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Abstract

We consider the problem of tabular infinite horizon concave utility reinforcement learning
(CURL) with convex constraints. For this, we propose a model-based learning algorithm that
also achieves zero constraint violations. Assuming that the concave objective and the convex
constraints have a solution interior to the set of feasible occupation measures, we solve a
tighter optimization problem to ensure that the constraints are never violated despite the
imprecise model knowledge and model stochasticity. We use Bellman error-based analysis
for tabular infinite-horizon setups which allows analyzing stochastic policies. Combining
the Bellman error-based analysis and tighter optimization equation, for T interactions with
the environment, we obtain a high-probability regret guarantee for objective which grows
as Õ(1/

√
T ), excluding other factors. The proposed method can be applied for optimistic

algorithms to obtain high-probability regret bounds and also be used for posterior sampling
algorithms to obtain a loose Bayesian regret bounds but with significant improvement in
computational complexity.

1 Introduction

In many applications where a learning agent uses reinforcement learning to find optimal policies, the agent
optimizes a concave function of the expected rewards or the agent must satisfy certain constraints while
maximizing an objective (Altman & Schwartz, 1991; Roijers et al., 2013). For example, in network scheduling,
the controller may attempt to maximize fairness of the users using a concave function of the average rewards
received by each of the users (Chen et al., 2021). Or, consider autonomous vehicles where the goal is not
just to reach the destination as early as possible, but also to ensure the safety of the surroundings (Le et al.,
2019; Tessler et al., 2018). Further, there are certain environments in which the agent is required to ensure
the constraint violations are reduced while optimizing the objective as well (Leike et al., 2017; Ray et al.,
2019). Even in the absence of explicit rewards, the agent may aim to efficiently explore the environment by
maximizing the entropy of the distribution induced over the state and action space (Hazan et al., 2019).

Owing to the variety of the use cases, recently, there has been significant effort to make RL algorithms for
setups with constraints, or concave utilties, or both. For episodic setup, works range from model based
algorithms (Brantley et al., 2020; Yu et al., 2021) to primal-dual based model-free algorithms (Ding et al.,
2021). Recently, there has been a thrust towards developing algorithms which can also achieve zero-constraint
violations in the learning phase as well (Wei et al., 2022a; Liu et al., 2021b;a). However, for the episodic
setup, the majority of the current works consider the weaker regret definition specified by (Efroni et al., 2020)
and only achieve zero expected constraint violations. Further, these algorithms require the knowledge of a
safe policy following which the agent does not violate constraints, or the knowledge of the Slater’s gap δ
which determines how far a safe policy is from the constraint boundary.

The definition which considers the average over time makes sense for an infinite horizon setup as the long-term
average is naturally defined (Puterman, 2014). For a tabular infinite-horizon setup, (Singh et al., 2020)
proposed an optimistic epoch-based algorithm. Much recently, (Chen et al., 2022) proposed an Optimistic
Online Mirror Descent based algorithm. In this work, we consider the problem of maximizing concave utility
of the expected rewards while also ensuring that a set of convex constraints of the expected rewards are also
satisfied. Moreover, we aim to develop algorithms that can also ensure that the constraints are not violated
during the training phase as well. We work with tabular MDP with infinite horizon. For such setup, our
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algorithm updates policies as it learns the system model. Further, our approach also bound the accumulated
observed constraint violations as compared to the expected constraint violations.

In past various works proposed multiple methods to work with infinite horizon setups for non-constrained
setup (Fruit et al., 2018; Jaksch et al., 2010). However, we note that the dealing with constraints and
non-linear setup requires additional attention because of the stochastic policies. Further, unlike episodic
setup, the distribution at the epoch is not constant and hence the policy switching cost has to be accounted
explicitly. Prior works in infinite horizon also faced this issue and provide some tools to overcome this
limitation. (Singh et al., 2020) builds confidence intervals for transition probability for every next state given
the current state-action pair and obtains a regret bound of O(T 2/3). (Chen et al., 2022) obtains a regret
bound of O(TM

√
T ) with O(T 2

MS
3A) constraint violations for ergodic MDPs with TM mixing time following

an analysis which works with confidence intervals on both transition probability vectors and value functions.

To overcome the limitations mentioned in previous analysis and to obtain a tighter result, we propose an
optimism based UC-CURL algorithm which proceeds in epochs e. At each epoch, we solve for an policy
which considers constraints tighter by εe than the true bounds for the optimistic MDP in the confidence
intervals for the transition probabilities. Further, as the knowledge of the model improves with increased
interactions with the environment, we reduce this tightness. This εe-sequence is critical to our algorithm as,
if the sequence decays too fast, the constraints violations cannot be bounded by zero. And, if this sequences
decays too slow, the objective regret may not decay fast enough. Further, using the εe-sequence, we do not
require the knowledge of the total time T for which the algorithm runs.

We bound our regret by bounding the gap between the optimal policy in the feasible region and the optimal
policy for the optimization problem with εe tight constraints. We bound this gap with a multiplicative factor
of O(1/δ), where δ is Slater’s parameter. Based on our analysis using the Slater’s parameter δ, we consider a
case where a lower bound Tl on the time horizon T is known. This knowledge of Tl allows us to relax our
assumption on δ.

Further, for the regret analysis of the proposed UC-CURL algorithm, we use Bellman error for infinite
horizon setup to bound the difference between the performance of optimistic policy on the optimistic MDP
and the true MDP. Compared to analysis of (Jaksch et al., 2010), this allows us to work with stochastic
policies. We bound our regret as Õ( 1

δLdTMS
√
A/T + CTMS

2A/(1 − ρ)) and constraint violations as 0,
where S and A are the number of states and actions respectively, L is the Lipschitz constant of the objective
and constraint functions, d is the number of costs the agent is trying to optimize, and TM is the mixing
time of the MDP. The Bellman error based analysis along with Slater’s slackness assumption also allows to
develop posterior sampling based methods for constrained RL (see Appendix G) by showing feasibility of the
optimization problem for the sampled MDPs.

To summarize our contributions, we improve prior results on infinite horizon concave utility reinforcement
learning setup on multiple fronts. First, we consider convex function for objectives and constraints. Second,
even with a non-linear function setup, we reduce the regret order to O(TMS

√
A/T ) and bound the constraint

violations with 0. Third, our algorithm does not require the knowledge of the time horizon T , safe policy, or
Slater’s gap δ. Lastly, we provide analysis for posterior sampling algorithm which improves both emprical
performance and computational complexity.

2 Related Works

Constrained RL: (Altman, 1999) builds the formulation for constrained MDPs to study constrained
reinforcement learning and provides algorithms for obtaining policies with known transition models. (Zheng
& Ratliff, 2020) considered an episodic CMDP and use an optimism based algorithm to bound the constraint
violation as Õ(1/T 0.25) with high probability. (Kalagarla et al., 2020) also considered the episodic setup to
obtain PAC-style bound for an optimism based algorithm. (Ding et al., 2021) considered the setup ofH-episode
length episodic CMDPs with d-dimensional linear function approximation to bound the constraint violations
as Õ(d

√
H5/T ) by mixing the optimal policy with an exploration policy. (Efroni et al., 2020) proposes a

linear-programming and primal-dual policy optimization algorithm to bound the regret as O(S
√
H3/T ).

(Wei et al., 2022a; Liu et al., 2021a) considered the problem of ensuring zero constraint violations using a
model-free algorithm for tabular MDPs with linear rewards and constraints. However, for infinite horizon
setups, the analysis from finite horizon algorithms does not directly holds. This is because finite horizon
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setups can update the policy after every episode. But this policy switch modifies the induced Markov chains
which takes time to converge to stationary distribution.

(Xu et al., 2020) consider an infinite horizon discounted setup with constraints and obtain global convergence
using policy gradient algorithms. (Ding et al., 2020) also considers an infinite horizon discounted setup. They
use a natural policy gradient to update the primal variable and sub-gradient descent to update the dual
variable. (Singh et al., 2020) considered the setup of infinite-horizon ergodic CMDPs with long-term average
constraints with an optimism based algorithm. (Gattami et al., 2021) analyzed the asymptotic performance
for Lagrangian based algorithms for infinite-horizon long-term average constraints, however they only show
convergence guarantees without explicit convergence rates. (Chen et al., 2022) provide an optimistic online
mirror descent algorithm for ergodic MDPs which obtain a regret bound of O(TMS

√
SAT ), and (Wei et al.,

2022b) provide a model free SARSA algorithm which obtains a regret bound of O(
√
SAT 5/6) for discounted

constrained MDPs. (Liu et al., 2021b) proposed an algorithm which achieves Õ(1/ε3) sample complexity to
obtain zero constraint violations in infinite horizon discounted setup.

Algorithm(s) Setup Regret Constraint Violation Non-Linear
conRL (Brantley et al., 2020) FH Õ(LH5/2S

√
A/K) O(H5/2S

√
A/K) Yes

MOMA (Yu et al., 2021) FH Õ(LH3/2
√
SA/K) Õ(H3/2

√
SA/K) Yes

TripleQ (Wei et al., 2022a) FH Õ( 1
δH

4
√
SAK−1/5) 0 No

OptPess-LP (Liu et al., 2021a) FH Õ(H
3

δ

√
S3A/K) 0 No

OptPess-Primal Dual (Liu et al., 2021a) FH Õ(H
3

δ

√
S3A/K) Õ(H4S2A/δ) No

UCRL-CMDP (Singh et al., 2020) IH Õ(
√
SAT−1/3) Õ(

√
SA/T 1/3) No

Chen et al. (Chen et al., 2022) IH Õ( 1
δTMS

√
SA/T ) Õ( 1

δ2T
2
MS

3A) No
Wei et al. (Wei et al., 2022b) IH Õ( 1

δ

√
SAT−1/6) 0 No

UC-CURL (This work) IH Õ( 1
δLTMS

√
A/T ) 0 Yes

Table 1: Overview of work for constrained reinforcement learning setups. For finite horizon (FH) setups, H
is the episode length and K is the number of episodes for which the algorithm runs. For infinite horizon
(IH) setups, TM denotes the mixing time of the MDP, and T is the time for which algorithm runs. L is the
Lipschitz constant.

Concave Utility RL: Another major research area related to this work is concave utility RL (Hazan
et al., 2019). Along this direction, (Cheung, 2019) considered a concave function of expected per-step vector
reward and developed an algorithm using Frank-Wolfe gradient of the concave function for tabular infinite
horizon MDPs. (Agarwal & Aggarwal, 2019) also considered the same setup using a posterior sampling based
algorithm. Recently, (Brantley et al., 2020) combined concave utility reinforcement learning and constrained
reinforcement learning for an episodic setup. (Yu et al., 2021) also considered the case of episodic setup with
concave utility RL. However, both (Brantley et al., 2020) and (Yu et al., 2021) consider the weaker regret
definition by (Efroni et al., 2020), and (Cheung, 2019) and (Yu et al., 2021) do not target the convergence of
the policy. Further, these works do not target zero-constraint violations.

Compared to prior works, we consider the constrained reinforcement learning with convex constraints and
concave objective function. Using infinite-horizon setup, we consider the tightest possible regret definition.
Further, we achieve zero constraint violations with objective regret tight in T using an optimization problem
with decaying tightness. A comparative survey of prior works and our work is also presented in Table 1.

3 Problem Formulation

We consider an ergodic tabular infinite-horizon constrained Markov Decision Process M =
(S,A, r, f, c1, · · · , cd, g, P ). S is finite set of S states, and A is a finite set of A actions. P : S × A → ∆(S)
denotes the transition probability distribution such that on taking action a ∈ A in state s ∈ S, the system
moves to state s′ ∈ S with probability P (s′|s, a). r : S × A → [0, 1] and ci : S × A → [0, 1], i ∈ 1, · · · , d
denotes the average reward obtained and average costs incurred in state action pair (s, a) ∈ S ×A.

The agent interacts withM in time-steps t ∈ 1, 2, · · · for a total of T time-steps. We note that T is possibly
unknown. At each time t, the agent observes state st, plays action at. The agent selects an action on
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observing the state s using a policy π : S → ∆(A), where ∆(A) is the probability simplex on the action
space. On following a policy π, the long-term average reward of the agent is denoted as:

λPπ = lim
τ→∞

Eπ,P
[∑τ

t=1
r(st, at)/τ

]
(1)

where Eπ,P [·] denotes the expectation over the state and action trajectory generated from following π on
transitions P . The long-term average reward can also be represented as:

λPπ =
∑

s,a
ρPπ (s, a)r(s, a) = lim

γ→1
(1− γ)V π,Pγ (s) ∀s ∈ S

where V π,Pγ (s) is the discounted cumulative reward on following policy π, and ρPπ ∈ ∆(S ×A) is the steady-
state occupancy measure generated from following policy π on MDP with transitions P (Puterman, 2014).
Similarly, we also define the long-term average costs as follows:

ζPπ (i) = lim
τ→∞

Eπ,P
[∑τ

t=1
ci(st, at)/τ

]
= lim
γ→1

(1− γ)V π,Pγ (s; i) ∀s ∈ S

=
∑

s,a
ρPπ (s, a)ci(s, a) (2)

The agent interacting with the CMDPM aims to maximize a function f : [0, 1]→ R of the average per-step
reward. Further, the agent attempts to ensure that a function of average per-step costs g : [0, 1]d → R is at
most 0. The goal is represented mathematically as:

max
π

f
(
λPπ
)

s.t. g
(
ζPπ (1), · · · , ζPπ (d)

)
≤ 0, (3)

Let P tπ,s denote the t-step transition probability on following policy π in MDPM starting from some state s.
Also, let Tπs→s′ denotes the time taken by the Markov chain induced by the policy π to hit state s′ starting
from state s. Then let TM = TM := maxπ E[Tπs→s′ ] be the mixing time of the MDPM. We now introduce
our assumptions on the MDPM.
Assumption 3.1. The MDPM is ergodic, or ‖P tπ,s − Pπ‖ ≤ Cρt with Pπ being the long-term steady state
distribution induced by policy π, and C > 0 and ρ < 1 are problem specific constants. And, the mixing time
of the MDPM if finite or TM <∞.
Assumption 3.2. The rewards r(s, a), the costs ci(s, a);∀ i and the functions f and g are known to the
agent.
Assumption 3.3. The scalarization function f is jointly concave and the constraints g are jointly convex.
Hence for any arbitrary distributions D1 and D2, the following holds.

f (Ex∼D1 [x]) ≥ Ex∼D1 [f (x)] (4)
g (Ex∼D2 [x]) ≤ Ex∼D2 [g (x)] ; x ∈ Rd (5)

Assumption 3.4. The function f and g are assumed to be a L− Lipschitz function, or

|f (x)− f (y)| ≤ L|x− y|; x, y ∈ R (6)
|g (x)− g (y)| ≤ L ‖x− y‖1 ; x,y ∈ Rd (7)

Remark 3.5. We consider a standard setup of concave and the Lipschitz function as considered by (Cheung,
2019; Brantley et al., 2020; Yu et al., 2021). Note that the analysis in this paper directly works for f : RK → R,
where the function takes as input K average per-step rewards for K objectives.
Remark 3.6. For non-Lipshitz continuous functions such as entropy, we can obtain maximum entropy
exploration if choose function f = −

∑
k λk log(λk + η) with rk(s, a) = 1{sk,ak} for a particular state action

pair sk, ak and choosing K = S ×A to cover all state-action pairs and a regularizer η (Hazan et al., 2019).
Assumption 3.7. There exists a policy π, and one constant δ > LdSTM

√
(A log T )/T +(CSA log T )/(T (1−

ρ)) such that

g
(
ζPπ (1), · · · , ζPπ (d)

)
≤ −δ (8)
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This assumption is again a standard assumption in the constrained RL literature (Efroni et al., 2020; Ding
et al., 2021; 2020; Wei et al., 2022a). δ is referred as Slater’s constant. (Ding et al., 2021) assumes that the
Slater’s constant δ is known. (Wei et al., 2022a) assumes that the number of iterations of the algorithm is at
least Ω̃(SAH/δ)5 for episode length H. On the contrary, we simply assume the existence of δ and a lower
bound on the value of δ which gets relaxed as the agent acquires more time to interact with the environment.

Any online algorithm starting with no prior knowledge will require to obtain estimates of transition probabilities
P and obtain reward r and costs ck,∀ k ∈ {1, · · · , d} for each state action pair. Initially, when algorithm
does not have good estimate of the model, it accumulates a regret as well as violates constraints as it does
not know the optimal policy. We define reward regret R(T ) as the difference between the average cumulative
reward obtained vs the expected rewards from running the optimal policy π∗ for T steps, or

R(T ) = f
(
λPπ∗
)
− f

(∑T

t=1
r(st, at)/T

)
Additionally, we define constraint regret C(T ) as the gap between the constraint function and incurred and
constraint bounds, or

C(T ) =
(
g

(∑T

t=1
c1(st, at)/T, · · · ,

∑T

t=1
c1(st, at)/T

))
+

where (x)+ = max(0, x).

In the following section, we present a model-based algorithm to obtain this policy π∗, and reward regret and
the constraint regret accumulated by the algorithm.

4 Algorithm

We now present our algorithm UC-CURL and the key ideas used in designing the algorithm. Note that if
the agent is aware of the true transition P , it can solve the following optimization problem for the optimal
feasible policy.

max
ρ(s,a)

f
(∑

s,a
r(s, a)ρ(s, a)

)
(9)

with the following set of constraints,∑
s,a
ρ(s, a) = 1, ρ(s, a) ≥ 0 (10)∑

a∈A
ρ(s′, a) =

∑
s,a
P (s′|s, a)ρ(s, a) (11)

g
(∑

s,a
c1(s, a)ρ(s, a), · · · ,

∑
s,a
cd(s, a)ρ(s, a)

)
≤ 0 (12)

for all s′ ∈ S, ∀ s ∈ S, and ∀ a ∈ A. Equation (11) denotes the constraint on the transition structure for
the underlying Markov Process. Equation (10) ensures that the solution is a valid probability distribution.
Finally, Equation (12) are the constraints for the constrained MDP setup which the policy must satisfy. Using
the solution for ρ, we can obtain the optimal policy as:

π∗(a|s) = ρ(s, a)∑
b∈A ρ(s, b)∀ s, a (13)

However, the agent does not have the knowledge of P to solve this optimization problem, and thus starts
learning the transitions with an arbitrary policy. We first note that if the agent does not have complete
knowledge of the transition P of the true MDP M, it should be conservative in its policy to allow room
to violate constraints. Based on this idea, we formulate the ε-tight optimization problem by modifying the
constraint in Equation (12) as.

g
(∑

s,a
(c1ρε)(s, a), · · · ,

∑
s,a

(c1ρε)(s, a)
)
≤ −ε (14)
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Let ρε be the solution of the ε-tight optimization problem, then the optimal conservative policy becomes:

π∗ε (a|s) = ρε(s, a)∑
b∈A ρε(s, b)

∀ s, a (15)

We are now ready to design our algorithm UC-CURL which is based on the optimism principle (Jaksch
et al., 2010). The UC-CURL algorithm is presented in Algorithm 1. The algorithm proceeds in epochs e.
The algorithm maintains three key variables νe(s, a), Ne(s, a), and P̂ (s, a, s′) for all s, a. νe(s, a) stores the
number of times state-action pair (s, a) are visited in epoch e. Ne(s, a) stores the number of times (s, a) are
visited till the start of epoch e. P̂ (s, a, s′) stores the number of times the system transitions to state s′ after
taking action a in state s. Another key parameter of the algorithm is εe = K

√
(log te)/te where te is the

start time of the epoch e and K is a configurable constant. Using these variables, the agent solves for the
optimal εe-conservative policy for the optimistic MDP by replacing the constraints in Equation (11) by:∑

a∈A
ρ(s′, a) ≤

∑
s,a
P̃e(s′|s, a)ρ(s, a) (16)

P̃e(s′|s, a) > 0,
∑

s′
P̃e(s′|s, a) = 1 (17)

‖P̃e(·|s, a)− P̂ (s, a, ·)
1 ∨Ne(s, a)‖1 ≤

√
14S log(2At)
1 ∨Ne(s, a) (18)

for all s′ ∈ S,∀s ∈ S, and ∀a ∈ A and x ∨ y = max(x, y). Equation (18) ensures that the agent searches for
optimistic policy in the confidence intervals of the transition probability estimates.

Combining the right hand side of (16) with (10) gives∑
s′

∑
s,a
P̃e(s′|s, a)ρ(s, a) = 1 =

∑
s′,a

ρ(s′, a)

Thus, joint with (16), we see that equality in (16) will be satisfied at the boundary as
∑
a ρ(s′, a) for some s′

can never exceed the boundary to compensate for another s′ and hence, for all s′,
∑
a ρ(s′, a) will lie on the

boundary. In other words, the above constraints give
∑
a∈A ρ(s′, a) =

∑
s,a P̃e(s′|s, a)ρ(s, a). Further, we

note that the region for the constraints is convex. This is because the set {x, y, z : xy ≥ z} is convex when
x, y, z ≥ 0. We note that even though the optimization problem may look non-convex due to constraints
having product of two variables, we see Equations (9), (14), and (16)-(18) form a convex optimization problem.
We expand more on this in Appendix B. We note that (Rosenberg & Mansour, 2019) provide another approach
to obtain a convex optimization problem for optimistic MDP.

Let ρe be the solution for εe-tight optimization equation for the optimistic MDP. Then, we obtain the optimal
conservative policy for epoch e as:

πe(a|s) = ρe(s, a)∑
b∈A ρe(s, b)

∀ s, a (19)

The agent plays the optimistic conservative policy πe for epoch e. Note that the conservative parameter εe
decays with time. As the agent interacts with the environment, the system model improves and the agent
does not need to be as conservative as before. This allows us to bound both constraint violations and the
objective regret. Further, if during the initial iterations of the algorithms a conservative solution is not
feasible, we can ignore the constraints completely. We will show that the conservation behavior is required
when t = Θ(T ) to compensate for the violations in the initial period of the algorithm E.2.

For the UC-CURL algorithm described in Algorithm 1, we choose {εe} = {K
√

(log te)/te}. However, if the
agent has access to a lower bound Tl (Assumption 3.7) on the time horizon T , the algorithm can change the
εe = K

√
(ln(te ∨ Tl))/(te ∨ Tl) ≤ δ in each epoch e as follows. Note that if Tl = 0, εe becomes as specified in

Algorithm 1 and if Tl = T , εe becomes constant for all epochs e.
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Algorithm 1 UC-CURL
Parameters: K
Input: S, A, r, d, ci ∀ i ∈ [d]

1: Let t = 1, e = 1, εe = K
√

ln t
t

2: for (s, a) ∈ S ×A do
3: νe(s, a) = 0, Ne(s, a) = 0, P̂ (s′, a, s) = 0∀ s′ ∈ S
4: end for
5: Solve for policy πe using Eq. (19)
6: for t ∈ {1, 2, · · · } do
7: Observe st, and play at ∼ πe(·|st)
8: Observe st+1, r(st, at) and ci(st, at) ∀ i ∈ [d]
9: νe(st, at) = νe(st, at) + 1

10: P̂ (st, at, st+1) = P̂ (st, at, st+1) + 1
11: if νe(s, a) = max{1, Ne(s, a)} for any s, a then
12: for (s, a) ∈ S ×A do
13: Ne+1(s, a) = Ne(s, a) + νe(s, a)
14: e = e+ 1, νe(s, a) = 0
15: end for
16: εe = K

√
ln t
t

17: Solve for policy πe using Eq. (19)
18: end if
19: end for

5 Regret Analysis

After describing UC-CURL algorithm, we now perform the regret and constraint violation analysis. We
note that the standard analysis for infinite horizon tabular MDPs of UCRL2 (Jaksch et al., 2010) cannot
be directly applied as the policy πe is possibly stochastic for every epoch. Another peculiar aspect of the
analysis of the infinite horizon MDPs is that the regret grows linearly with the number of epochs (or policy
switches). This is because a new policy induces a new Markov chain and this chain take time to converge to
the stationary distribution. The analysis still bounds the regret by Õ(TMS

√
A/T ) as the number of epochs

are bounded by O(SA log T ).

Before diving into the details, we first define few important variables which are key to our analysis. The first
variable is the standard Q-value function. We define Qπ,Pγ as the long term expected reward on taking action
a in state s and then following policy π for the MDP with transition P . Mathematically, we have

Qπ,Pγ (s, a) = r(s, a) + γ
∑

s′∈S
P (s′|s, a)V π,Pγ (s′).

We also define Bellman error Bπ,P̃ (s, a) for the infinite horizon MDPs as the difference between the cumulative
expected rewards obtained for deviating from the system model with transition P̃ for one step by taking
action a in state s and then following policy π. We have:

Bπ,P̃ (s, a) = lim
γ→1

(
Qπ,P̃γ (s, a)− r(s, a)− γ

∑
s′∈S

P (s′|s, a)V π,P̃γ (s, a)
)

(20)

After defining the key variables, we can now jump into bounding the objective regret R(T ). Intuitively, the
algorithm incurs regret on three accounts. First source is following the conservative policy which we require
to limit the constraint violations. Second source of regret is solving for the policy which is optimal for the
optimistic MDP. Third source of regret is the stochastic behavior of the system. We also note that the
constraints are violated because of the imperfect MDP knowledge and the stochastic behavior. However, the
conservative behavior actually allows us to violate the constraints within some limits which we will discuss in
the later part of this section.
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We start by stating our first lemma which relates the regret because we solve for a conservative policy. We
define εe-tight optimization problem as optimization problem for the true MDP with transitions P with
ε = εe. We bound the gap between the value of function f at the long-term expected reward of the policy for
εe-tight optimization problem and the true optimization problem (Equation (9)-(12)) in the following lemma.
Lemma 5.1. Let λPπ∗ be the long-term average reward following the optimal feasible policy π∗ for the
true MDPM and let λPπe

be the long-term average rewards following the optimal policy πe for the εe tight
optimization problem for the true MDPM, then for εe ≤ δ, we have,

f
(
λPπ∗
)
− f

(
λPπe

)
≤ 2Lεe/δ (21)

Proof Sketch. We construct a policy for which the steady state distribution is the weighted average of two
steady state distributions. First distribution is for the optimal policy for the true optimization problem.
Second distribution is for the policy which satisfies Assumption 3.7. Now, we show that this constructed
policy satisfies the εe-tight constraints. Now, using Lipschitz continuity, we convert the difference between
function values into the difference between the long-term average rewards to obtain the required result. The
detailed proof is provided in Appendix C.

Lemma 5.1 and our construction of εe sequence allows us to limit the growth of regret because of conservative
policy by Õ(LdTMS

√
A/T ).

To bound the regret from the second source, we use a Bellman error based analysis. In our next lemma, we
show that the difference between the performance of a policy on two different MDPs is bounded by long-term
averaged Bellman error. Formally, we have:
Lemma 5.2. The difference of long-term average rewards for running the optimistic policy πe on the
optimistic MDP, λP̃e

πe
, and the average long-term average rewards for running the optimistic policy πe on the

true MDP, λPπe
, is the long-term average Bellman error as

λP̃e
πe
− λPπe

=
∑

s,a
ρPπe

Bπe,P̃e(s, a) (22)

Proof Sketch. We start by writing Qπe,P̃e
γ in terms of the Bellman error. Now, subtracting V πe,P

γ from V πe,P̃e
γ

and using the fact that λPπe
= limγ→1 V

π,P
γ and λP̃e

πe
= limγ→1 V

π,P̃e
γ we obtain the required result. A complete

proof is provided in Appendix D.3.

After relating the gap between the long-term average rewards of policy πe on the two MDPs, we now want to
bound the sum of Bellman error over an epoch. For this, we first bound the Bellman error for a particular
state action pair s, a in the form of following lemma. We have,
Lemma 5.3. With probability at least 1− 1/t6e, the Bellman error Bπe,P̃e(s, a) for state-action pair s, a in
epoch e is upper bounded as

Bπe,P̃e(s, a) ≤

√
14S log(2AT )
1 ∨Ne(s, a) ‖h̃‖∞ (23)

where Ne(s, a) is the number of visitations to s, a till epoch e and h̃ is the bias of the MDP with transition
probability P̃e.

Proof Sketch. We start by noting that the Bellman error essentially bounds the impact of the difference in
value obtained because of the difference in transition probability to the immediate next state. We bound the
difference in transition probability between the optimistic MDP and the true MDP using the result from
(Weissman et al., 2003). This approach gives the required result. A complete proof is provided in Appendix
D.3.

We use Lemma 5.2 and Lemma 5.3 to bound the regret because of the imperfect knowledge of the system
model. We bound the expected Bellman error in epoch e starting from state ste and action ate by constructing
a Martingale sequence with filtration Ft = {s1, a1, · · · , st−1, at−1} and using Azuma’s inequality (Bercu et al.,

8



Under review as submission to TMLR

2015). Using the Azuma’s inequality, we can also bound the deviations because of the stochasticity of the
Markov Decision Process. The result is stated in the following lemma with proof in Appendix D.
Lemma 5.4. With probability at least 1− T−5/4, the regret incurred from imperfect model knowledge and
process stochastics is bounded by

O(TMS
√
A(logAT )/T + (CTMS2A log T )/(1− ρ)) (24)

The regret analysis framework also prepares us to bound the constraint violations as well. We again start
by quantifying the reasons for constraint violations. The agent violates the constraint because 1. it is
playing with the imperfect knowledge of the MDP and 2. the stochasticity of the MDP which results in the
deviation from the average costs. We note that the conservative policy πe for every epoch does not violate
the constraints, but instead allows the agent to manage the constraint violations because of the imperfect
model knowledge and the system dynamics.

We note that the Lipschitz continuity of the constraint function g allows us to convert the function of d
averaged costs to the sum of d averaged costs. Further, we note that we can treat the cost similar to rewards
(Brantley et al., 2020). This property allows us to bound the cost incurred incurred in a way similar to how we
bound the gap from the optimal reward by LdTMS

√
A(logAT )/T . We now want that the slackness provided

by the conservative policy should allow LdTMS
√
A(logAT )/T constraint violations. This is ensured by our

chosen εe sequence. We formally state that result in the following lemma proven in parts in Appendix D and
Appendix E.
Lemma 5.5. The cumulative sum of the εe sequence is upper and lower bounded as,∑E

e=1
(te+1 − te)εe = Θ

(
K
√
T log T

)
(25)

After giving the details on bounds on the possible sources of regret and constraint violations, we can formally
state the result in the form of following theorem.
Theorem 5.6. For all T and K = Θ(LdTMS

√
A+ CSA/(1− ρ)), the regret R(T ) of UC-CURL algorithm

is bounded by

R(T ) = O

(
1
δ
LdTMS

√
A

logAT
T

+ CTMS
2A log T

1− ρ

)
(26)

and the constraints are bounded as C(T ) = 0, with probability at least 1− 1
T 5/4 .

5.1 Posterior Sampling Algorithm

We can also modify the analysis to obtain Bayesian regret for a posterior sampling version of the UC-CURL
algorithm using Lemma 1 of (Osband et al., 2013). In the posterior sampling algorithm, instead of finding the
optimistic MDP, we sample the transition probability P̃e using an updated posterior. This sampling allows
to reduce the complexity of the optimization problem by eliminating Eq. (17) and Eq. (18). The complete
algorithm is described in Appendix G. We note that optimization problem for the UC-CURL algorithm is
feasible because the true MDP lies in the confidence interval. However, for the sampled MDP obtaining the
feasibility requires a stronger Slater’s condition.

5.2 Further Modifications

The proposed algorithm, and the analysis can be easily extended to M convex constraints g1, · · · , gM by
applying union bounds. Further, our analysis uses Proposition 1 of (Jaksch et al., 2010) to bound the epochs
by O(SA log2 T ). However, we can improve the empirical performance of the UC-CURL algorithm by
modifying the epoch trigger condition (Line 11 of Algorithm 1). Triggering a new episode whenever νe(s, a)
becomes max{1, νe−1(s, a) + 1} for any state-action pair results in a linearly increasing episode length with
total epochs bounded by O(SA+

√
SAT ). This modification results in a better empirical performance (See

Appendix 6 for simulations) at the cost of a higher theoretical regret bound and computation complexity for
obtaining a new policy at every epoch.

9
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6 Simulation Results

To validate the performance of the UC-CURL algorithm and the PS-CURL algorithm, we run the simulation
on the flow and service control in a single-serve queue, which is introduced in (Altman & Schwartz, 1991).
Along with validating the performance of the proposed algorithms, we also compare the algorithms against
the algorithms proposed in (Singh et al., 2020) and in (Chen et al., 2022) for model-based constrained
reinforcement learning for infinite horizon MDPs. Compared to these algorithms, we note that our algorithm
is also designed to handle concave objectives of expected rewards with convex constraints on costs with 0
constraint violations.

In the queue environment, a discrete-time single-server queue with a buffer of finite size L is considered in
this case. The number of customers waiting in the queue is considered as the state in this problem and
thus |S| = L + 1. Two kinds of the actions, service and flow, are considered in the problem and control
the number of customers together. The action space for service is a finite subset A in [amin, amax], where
0 < amin ≤ amax < 1. Given a specific service action a, the service a customer is successfully finished with
the probability b. If the service is successful, the length of the queue will reduce by 1. Similarly, the space for
flow is also a finite subsection B in [bmin, bmax]. In contrast to the service action, flow action will increase the
queue by 1 with probability b if the specific flow action b is given. Also, we assume that there is no customer
arriving when the queue is full. The overall action space is the Cartesian product of the A and B. According
to the service and flow probability, the transition probability can be computed and is given in the Table 2.

Table 2: Transition probability of the queue system

Current State P (xt+1 = xt − 1) P (xt+1 = xt) P (xt+1 = xt + 1)
1 ≤ xt ≤ L− 1 a(1− b) ab+ (1− a)(1− b) (1− a)b

xt = L a 1− a 0
xt = 0 0 1− b(1− a) b(1− a)

Define the reward function as r(s, a, b) and the constraints for service and flow as c1(s, a, b) and c2(s, a, b),
respectively. Define the stationary policy for service and flow as πa and πb, respectively. Then, the problem
can be defined as

max
πa,πb

lim
T→∞

1
T

T∑
t=1

r(st, πa(st), πb(st))

s.t. lim
T→∞

1
T

T∑
t=1

c1(st, πa(st), πb(st)) ≥ 0

lim
T→∞

1
T

T∑
t=1

c2(st, πa(st), πb(st)) ≥ 0

(27)

According to the discussion in (Altman & Schwartz, 1991), we define the reward function as r(s, a, b) = 5− s,
which is an decreasing function only dependent on the state. It is reasonable to give higher reward when the
number of customers waiting in the queue is small. For the constraint function, we define c1(s, a, b) = −10a+6
and c2 = −8(1− b)2 + 2, which are dependent only on service and flow action, respectively. Higher constraint
value is given if the probability for the service and flow are low and high, respectively.

In the simulation, the length of the buffer is set as L = 5. The service action space is set as [0.2, 0.4, 0.6, 0.8]
and the flow action space is set as [0.4, 0.5, 0.6, 0.7]. We use the length of horizon T = 5× 105 and run 50
independent simulations of all algorithms. The experiments were run on a 36 core Intel-i9 CPU @3.00 GHz
with 64 GB of RAM. The result is shown in the Figure 1. The average values of the cumulative reward
and the constraint functions are shown in the solid lines. Also, we plot the standard deviation around the
mean value in the shadow to show the random error. In order to compare this result to the optimal, we
assume that the full information of the transition dynamics is known and then use Linear Programming to
solve the problem. The optimal cumulative reward for the constrained optimization is calculated to be 4.48

10
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(a) Reward growth w.r.t. time (b) Regret w.r.t. time

(c) Service constraints w.r.t. time (d) Flow constraints w.r.t. time

Figure 1: Performance of the proposed UC-CURL and PS-CURL algorithms on a flow and service control
problem for a single queue with doubling epoch lengths and linearly increasing epoch lengths. The algorithms
are compared against Chen et al. (2022) and Singh et al. (2020)

with both flow constraint and service contraint values to be 0. Also, the optimal cumulative reward for the
unconstrained optimization is 4.8 with service constraint being −2 and flow constraint being −0.88.

We now discuss the performance of all the algorithms starting with our algorithms UC-CURL and PS-CURL.
In Figure 1, we observe that the proposed UC-CURL algorithm in Algorithm 1 does not perform well initially.
We observed that this is because the confidence interval radius

√
S log(At)/N(s, a) for any s, a are not tight

enough in the initial period. After the algorithms collects sufficient samples to construct tight confidence
intervals around the transition probabilities, the algorithm starts converging towards the optimal policy. We
also note that the linear epoch modification of the algorithm works better than the doubling epoch algorithm
presented in Algorithm 1. This is because the linear epoch variant updates the policy quickly whereas the
doubling epoch algorithm works with the same policy for too long and thus looses the advantages of collected
samples. For our implementation, we choose the value of parameter K in Algorithm 1 as K = 1, using which
we observe that the constraint values start converging towards zero.

We now analyse the performance of the PS-CURL algorithm. For our implementation of the PS-CURL
algorithm, we sample the transition probabilities using Dirichlet distribution. Note that the true transition
probabilities were not sampled from a Dirichlet distribution and hence this experiment also shows the
robustness against misspecified priors. We observe that the algorithm quickly brings the reward close to the
optimal rewards. The performance of the PS-CURL algorithm is significantly better than the UC-CURL
algorithm. We suspect this is because the UC-CURL algorithm wastes a large-number of steps to find
optimistic policy with a large confidence interval. This observation aligns with the TDSE algorithm (Ouyang
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et al., 2017), where they show that the Thompson sampling algorithm with O(
√
SAT ) epochs performs

empirically better than the optimism based UCRL2 algorithm (Jaksch et al., 2010) with O(
√
SA log T )

epochs. (Osband et al., 2013) also made a similar observation where their PSRL algorithm worked better
than the UCRL2 algorithm. Again, we set the value of parameter K as 1 and with K = 1, the algorithm
does not violate constraints. We also observe that the standard deviation of the rewards and constraints are
higher for the PS-CURL algorithm as compared to the UC-CURL algorithm as the PS-CURL algorithm
has an additional stochastic component which arises from sampling the transition probabilities.

After analysing the algorithms presented in this paper, we now analyse the performance of the algorithm
by Chen et al. (2022). They provide an optimistic online mirror descent algorithm which also works with
conservative parameter to tightly bound constraint violations. Their algorithm also obtains a O(

√
T regret

bound. However, their algorithm is designed for a linear reward/constraint setup with a single constraint,
and empirically the algorithm is difficult to tune as it requires additional knowledge of TM , ρ, δ, and T to
fine tune parameters used in their algorithm. We set the value of the learning rate θ for online mirror descent
as 5 ∗ 10−2 with an episode length of 5× 103. Further, we scale the rewards and costs to ensure that they lie
between 0 and 1. We analyze the behavior of the optimistic online mirror descent algorithm in Figure 1b.
We observe that the algorithm has three phases. The first phase is the first episodes where the algorithm
uses a uniform policy which is the initial flat area till first 5000 steps. In the second phase, the algorithm
updates the policy for the first time and starts converging to the optimal policy with a convergence rate
which matches to that of the PS-CURL algorithm. However, after few policy updates, we observe that
the algorithm has oscillatory behavior which is because the dual variable updates require online constraint
violations.

Finally, we analyze the the algorithm by Singh et al. (2020). They also provide an algorithm which proceeds
in epochs and solves an optimization problem at every epoch. The algorithm considers a fixed epoch length
T 1/3. Further, the algorithm considers a confidence interval on each estimate of P (s′|s, a) for all s, a, s′
triplet. The algorithm does not perform well even though it updates the policy most frequently because of
creating confidence intervals on individual transition probabilities P (s′|s, a) instead of the probability vector
P (s′|s, a).

From the experimental observations, we note that the proposed UC-CURL algorithm is suitable in cases where
the parameter tuning is not possible and the system requires tighter bounds on deviation of the performance of
the algorithm. The PS-CURL algorithm can be used in cases where the variance in algorithm’s performance
can be tolerated or computational complexity is a constraint. Further, for both the algorithms, it is beneficial
to use the linear increasing epoch lengths. Additionally, the algorithm by (Chen et al., 2022) is suitable
for cases where solving an optimization equation is not feasible, for example an embedded system, as the
algorithm updates policy using exponential function which can be easily computed. However, This algorithm
is only applicable in applications with linear reward/constraint and single constraint.

7 Conclusion

We considered the problem of Markov Decision Process with concave objective and convex constraints. For
this problem, we proposed UC-CURL algorithm which works on the principle of optimism. To bound the
constraint violations, we solve for a conservative policy using an optimistic model for an ε-tight optimization
problem. Using an analysis based on Bellman error for infinite-horizon MDPs, we show the UC-CURL
algorithm achieves 0 constraint violations with a regret bound of Õ(LdTMS

√
A/T + (CSA log T )/(T (1− ρ)).

Further, to reduce the computation complexity of finding optimistic MDP, we also propose a posterior
sampling algorithm which finds the optimal policy for a sampled MDP. We provide a Bayesian regret bound
of Õ(LdTMS

√
A/T + (CTMS2A log T )/(T (1 − ρ)) for the posterior sampling algorithm by considering a

stronger Slater’s condition to solve for constrained optimization for sampled MDPs as well. As part of
potential future works, we consider dynamically configuring K to be an interesting and important direction
to reduce the requirement of problem parameters.
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