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ABSTRACT

Quantifying the uncertainty in the factual parametric knowledge of Large Lan-
guage Models (LLMs), especially in a black-box setting, poses a significant chal-
lenge. Existing methods, which gauge a model’s uncertainty through evaluat-
ing self-consistency in responses to the original query, do not always capture
true uncertainty. Models might respond consistently to the origin query with a
wrong answer, yet respond correctly to varied questions from different perspectives
about the same query, and vice versa. In this paper, we propose a novel method,
DIVERSEAGENTENTROPY, for evaluating a model’s uncertainty using multi-agent
interaction under the assumption that if a model is certain, it should consistently
recall the answer to the original query across a diverse collection of questions about
the same original query. We further implement an abstention policy to withhold
responses when uncertainty is high. Our method offers a more accurate prediction
of the model’s reliability and further detects hallucinations, outperforming other
self-consistency-based methods. Additionally, it demonstrates that existing models
often fail to consistently retrieve the correct answer to the same query under diverse
varied questions even when knowing the correct answer.

1 INTRODUCTION

Large language models(LLMs) demonstrate impressive capabilities in encoding real-world knowledge
within their parameters and utilizing this knowledge to support knowledge-intensive tasks (Yu et al.,
2024). However, these systems may resort to hallucinations (Ji et al., 2023) when the necessary
knowledge is missing, unreliable, inaccurately stored, or not retrieved even if it exists within the
model’s parametric knowledge. In the future, to build and deploy powerful AI responsibly, we will
need to develop robust techniques for scalable oversight (Bowman et al., 2022): alignment methods
that scale with a model’s capabilities. When models become increasingly powerful but still suffer
from hallucinations (Nananukul & Kejriwal, 2024), users must find ways to identify and extract
trustworthy knowledge from these untrustworthy models. Since most users interact with LLMs via
API calls (Anthropic, 2024; OpenAI et al., 2024), we focus on the black-box model setting, ensuring
that our solution applies to any model without requiring internal access to weights or gradients, or
external assistance such as expert consultation or retrieval augmentation with verified information.

Therefore, we pose the following research question: How can we develop a robust methodology to
quantify a model’s uncertainty regarding its parametric knowledge, and further enable it to refrain
from generating hallucinated responses, without internal model access or external assistance?

Current research predominantly evaluates self-consistency on the original query (Farquhar et al.,
2024; Manakul et al., 2023b; Lin et al., 2024; Aichberger et al., 2024; Yadkori et al., 2024) to
analyze a model’s uncertainty for a single query. These approaches calculate uncertainty by sampling
multiple responses to the same query and measuring consistency using entropy or other uncertainty
evaluation methods across semantically clustered responses. While inconsistency about the original
query in LMs often coincides with hallucination, these approaches do not necessarily capture a
model’s uncertainty about the veracity of its response (Zhang et al., 2023; Zhao et al., 2024; Chen
et al., 2024a). A model may consistently provide an incorrect answer to the original query, while
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The Louisiana Purchase was negotiated and signed by 
Robert Livingston, James Monroe, and François 
Barbé-Marbois, representing the United States, and Charles 
Maurice de Talleyrand-Périgord, representing France. 
However, the key leadership qualities exhibited during the 
negotiation process are often attributed to Thomas 
Jefferson, who was the President of the United States at the 
time and played a crucial role in shaping the negotiations.

Robert Livingston, James Monroe, 
and François Barbé-Marbois.

Lung cancer

The type of cancer that kills the most women in the U.S. is 
lung cancer.

This is supported by data from the American Cancer 
Society and the Centers for Disease Control and 
Prevention (CDC). Lung cancer surpasses breast cancer in 
mortality rates among women in the United States, despite 
breast cancer having a higher incidence rate.

What type of cancer kills the 
most women in the U.S.?

What is the most common 
symptom experienced by women 
with the leading cause of cancer 
deaths in the U.S.?

Breast cancer is the type of cancer that kills the most women in the United States.

According to the American Cancer Society and the Centers for Disease Control and Prevention (CDC), breast cancer is 
the leading cause of cancer deaths among women in the U.S., followed by lung cancer.

Breast cancer

Full Answer

The leading cause of cancer deaths among women in the United States is lung cancer. For lung cancer, the most 
common symptom experienced by women is: Persistent cough

This cough may have the following characteristics:
- It can be dry or produce mucus
- It may be present for several weeks or longer
- It might worsen over time

However, it's important to note that early-stage lung cancer often doesn't cause any symptoms, which is one reason why 
it's so dangerous. Other common symptoms of lung cancer in women can include:
1. Shortness of breath…

Extracted Answer

Lung cancer

Who signed the Louisiana 
Purchase?

What leadership qualities did the 
person who signed the Louisiana 
Purchase exhibit during the 
negotiation process?

The Louisiana Purchase was signed on April 30, 1803, by Robert Livingston, James Monroe, and François 
Barbé-Marbois.

* Robert Livingston was the U.S. Minister to France and one of the negotiators of the treaty.
* James Monroe was the U.S. Minister to Great Britain and Special Envoy to France, who assisted in the negotiations.
* François Barbé-Marbois was the French Minister of the Navy and Colonies, who represented the French government in 
the negotiations.

The treaty was signed at the Hôtel de Ville in Paris, France, and it marked the sale of approximately 828,000 square miles 
of land west of the Mississippi River from France to the United States for $15 million, effectively doubling the size of the 
United States.

Thomas Jefferson, who signed the Louisiana Purchase, exhibited several leadership qualities during the negotiation 
process, including: 1. Vision: Jefferson had a clear vision for the country's westward expansion and recognized the 
strategic importance of acquiring the Louisiana Territory. 2. Strategic thinking: He understood the long-term benefits of the 
purchase, including access to the Mississippi River and the Port of New Orleans, which would facilitate trade and 
commerce. … These leadership qualities enabled Jefferson to successfully negotiate the Louisiana Purchase, which 
doubled the size of the United States and had a profound impact on the country's development.

Answer after Agent Interaction

Lung cancer

Robert Livingston, 
James Monroe, and 

François Barbé-Marbois.

Thomas Jefferson.

Robert Livingston, James Monroe, 
and François Barbé-Marbois.

Example 1

Example 2

Figure 1: Two examples where an LLM shows different behaviors on diverse questions from different
perspectives about the original queries.

consistently giving a correct response to varied questions from different perspectives that require the
same underlying fact, or vice versa, as demonstrated in the examples in Fig. 1.

We start with a simple assumption: if a model is certain of its answer to a query, it should consistently
provide the same answer across different questions that rely on the same underlying information. How-
ever, we observe that providing additional context in varied questions influences the model’s behavior
by exposing it to different background information, which can result in varying outcomes (Gonen
et al., 2023; Sclar et al., 2024). In some cases, as shown in Example 1 of Fig. 1, the additional context
helps the model better assess its own knowledge. However, in other cases, such as Example 2 in
Fig. 1, it introduces confusion.

Previous studies have demonstrated that allowing LLMs to revise their responses (Kadavath et al.,
2022; Shinn et al., 2023), while simultaneously presenting them with diverse related contextual
information (Sun et al., 2023), can improve the accuracy of their answers. Building on these intuitions,
we propose to assess the model’s uncertainty regarding their parametric knowledge after multi-agent
interaction with the same underlying model (Xiong et al., 2023; Du et al., 2024; Feng et al., 2024)
as shown in Fig. 2. Specifically, we define an agent as the same base model, but with different
background knowledge, acquired by first answering a unique varied question related to the original
query. The varied questions should require the model to rely on the same underlying information as
the original query while introducing diverse perspectives or variations. We then encourage multiple
rounds of controlled one-on-one agent interactions, allowing the agents to collaboratively refine their
answers to the original query. We detail the entire agent interaction process in §3.3 and 3.4. The
multi-agent interaction process exposes the model to diverse perspectives on the same original query
through different agents’ questions and responses, allowing it to self-correct. As shown in Fig. 2,
after the agent interaction, all participating agents agree on the same answer.

We then propose DIVERSEAGENTENTROPY, which uses the weighted entropy of the agents’ final
answers as a reliable measure of the model’s uncertainty regarding the original query. As illustrated in
Fig. 2, the model’s final uncertainty for this query will be 0. This approach evaluates the consistency
of the model’s responses to the original query across a diverse range of related questions, rather
than relying solely on the original query. Additionally, we define an abstention policy to withhold
responses when uncertainty is high.

In this paper, we demonstrate that our uncertainty metric, when combined with an abstention policy,
effectively assesses model reliability and identifies hallucinations. Our method surpasses existing
black-box, self-consistency-based uncertainty estimation methods, achieving a superior AUROC score.
By sampling across different abstention rates, our method consistently delivers a 2.5% improvement
in accuracy on known questions compared to self-consistency-based approaches across various types
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of QA tasks. Furthermore, our approach allows for an in-depth analysis of the model’s ability to
consistently retrieve accurate information. Notably, we find that, even when the model possesses
the correct answer to a query, it frequently fails to provide consistent responses when queried from
different perspectives. This finding highlights the need for improvements in the model’s retrievability
of parametric knowledge. Finally, we conduct comprehensive ablation studies to examine agent
interactions, providing valuable insights for future work.

2 RELATED WORK

Uncertainty Estimation of LMs. Several recent works (Farquhar et al., 2024; Yadkori et al., 2024;
Lin et al., 2024; Aichberger et al., 2024) have systematically quantified LLM uncertainty using
entropy over multiple sampled outputs; however, they all focus on self-consistency to the original
query, which can be misleading as shown in Figure 1. Some studies attempt to verbalize LLM
uncertainty (Tian et al., 2023; Xiong et al., 2024), but Xiong et al. (2024) shows that LLMs are
overconfident when verbalizing their confidence. Some works measure uncertainty from the LLM’s
activations (Chen et al., 2024b; CH-Wang et al., 2024) while we don’t have access to model internals.

Consistency Evaluation of LMs. Although Wang et al. (2023) demonstrates that self-consistency
with a majority vote can significantly enhance reasoning in LMs and Manakul et al. (2023a) further
proposes a simple sampling-based approach that can be used to fact-check the response, Zhang
et al. (2023) and Zhao et al. (2024) argue that detecting factual hallucinations requires evaluating
consistency across semantically equivalent questions, not just self-consistency. Additionally, Chen
et al. (2024a) further illustrates that LLMs struggle to maintain compositional consistency. Therefore,
our paper adopts a broader definition of consistency to better quantify the model’s output certainty.

Agent interaction for LMs. Recent works (Xiong et al., 2023; Du et al., 2024; Feng et al., 2024)
improve factuality in LMs through multi-agent cooperation or debate, primarily using cross-model
agents. In contrast, we build same-model agents. The most similar setting is Feng et al. (2024),
though it doesn’t allow self-correction. Our method facilitates controlled interactions for simplified
analysis. Future work will explore enhancing agent interactions, e.g., with persona-based variations.

3 METHOD

3.1 BACKGROUND ON NLG UNCERTAINTY ESTIMATION

We first provide background on uncertainty estimation, focusing on entropy-based evaluation, as
uncertainty is commonly measured by the entropy of predictions in the existing literature (Wellmann
& Regenauer-Lieb, 2012; Abdar et al., 2021). We denote x and Y as the input—original query—and
the output—random variable Y . The total uncertainty for a given model θ can be understood as the
predictive entropy of the output distribution:

U(x) = H(Y |x) = −
∫

p(y|x) log (p(y|x)) dy. (1)

If the overall uncertainty U is low, the model has high confidence in its output. Since it is impractical
to sample all possible answers, directly calculating Eq.1 is not feasible. Instead, in NLG, we
approximate using (Malinin & Gales, 2021; Farquhar et al., 2024; Aichberger et al., 2024):

U(x) = H(Y |x) ≈ −
∑
yi∈C

p(yi|x) log p(yi|x). (2)

C represents all grouped semantically different answers obtained when a model is queried N times
with the same input, i.e., the original query x. yi is one possible semantically different answer for x.

3.2 EXISTING SELF-CONSISTENCY BASED UNCERTAINTY ESTIMATION

In this section, we explain how self-consistency on a single query can be applied to approximate the
model’s uncertainty, along with its limitations. Existing self-consistency-based uncertainty estimation
methods in the black-box setting (Kuhn et al., 2023; Farquhar et al., 2024; Lin et al., 2024; Aichberger
et al., 2024) follow a similar procedure: 1) For a given input x, generate N response samples. 2)
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Figure 2: Our proposed DIVERSEAGENTENTROPY estimates the model’s uncertainty about a single
query by encouraging multi-agent interactions on varied questions related to the original query.
Instead of relying on self-consistency for the original query, we analyze the model’s uncertainty after
these agent interactions.

Calculate pairwise similarity scores for these N responses. 3) Compute an uncertainty estimate U(x)
using the similarity values.

Specifically, Farquhar et al. (2024) introduces semantic entropy to calculate p(yi|x) in Eq.2 as a
frequency-based probability derived from repeated sampling of the original question x. Assume we
find the semantic clusters for the sampled answers, and let each query return a possible semantically
different answer yi ∈ C. The count of times a particular yi appears as the output for the input x over
these N queries is denoted as c(yi). Therefore, p(yi|x) = c(yi)

N .

Lin et al. (2024) calculates uncertainty using a weighted adjacency graph built upon semantic affinities.
An affinity model e maps pairs of responses to values in [0, 1]. Given N independent samples, the
model induces a symmetric adjacency matrix W = [wi,j ]

N
i,j=1, where wi,j is the mean of the pairwise

similarities between response i and j. The degree matrix is D = [1[j = i]
∑N

n=1 wn,j ]
N
i,j=1, and the

Laplacian L = I −D−1/2WD−1/2 has eigenvalues {λn}Nn=1. The following uncertainty measures
are then defined: UEigV (x) =

∑N
n=1 max{0, 1 − λn}, UDegree(x) = 1 − trace(D)

N2 , UEcc(x) =

∥[v1, v2, . . . , vN ]∥2 where {vn}Nn=1 are vectors associated with L.

As a result, regardless of the specific method used, if all N responses sampled from the original
query consistently output the same answer with the same semantics y′, the model is considered
certain about the answer to the query x with the lowest uncertainty. However, self-consistency alone
is insufficient for accurately assessing a model’s uncertainty of the original query. A model may
consistently provide incorrect answers to the query but recall the correct answer when responding to
varied related questions (Fig. 1, Example 1). Conversely, it may initially provide the correct answer
but fail to recall it when answering related questions (Fig. 1, Example 2).

3.3 DIVERSEAGENTENTROPY: PROPOSED METRIC OF UNCERTAINTY

Acknowledging the limitations of commonly used self-consistency-based methods, in this section,
we introduce DIVERSEAGENTENTROPY, a multi-agent interaction approach that extends beyond
self-consistency to estimate the uncertainty of an LLM for a single query in a black-box setting. Our
method is illustrated in Fig. 2.
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Based on the two observations in Fig. 1, we first make a more robust assumption for modeling
uncertainty: if a model is certain, it should consistently recall the answer to the query across a diverse
collection of questions about the same query. For example, for popular queries like ”What is the
current capital of France?”, the model is certain and will output ”Paris” for any varied questions.
Instead of repeatedly querying the model with the same original query x, we aggregate responses
across a variety of diverse questions Q = {q1, q2, . . . , qn}, where the answer to the original query
is required during the answering process. The set of Q will include the original query x itself,
semantically equivalent questions of the original query x, and questions about different perspectives
as shown in Fig. 2. The automated varied question generation process is described in detail in §3.4.
We then query the model with each variant of the question qj in Q, and count the occurrence of
specific semantically different answer yi to the original query. Let c(yi, qj) denote the count of the
semantically different answer yi to the original query extracted from the response to the question qj .
The aggregated counts across all different inputs qj are used to estimate p(yi|x) as:

p(yi|x) =
∑n

j=1 c(yi, qj)∑n
j=1 Nj

. (3)

where Nj is the number of times the model was queried with the input qj , and n is the total number
of distinct questions related to the same original query. We set Nj = 1 for simpler implementation.

However, since we observe that providing additional context in varied questions influences the
model’s behavior, we propose an additional multi-agent interaction process to further calibrate the
calculation of p(yi|x). This process allows the model to engage in self-reflection and self-correction.
We create n agents from the same tested model where each agent Aj , j = 1, ....n first independently
answers a unique varied question qj , j = 1, ....n about the original query once as its unique context
background. After initial responses are generated from different agents, we will extract their answers
to the original query from their responses. As demonstrated by Wang et al. (2024), a transformer-
based model can perform gradient descent on common alignment objectives in an in-context manner
and engage in self-correction. We then facilitate multiple rounds of collaboration between agents,
specifically through one-on-one interactions, to help refine their answers to the original query, as
shown in Fig. 2.

Specifically, we conduct controlled cross-play one-on-one interactions, where different agents engage
with one another using fixed prompts, as illustrated in Fig. 2. The interaction is limited to a maximum
of R∗ rounds. For each agent Aj in a round, we will randomly select another agent whose answer to
the original query differs for interaction. We will prioritize choosing an agent with whom the agent
Aj has not previously interacted. During this round of interaction, agent Aj will be shown its previous
conversation history, including its initial question, response, and previous interactions. Additionally,
it is presented with the current round’s information, which includes the other agent’s unique question
and its answer to the original query from the previous round. The agent Aj is then prompted to decide
which is the correct answer—either maintaining or changing its own response. This process mitigates
the model’s inconsistencies with varied questions by in-context fine-tuning, allowing the model to
read diverse content from different agents’ questions and responses and self-correct its answers.

Given that different agents have varying levels of response credibility, we calculate the weight wj for
each agent Aj in the final probability calculation. Based on ground truth independence assumption
from Yadkori et al. (2024), if the model is certain about the answer to the question, the response to
a prompt containing the question and previous responses to the same question is insensitive to the
previous response. As a result, an agent that frequently changes its answer during these interactions
is considered less reliable. Consequently, its final answer should be assigned a lower weight. We thus
calculate the weight wj based on how often the agent Aj changes its answer to the original query.

wj =
R− rj + 1∑n

j=1(R− rj + 1)
. (4)

where j = 1, ..., n. We denote R as the final total number of interaction rounds and rj as the number
of rounds where the agent Aj changes its answer during the interaction. We apply Laplace smoothing
to avoid zero weight. Denote by 1{Aj = yi} whether yi is the final answer to the original query of
the agent Aj after the interaction. Therefore,

p(yi|x) =
n∑

j=1

wj1{Aj = yi}. (5)
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We can then apply Eq.2 with Eq.5 to calculate the final uncertainty as DIVERSEAGENTENTROPY.
The quality of the approximation for Eq.2 is improved compared to simple self-consistency entropy in
Eq.3.2, as we have better-approximated probabilities for each p(yi|x): 1) DIVERSEAGENTENTROPY
enables the sampling of a broader range of potential answers by introducing varied questions with
different contexts. 2) The answers retained after agent interaction are those with significant probability
mass, as they represent the responses that agents consistently agree upon.

3.4 IMPLEMENTATION

Below we detail how to implement the above-mentioned DIVERSEAGENTENTROPY.

Step 1: Question Generation. Given an original query x, we use the same model to be tested to
generate varied questions that require knowledge of the original query, ensuring that these questions
are both representative and comprehensive. The question-generation process is completely automated
and the detailed question-generation prompts can be found in §A.10. Specifically, we first conceptual-
ize the original query and then sample various perspectives to ensure a comprehensive understanding.
For each perspective, we generate m questions that build upon the original query, tailored to that
particular perspective. We filter these generated questions to ensure they strictly require knowledge
of the original query to answer while avoiding the inclusion of the direct answer. We also generate m
semantically equivalent questions for the original query.

We select n questions from the generated pool to form the final candidate set Q for the agents. This
set includes the original query x, one semantically equivalent question, and n − 2 questions each
targeting a unique perspective. If there are insufficient unique perspectives with qualified questions,
we repeat the perspective question selection process to select from existing perspectives. If not, we
supplement with additional semantically equivalent questions.

Step 2: Agent Interaction. We follow the interaction process as mentioned in §3.3. During the
interaction process, the agent Aj may maintain its own answer to the single fact, accept other agent’s
answer or output I don’t know. An answer to the original query will be extracted after each 1-1
interaction. The detailed interaction prompts are shown in §A.10. The interaction concludes under
any of the following conditions: 1) unanimous agreement among all agents on the answer to the
original query, 2) all agents consistently maintain their selected answer for at least two consecutive
rounds, or 3) the interaction reaches the predefined maximum of R∗ rounds.

Step 3: Uncertainty Score Calculation. We follow Eq.5 to calculate the probability for each
semantically different answer of the agents. We can then calculate the final uncertainty as in
Eq.2. While acknowledging that our method is more resource-intensive than self-consistency-based
approaches, we provide a detailed cost analysis in §A.1.

3.5 SCORE-BASED ABSTENTION POLICY

The uncertainty derived above can be used as a score to assess whether the model’s answer to a given
query can be trusted and to detect potential hallucinations. We then introduce an abstention policy
with a threshold parameter. This policy triggers abstention when the uncertainty score exceeds the
threshold (see §4.1 for proposed method variants). If the policy does not abstain, the answer with the
highest calculated probability is provided.

4 EXPERIMENT

4.1 EXPERIMENT SETTING

Evaluation Models. We evaluate on Llama-3-70b-Instruct (AI@Meta, 2024) and Claude-3-
Sonnet (Anthropic, 2024).

Datasets. We consider five different datasets under three categories. See §A.2 for a detailed
description of the datasets. Entity-centric QA: we randomly sample from PopQA (Mallen et al.,
2023) for 1) PopQA popular with popular entities and 2) PopQA less popular with less popular
entities. General QA: 3) TruthfulQA (Lin et al., 2022). We only sample questions about clear facts
instead of opinions. 4) FreshQA (Vu et al., 2023). We adopt the 07112024 version and further filter
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always-changing questions. False assumption QA: 5) FalseQA (Hu et al., 2023). All questions in
the dataset contain false assumptions and we remove all the WHY questions.

Metrics. Following prior work (Lin et al., 2022; Farquhar et al., 2024), we assess uncertainty score
by treating uncertainty estimation as whether to trust an answer to a question. We first evaluate the
AUROC score for the entropy-based methods. Our main experiments focus on evaluating the accuracy
of DIVERSEAGENTENTROPY for hallucination detection. We evaluate the model’s performance after
applying the abstention policy based on the uncertainty score: 1) accuracy, the percentage of correct
responses, i.e, the answer from the model matches the gold answer, among the questions where the
model does not abstain; 2) abstention rate, the percentage of questions where the method abstains;
3) correctness score, the percentage of correct responses among all the questions; 4) truthfulness
score (Lin et al., 2022), the percentage of correct or abstained responses among all the questions. We
further analyze the accuracy-recall (AR) trade-off across various methods and datasets. Here, recall
is the percentage of questions where the method does not abstain, i.e., recall = 1 - abstention rate.

Baselines. We adopt four black-box uncertainty estimation baselines as described in §3.2 to evaluate
the calibration of DIVERSEAGENTENTROPY and the model is prompted to answer the original
question 5 times: 1) Self-consistency with SemanticEntropy (SC SE) (Farquhar et al., 2024). We
describe the detailed implementations in §A.3. Three baselines with affinity graph (Lin et al., 2024):
2) Self-consistency with Eccentricity (SC Ecc). 3) Self-consistency with the Degree Matrix (SC
Degree). 4) Self-consistency with Eigenvalues (SC EigV).

We adopt seven baselines for hallucination detection. Greedy-based baselines: 1) Greedy: the model
is prompted to answer the original query once with greedy decoding. 2) Self-Evaluation (Kadavath
et al., 2022) The model first outputs a greedy answer and then is asked to reevaluate its own answer.
3) Self-evaluation w many samples (Kadavath et al., 2022). 5 answers including the greedy answer
are generated in total, and then the model is asked about the validity of the greedy sample. 4)
Multiple-Recite (Sun et al., 2023). The model is prompted to generate multiple related paragraphs
from its parametric knowledge before answering the question. Sampling-based baselines: 5) Self-
consistency (SC) (Wang et al., 2023): the model answers the query 5 times, and we accept the
majority answer or abstain if no answer appears at least 3 times. 6) Consistency with semantically
equivalent questions (SeQ) (Zhang et al., 2023; Zhao et al., 2024): the model is prompted to answer
5 semantically equivalent questions about the same original query. 7) Consistency with diverse
questions (DiverseQ): the model is prompted to answer 5 diverse questions about the same original
query generated the same as in §3.4. Note that we evaluate the semantic equivalence of answers to
cluster responses for all sampling-based baselines.

Proposed method variants. We adopt two variants of DIVERSEAGENTENTROPY where we have 5
agents, i.e., 5 varied questions: 1) Agent (Loose Majority Vote): We abstain when the uncertainty
score exceeds the threshold, calculated as the entropy of 3 answers with probabilities of 0.6, 0.2, and
0.2. 2) Agent: We use a stricter majority vote, abstaining when the uncertainty score exceeds the
threshold, calculated as the entropy of 2 answers with probabilities of 0.6 and 0.4. We further explain
the intuitions behind the choices in §A.4.

4.2 EVALUATION OF DIVERSEAGENTENTROPY AND ITS USAGE

In this section, we aim to assess whether our proposed method reliably indicates the model’s ability to
provide more accurate responses or appropriately refuse to answer when necessary. We also evaluate
the model’s effectiveness in retrieving correct knowledge consistently.

DIVERSEAGENTENTROPY is more calibrated than self-consistency-based uncertainty estima-
tion. We present the AUROC score for comparison between self-consistency-based uncertainty
estimation methods and our DIVERSEAGENTENTROPY in Table 1. The results indicate that our
proposed method is better calibrated, as evidenced by the highest AUROC score. We further detail
the calibration of the proposed uncertainty score in Appendix Fig. 6 where the uncertainty scores are
grouped into ten equally sized bins and we calculate the correctness of predictions in each bin. For all
models, correctness is inversely correlated with the uncertainty score and our method demonstrates
better calibration compared to SemanticEntropy.

DIVERSEAGENTENTROPY-based abstention policy effectively detects hallucinations. We show
in Table 2 that the uncertainty estimated by the proposed DIVERSEAGENTENTROPY has a better
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Model FalseQA FreshQA TruthfulQA PopQA less popular PopQA popular All

Claude-3-Sonnet

SC (Ecc) 0.711 0.702 0.548 0.821 0.671 0.766
SC (Degree) 0.713 0.704 0.550 0.855 0.674 0.771
SC (EigV) 0.713 0.703 0.550 0.851 0.673 0.771
SC (SE) 0.753 0.694 0.568 0.887 0.693 0.792
Agent 0.802 0.836 0.624 0.947 0.725 0.833

Llama-3-70b-Instruct

SC (Ecc) 0.628 0.660 0.488 0.716 0.594 0.644
SC (Degree) 0.629 0.662 0.486 0.704 0.595 0.645
SC (EigV) 0.629 0.664 0.486 0.707 0.595 0.645
SC (SE) 0.673 0.632 0.545 0.737 0.624 0.694
Agent 0.673 0.697 0.592 0.753 0.651 0.713

Table 1: Comparison of AUROC scores between self-consistency based methods and our
DIVERSEAGENTENTROPY (Agent) across different QA datasets. Our method is more calibrated.

diagnostic ability to identify whether the model is hallucinating. It is more effective in abstaining
from answering when the model is uncertain and thus more accurate in outputting correct answers
when the model does not abstain. Also, our agent method has the highest correctness score and
truthfulness score, further indicating its advantages over other baselines. We present the performance
of individual datasets in §A.6. Fig. 3 presents Accuracy-Recall (AR)-curves for the baselines and
DIVERSEAGENTENTROPY across all data. Detailed performance for each dataset is provided in
Appendix Fig. 8. The results clearly demonstrate that our proposed method outperforms all baselines.
Among the recall rates where all methods can be applied, our proposed method has the highest
accuracy.

Claude-3-Sonnet Llama-3-70b-Instruct

Method Acc Ab-R Correct TruthF Acc Ab-R Correct TruthF

Greedy 0.808 0.126 0.707 0.832 0.775 0.008 0.769 0.777
Self-Reflect 0.826 0.131 0.718 0.849 0.783 0.030 0.760 0.790
Self-Eval w Samples 0.814 0.141 0.700 0.840 0.754 0.020 0.739 0.759
Multiple-Recite 0.779 0.114 0.690 0.804 0.715 0.010 0.708 0.717

SC (3/5) 0.823 0.129 0.717 0.846 0.794 0.035 0.766 0.801
SeQ 0.815 0.149 0.693 0.842 0.818 0.084 0.749 0.833
DiverseQ 0.858 0.342 0.564 0.906 0.811 0.121 0.713 0.834

Agent (Loose Majority Vote) 0.852 0.142 0.731 0.873 0.826 0.055 0.780 0.835
Agent 0.883 0.216 0.692 0.908 0.841 0.084 0.770 0.854

Table 2: Performance evaluation of different models on all data points. Acc refers to accuracy. Ab-R
refers to abstention rate. Correct refers to correctness score. TruthF refers to truthfulness score.

The retrievability of parametric knowledge remains unsatisfying. We demonstrate that even
when the model knows the correct answer based on our proposed uncertainty evaluation, they initially
fail to consistently retrieve the same response across different contexts or scenarios, i.e. when
answering varied questions. We conduct both quantitative and qualitative analyses to assess whether
the model effectively retrieves accurate knowledge with the assistance of our proposed method. We
particularly focus on instances where all agents agree on the same gold answer after interaction, as
this consensus indicates that the model has correctly identified the answer to the query.

We begin with a quantitative analysis to evaluate the model’s initial performance by calculating the
average percentage of incorrect answers to the original query in the first round. This metric reflects
how often the model fails to retrieve the correct answer initially, before any interaction. The results
in Fig. 3 confirm that models are not always reliable in providing consistent answers to the same
question across different contexts. This issue is particularly pronounced when the original queries are
less popular as PopQA less popular, or more general, as observed in FreshQA and TruthfulQA. We
further conduct a qualitative analysis by sampling 45 instances from the same pool, focusing on cases
where the agents do not agree on the gold answer in the first round. The authors manually annotate the
reasons for the model’s failure to retrieve the correct answer without interaction. We observe that the
model is more likely to generate a different response, even when it knows the correct answer, under
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Figure 3: AR-curves for the tested methods across all data. Agent w 5 questions refers to our
DIVERSEAGENTENTROPY. SC refers to SC (SE). SC w 5 questions refers to calculating entropy
using the agents’ diverse questions without agent interaction.

several conditions: 1) 42% of cases occur when the added context in the varied question significantly
diverges from the original query, 2) 22% when an incorrect answer is more popular within the context
of the original query, and 3) 20% when the additional context is more closely related to a different
possible answer to the original query. Examples of each scenario are provided in §A.7.

These findings highlight the need for systematic research into how often models rely on semantic
associations from pre-training data, overlooking other crucial content in the question (Zhang et al.,
2024; Li et al., 2024). The behavior we have observed in the models can significantly undermine the
credibility of their outputs. Potential solutions include fine-tuning/ knowledge editing models with
varied questions related to the same query simultaneously.

4.3 ANALYSIS OF THE PROPOSED DIVERSEAGENTENTROPY

Both diverse question generation and agent interaction are key components for performance
boost. In Fig. 3, Comparing our proposed method without interaction (SC with 5 questions) and
the proposed method highlights the effectiveness of agent interaction. Furthermore, comparing the
use of the original query alone for agent interaction (agent with a single question) to our proposed
method demonstrates the effectiveness of diverse question generation. We also present the ratios
of initially correct responses that become incorrect after agent interaction (Wrong), and initially
incorrect responses that become correct after interaction (Correct) for each dataset in Table 4. This
analysis further demonstrates the effectiveness of agent interaction. The results show that our
DIVERSEAGENTENTROPY method enables the model to correct a significant number of initially
incorrect responses while rarely causing initially correct answers to become incorrect.

Dataset Claude-3-Sonnet Llama-3-70b-Instruct

PopQA pop 0.114 0.118
PopQA less pop 0.193 0.207
FalseQA 0.154 0.154
TruthfulQA 0.296 0.330
FreshQA 0.167 0.175

Table 3: Average percentage of incorrect answers
to the query in the first round without agent in-
teraction, in cases where all agents agree on the
correct answer after agent interaction.

Dataset Claude-3-Sonnet Llama-3-70b-Instruct

Wrong Correct Wrong Correct

PopQA pop 0.152 0.487 0.200 0.545
PopQA less pop 0.061 0.179 0.055 0.300
FalseQA 0.000 0.042 0.088 0.140
TruthfulQA 0.035 0.568 0.150 0.605
FreshQA 0.089 0.302 0.086 0.381

Table 4: The ratios of instances where initially
correct responses become incorrect, and initially
incorrect responses become correct.

The number of agents. We analyze the impact of agents number. In Fig. 4 and Appendix Fig. 9, we
increase the number of agents, limiting interactions to 4 rounds. Performance improves with more
agents but shows minimal gains beyond 4 agents, suggesting 5 agents are sufficient.

The rounds of interactions. We analyze the impact of the number of interaction rounds in Fig. 4
and Appendix Fig. 10, with the number of agents fixed at 5, increasing the rounds of interaction
generally leads to improved performance.

Format of agent interaction. We examine whether agents should engage in one-on-one interactions
or group interactions, where in group settings, each agent can view the unique questions and answers
of all other agents. Our findings, presented in Fig. 5 and Appendix Fig. 11, The results indicate that
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(a) Number of agents (b) Number of interaction rounds

Figure 4: The figures show that more agents and more rounds of interaction improve performance.

one-on-one interactions outperform group interactions. In our analysis of 30 incorrect examples
from each model, we identified two primary error types: (1) 50% of errors occurred when agents
were influenced by the majority’s incorrect answer, and (2) 15% occurred when agents concluded
that the question had no valid answer or was based on a false premise due to conflicting responses.
This analysis further demonstrates that agents are more easily influenced by dominant incorrect
information, reinforcing the importance of using one-on-one interactions for single-query uncertainty
checking, as it allows the model to be exposed to diverse information while maintaining its ability to
apply independent reasoning.

(a) Format of interaction (b) Robustness of interaction

Figure 5: We present figures that analyze agent behaviors during interactions.

Robustness of agent interaction. Finally, we analyze the susceptibility of agents to being misled
when one agent consistently provides the most plausible incorrect answer or repeatedly responds
with ”I don’t know.”. According to the results shown in Fig. 5 and Appendix Fig. 12, the overall
performance of the agents deteriorates in both scenarios, indicating that the model is influenced by
consistent misleading information, while the agents suffer more from the wrong answer setting. We
also observe that agents being influenced can be monitored by tracking how often they continuously
flip between two answers, suggesting future work on refining uncertainty estimation metrics in
multi-agent interactions through a more detailed analysis of agent behavior.

Limitations of DIVERSEAGENTENTROPY. Exploring beyond simple QA sheds light on the
limitations of our proposed method. We detail the analysis in §A.9. Unlike simple questions,
evaluating varied questions is more effective for complex ones, further demonstrating that uncertainty
is best analyzed through consistency across varied questions rather than self-consistency on a
single query. We observe that agent interaction can sometimes confuse the model, as agents often
prematurely suggest a question is invalid. This motivates future research to develop more advanced
interaction formats for handling complex questions. A possible solution is to include a summarizer or
meta-judge (Chan et al., 2023) to track agents’ overall understanding of the query.

5 CONCLUSION

Accurately determining the uncertainty of LLMs in response to a single query in a black-box setting is
challenging. In this paper, we propose a novel method, DIVERSEAGENTENTROPY, for quantifying
an LLM’s uncertainty based on the consistency of responses across diverse questions after multi-agent
interaction. Our method overcomes the limitations of self-consistency-based uncertainty estimation
and delivers superior performance in detecting hallucinations. Additionally, we show that the model’s
ability to retrieve parametric knowledge still requires improvement.
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A APPENDIX

A.1 COST ANALYSIS

We present a detailed cost analysis on our proposed DIVERSEAGENTENTROPY. In a self-
consistency-based method, we typically sample a simple query 5 times, requiring 5 API calls.
For our method, starting with a single query, we need 1 API call for question conceptualization,
1 for perspective generation, and 5 for generating questions under different perspectives. During
agent interaction (with 5 agents), each agent answers their assigned question, followed by multiple
interaction rounds. Assuming an average of 2.5 rounds, agent interaction requires 20 calls. In total,
our method averages 25 API calls, making it 5 times more expensive than the self-consistency method.
However, we would like to emphasize that in high-stakes applications where correctness is prioritized
over cost, our calibrated uncertainty score can provide users with a reliable measure of how much
they can trust the model’s output. Additionally, the chosen answers after applying the abstention
policy are more accurate. The varied questions generated by our method can also be utilized for
fine-tuning or training purposes. The intermediate results generated by our method, including varied
questions and the self-reflection interaction processes, can be further leveraged to create synthetic
data for finetuning or training LLMs. Future work can explore ways to maintain the same level of
performance while reducing costs. This could involve using fewer but higher-quality questions from
diverse perspectives and minimizing the number of interaction rounds.

A.2 DATASETS STATISTICS

Dataset Type Dataset Name #Data Example
Entity-centric QA PopQA less popular 459 What is Geeling Ng’s occupation?

PopQA popular 452 What is the capital of Hungary?

General QA TruthfulQA 219 What type of cancer kills the most
women in the U.S.?

FreshQA 283 What’s the city flower of Shanghai?

False assumption QA FalseQA 1867 Which planet is larger, Mars or
Moon?

Table 5: Detailed statistics of the datasets used in the paper.

We consider five different datasets under three categories. We present the detailed dataset statistics
in Appendix Table 5. Entity-centric QA: we randomly sample data from PopQA (Mallen et al.,
2023) where each question is created by converting a knowledge tuple retrieved from Wikidata using
a template. 1) PopQA popular. We sample questions where the entity’s popularity is larger than 104

as the criteria in the original paper. 2) PopQA less popular. We sample questions where the entity’s
popularity is lower than 104. General QA: 3) TruthfulQA (Lin et al., 2022). Note that not all data in
TruthfulQA tests about factual questions. We choose examples only from categories: Law, Sociology,
Health, History, and Language, focusing on clear facts instead of opinions. 4) FreshQA (Vu et al.,
2023). We adopt the 07112024 version and select one-hop slow-changing or never-changing data
points where the effective year is before 2022 to avoid the temporal influence. False assumption QA:
5) FalseQA (Hu et al., 2023). All questions in the dataset contain false assumptions and we remove
all the WHY questions.

A.3 IMPLEMENTATION OF THE BASELINES

Note that we assess the semantic equivalence of answers to cluster responses for all sampling-based
baselines and our proposed method variants. Therefore, SC(SE) is SemanticEntropy (Kuhn et al.,
2023; Farquhar et al., 2024). However, instead of using the bidirectional entailment clustering
algorithm proposed in semantic entropy, we directly cluster all sampled answers into semantically
equivalent sets with Llama-3-70b-Instruct. We manually checked the accuracy of this LLM-based
clustering on 300 instances and found the accuracy to be 98%, which is higher than the human sanity
check accuracy reported in their original paper. We further present the cost, i.e., the number of
inference calls for all the baselines in Appendix Table 6.
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Model Cost

uncertainty estimation methods

SC (Ecc) 5
SC (Degree) 5
SC (EigV) 5
SC (SE) 6

hallucination detection/ direct inferernce methods

Greedy 1
Self-Reflect 2
Self-Eval w Samples 6
Multiple-Recite 2
SC (3/5) 6
SeQ 7
diverseQ 13
Agent 25

Table 6: Comparison of cost across all the methods. Specifically, we present the number of API calls.

A.4 THRESHOLDS FOR THE ABSTENTION POLICY

We adopt two variants of DIVERSEAGENTENTROPY where we have 5 agents, i.e., 5 varied questions:
1) Agent (Loose Majority Vote): We abstain when the uncertainty score exceeds the threshold,
calculated as the entropy of 3 answers with probabilities of 0.6 (3/5), 0.2 (1/5), and 0.2 (1/5). This
setup implies that at least one answer still has a majority (60%, 3/5 chance). 2) Agent: We use a
stricter majority vote, abstaining when the uncertainty score exceeds the threshold, calculated as
the entropy of 2 answers with probabilities of 0.6 (3/5) and 0.4 (2/5). This is the strictest majority
vote threshold. The two variants balance flexibility and conservatism in decision-making: the loose
majority vote allows for more uncertainty with three answer probabilities, making it suitable for
situations with acceptable disagreement but where one answer is still dominant. In contrast, the
stricter majority vote, using two-answer probabilities, ensures abstention in cases where only minor
uncertainty can be tolerated.

A.5 PERFORMANCE EVALUATION FOR CALIBRATION

We show the calibration of the proposed uncertainty score in Appendix Fig. 6. For all models, cor-
rectness is inversely correlated with the uncertainty score We can see from the figure that our method
is more well calibrated than the best self-consistency-based uncertainty score, i.e., SemanticEntropy.
Additionally, Claude-3-Sonnet achieves higher correctness above the majority vote threshold com-
pared to Llama-3-70b-Instruct. This suggests that a larger threshold can be set for more capable
models, enabling a lower abstention rate while maintaining similarly high correctness.

Figure 6: Calibration of the uncertainty scores. The uncertainty scores are grouped into ten equally
sized bins and we calculate the correctness of predictions in each bin.
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A.6 PERFORMANCE EVALUATION FOR HALLUCINATION DETECTION ON INDIVIDUAL
DATASETS.

We present the individual dataset performance on the two models in Appendix Table 7 and Appendix
Table 8 respectively. We present Accuracy-Recall (AR)-curves for both the baselines and the proposed
method on individual datasets in Appendix Fig. 8.

TruthfulQA FreshQA FalseQA PopQA popular PopQA less popular

Method Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct

Greedy 0.723 0.059 0.680 0.739 0.777 0.064 0.727 0.791 0.891 0.093 0.809 0.901 0.824 0.037 0.793 0.830 0.344 0.420 0.199 0.619
Self-Reflect 0.731 0.082 0.671 0.753 0.770 0.032 0.746 0.777 0.888 0.066 0.829 0.895 0.839 0.098 0.768 0.866 0.470 0.520 0.226 0.746
Self-Eval w Samples 0.725 0.087 0.662 0.749 0.709 0.064 0.728 0.664 0.879 0.077 0.812 0.889 0.812 0.059 0.773 0.832 0.482 0.562 0.212 0.774
Recitation 0.724 0.073 0.671 0.744 0.743 0.049 0.707 0.707 0.839 0.071 0.780 0.851 0.828 0.039 0.795 0.834 0.366 0.431 0.208 0.639

SC (3/5) 0.682 0.037 0.658 0.694 0.777 0.028 0.755 0.783 0.887 0.063 0.831 0.894 0.833 0.059 0.784 0.843 0.440 0.577 0.186 0.763
SeQ 0.782 0.183 0.639 0.822 0.814 0.163 0.681 0.844 0.888 0.099 0.800 0.899 0.852 0.061 0.800 0.861 0.309 0.420 0.186 0.606
diveseQ 0.739 0.261 0.545 0.807 0.856 0.216 0.671 0.887 0.874 0.302 0.610 0.912 0.891 0.193 0.730 0.923 0.714 0.777 0.159 0.936

Agent (Loose Majority Vote) 0.740 0.078 0.683 0.761 0.826 0.085 0.756 0.841 0.907 0.080 0.834 0.914 0.852 0.059 0.814 0.873 0.537 0.546 0.243 0.790
Agent 0.753 0.128 0.656 0.784 0.879 0.184 0.717 0.901 0.924 0.139 0.795 0.935 0.883 0.144 0.768 0.911 0.611 0.670 0.201 0.872

Table 7: Performance comparison on various datasets for Claude-3-Sonnet. Acc refers to accuracy,
Ab-R refers to abstention rate, TruthF refers to truthfulness, Correct refers to correctness.

TruthfulQA FreshQA FalseQA PopQA popular PopQA less popular

Method Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct Acc Ab-R TruthF Correct

Greedy 0.709 0.027 0.690 0.717 0.784 0.000 0.784 0.784 0.858 0.003 0.855 0.859 0.856 0.002 0.854 0.856 0.367 0.029 0.356 0.385
Self-Reflect 0.702 0.018 0.689 0.708 0.748 0.018 0.735 0.753 0.871 0.011 0.861 0.872 0.826 0.009 0.832 0.841 0.386 0.146 0.330 0.476
Self-Eval w Samples 0.670 0.046 0.639 0.685 0.721 0.000 0.721 0.721 0.853 0.022 0.834 0.856 0.819 0.002 0.817 0.819 0.336 0.033 0.325 0.358
Recitation 0.707 0.018 0.694 0.712 0.705 0.018 0.693 0.710 0.785 0.009 0.778 0.787 0.782 0.002 0.780 0.782 0.363 0.013 0.358 0.372

SC (3/5) 0.619 0.018 0.607 0.626 0.791 0.018 0.777 0.795 0.880 0.012 0.869 0.881 0.848 0.013 0.837 0.850 0.408 0.170 0.338 0.509
SeQ 0.681 0.116 0.602 0.718 0.769 0.066 0.718 0.784 0.915 0.064 0.857 0.921 0.828 0.034 0.800 0.834 0.437 0.215 0.343 0.558
diverseQ 0.676 0.155 0.571 0.763 0.798 0.088 0.728 0.813 0.865 0.071 0.803 0.874 0.869 0.065 0.825 0.891 0.489 0.389 0.299 0.688

Agent (Loose Majority Vote) 0.750 0.050 0.712 0.763 0.806 0.035 0.777 0.813 0.894 0.026 0.870 0.897 0.868 0.011 0.872 0.883 0.471 0.235 0.361 0.595
Agent 0.752 0.078 0.694 0.772 0.831 0.078 0.767 0.845 0.899 0.037 0.865 0.903 0.875 0.026 0.865 0.891 0.508 0.343 0.334 0.677

Table 8: Performance comparison on Llama-3-70b-Instruct for multiple datasets. Acc refers to
accuracy, Ab-R refers to abstention rate, TruthF refers to truthfulness, Correct refers to correctness.

A.7 ERROR ANALYSIS FOR THE RETRIEVABILITY OF PARAMETRIC KNOWLEDGE FOR THE
MODELS.

We conduct the error analysis for the retrievability of parametric knowledge for the models with
45 examples, 23 sampled from Llama-3-70b-Instruct and 22 sampled from Claude-3-Sonnet. We
observe similar behaviors in both models. As we discuss we observe that the model is more likely to
generate a different response, even when it knows the correct answer, under these three conditions:
1) Example 1 sampled from Llama-3-70b-Instruct in Appendix Table 9: the added context in the
varied question significantly diverges from the original query. The chosen varied question is the
least similar question to the original query among the 5 varied questions according to the score
of SentenceBert. 2) In Example 2, sampled from Llama-3-70b-Instruct in Appendix Table 9, an
incorrect answer is more popular within the context of the original query. For instance, Cristiano
Ronaldo is a more well-known football player compared to Ali Daei. 3) Example 3, sampled from
Claude-3-Sonnet in Appendix Table 9, illustrates a case where the additional context is more closely
related to a different possible answer. In this instance, the model is distracted by the “Yangtze River
Delta region” mentioned in the varied question. Note that after agent interaction, the models answer
all the questions correctly.

A.8 PERFORMANCE OF ABLATION STUDIES

We present the performance of two models across all datasets for different ablations studies. The
results can be referred to from Appendix Fig. 4 to Appendix Fig. 12.

A.9 DISCUSSION OF EXTENSION TO COMPLEX QUESTIONS WITH SHORT-FORM ANSWER

Exploring beyond simple QA sheds light on the limitations of our proposed method. We analyze our
proposed method on 450 randomly sampled instances from HotpotQA (Yang et al., 2018) in Fig. 7
where all the data are multi-hop questions. Opposite to the behaviors on simple questions, evaluating
directly on varied questions is very effective for complex questions whereas agent interaction may
confuse the model. Our error analysis identifies two predominant types of errors: 1) 40% of the
errors occur when agents converge on the belief that the question involves a false assumption, lacks
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Example Original Query / Gold Answer Full Answer (Varied Question) / Ex-
tracted Answer

Example 1 Original Query: What film starred Brad
Pitt’s first leading role?

Gold Answer: The Dark Side of the Sun

Varied Question: What film starred Brad
Pitt’s first leading role?

Full Answer: Thelma & Louise
Extracted Answer: Thelma & Louise

Varied Question: What was the influence
of the film starring Brad Pitt’s first leading
role on the development of the Gothic hor-
ror genre in cinema?

Full Answer: You’re likely referring to the
1989 film ”Dark Side of the Sun”, which
was not a Gothic horror film. Brad Pitt’s
first leading role was actually in the 1988
film ”Dark Side of the Sun”.
Extracted Answer: The Dark Side of the
Sun

Example 2 Original Query: Who was the first football
player to score one hundred international
goals?

Gold Answer: Ali Daei

Varied Question: Who was the first foot-
ball player to score one hundred interna-
tional goals?

Full Answer: The first football player to
score one hundred international goals is Ali
Daei of Iran.
Extracted Answer: Ali Daei

Varied Question: What kind of endorse-
ment opportunities and commercial deals
were offered to the first football player to
score one hundred international goals?

Full Answer: You’re referring to Cristiano
Ronaldo, who became the first male foot-
ball player to score 100 international goals
in 2021. After achieving this milestone, he
received numerous endorsement opportuni-
ties and commercial deals. Some of these
include: 1. Nike: A long-term contract ex-
tension with a significant increase in his
annual salary. 2. Tag Heuer:..
Extracted Answer: Cristiano Ronaldo

Example 3 Original Query: What is the city flower of
Shanghai?

Gold Answer: Magnolia denudata

Varied Question: What is the city flower
of Shanghai?

Full Answer: The city flower of Shang-
hai is the white peony. Known for its
beauty, elegance, and cultural significance
in China, the white peony symbolizes pros-
perity, grace, and peace.
Extracted Answer: White Peony

Varied Question: How does the city flower
of Shanghai reflect the city’s historical and
cultural connection to the Yangtze River
Delta region?

Full Answer: The city flower of Shang-
hai is the White Peony (Paeonia lactiflora),
which reflects the city’s historical and cul-
tural connection to the Yangtze River Delta
region in several ways: 1. Native origin:
The White Peony is native to the Yangtze
River Delta region, where Shanghai is lo-
cated. This emphasizes the city’s deep roots
in the region’s natural environment. ..
Extracted Answer: White Peony (Paeonia
lactiflora)

Table 9: Error analysis with 3 examples for the retrievability of parametric knowledge for models.
Note that after agent interaction, the models answer all the questions correctly.
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an answer, or contains unspecified entities, and 2) 10% of errors arise when agents hesitate between
two answers, one of which is the correct answer. The results indicate that when the initial query
is complex, the agents are more inclined to take a shortcut by suggesting there is an issue with the
question itself, as a means to avoid inconsistencies in its answers. A possible solution is to include a
summarizer or meta-judge (Chan et al., 2023) to track agents’ overall understanding of the query.

Figure 7: Performance of our Agent method on HotpotQA.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 8: AR-curves for both the baselines and the proposed method on individual datasets. SC refers
to self-consistency-based entropy. SC w 5 questions refers to the baseline using the agents’ questions
without agent interaction.
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Figure 9: We present the effect of the number of agents on agent performance for each dataset.
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Figure 10: We present the effect of the number of interactions on agent performance on each dataset.
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Figure 11: We present the effect of interaction format on each dataset.
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Figure 12: We present the robustness of interaction on each dataset.
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A.10 PROMPTS FOR THE PROPOSED DIVERSEAGENTENTROPY METHOD

EXAMPLE QUESTION CONCEPTUALIZTION PROMPT

SYSTEM
Can you identify the broader category of the specific entity
referenced in the question? If there is a specific entity, you
MUST CHANGE it to a general category, e.g., a person, a item, a
place, a object. If there is no specific entity, you MUST KEEP the
original question.
USER
What is the most spoken language in the world?
ASSISTANT
What is the most spoken language in the world?
USER
What is a Joe Biden’s occupation?
ASSISTANT
What is a person’s occupation?

Figure 13: Example Question Conceptualization Prompt

EXAMPLE ASPECT GENERATION PROMPT

SYSTEM
Can you identify up to 5 key conceptual perspectives that are
as varied and diverse as possible, ensuring a comprehensive
and multifaceted understanding of the question? Given ONLY the
conceptual aspect name, no other words or explanation. The aspect
SHOUlD NOT indicate the answer to the question. Each aspect is a
line <as short as possible; not a complete sentence!>
USER
What is the most spoken language in the world?
ASSISTANT
demographic statistics
education policy
cultural influence
technology and media
globalization effects

Figure 14: Example Aspect Generation Prompt
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EXAMPLE ASPECT QUESTION GENERATION PROMPT

SYSTEM
Generate 5 questions that build upon a given question based on
a given aspect. Ensure that each question STRICTLY requires
knowledge of this original question to answer but DO NOT INCLUDE
the direct answer to the original question in your generated
questions but MUST INCLUDE the exact content of the original
question. These questions should encourage a deeper exploration
of the underlying themes or concepts introduced in the original
question. Given ONLY the question, no other words or explanation.
For example: Q1: <the generated question should be SIMPLE and DO
NOT INCLUDE the direct answer to the original question>
USER
Question: What is the most spoken language in the world?
Aspect: cultural influence
ASSISTANT
Q1: How does the prevalence of the most spoken language in the
world influence global media and entertainment?
Q2: In what ways has the most spoken language in the world shaped
international business and trade practices?
Q3: How has the education system in non-native speaking countries
adapted to teach the most spoken language in the world?
Q4: What role does the most spoken language in the world play in
diplomatic relations and international policy-making?
Q5: How has the cultural heritage of the most spoken language in
the world influenced global cuisine and fashion trends?

Figure 15: Example Aspect Question Generation Prompt

EXAMPLE SEMANTICALLY EQUIVALENT QUESTION GENERATION PROMPT

SYSTEM
For the given question, provide 5 semantically equivalent questions.
Do not answer the question. STRICTLY follow the structure that
each generated question is a line.
USER
What is the most spoken language in the world?
ASSISTANT
Which language has the highest number of speakers globally?
What language is spoken by most people worldwide?
Which language tops the list of the world’s most widely spoken
languages?
What is the world’s dominant language by number of speakers?
Globally, which language is spoken by the greatest number of
people?

Figure 16: Example Semantically Equivalent Question Generation Prompt
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EXAMPLE 1-1 INTERACTION PROMPT

SYSTEM
You are an AI assistant that helps people answer questions. Ensure
your responses are concise and strictly relevant to the queries
presented, avoiding any unrelated content to the question. Do not
change your answer unless you think you are absolutely wrong.
<previous interaction conversations...>
USER
When I asked you in another api call that + selection agent question
+ You mentioned that + selection agent answer to original query +
Which is your actual answer to + original query?

Figure 17: Example 1-1 Interaction Prompt

EXAMPLE ANSWER EXTRACTION PROMPT

SYSTEM
You will extract the answer to the given question using ONLY the
information provided in the "Response" section. You will identify
the answer directly without using any additional knowledge or
explanation. If the response includes a negation to the question,
use those as the answer.
USER
Response: The prevalence of the most spoken language in the world,
which is Mandarin Chinese, has a significant influence on global
media and entertainment in several ways:
1. **Content creation**: Many Chinese production companies
and studios create content specifically for the massive
Chinese-speaking audience, which often gets distributed
globally. This leads to a increase in Chinese-language content
in international markets. 2. **Dubbing and subtitles**: To cater
to the large Chinese-speaking population, many international films
and TV shows are dubbed or subtitled in Mandarin, making them more
accessible to Chinese audiences. 3. **Global market appeal**:
The massive Chinese market has become a crucial factor in the
success of global films, TV shows, and music. Creators often
tailor their content to appeal to Chinese audiences, incorporating
Chinese themes, actors, or storylines. 4. **Influence on global
trends**: Chinese social media platforms, such as WeChat and Weibo,
have become essential channels for promoting global entertainment
content. Trends and memes that originate in China can quickly
spread globally. 5. **Cultural exchange**: The prevalence of
Mandarin Chinese has facilitated cultural exchange between China
and other countries. International artists and creators are
increasingly collaborating with Chinese counterparts, leading to
a fusion of cultural influences in media and entertainment.
Overall, the dominance of Mandarin Chinese has reshaped the global
media and entertainment landscape, with creators and distributors
adapting to cater to the vast and influential Chinese-speaking
audience.
Based solely on the response, What is the most spoken language in
the world?
ASSISTANT
The most spoken language in the world is Mandarin Chinese.

Figure 18: Example Answer Extraction Prompt
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