprehensive review of the literature, we find three types of paradigms in developing TS models.
At an early stage, researchers developed simple yet effective statistical modeling approaches, in-
cluding exponentially weighted moving averages (Holt, 1957; 2004; Winters, 1960), auto-regressive
moving averages (ARMA) (Whittle, 1951; 1963), the unified state-space modeling approach as well
as other various extensions (Hyndman & Khandakar, 2008). However, these statistical approaches
only considered the linear dependencies of future TS signals on past observations. To handle high-
order dependencies, researchers attempted to adopt a hybrid design that combines statistical mod-
eling with more advanced high-capacity models (Montero-Manso et al., 2020; Smyl, 2020). At the

2



Published as a conference paper at ICLR 2022

same time, with the great successes of DL in computer vision (He et al., 2016) and natural language
processing (Vaswani et al., 2017), various DL models have also been developed for TS forecast-
ing (Rangapuram et al., 2018; Toubeau et al., 2018; Salinas et al., 2020; Zia & Razzaq, 2020; Cao
et al., 2020). Among them, the most representative one is N-BEATS (Oreshkin et al., 2020), which
is a pure DL architecture that has achieved state-of-the-art performance across a wide range of
benchmarks. The connections between DEPTS and N-BEATS have been discussed in Section 4.2.

As for PTS forecasting, many traditional statistical approaches explicitly considered the periodic
property, such as periodic ARMA (PARMA) (Vecchia, 1985a;b) and its variants (Tesfaye et al.,
2006; Anderson et al., 2007; Dudek et al., 2016). However, as discussed in Sections 1 and 3, these
methods only followed some arbitrary yet simple assumptions, such as additive or multiplicative
seasonality, and thus cannot well handle complicated periodic dependencies in many real-world
scenarios. Besides, other recent studies either followed the similar assumptions for periodicity or
required the pre-specification of periodic coefficients (Taylor & Letham, 2018; Smyl, 2020). To the
best of our knowledge, we are the first work that develops a customized DL architecture to model
complicated periodic dependencies and to capture diversified periodic compositions simultaneously.

3 PROBLEM FORMULATIONS

We consider the point forecasting problem of regularly sampled uni-variate TS. Let xt denote
the time series value at time-step t, and the classical auto-regressive formulation is to project the
historical observations xt−L:t = [xt−L, . . . , xt−1] into its subsequent future values xt:t+H =
[xt, . . . , xt+H−1]:

xt:t+H = FΘ(xt−L:t) + εt:t+H , (1)

where H is the length of the forecast horizon, L is the length of the lookback window, FΘ : RL →
RH is a mapping function parameterized by Θ, and εt:t+H = [εt, . . . , εt+H−1] denotes a vector of
independent and identically distributed Gaussian noises. Essentially, the fundamental assumption
behind this formulation is the Markov property xt:t+H ⊥ x0:t−L|xt−L:t, which assumes that the
future values xt:t+H are independent of all farther historical values x0:t−L given the adjacent short-
term observations xt−L:t. Note that most existing DL models (Salinas et al., 2020; Toubeau et al.,
2018; Wang et al., 2019; Oreshkin et al., 2020) directly follow this formulation to solve TS. Even
traditional statistical TS models (Holt, 1957; 2004; Winters, 1960) are indeed consistent with that if
omitting those long-tail exponentially decayed dependencies introduced by moving averages.

To precisely formulate PTS, on the other hand, this assumption needs to be slightly modified such
that the dependency of xt:t+H on xt−L:t is further conditioned on the inherent periodicity, which
can be anchored by associated time-steps. Accordingly, we alter the equation (1) into

xt:t+H = F
′

Θ(xt−L:t, t) + εt:t+H , (2)

where other than xt−L:t, F
′

Θ : RL × R → RH takes an extra argument t, which denotes the
forecasting time-step. Existing methods for PTS adopt a few different instantiations of F ′Θ. For
example, Holt (1957; 2004) developed several exponentially weighted moving average processes
with additive or multiplicative seasonality. Vecchia (1985a;b) adopted the multiplicative seasonality
by treating the coefficients of the auto-regressive moving average process as time dependent. Smyl
(2020) also adopted the multiplicative seasonality and built a hybrid method by coupling that with
recurrent neural networks (Hochreiter & Schmidhuber, 1997), while Taylor & Letham (2018) chose
the additive seasonality by adding the periodic forecast with other parts as the final forecast.

4 DEPTS

In this section, we elaborate on our new framework, DEPTS. First, we start with a decoupled formu-
lation of (2) in Section 4.1. Then, we illustrate the proposed neural architecture for this formulation
in Sections 4.2 and 4.3. Last, we discuss the interpretable capabilities in Section 4.4.

4.1 THE DECOUPLED FORMULATION

To explicitly tackle the two-sided challenges of PTS forecasting, i.e., complicated periodic depen-
dencies and diversified periodic compositions, we introduce a decoupled formulation (3) that refines
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Figure 2: In the right part, we visualize the overall data flows for our framework, DEPTS. In the mid-
dle part, we plot the integral structure of three layer-by-layer expansion branches in the expansion
module fθ. In the left part, we depict the detailed residual connections within a single layer.

(2) by introducing a hidden variable zt to represent the periodic state at time-step t:

xt:t+H = fθ(xt−L:t, zt−L:t+H) + εt:t+H , zt = gφ(t), (3)

where we treat zt ∈ R1 as a scalar value to be consistent with the uni-variate TS xt ∈ R1, we use
fθ : RL × RL+H → RH to model complicated dependencies of the future signals xt:t+H on the
local observations xt−L:t and the corresponding periodic states zt−L:t+H within the lookback and
forecast horizons, and gφ : R1 → R1 is to produce a periodic state zt for a specific time-step t.
The right part of Figure 2 depicts the overall data flows of this formulation, in which the expansion
module fθ and the periodicity module gφ are responsible for handling the two aforementioned PTS-
specific challenges, respectively.

4.2 THE EXPANSION MODULE

To effectively model complicated periodic dependencies, the main challenge lies in the trade-off
between model capacity and generalization. To avoid the over-fitting issue, many existing PTS ap-
proaches relied on the assumptions of additive or multiplicative seasonality (Holt, 1957; Vecchia,
1985b; Anderson et al., 2007; Taylor & Letham, 2018; Smyl, 2020), which however can hardly ex-
press periodicity beyond such simplified assumptions. Lately, residual learning has shown its great
potentials in building expressive and generalizable DL architectures for a variety of crucial applica-
tions, such as computer vision (He et al., 2016) and language understanding (Vaswani et al., 2017).
Specifically, N-BEATS (Oreshkin et al., 2020) conducted a pioneer demonstration of introducing
residual learning to TS forecasting. Inspired by these successful examples and with full considera-
tion of PTS-specific challenges, we develop a novel expansion module fθ on top of residual learning
to characterize the complicated dependencies of xt:t+H on xt−L:t and zt−L:t+H .

The proposed architecture for fθ, as shown in the middle part of Figure 2, consists of N layers in
total. As further elaboration in the left part of Figure 2, each layer `, share an identical residual struc-
ture consisting of three residual branches, which correspond to the recurrence relations of z(`)

t−L:t+H ,

x
(`)
t−L:t, and x̂(`)

t:t+H , respectively. Here x(`)
t−L:t and z(`)

t−L:t+H denote the residual terms of xt−L:t

and zt−L:t+H after `-layers expansions, and x̂(`)
t:t+H denotes the cumulative forecasts after ` layers.

In layer `, three residual branches are specified by two parameterized blocks, a local block f lθl(`) and
a periodic block fpθp(`), where θl(`) and θp(`) are their respective parameters.

First, we present the updating equation for z(`−1)
t−L:t+H , which aims to produce the forecasts from

periodic states and exclude the periodic effects that have been used. To be more concrete, fpθp(`) takes

in z(`−1)
t−L:t+H and emits the `-th expansion term of periodic states, denoted as v(`)

t−L:t+H ∈ RL+H .

v
(`)
t−L:t+H has two components, a backcast component v(`)

t−L:t and a forecast one v(`)
t:t+H . We leverage

v
(`)
t−L:t to exclude the periodic effects fromx(`−1)

t−L:t and adopt v(`)
t:t+H as the portion of forecasts purely

from the `-th periodic block. Besides, when moving to the next layer, we exclude v(`)
t−L:t+H from
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z
(`−1)
t−L:t+H as z(`)

t−L:t+H = z
(`−1)
t−L:t+H − v

(`)
t−L:t+H to encourage the subsequent periodic blocks to

focus on the unresolved residue z(`)
t−L:t+H .

Then, since v(`)
t−L:t is related to the periodic components that have been used to produce a part

of forecasts, we construct the input to f lθl(`) as (x
(`−1)
t−L:t − v

(`)
t−L:t). Here the purpose is to en-

courage f lθl(`) to focus on the unresolved patterns within x(`−1)
t−L:t. f

l
θl(`)

emits u(`)
t−L:t and u(`)

t:t+H ,
which correspond to the local backcast and forecast expansion terms of the `-th layer, respec-
tively. After that, we update x(`)

t−L:t by further subtracting u(`)
t−L:t from (x

(`−1)
t−L:t − v

(`)
t−L:t) as

x
(`)
t−L:t = x

(`−1)
t−L:t − v

(`)
t−L:t − u

(`)
t−L:t. Here the insight is also to exclude all analyzed patterns of

this layer to let the following layers focus on unresolved information. Besides, we update x̂(`)
t:t+H

by adding both u(`)
t:t+H and v(`)

t:t+H as x̂(`)
t:t+H = x̂

(`−1)
t:t+H + u

(`)
t:t+H + v

(`)
t:t+H . The motivation of

such expansion is to decompose the forecasts from the `-th layer into two parts, u(`)
t:t+H and v(`)

t:t+H ,
which correspond to the part from local observations excluding redundant periodic information and
the other part purely from periodic states, respectively.

Note that before the first layer, we have x(0)
t−L:t = xt−L:t, z

(0)
t−L:t+H = zt−L:t+H , and x̂(0)

t:t+H = 0.

Besides, we collect the cumulative forecasts x̂(N)
t:t+H of theN -th layer as the overall forecasts x̂t:t+H .

Therefore, after stacking N layers of z(`)
t−L:t+H , x(`)

t−L:t, and x̂(`)
t:t+H , we have the following triply

residual expansions that encapsulate the left and middle parts of Figure 2:

zt−L:t+H = z
(0)
t−L:t+H =

N∑
`=1

v
(`)
t−L:t+H + z

(N)
t−L:t+H ,

xt−L:t = x
(0)
t−L:t =

N∑
`=1

(u
(`)
t−L:t + v

(`)
t−L:t) + x

(N)
t−L:t,

x̂t:t+H = x̂
(N)
t:t+H =

N∑
`=1

(u
(`)
t:t+H + v

(`)
t:t+H),

(4)

where z(N)
t−L:t+H and x(N)

t−L:t are deemed to be the residues irrelevant to forecasting.

Connections and differences to N-BEATS. Our design of fθ shares the similar insight with N-
BEATS (Oreshkin et al., 2020), which is stimulating a deep neural network to learn expansions of
raw TS signals progressively, whereas N-BEATS only considered the generic TS by modeling the
dependencies of xt:t+H on xt−L:t. In contrast, our design is to capture the complicated depen-
dencies of xt:t+H on xt−L:t and zt−L:t+H for PTS. Moreover, to achieve periodicity modeling,
N-BEATS produces coefficients solely based on the input signals within a lookback window for a
group of predefined seasonal basis vectors with fixed frequencies and phases. However, our work
can capture diversified periods in practice and model the inherent global periodicity.

Inner architectures of local and periodic blocks. The local block f lθl(`) aims to produce a part
of forecasts based on the local observations excluding redundant periodic information as (xt−L:t −∑`−1
i=1 v

(i)
t−L:t). Thus, we reuse the generic block developed by Oreshkin et al. (2020), which consists

of a series of fully connected layers. As for the periodic block fpθp(`), which handles the relatively
stable periodic states, we can adopt a simple two-layer perception. Due to the space limit, we include
more details of inner block architectures in Appendix A.

4.3 THE PERIODICITY MODULE

To represent the sophisticated periodicity composed of various periodic patterns, we estimate zt via
a parameterized periodic function gφ(t) that holds sufficient capacities to incorporate diversified
periods. In this work, for simplicity, we instantiate this function as a series of cosine functions as
gφ(t) = A0 +

∑K
k=1Ak cos(2πFkt+Pk), where K is a hyper-parameter denoting the total number
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of periods, A0 is a scalar parameter for the base scale, Ak, Fk, and Pk are the scalar parameters for
the amplitude, the frequency, and the phase of the k-th cosine function, respectively, and φ represents
the set of all parameters. Coupling gφ with fθ illustrated in Section 4, we can effectively model the
periodicity-aware auto-regressive forecasting process in the equation (2). However, it is extremely
challenging to directly conduct the joint optimization of φ and θ from random initialization. The
reason is that in such a highly non-convex condition, the coefficients in φ are easily trapped into
numerous local optima, which do not necessarily characterize our desired periodicity.

Parameter Initialization. To overcome the optimization obstacle mentioned above, we formalize
a two-stage optimization problem based on raw PTS signals to find good initialization for φ. First,
we construct a surrogate function, gMφ (t) = A0 +

∑K
k=1Mk · Akcos(2πFkt + Pk), to enable the

selection of a subset of periods via M = {Mk, k ∈ {1, · · · ,K}}, where each Mk ∈ {0, 1} is a
mask variable to enable or disable certain periods. Note that gφ(t) is equivalent to gMφ (t) when every
Mk is equal to one. Then, we construct the following two-stage optimization problem:

M∗ = arg min
‖M‖1<=J

LDval
(gMφ∗(t)), φ∗ = arg min

φ
LDtrain

(gφ(t)), (5)

where LDtrain and LDval
denote the discrepancy losses on training and validation, respectively;

the inner stage is to obtain φ∗ that minimizes the discrepancy between zt and xt on the training
data Dtrain; the outer stage is a binary integer programming on the validation data Dval to find
M∗ that can select certain periods with good generalization, and the hyper-parameter J controls the
maximal number of periods being selected. With the help of such two-stage optimization, we are
able to estimate generalizable periodic coefficients from observational data as a good starting point
for φ to be jointly optimized with θ. Nevertheless, it is still costly to perform exact optimization of
equations (5) in practice. Thus, we develop a fast approximation algorithm to obtain an acceptable
solution with affordable costs. Our approximation algorithm contains the following two steps: 1)
conducting Discrete Cosine Transform (Ahmed et al., 1974) of PTS signals on Dtrain to select top-
K cosine bases with the largest amplitude as an approximated solution of φ∗; 2) iterating over the
selected K cosine bases from the largest amplitude to the smallest one and greedily select J periods
that generalize well on the validation set. Due to the space limit, we include more details of this
approximation algorithm in Appendix B. After obtaining approximated solutions φ̃∗ and M̃∗, we
fix M = M̃∗ to exclude those unstable periodic coefficients and initialize φ with φ̃∗ to avoid being
trapped into bad local optima. Then, we follow the formulation (3) to perform the joint learning of
φ and θ in an end-to-end manner.

4.4 INTERPRETABILITY

Owing to the specific designs of fθ and gφ, our architecture is born with a degree of interpretabil-
ity. First, for fθ, as shown in equations (4), we decompose x̂t:t+H into two types of components,
u

(`)
t:t+H and v(`)

t:t+H . Note that v(`)
t:t+H is conditioned on zt−L:t+H and independent of xt−L:t. Thus,∑N

`=1 v
(`)
t:t+H represents the portion of forecasts purely from periodic states. Meanwhile, u(`)

t:t+H

depends on both xt−L:t and zt−L:t+H , and it is transformed by feeding the subtraction of v(`)
t−L:t

from x
(`−1)
t−L:t into the `-th local block. Thus, we can regard

∑N
`=1 u

(`)
t−L:t as the forecasts from the

local historical observations excluding the periodic effects, referred to as the local momenta in this
paper. In this way, we can differentiate the contribution to the final forecasts into both the global pe-
riodicity and the local momenta. Second, gφ, the periodicity estimation module in our architecture,
also has interpretable effects. Specifically, the coefficients in gφ(t) have practical meanings, such as
amplitudes, frequencies, and phases. We can interpret these coefficients as the inherent properties
of the series and connect them to practical scenarios. Furthermore, by grouping various periods
together, gφ provides us with the essential periodicity of TS filtering out various local momenta.

5 EXPERIMENTS

Our empirical studies aim to answer three questions. 1) Why is it important to model the complicated
dependencies of PTS signals on its inherent periodicity? 2) How much benefit can DEPTS gain for
PTS forecasting compared with existing state-of-the-art models? 3) What kind of interpretability can
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Figure 3: Performance comparisons of N-BEATS and DEPTS (ours) on synthetic data, in which we
simulate different periodic dependencies, such as linear, quadratic, and cubic.

DEPTS offer based on our two customized modules, fθ and gφ? To answer the first two questions,
we conduct extensive experiments on both synthetic data and real-world data, which are illustrated
in Section 5.1 and 5.2, respectively. Then, Section 4.4 answers the third question by comparing and
interpreting model behaviors for specific cases.

Baselines. We adopt the state-of-the-art DL architecture, N-BEATS (Oreshkin et al., 2020), as
our primary baseline since it has been shown to outperform a wide range of DL models, including
MatFact (Yu et al., 2016), Deep State (Rangapuram et al., 2018), Deep Factors (Wang et al., 2019),
and DeepAR (Salinas et al., 2020), and many competitive hybrid methods (Montero-Manso et al.,
2020; Smyl, 2020). Besides, we also include PARMA as a reference to be aware of the positions
of conventional statistical models. For this baseline, we leverage the AutoARIMA implementation
provided by Löning et al. (2019) to search for the best configurations automatically.

Evaluation Metrics. To compare different models, we utilize the following two metrics, normal-
ized deviation, abbreviated as nd, and normalized root-mean-square error, denoted as nrmse, which
are conventionally adopted by Yu et al. (2016); Rangapuram et al. (2018); Salinas et al. (2020);
Oreshkin et al. (2020) on PTS-related benchmarks.

nd =

1
|Ω|

∑
(i,t)∈Ω |xit − x̂it|

1
|Ω|

∑
(i,t)∈Ω |xit|

, nrmse =

√
1
|Ω|

∑
(i,t)∈Ω(xit − x̂it)2

1
|Ω|

∑
(i,t)∈Ω |xit|

, (6)

where i is the index of TS in a dataset, t is the time index, and Ω denotes the whole evaluation space.

5.1 EVALUATION ON SYNTHETIC DATA

To intuitively illustrate the importance of periodicity modeling, we generate synthetic data with
various periodic dependencies and multiple types of periods. Specifically, we generate a simulated
TS signal xt by composing an auto-regressive signal lt, corresponding to the local momentum, and a
compounded periodic signal pt, denoting the global periodicity, via a function f c as xt = f c(lt, pt),
which characterizes the dependency of xt on lt and pt. First, we produce lt via an auto-regressive
process, lt =

∑L
i=1 αilt−i + εlt, in which αi is a coefficient for the i-lag dependency, and the error

term εlt ∼ N (0, σl) follows a zero-mean Gaussian distribution with standard deviation σl. Then, we
produce pt by sampling from another Gaussian distribution N (zt, σ

p), in which zt is characterized
by a periodic function (instantiated as gφ(t) in Section 4.3), and σp is a standard deviation to adjust
the degree of dispersion for periodic samples. Next, we take three types of f c(lt, pt), (lt + pt),
(lt + pt)

2, and (lt + pt)
3, to characterize the linear, quadratic, and cubic dependencies of xt on lt

and pt, respectively. Last, after data generation, all models only have access to the final mixed signal
xt for training and evaluation.

Due to the space limit, we include the main results in Figure 3 and leave finer grained parameter
specifications and more experimental details to Appendix C. For each setup (linear, quadratic, cubic)
in Figure 3, we have searched for the best lookback length (L) for N-BEATS and the best number
of periods (J) for DEPTS on the validation set and re-run the model training with five different
random seeds to produce robust results on the test set. We can observe that for all cases, even with an
exhaustive search of proper lookback lengths for N-BEATS, there exists a considerable performance
gap between it and DEPTS, which verifies the utility of explicit periodicity modeling. Moreover, as
the periodic dependency becomes more complex (from linear to cubic), the average error reduction
of DEPTS over N-BEATS keeps increasing (from 7% to 11%), which further demonstrates the
importance of modeling high-order periodic effects.
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Table 1: Performance comparisons (nd) on ELECTRICITY, TRAFFIC, and M4 (HOURLY). For the
first two, we follow two different test splits defined in previous studies.

ELECTRICITY TRAFFIC M4 (HOURLY)Model 2014-09-01 2014-12-25 2008-06-15 2009-03-24

MatFact 0.16 0.255 0.20 0.187 n/a
DeepAR 0.07 n/a 0.17 n/a 0.09
Deep State 0.083 n/a 0.167 n/a 0.044
N-BEATS 0.064 0.171 0.114 0.112 0.023

DEPTS 0.060 0.139 0.111 0.107 0.021

Table 2: Performance comparisons (nd and nrmse) on CAISO and NP, where we define four test
splits to cover all four seasons of the last year for each benchmark.

2020-01-01 2020-04-01 2020-07-01 2020-10-01
Dataset Model nd nrmse nd nrmse nd nrmse nd nrmse

CAISO
PARMA 0.089 0.169 0.107 0.214 0.116 0.215 0.079 0.148
N-BEATS 0.029 0.058 0.031 0.073 0.030 0.064 0.026 0.057
DEPTS 0.024 0.049 0.028 0.063 0.029 0.058 0.020 0.042

NP
PARMA 0.220 0.350 0.201 0.321 0.216 0.352 0.199 0.305
N-BEATS 0.207 0.434 0.154 0.237 0.195 0.315 0.211 0.332
DEPTS 0.196 0.377 0.145 0.224 0.169 0.269 0.179 0.281

5.2 EVALUATION ON REAL-WORLD DATA

Other than simulation experiments, we further demonstrate the effectiveness of DEPTS on real-
world data. We adopt three existing PTS-related datasets, ELECTRICITY1, TRAFFIC2, and M4
(HOURLY)3, which contain various long-term (quarterly, yearly), mid-term (monthly, weekly), and
short-term (daily, hourly) periodic effects corresponding to regular economic and social activities.
These datasets serve as common benchmarks for many recent studies (Yu et al., 2016; Rangapuram
et al., 2018; Salinas et al., 2020; Oreshkin et al., 2020). For ELECTRICITY and TRAFFIC, we follow
two different test splits defined by Salinas et al. (2020) and Yu et al. (2016), and the evaluation hori-
zon covers the first week starting from the split date. As for M4 (HOURLY), we adopt the official
test set. Besides, we note that the time horizons covered by these three benchmarks are still too
short, which results in very limited data being left for periodicity learning if we alter the time split
too early. This drawback of lacking enough long PTS limits the power of periodicity modeling and
thus may hinder the research development in this field. To further verify the importance of peri-
odicity modeling in real-world scenarios, we construct two new benchmarks with sufficiently long
PTS from public data sources. The first one, denoted as CAISO, contains eight-years hourly actual
electricity load series in different zones of California4. The second one, referred to as NP, includes
eight-years hourly energy production volume series in multiple European countries5. Accordingly,
we define four test splits that correspond to all four seasons of the last year for robust evaluation.

For all benchmarks, we search for the best hyper-parameters of DEPTS on the validation set. Similar
to N-BEATS (Oreshkin et al., 2020), we also produce ensemble forecasts of multiple models trained
with different lookback lengths and random initialization seeds. Tables 1 and 2 show the overall
performance comparisons. On average, the error reductions (nd) of DEPTS over N-BEATS on
ELECTRICITY, TRAFFIC, M4 (HOURLY), CAISO, and NP are 12.5%, 3.5%, 8.7%, 13.3%, and
9.9%, respectively. Interestingly, we observe some prominent improvements in a few specific cases,

1https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
2https://archive.ics.uci.edu/ml/datasets/PEMS-SF
3https://github.com/Mcompetitions/M4-methods/tree/master/Dataset/Train
4http://www.energyonline.com/Data
5https://www.nordpoolgroup.com/Market-data1/Power-system-data
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Figure 4: We compare the forecasts of different models (in the left side) and visualize the intermedi-
ate states within DEPTS (in the middle and right parts), where DEPTS-P denotes the forecasts from
the global periodicity, DEPTS-L denotes the forecasts from the local momenta, and DEPTS is the
summation of these two parts, as illustrated in Section 4.2.

such as 18.7% in ELECTRICITY (2014-09-01), 23.1% in CAISO (2020-10-01), and 15.2% in
NP (2020-10-01). At the same time, we also observe some tiny improvements, such as 2.6% in
TRAFFIC (2008-06-15) and 3.3% in CAISO (2020-07-01). These observations imply that the
predictive abilities and the complexities of periodic effects may vary over time, which corresponds
to the changes in performance gaps between DEPTS and N-BEATS. Nevertheless, most of the time,
DEPTS still brings stable and significant performance gains for PTS forecasting, which clearly
demonstrate the importance of periodicity modeling in practice.

Due to the space limit, we leave more details about datasets and hyper-parameters used in real-world
experiments to Appendix D. Moreover, to achieve effective periodicity modeling, we have made
several critical designs, such as the triply residual expansions in Section 4.2 and the composition of
diversified periods in Section 4.3. We also conduct extensive ablation tests to verify these critical
designs, which are included in Appendix E.

5.3 INTERPRETABILITY

In Figure 4, we illustrate the interpretable effects of DEPTS via two cases, the upper one from
ELECTRICITY and the bottom one from TRAFFIC. First, from subplots in the left part, we observe
that DEPTS obtains much more accurate forecasts than N-BEATS and PARMA. Then, in the middle
and right parts, we can visualize the inner states of DEPTS to interpret how it makes such forecasts.
As Section 4.4 states, DEPTS can differentiate the contributions to the final forecasts x̂t:t+H into
the local momenta

∑N
`=1 u

(`)
t:t+H and the global periodicity

∑N
`=1 v

(`)
t:t+H . Interestingly, we can see

that DEPTS has learned two different decomposition strategies: 1) for the upper case, most of the
contributions to the final forecasts come from the global periodicity part, which implies that this case
follows strong periodic patterns; 2) for the bottom case, the periodicity part just characterizes a major
oscillation frequency, while the model relies more on the local momenta to refine the final forecasts.
Besides, the right part of Figure 4 depicts the hidden periodic state zt estimated by our periodicity
module gφ(t). We can see that gφ(t) indeed captures some inherent periodicity. Moreover, the
actual PTS signals also present diverse variations at different time, which further demonstrate the
importance of leveraging fθ to model the dependencies of xt:t+H on both xt−L:t and zt−L:t+H .
We include more case studies and interpretability analysis in Appendix F.

6 CONCLUSION

In this paper, we develop a novel DL framework, DEPTS, for PTS forecasting. Our core contri-
butions are to model complicated periodic dependencies and to capture sophisticated compositions
of diversified periods simultaneously. Extensive experiments on both synthetic data and real-world
data demonstrate the effectiveness of DEPTS on handling PTS. Moreover, periodicity modeling is
actually an old and crucial topic for traditional TS modeling but is rarely studied in the context
of DL. Thus we hope that the new DL framework together the two new benchmarks with evident
periodicity and sufficiently long observations can facilitate more future research on PTS.
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A BLOCK ARCHITECTURES

As illustrated in Section 4.2, the local block f lθl(`) produces forecasts based on local observed PTS
signals excluding redundant periodic effects. This goal aligns with that of N-BEATS to extract in-
formative representations from generic TS signals. Therefore, we reuse the generic block design of
N-BEATS to instantiate f lθl(`). Here we include a brief description of the local block for complete-
ness. Please refer to Section 3.1 in (Oreshkin et al., 2020) for more details.

FC Layers
(4 layers)

FC FC

𝒖!"#:!
(ℓ) 𝒖!:!()

(ℓ)

Local Block
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Figure 5: Detailed architectures of the local block and the periodic block in DEPTS.

Local Block. The left part of Figure 5 shows the detailed architecture within a local block, where
we use x̃(`)

t−L:t = x
(`−1)
t−L:t − v

(`)
t−L:t to denote the portion of the local observations x(`−1)

t−L:t excluding

the periodic effects v(`)
t−L:t for the `-th layer. After taking in x̃(`)

t−L:t, we pass it through four fully-

connected layers and then obtain the backcast coefficients c(`)
b and the forecast coefficients c(`)

f via
two linear projections:

u
(`),1
t−L:t = FC`,1(x̃

(`)
t−L:t), u

(`),2
t−L:t = FC`,2(u

(`),1
t−L:t), u

(`),3
t−L:t = FC`,3(u

(`),2
t−L:t),

u
(`),4
t−L:t = FC`,4(u

(`),3
t−L:t), c

(`)
b = LINEARb

`(u
(`),4
t−L:t), c

(`)
f = LINEARf

` (u
(`),4
t−L:t),

where FC is a standard fully-connected layer with ReLU activation (Nair & Hinton, 2010), and
LINEAR denotes a linear projection function. Then, we pass these coefficients to the basis layers,
hb(·) and hf (·), to obtain the backcast term u

(`)
t−L:t and the forecast term u

(`)
t:t+H , respectively. The

generic choice for hb(·) can simply be another linear projection function, which is also adopted by
us since it produces more competitive and stable performance on PTS-related benchmarks than other
interpretable basis layers, as shown by (Oreshkin et al., 2020) in Appendix C.4.

Periodic Block. The periodic block fpθp(`) aims to extract predictive information from associated
periodic states, which are relatively simple and stable compared with rapidly shifting PTS signals.
Therefore, we can adopt a simple architecture while still maintain desired effects. In this work,
we use one-layer standard fully-connected layer to encode z(`−1)

t−L:t and leverage another two linear

projection functions to obtain the backcast term v
(`)
t−L:t and the forecast term v

(`)
t:t+H as the periodic

effects of the `-th layer.

v
(`),1
t−L:t+H = FC`(z

(`−1)
t−L:t+H), v

(`)
t−L:t = LINEAR`(v

(`),1
t−L:t), v

(`)
t:t+H = LINEAR`(v

(`),1
t:t+H),
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where FC and LINEAR share the same meanings mentioned above. Moreover, when training for
multiple series simultaneously, we use a series-specific scalar parameter αi (i is the series index) to
take account of differences in the strengths of periodicity by updating v(`)

t−L:t+H as αi · v(`)
t−L:t+H .

B PARAMETER INITIALIZATION FOR THE PERIODICITY MODULE

As illustrated in Section 4.3, we leverage a fast approximation approach to obtain an acceptable
solution of the two-stage optimization problem (5) with affordable costs in practice. Algorithm 1
summarizes the overall procedure for this fast approximation.

Algorithm 1: Parameter initialization for the periodicity module.
Input: Dtrain = x0:Tv , Dval = xTv:T , K, and J
Conduct DCT over x0:Tv .
Sort the top-K cosine bases by amplitudes in descending order to obtain
φ̃∗ = {Ã∗0} ∪ {Ã∗k, F̃ ∗k , P̃ ∗k }Kk=1.

Initialize M̃∗ = 0.
for j in [1, · · · ,K] do

if ‖M̃∗‖1 < J then
Update M̃∗j by arg minMj∈{0,1} LDval

(g
Mj

φ̃∗
(t))

else
return φ̃∗ and M̃∗

end
end
Output: φ̃∗ and M̃∗

First, we divide the whole PTS signals x0:T into the training part Dtrain = x0:Tv
and the validation

part Dval = xTv:T , where Tv is the split time-step. Then, the inner optimization stage is to identify
the optimal parameter set φ∗ that can best fit the training data:

φ∗ = arg min
φ

LDtrain(gφ(t)), gφ(t) = A0 +

K∑
k=1

Ak cos(2πFkt+ Pk), (7)

where the hyper-parameter K controls the capacity of gφ(t) and the discrepancy training loss
LDtrain

can be instantiated as the mean square error
∑Tv−1
t=0 ‖gφ(t)− xt‖22. Directly optimizing (7)

via gradient descent from random initialization is inefficient and time-consuming since it involves
numerous gradient updates and is easily trapped into bad local optima. Fortunately, our instantiation
of gφ(t) as a group of cosine functions shares the similar format with Discrete Cosine Transform
(DCT) (Ahmed et al., 1974). Accordingly, we conduct DCT over x0:Tv

and select top-K cosine
bases with the largest amplitudes, which characterize the major periodic oscillations of this series,
as the approximated solution φ̃∗ of (7).

Next, we enter the outer optimization stage to select certain periods with good generalization:

M∗ = arg min
‖M‖1<=J

LDval
(gMφ∗(t)), gMφ∗(t) = A∗0 +

K∑
k=1

Mk ·A∗k cos(2πF ∗k t+ P ∗k ), (8)

where the hyper-parameter J further constrains the expressiveness of gMφ (t) for good generalization.
Conducting exact optimization of this binary integer programming is also costly since it involves an
exponentially growing parameter space. Similarly, to capture the major periodic oscillations as
much as possible, we develop a greedy strategy that iterates the selected K cosine bases from the
largest amplitude to the smallest and greedily assigns 1 or 0 to Mk depending on whether the k-th
period further reduces the discrepancy loss on the validation data. Specifically, assuming K periods
are already sorted by their amplitudes descendingly and are indexed by k, we construct another
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surrogate function gMj

φ∗ (t) for the j-th greedy step:

g
Mj

φ∗ (t) = Mj ·A∗j cos(2πF ∗j t+ P ∗j ) +

[
A∗0 +

j−1∑
k=1

M̃∗k ·A∗k cos(2πF ∗k t+ P ∗k )

]
, (9)

where {M̃∗k}
j−1
k=1 is determined in previous steps, Mj is an integer parameter to be set in the current

step. Thus, for the j-th step, we are actually updating M̃∗j by

M̃∗j = arg min
Mj∈{0,1}

LDval
(g
Mj

φ∗ (t)). (10)

Besides, to tolerate the approximation errors introduced by φ̃∗, which may result in shifted periodic
oscillations, we use Dynamic Time Warping to measure the discrepancy of gMj

φ∗ (t) and xt on Dval.
We continue this greedily updating steps until selecting J periods in total or completing the traverses
of all K selected periods. Finally, we obtain an approximated solution M̃∗ of (8).

Complexity Analyses. We also provide the complexity analyses of Algorithm 1, which runs very
fast in practice and takes up negligible time compared with training neural networks. Let us denote
the length of training series as Lt and the length of validation series as Lv . First, the complexity
of conducting DCT over training series is O(Ltlog(Lt)). Then, the complexity of selecting top-K
frequencies with the largest amplitudes is O(Ltlog(K)), which can be ignored since K << Lt.
Next, we need to select at most J frequencies greedily based on the generalization errors on the
validation set. Since we measure the generalization errors via dynamic time warping, the total
worst complexity for this selection procedure is O(KL2

v). In total, the worse complexity of our
approximation algorithm for a series is O(Ltlog(Lt) + KL2

v). In practice, Lv , the length of the
validation series, is relatively small, and K, the maximum number of frequencies, can be regarded
as a constant. So, the squared complexity term O(KL2

v) is not a big trouble.

C MORE DETAILS ON SYNTHETIC EXPERIMENTS

As Section 5.1 states, we produce a TS lt via an auto-regressive process, lt =
∑L
i=1 αilt−i + εlt,

in which αi is a coefficient for the i-lag dependence, and the error term εlt ∼ N (0, σl) follows
a zero-mean Gaussian distribution with standard deviation σl. Specifically, we set L as 3 and σl
as 1. We leverage uniform samples from [−1, 1] to initialize {αi}3i=1 and also uniformly sample
three values from [0, 5 for the initial points, l−3, l−2, and l−1. Then, we produce pt by sampling
from another Gaussian distribution N (zt, σ

p), in which zt is characterized by a periodic function
(instantiated as gφ(t) in Section 4.3), and σp is a standard deviation to adjust the degree of dispersion
for periodic samples. Specifically, we also set σp as 1 and produce zt via a composition of three
cosine bases, 8cos(2π(t + 2)/50), 4cos(2π(t + 3)/10), 2cos(2πt/4), and a base level, 30. These
three cosine bases represent long-term, mid-term, short-term periodic effects, respectively, which
are very similar to the circumstance in practice. Next, we take three types of f c(lt, pt), (lt + pt),
(lt + pt)

2, and (lt + pt)
3, to characterize the linear, quadratic, and cubic dependencies of xt on lt

and pt, respectively. We repeat the above procedure for 5000 time steps and divide them into 4000,
100, and 900 for training, validation, and evaluation, respectively. Figure 6 shows the first 1000 time
steps of these synthetic series. Note that after data generation, all models only have access to the
final mixed signal xt for training and evaluation.

Moreover, as illustrated in Section 5.1, we search for the best loobkack length (L) for N-BEATS
and the best number of periods (J) for DEPTS. The lookback length for DEPTS is fixed as 3,
which is also determined by hyper-parameter tuning on the validation set. Figure 7 shows detailed
comparisons of N-BEATS and DEPTS for different configurations of L and J . We can see that
N-BEATS always needs a relatively long lookback window, such as 48 or 96 time steps, to capture
those periodic patterns effectively. Besides, further increasing the lookback length will introduce
more irrelevant noises, which overwhelm effective predictive signals and thus result in more worse
performance. In contrast, with effective periodicity modeling, DEPTS can achieve better perfor-
mance by using a short lookback window, which is also consistent with the auto-regressive process
that governs the local momenta.
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Figure 6: Synthetic Data.

D MORE DETAILS ON REAL-WORLD EXPERIMENTS

D.1 DATASETS

Table 3 includes main statistics of the five datasets used by our experiments. We can see that the
existing datasets (ELECTRICITY, TRAFFIC, and M4 (HOURLY)) utilized by recent studies usually
have a large number of series but with relatively short lengths. Therefore, it is hard to identify or
evaluate yearly or quarterly periods on these benchmarks. In contrast, CAISO and NP contain tens
of series with the lengths of several years, which can better illustrate the inherent periodicity of these
series and serve as complementary benchmarks for PTS modeling.

Table 3: Dataset statistics.
Dataset ELECTRICITY TRAFFIC M4 (HOURLY) CAISO NP

# Series 370 963 414 10 18
Frequency hourly hourly hourly hourly hourly
Start Date 2012-01-01 2008-01-02 n/a 2013-01-01 2013-01-01
End Date 2015-01-01 2009-03-31 n/a 2020-12-31 2020-12-31
Min. Length 4008 10560 700 37272 69984
Max. Length 26304 10560 960 70128 70128
Avg. Length 24556 10560 854 54259 70120
Max. Value 764500 1.0000 352000 49909 27513
Avg. Value 2378.9 0.0528 1351.6 5582.4 4671.4

15



Published as a conference paper at ICLR 2022

N-BEATS
L=12

N-BEATS
L=24

N-BEATS
L=48

N-BEATS
L=96

N-BEATS
L=192

N-BEATS
L=384

N-BEATS
L=768

DEPTS
J=3

DEPTS
J=6

DEPTS
J=9

DEPTS
J=12

0.040

0.045

0.050
nd

Linear

N-BEATS
L=12

N-BEATS
L=24

N-BEATS
L=48

N-BEATS
L=96

N-BEATS
L=192

N-BEATS
L=384

N-BEATS
L=768

DEPTS
J=3

DEPTS
J=6

DEPTS
J=9

DEPTS
J=12

0.08

0.09

0.10

0.11

nd

Quadratic

N-BEATS
L=12

N-BEATS
L=24

N-BEATS
L=48

N-BEATS
L=96

N-BEATS
L=192

N-BEATS
L=384

N-BEATS
L=768

DEPTS
J=3

DEPTS
J=6

DEPTS
J=9

DEPTS
J=12

0.11

0.12

0.13

0.14

0.15

0.16

nd

Cubic

Figure 7: Performance comparisons of N-BEATS and DEPTS with different lookback lengths (L)
and number of periods (J).

Table 4: Hyper-parameters of N-BEATS on CAISO and NP.
Dataset CAISO / NP
Split 2020-01-01 2020-04-01 2020-07-01 2020-10-01

Iterations 4000 / 12000
Loss sMAPE
Forecast horizon (H) 24
Lookback horizon 2H, 3H, 4H, 5H, 6H, 7H
Training horizon 720H (most recent points before the split)
Layer number 30
Layer size 512
Batch size 1024
Learning rate 1e-3 / 1e-6
Optimizer Adam (Kingma & Ba, 2014)

D.2 HYPER-PARAMETERS

For N-BEATS, we use its default hyper-parameters6 for ELECTRICITY, TRAFFIC, and M4
(HOURLY), and we report its hyper-parameters searched on CAISO and NP in Table 4. Besides,
N-BEATS used multiple loss functions, such as sMAPE or MASE, for model training, and we also
follow these setups. Tables 5 and 6 include the hyper-parameters of DEPTS for all five datasets. Note

6https://github.com/ElementAI/N-BEATS
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Table 5: Hyper-parameters of DEPTS on ELECTRICITY, TRAFFIC, and M4 (HOURLY).
Dataset ELECTRICITY TRAFFIC M4 (HOURLY)Split 2014-09-01 2014-12-25 2008-06-15 2009-03-24

Iterations 72000 12000
Loss sMAPE MASE
Forecast horizon (H) 24 48
Lookback horizon 2H, 3H, 4H, 5H, 6H, 7H 4H, 5H, 6H, 7H
Training horizon 10H
J 4 32 8 1
K 128
Layer number 30
Layer size 512
Batch size 1024
Learning rate (fθ) 1e-3
Learning rate (gφ) 5e-7
Optimizer Adam (Kingma & Ba, 2014)

Table 6: Hyper-parameters of DEPTS on CAISO and NP.
Dataset CAISO / NP
Split 2020-01-01 2020-04-01 2020-07-01 2020-10-01

Iterations 4000 / 12000
Loss sMAPE
Forecast horizon (H) 24
Lookback horizon 2H, 3H, 4H, 5H, 6H, 7H
Training horizon 720H
J 8 / 8 32 / 8 32 / 32 8 / 32
K 128
Layer number 30
Layer size 512
Batch size 1024
Learning rate (fθ) 1e-3 / 1e-6
Learning rate (gφ) 5e-7
Optimizer Adam (Kingma & Ba, 2014)

that, all these hyper-parameters are searched on a validation set, which is defined as the last week
before the test split. Moreover, for a typical dataset with multiple series, we build an independent
periodicity module gφ for each series and perform respective parameter initialization procedures as
described in Appendix B. Then, for all datasets (splits), we train 30 models (6 lookback lengths ×
5 random seeds) for both N-BEATS and DEPTS and then produce ensemble forecasts for fair and
robust evaluation.

E ABLATION TESTS

As Figure 8 shows, we adopt three ablated variants of DEPTS to demonstrate our critical designs in
the expansion module (Section 4.2):

• DEPTS-1: removing the residual connection of (x
(`−1)
t−L:t−v

(`)
t−L:t) so that the outputs of the

local block u(`)
t−L:t are only conditioned on the raw PTS signals xt−L:t, which correspond

to the mixed observations of local momenta and global periodicity.

• DEPTS-2: removing the residual connection of (x̂
(`−1)
t:t+H + v

(`)
t:t+H) so that the contribu-

tions to the forecasts only come from the local block, which takes in the signals excluding
periodic effects progressively.
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• DEPTS-3: removing the residual connection of (z
(`−1)
t−L:t+H)− v(`)

t−L:t+H so that the inputs
to the periodic block of each layer are the same hidden variables zt−L:t+H .

We also construct another four baselines to demonstrate the importance of our customized periodic-
ity learning:

• NoPeriod: removing the periodic blocks by directly feeding (xt − zt) to N-BEATS.

• RandInit: randomly initializing periodic coefficients (φ) and directly applying the end-to-
end learning.

• FixPeriod: fixing the periodic coefficients (φ) after the initialization stage and only tuning
θ during end-to-end optimization.

• MultiVar: treating zt as a covariate of xt and feeding (xt, zt) into an N-BEATS-style
model via two channels.

Moreover, as illustrated in Section 4.3 and Appendix B, the maximal number of selected periods
J is a critical hyper-parameter to balance expressiveness and generalization of gφ(t). Thus, we
conduct experiments with different J to verify its sensitivity on different datasets. Tables 7 and 8
include experimental results of these model variants on ELECTRICITY, TRAFFIC, CAISO, and NP
with different J . Since we only identify one reliable period via Algorithm 1 on M4 (HOURLY), we
report its results separately in Table 9.
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Figure 8: The residual structures of DEPTS and its three ablated variants, where the dashed line
denotes the removed connection.

First, as Tables 7 and 8 show, J is a crucial hyper-parameter that has huge impacts on forecasting
performance. The reason is that if J is too small, the periodicity module gφ cannot produce effective
representations of the inherent periodicity to boost the predictive ability. While if it is too large, gφ
has a high risk of over-fitting to the irrelevant noises contained by the training data, which also re-
sults in poor predictive performance. Moreover, the interactions between local momenta and global
periodicity may vary over time. Therefore, it is critical to search for a proper J for each PTS and
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Table 7: Performance comparisons of DEPTS-1, DEPTS-2, DEPTS-3, and DEPTS.
J Model ELECTRICITY TRAFFIC CAISO NP

2014-12-25 2009-03-24 2020-10-01 2020-10-01
nd nrmse nd nrmse nd nrmse nd nrmse

4 DEPTS-1 0.15870 0.97571 0.11167 0.40790 0.02429 0.05184 0.19818 0.31224
DEPTS-2 0.15391 0.99258 0.10786 0.39716 0.02190 0.04402 0.19213 0.30317
DEPTS-3 0.14955 0.96602 0.10784 0.39811 0.01951 0.04087 0.19201 0.30469
DEPTS 0.14931 0.96488 0.10745 0.39730 0.02061 0.04373 0.19128 0.30381

8 DEPTS-1 0.15632 0.98683 0.11108 0.40529 0.02256 0.04634 0.19194 0.30167
DEPTS-2 0.15070 0.97949 0.10688 0.39421 0.02103 0.04329 0.18412 0.28983
DEPTS-3 0.14908 0.96270 0.10714 0.39687 0.02017 0.04532 0.18618 0.29525
DEPTS 0.14929 0.95627 0.10653 0.39567 0.02008 0.04176 0.18475 0.29214

16 DEPTS-1 0.14954 0.92162 0.11216 0.40335 0.02419 0.05041 0.18740 0.29442
DEPTS-2 0.14719 0.95648 0.10806 0.39448 0.02236 0.04672 0.18124 0.28434
DEPTS-3 0.14742 0.94554 0.10678 0.39444 0.01991 0.04384 0.18180 0.28786
DEPTS 0.14653 0.94929 0.10770 0.39554 0.02116 0.04276 0.18095 0.28620

32 DEPTS-1 0.14730 0.90305 0.11425 0.39968 0.02476 0.05193 0.18445 0.28860
DEPTS-2 0.14765 0.95478 0.11061 0.39699 0.02171 0.04526 0.18024 0.28110
DEPTS-3 0.14179 0.90319 0.10801 0.39403 0.01975 0.04270 0.18057 0.28355
DEPTS 0.13915 0.87498 0.11076 0.39453 0.02156 0.04446 0.17885 0.28031

Table 8: Performance comparisons of NoPeriod, RandInit, FixPeriod, MultiVar, and DEPTS.
J Model ELECTRICITY TRAFFIC CAISO NP

2014-12-25 2009-03-24 2020-10-01 2020-10-01
nd nrmse nd nrmse nd nrmse nd nrmse

4 NoPeriod 0.20615 1.27117 0.11829 0.40465 0.08195 0.14208 0.27128 0.40491
RandInit 0.17677 1.07514 0.11051 0.40383 0.02504 0.05293 0.20869 0.32853
FixPeriod 0.16756 0.99876 0.10816 0.39833 0.02282 0.04576 0.20145 0.31604
MultiVar 0.15743 1.02039 0.10733 0.39635 0.02018 0.04038 0.19998 0.31393
DEPTS 0.14931 0.96488 0.10745 0.39730 0.02061 0.04373 0.19128 0.30381

8 NoPeriod 0.23969 1.47537 0.11940 0.40536 0.08182 0.15585 0.24796 0.37781
RandInit 0.17463 1.05695 0.11065 0.40500 0.02639 0.05680 0.20972 0.33044
FixPeriod 0.16431 0.98414 0.10796 0.39764 0.02228 0.04661 0.20163 0.31666
MultiVar 0.15482 0.99266 0.10667 0.39599 0.02160 0.04855 0.19494 0.30513
DEPTS 0.14929 0.95627 0.10653 0.39567 0.02008 0.04176 0.18475 0.29214

16 NoPeriod 0.26851 1.65571 0.12203 0.40410 0.07275 0.15280 0.23281 0.34943
RandInit 0.18167 1.08529 0.11048 0.40287 0.02496 0.05347 0.20917 0.32936
FixPeriod 0.15792 0.95356 0.10803 0.39699 0.02138 0.04417 0.20293 0.31963
MultiVar 0.15479 0.98805 0.10724 0.39366 0.02289 0.05023 0.19045 0.29784
DEPTS 0.14653 0.94929 0.10770 0.39554 0.02116 0.04276 0.18095 0.28620

32 NoPeriod 0.31358 1.73706 0.12835 0.40741 0.07696 0.15433 0.22503 0.34109
RandInit 0.19399 1.14278 0.11075 0.40082 0.02577 0.05723 0.20916 0.32944
FixPeriod 0.15539 0.92896 0.10862 0.39637 0.02055 0.04115 0.20272 0.31940
MultiVar 0.16405 1.01227 0.10907 0.39596 0.02159 0.04582 0.18844 0.29294
DEPTS 0.13915 0.87498 0.11076 0.39453 0.02156 0.04446 0.17885 0.28031

each split point to pursue better performance. Fortunately, we demonstrate that the hyper-parameter
tuning of J on the validation set can ensure its good generalization abilities on the subsequent test
horizons.

Then, let us focus on Table 7 to compare DEPTS with DEPTS-1, DEPTS-2, and DEPTS-3. First,
we can see that DEPTS-1 usually produces the worst performance in most cases, which demon-
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Table 9: Overall ablation studies on M4 (HOURLY).
DEPTS-1 DEPTS-2 DEPTS-3 DEPTS

nd 0.03712 0.02161 0.02252 0.02050
nrmse 0.22785 0.07710 0.08851 0.06872

NoPeriod RandInit FixPeriod MultiVar

nd 0.03848 0.02401 0.02526 0.02937
nrmse 0.16568 0.09192 0.11221 0.14130

strates that excluding periodic effects from raw PTS signals can stably and significantly boost the
performance of PTS forecasting. Second, for most cases, DEPTS outperforms DEPTS-2, and the
performance gaps can be remarkable, such as 0.139 vs. 0.148 on ELECTRICITY and 0.020 vs. 0.021
on CAISO. These results verify the importance of including the portion of forecasts solely from
the periodicity module. Third, DEPTS-3 can produce competitive results compared with DEPTS
in many cases. Nevertheless, after selecting the best J for each dataset, DEPTS still slightly out-
performs DEPTS-3 in most cases. Besides, from Table 9, we also observe that DEPTS performs
much better than DEPTS-3 on M4 (HOURLY). Thus we retain the residual connection to reduce the
periodic effects leveraged by previous layers.

Next, let us focus on Table 8 to compare DEPTS with other four baselines, NoPeriod, RandInit,
MultiVar, and FixPeriod. First, we observe that NoPeriod usually produces the worst preformance.
The reason is that (xt–zt) denotes the raw time-series signal subtracting the periodic effect, so it
is challenging for the model to forecast the future signals, xt:t+H , solely based on the periodicity-
agnostic inputs, (xt−L:t–zt−L:t). Second, RandInit also produces much more worse results than
DEPTS, which demonstrate the importance of initializing periodic coefficients (Section 4.3). Third,
DEPTS performs much better than FixPeriod in most cases, which demonstrate the effectiveness of
fine-tuning periodic coefficients after the initialization stage. Last, we observe that sometimes Mul-
tiVar can produce comparable and even slightly better results than DEPTS. However, after selecting
the best J on each dataset for these two models, we find that DEPTS still outperforms MultiVar
consistently and significantly, which also demonstrates the superiority of our expansion learning.
Moreover, as Table 9 shows, DEPTS outperforms all these baselines by a large margin on M4
(HOURLY), which containing very short PTS with 854 observations on average. Given limited data,
all our critical designs, such as properly initializing periodic coefficients, fine-tuning periodic co-
efficients, and conducting expansion learning to decouple the dependencies of xt on zt, play much
crucial roles in producing accurate forecasts.

F MORE CASE STUDIES AND INTERPRETABILITY ANALYSES

In the following, we further study the interpretable effects of DEPTS with more cases. Fig-
ures 9, 10, 11 and 12 show the additional two cases on ELECTRICITY, TRAFFIC, CAISO, and NP,
respectively. Following Figure 4, we compare the forecasts of N-BEATS and DEPTS in the left side,
differentiate the forecasts of DEPTS into the local part (DEPTS-L) and the periodic part (DEPTS-P)
in the middle side, and plot the hidden state zt together with the PTS signals in the right side. The
general observations are that with the help of explicit periodicity modeling, DEPTS achieves better
performance than N-BEATS in PTS forecasting, and DEPTS has learned diverse behaviors for dif-
ferent cases. Besides, we also include their critical periodic coefficients (amplitude Ak, frequency
Fk, and phase Pk) in Tables 10, 11, 12, and 13. We find that DEPTS can learn many meaningful
periods that are consistent with practical domains.
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Figure 9: We show two cases on ELECTRICITY dataset. It is clear to see that other than following
some inherent periodicity, the real PTS signals usually have various irregular oscillations at different
time steps, while DEPTS can produce more stable forecasts by analyzing local momenta and global
periodicity simultaneously. For these two cases with evident and stable periodicity, DEPTS relies
more on the periodic forecasts (DEPTS-P) and thus achieves more competitive and stable results.

Table 10: Periodic coefficients of the two ELECTRICITY examples shown in Figure 9. We find that
DEPTS has learned both short-term and long-term periods, such as three hours (|1/Fk| ≈ 3), six
hours (|1/Fk| ≈ 6), 12 hours (|1/Fk| ≈ 12), one day (|1/Fk| ≈ 24), and half a year (|1/Fk| ≈
4380), which are very similar to the patterns of electricity utilization in practice.

ELECTRICITY
id 224 id 235

|Ak| |1/Fk| |Pk| |Ak| |1/Fk| |Pk|
362.601 23.995 0.088 160.144 23.997 0.092
196.829 8320.428 0.422 77.804 8256.523 0.451

87.138 4470.598 0.487 36.918 23.969 0.092
66.418 24.035 0.122 19.517 23.921 0.102
52.736 11.999 0.052 17.714 4.800 0.024
44.248 23.920 0.096 12.810 11.993 0.054
27.172 6.000 0.027 11.964 6068.298 0.684
23.220 6.001 0.030 11.186 3.000 0.015
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Figure 10: We show two cases on TRAFFIC dataset. We can see that DEPTS is able to characterize
quite different periodic effects. For the upper case, there are unexpected peaks at different time
steps. For the bottom case, there are different types of periodic oscillations. Similar to cases in
Figure 9, DEPTS has estimated roughly consistent periodic states zt and then combined DEPTS-P
and DEPTS-L to produce stable and accurate forecasts.

Table 11: Periodic coefficients of the two TRAFFIC examples shown in Figure 10. We find that
DEPTS has also learned multiple types of periods.

TRAFFIC
id 398 id 532

|Ak| |1/Fk| |Pk| |Ak| |1/Fk| |Pk|
0.0231 23.993 0.233 0.0267 23.987 0.209
0.0066 164.055 2.293 0.0122 3192.218 0.527
0.0062 1845.505 2.226 0.0104 4906.324 0.382
0.0054 11.999 0.200 0.0066 24.270 0.434
0.0046 8.003 0.205 0.0048 1265.645 0.330
0.0045 23.920 0.234 0.0039 4.801 0.114
0.0044 28.097 0.282 0.0032 23.637 0.332
0.0038 12.011 0.513 0.0030 28.053 0.248
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Figure 11: We show two cases on CAISO dataset. These two cases present relatively regular oscil-
lations, and thus N-BEATS with enough lookback lengths can also produce pretty good forecasts.
Even though, DEPTS can better capture the curves of future PTS signals by modeling the depen-
dencies of them on estimated periodicity. We can see that DEPTS first relies on the periodic part
(DEPTS-P) to form the basic shape of forecasts and then leverages the forecasts from the local part
(DEPTS-L) to stretch or condense the forecasting curve.

Table 12: Periodic coefficients of the two CAISO examples shown in Figure 11. Other than daily
and yearly periods, which are observed similarly in ELECTRICITY and TRAFFIC cases, we find that
DEPTS has identified some weekly periods (|1/Fk| ≈ 168) for two cases on CAISO.

CAISO
id 4 id 1

|Ak| |1/Fk| |Pk| |Ak| |1/Fk| |Pk|
3411.731 24.004 0.000 1851.303 24.002 0.307
3207.279 8344.825 0.081 1754.576 8629.984 0.606
1712.536 4509.138 0.042 720.007 23.934 0.704
1493.276 23.934 0.000 625.465 4299.993 0.334
1434.023 23.992 0.000 536.312 167.907 0.369
1225.926 9408.412 0.086 452.345 11.999 0.086
963.309 24.062 0.000 409.348 24.018 0.323
854.321 168.236 0.001 326.875 24.069 0.215
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Figure 12: We show two cases on NP dataset. We can see that these cases are rather difficult, and
both N-BEATS and DEPTS struggle to make sufficiently accurate forecasts. Nevertheless, as shown
in the right side, DEPTS has a relatively stable estimation of the future trending and thus can obtain
relatively good performance in forecasting future curves.

Table 13: Periodic coefficients of the two NP examples shown in Figure 12. We can see that the
dominant periods belong to the long-term type, which characterizes the overall variation but omits
those local volatile oscillations. Since this dataset contains massive noises in local oscillations, in
some splits, N-BEATS even produces forecasts that are inferior to the projections of simple statistical
approaches, such as PARMA, as shown in Table 2.

NP
id 1 id 10

|Ak| |1/Fk| |Pk| |Ak| |1/Fk| |Pk|
252.601 8529.557 0.960 2131.096 8506.317 0.809
140.967 670.924 0.715 1643.707 24.003 0.212
134.343 366.735 0.668 1158.437 366.648 0.797
117.755 24.004 0.378 1132.171 670.602 0.734
107.298 244.195 0.768 942.847 244.106 0.988
97.824 794.904 0.376 909.762 795.685 0.417
69.710 6217.354 0.746 867.654 12.001 0.309
65.251 182.112 0.452 729.163 737.857 0.696
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