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ABSTRACT

Dynamic Graph Neural Networks (DyGNNs) have gained significant popularity
in the research of dynamic graphs, but are limited by the low transparency, such
that human-understandable insights can hardly be drawn from their predictions.
Although a number of existing research have been devoted to investigating the
interpretability of graph neural networks (GNNs), achieving the interpretability
of DyGNNs is pivotally challenging due to the complex spatial-temporal correla-
tions in dynamic graphs. To this end, we propose an innovative causality-inspired
generative model based on structural causal model (SCM), which explores the
underlying philosophies of DyGNN predictions by identifying the trivial, static,
and dynamic causal relationships. To reach this goal, two critical tasks need to
be accomplished including (1) disentangling the complex causal relationships,
and (2) fitting the spatial-temporal explanations of DyGNNs in the SCM archi-
tecture. To tackle these challenges, the proposed method incorporates a con-
trastive learning module to disentangle trivial and causal relationships, and a dy-
namic correlating module to disentangle dynamic and static causal relationships,
respectively. A dynamic VGAE-based framework is further developed, which
generates causal-and-dynamic masks for spatial interpretability, and recognizes
dynamic relationships along the time horizon through causal invention for tem-
poral interpretability. Comprehensive experiments have been conducted on both
synthetic and real-world datasets, where our approach yields substantial improve-
ments, thereby demonstrating significant superiority.

1 INTRODUCTION

Dynamic graphs play a crucial role across a wide spectrum of real-world applications (Seo et al.,
2018; You et al., 2018), including financial networks (Nascimento et al., 2021; Zhang et al., 2021),
social networks (Berger-Wolf & Saia, 2006; Greene et al., 2010), and traffic networks (Peng et al.,
2021; 2020). Unlike the widely studied static graphs, dynamic graphs can represent the spatial-
temporal characteristics of real-world data, which is gaining great popularity in practical scenarios
despite the high complexity (Pareja et al., 2020). Addressing the challenges posed by this complexity
has led to the development of Dynamic Graph Neural Networks (DyGNNs) (Wang et al., 2023;
Manessi et al., 2020; Beck et al., 2017; Zaki et al., 2016), which achieves significant advances in
predictive tasks through accommodating the intricate interplay of spatial-temporal patterns.

Despite the aforementioned advantages, DyGNNS are usually limited by low transparency, such
that human-understandable insights can hardly be drawn from their predictions. Existing works on
the explanation of GNNs, such as GNNExplainer (Ying et al., 2019), XGNN (Yuan et al., 2020),
and OrphicX (Lin et al., 2022) primarily focus on static networks. Therefore, these methods can
hardly be directly adopted for the interpretability of dynamic networks due to the following two
challenges induced by the complex spatial-temporal correlations in dynamic graphs. 1) Spatial
interpretability. The investigation of spatial interpretability critically relies on the extraction of
subgraphs that can represent the characteristics of the complete graph in spatial dimension and
elucidating outcomes in subsequent tasks. In essence, these subgraphs serve as substitutes for the
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original graphs, enabling the attainment of analogous results in downstream tasks. However, the
sub-graph partition depends on the historical evolution over time as well as the spatial topology
of the graph, which cannot be appropriately handled by the conventional methods designed for
static graphs. 2) Temporal interpretability. Temporal interpretability relies on the importance of
representative sub-graphs over the time slots. In essence, it’s essential to elucidate the significance
of each time step concerning its impact on the outcomes of subsequent tasks. However, the temporal
dynamics of a node are also impacted by its topological neighbor apart from its historical states.
This makes it infeasible to directly adopt the techniques for time series research.

While causal inference provides an effective framework for investigating the interpretability in graph
structures, a critical task to tackle these challenges is to disentangle the complicated types of re-
lationships and accommodate them individually. To reach this goal, we propose an innovative
causality-inspired spatial-temporal generative model via constructing the structural causal model
(SCM) (Pearl, 2009) for dynamic graphs. In this line of research, previous works for static graphs
categorize the relationships within the graph into trivial (or spurious) relationship and causal rela-
tionship (Lin et al., 2021; 2022), where trivial relationship captures the dispensable graph informa-
tion while the causal relationship exploits the key information for tasks. Inspired by these works, we
further divide the causal relationships in the SCM into static relationship and dynamic relationship
to capture the complex spatial-temporal correlations. However, there remain two critical challenges
to implementing such a SCM. The first challenge lies in the approach to disentangling the complex
causal relationships as no explicit information is available for the identification of trivial, dynamic,
and static relationships. The second challenge is the way to construct the SCM to fit the task of
discovering spatial-temporal interpretability due to the lack of existing model for dynamic graphs.

To address these problems, we present a novel Dynamic GNN Explainer. Specifically, to disentan-
gle the trivial relationship and the causal relationship, we propose a contrastive learning module to
ensure the semantic similarity between the causal relationship and the original graph while enlarging
the semantic distance between the causal relationship and the trivial relationship. To disentangle the
dynamic relationship and the static relationship, we leverage the pre-trained target DyGNN model
to guarantee the essential temporal correlation between neighboring subgraphs for the dynamic re-
lationships and identify the rest independent causal information to the static relationships. We in-
stantiate our DyGNNexplainer with a dynamic variational graph auto-encoder (VGAE) framework,
which extracts the causal and dynamic relationships and maps them into a causal adjacency mask
and a dynamic adjacency mask to accomplish the spatial explanation of graph-truth label. We fur-
ther disentangle dynamic relationships along the time horizon by treating each subgraph as a causal
invention and leverage the pre-trained target DyGNN model to measure its causal effect as the tem-
poral explanation. To showcase the effectiveness of our approach, we generate synthetic dynamic
datasets tailored for dynamic graph interpretability tasks, which fill the blank of dataset benchmarks
and would facilitate further research in this domain. Experiments on both synthetic datasets and
real-world datasets demonstrate superior performance of our method in both explanation tasks and
real predictions. The code and the dataset benchmarks are available 1.

2 METHOD

2.1 PROBLEM STATEMENT

We denote a pre-trained target DyGNN model to be explained as f = fd ◦fa, where fa : G1:T → R
is the aggregation function of DyGNN to capture temporal structures and feature patterns, G1:T is the
dynamic graph sets, T is the total number of time steps,R is the aggregated high dimensional graph
representation. fd : R → Y is the downstream task function, which transforms graph representation
to label space. Y is the final label prediction. Specifically, the input dynamic graph at the tth time
step Gt = (Xt,At), t ∈ [1, T ] includes the node attribute matrix Xt ∈ R|V |×D and corresponding
adjacency matrix At ∈ R|V |×|V |, where V is the set of nodes, D is the dimension of node attribute.

Explanation methods for DyGNNs aim to meet two critical criteria: fidelity and interpretability.
Fidelity requires that a faithful explanation, represented by dynamic subgraphs, should align with
how the target DyGNN behaves in the vicinity of the given dynamic graphs of interest (Ribeiro et al.,
2016). In other words, when we feed the explanatory dynamic subgraphs to the target DyGNN, the

1https://github.com/kesenzhao/DyGNNExplainer
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Figure 1: Overview of DyGNNExplainer and SCM for dynamic explanation.

outcomes should closely resemble those obtained from the original dynamic graphs. Interpretability
(Pope et al., 2019) demands that generated explanations should highlight the most important parts
of the input while disregarding the irrelevant components. Explanations for DyGNNs require both
spatial interpretability and temporal interpretability. The spatial interpretability highlights the most
important parts of graphs while temporal interpretability identifies the most important time slices.
Moreover, an explainer should be versatile enough to explain any black-box model, adhering to the
principle of being ‘model-agnostic’.

Hence, our ultimate objective is to define a generative model, denoted as F , to act as an explainer.
This model should have the capability to pick out which aspects of the input contribute to the
DyGNN prediction while meeting the fidelity and interpretability criteria outlined above. In line
with prior research (Lin et al., 2021; Yuan et al., 2020; Lin et al., 2022), our focus lies in providing
spatial-temporal explanations (dynamic subgraph set) for dynamic graph structures. We operate un-
der the black-box setting, wherein we lack information regarding the ground-truth labels of the input
graphs and do not require the inner workings of the target DyGNN’s output generation process.

2.2 FRAMEWORK OVERVIEW

In this study, we propose a novel causality-inspired spatial-temporal DyGNNExplainer, shown in
Figure 1. We first construct a Structural Causal Model (SCM) for dynamic graphs with trivial,
dynamic, and static relationships, enabling a comprehensive understanding of dynamic graphs. Then
we generate causal and dynamic soft masks, which enable backdoor adjustment, to intervene in the
targeting causal and dynamic factors. After that, we employ a contrastive loss to separate trivial
and causal relationships. To disentangle static and dynamic relationships, we employ a dynamic
loss, which captures the temporal evolution within graphs and maintains independence from static
information. Finally, we improve the generated static and dynamic explanations using prediction
loss and sparsity loss, which enhances both prediction accuracy and spatial interpretability.

2.3 A CAUSAL VIEW ON DYGNNS

We first take a casual look at the DyGNN modeling and construct a Structural Causal Model (SCM)
in Figure 1. It presents the causalities among seven variables: dynamic graph data G, trivial rela-
tionship T , causal relationship C, dynamic relationship D, static relationship S , node representation
R, and prediction Y , where links between variables represent cause-effect relationships. Here are
some key explanations regarding SCM:

• T ← G → C: C represents the genuine causal relationship in dynamic graph data, while T
signifies trivial relationships, often stemming from data biases or spurious patterns.

• T → R ← C: R is a high-dimensional representation of dynamic graph node data G. To generate
R, the conventional strategy leverages both the trivial relationship T and the causal relationship
C as inputs to extract discriminative information.

• D → R ← S: In dynamic graph G, causal relationships C consist of dynamic relationship D and
static relationship S.

• R → Y: The ultimate aim of dynamic graph representation learning is to predict graph properties,
such as node or graph label.
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From this SCM, we identify a backdoor path between C and Y , i.e., C ← G → T → R → Y .
In this path, the trivial relationship T acts as a confounder between G and Y . Even if there’s no
direct link between C and Y , the backdoor path can cause a misleading correlation between C and Y ,
leading to incorrect predictions. Thus, it’s crucial to block backdoor path to enable dynamic GNNs
to effectively utilize causal relationships. Similarly, we have another backdoor path between D and
Y , i.e., D ← C → S → R→ Y , and the static relationship S acts as confounder between C and Y .

2.4 BACKDOOR ADJUSTMENT

Our research has emphasized the significance of safeguarding DyGNNs against confounding factors
and distinguishing between dynamic and static relationships. This distinction is crucial for effec-
tively utilizing causal relationships within dynamic graphs. Instead of modeling the confounded
relationship denoted as P (Y|C) in Figure 1, our focus shifts towards graph representation learning
that eliminates the backdoor path. Fortunately, we can achieve this by applying do-calculus prin-
ciples to the variable T . By doing so, we can estimate the probability distribution P (Y|do(C))
without interference from the confounder T , utilizing standard backdoor adjustment. Similarly, we
apply do-calculus to the variableD and estimate P (Y|do(D)) to eliminate the backdoor path caused
by the confounder S. Note that we can’t directly employ the standard backdoor adjustment method
due to confounder T . To overcome this challenge, we merge the estimation of P (Y|do(C)) with
that of P (Y|do(D)), resulting in the following equations:

P (Y|do(D)) =
∑

P (Y|do(C))P (S) =
∑

P (S)
∑

P (Y|G)P (T ). (1)

The first and second equations are based on the backdoor adjustment for confounder S and T re-
spectively. Detailed derivation process is shown in Appendix A.4. However, there exist challenges
for implementing backdoor adjustment. No explicit information is available for the identification of
trivial, dynamic, and static relationships. To tackle the above challenges, we propose an effective
method shown in the next subsection.

2.5 DISENTANGLING COMPLEX CAUSAL RELATIONSHIPS

Given a dynamic graph set G1:T = (X1:T ,A1:T ), we formulate the causal soft masks for causal
relationship at tth time step as MC

t ∈ R|V |×|V |. Each element of the mask represents an attention
score, typically falling within the range of [0, 1]. For arbitrary mask M, we define M = 1−M as its
complementary mask, where 1 is the all-one matrix. Consequently, we partition the entire dynamic
graph set G1:T into two distinct sets: causal set GC

1:T = (X1:T ,A1:T⊕MC
1:T ) and trivial set GT

1:T =

(X1:T ,A1:T ⊕M
C
1:T ). Where ⊕ is the element-wise dot product at each time step. Similarly, we

formulate the dynamic soft masks as MD
t ∈ R|V |×|V | to extract the dynamic relationships and

its complementary mask M
D
1:T to extract the static relationships. Then, we have dynamic causal set

GD
1:T = (X1:T ,A1:T ⊕MC

1:T ⊕MD
1:T ) and static causal set GS

1:T = (X1:T ,A1:T ⊕MC
1:T ⊕M

D
1:T ).

Because the ground-truth trivial set, dynamic causal set, and static causal set are unavailable in real-
world applications. We aim to capture the trivial, dynamic, and static relationships from the full
graph by learning the masks.

Estimating soft mask: Inspired by the VGAE framework (Kipf & Welling, 2016), we proposed a
dynamic VGAE-based encoder-decoder to estimate the soft masks of explainable subgraphs. We
first consider the estimation of the causal soft mask matrix MC

1:T . At the t-th time step, the causal
soft mask matrix can be calculated as

MC
t = fv (X1:t,A1:t; ΘC) = p(MC

t | Ht)q(Ht | G1:t), (2)

where fv is the encoder-decoder architecture with parameters ΘC , q(·) is the encoder module, p(·)
is the decoder module. The encoder utilizes posterior probabilities to encode the node embeddings
into low-dimensional latent vector representations, which can be formulated as

q(Ht | G1:t) = ΠN
i=1q (ht,i | G1:t) , q (ht,i | G1:t) = N

(
ht,i | µt,i,diag

(
σ2
t,i

))
, (3)

where Ht is the latent matrix. µt and σt are means and variances of node latent embeddings learned
by GCNµ(Gt) and GCNσ(Gt) with different parameters. ht,i, µt,i and σt,i are the ith column of
Ht, µt and σt, respectively. We use the re-parameterization technique to avoid the problem that the
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sampling operation cannot be back-propagated and updated by gradient descent. Then the decoder
utilizes latent representations to generate the dynamic explainable subgraph as follows

p(MC
t |Ht) =

N∏
i=1

N∏
j=1

p
(
MC

t,ij | ht,i,ht,j

)
, p

(
MC

t,ij = 1 | ht,i,ht,j

)
= g (ht,i,ht,j) (4)

where MC
t,ij is the ith row and jth column of MC

t representing the probability of existence for edge
(vit, v

j
t ) at time t in causal graph set and g(·, ·) calculates this probability.

According to the above encoder-decoder framework, the causal soft mask MC
1:T can be estimated

based on the input of dynamic graph set G1:T . The soft causal mask assists in the formulation of
the causal graph set GC

1:T . According to the causal graph in Fig. 1, the static relationship S can also
be treated as the co-founder between D and Y , just like the trivial relationship T respect to C and
Y . Thus, we take the same VGAE-based encoder-decoder framework to generate the dynamic soft
mask matrix, but with different parameters ΘD, have the following estimating process:

MD
t = fv

(
X1:t,A1:t ⊕MC

1:t; ΘD
)
. (5)

Now we have the adjacency matrix of causal set AC
1:T = A1:T ⊕MC

1:T , dynamic causal set AD
1:T =

A1:T ⊕MC
1:T ⊕MD

1:T and static causal set AS
1:T = A1:T ⊕MC

1:T ⊕M
D
1:T . We need to disentangle

the trivial, dynamic, and static relationships. We first disentangle the trivial relationship and the
causal relationship via a contrastive learning method. Then, we propose a novel dynamic correlating
method to disentangle the static relationship and dynamic relationship.

Disentangling trivial and causal: According to the criteria in Section 2.1, the explanation should
meet fidelity. Since the causal subgraph set is the target and the trivial graph set can be treated as
noise, the outcome of the target model with the causal subgraph set should be more like the original
graph set, while the trivial subgraph set should be treated as negative ones. To disentangle the in-
formation in the trivial subgraph set and the causal subgraph set, we need to extract the embedding
from them via some dynamic methods. Fortunately, our target is to provide fidelity and interpretabil-
ity for the pre-trained DyGNN. Thus, we utilize the pre-trained aggregation function to obtain such
embedding, which is then utilized to assist in disentangling trivial and causal information. During
each time step t, the aggregation function fa(·) would generate the embeddings via extracting the
essential information until time t for original graph set G1:t, causal subgraph set GC

1:t and trivial
subgraph set GT

1:t. More formally, we have

Rt = fa(G1:t),R
C
t = fa(G

C
1:t),R

T
t = fa(G

T
1:t). (6)

The above outputs can be the node (graph) embedding for node (graph) classification tasks. We
utilize contrastive learning to ensure the semantic similarity between the causal embedding eCt and
the original embedding et while enlarging the semantic distance between the causal embedding eCt
and the trivial embedding eTt . Then, we have the following contrastive loss:

Lc =
1

T

T∑
t=1

log
exp

(
s(et, e

C
t )/τ

)
exp

(
s(et, eCt )/τ

)
+ α1 exp

(
s(eTt , e

C
t )/τ

)
+ α2

∑
k ̸=t exp

(
s(eTt , e

C
k)/τ

) (7)

where τ is the temperature coefficient, s(·, ·) measures the similarity, we utilize the dot product here.

Disentangling static and dynamic: According to the structure causal model in Fig. 1, the causal
relationship can be further divided into the static relationship and the dynamic relationship. To
extract the dynamic relationship and static relationship from the dynamic causal set GD

1:T and static
causal set GS

1:T , we utilize GCN with learn-able parameters ΨD and ΨS .

HD
t = GCN(AD

t ,Xt; ΨD),H
S
t = GCN(AS

t ,Xt; ΨS). (8)

Dynamic relationships evolve over time steps but static relationships are independent across each
time step. Specifically, the dynamic relationships in time step t can be inferred from the history
dynamic causal set GD

1:(t−1) while static information in time step t is independent with history static
causal graph set GS

1:(t−1). Formally, we have

HD
1:(t−1) −→HD

t , HS
1:(t−1) ⊥HS

t . (9)
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Note that using the history dynamic relationship HD
1:(t−1) to predict the dynamic relationship HD

t

directly is trivial since the GCN with parameters ΨD can map the graph set into embedding space
without any useful information. Fortunately, we can use the pre-trained aggregation function fa(·)
again, which extracts the dynamic relationship from the original graph set. According to the fidelity
criteria, the generated dynamic graph set should also guarantee that the pre-trained aggregation
function can extract the dynamic relationship from it. Thus, we have the following dynamic loss:

Ld =
1

T − 1

T∑
t=2

d(fa

(
GD

1:(t−1)

)
,HD

t ), (10)

where d(·, ·) measures the distribution distance. The dynamic loss guarantees that the dynamic
relationships extracted from the dynamic causal graph set are highly correlated. The rest causal
information would be independent, which identifies the static causal graph set. To make sure that
the dynamic and static relationship can be disentangled as separately as possible, we would provide
the sparsity constraints for the dynamic causal graph set shown later.

Spatial-temporal explanation: According to the structural causal model, both the dynamic rela-
tionship and the static relationship are the key to the prediction and should be utilized to predict the
ground-truth label. The learned causal soft mask and the dynamic soft mask can assist in spatial
interpretability which highlights the most important causal parts and dynamic causal parts of dy-
namic graphs. However, this is not enough for temporal interpretability. Due to the highly temporal
correlation for dynamic relationships, it would be difficult to disentangle the dynamic relationship.
To address the challenge, we treat the dynamic relationship at time t as an invention. With the
help of aggregation function fa(·), we measure the causal effect of this invention via the change of
embedding. Formally, we define the causal effect at time t as follows:

∆HD
t = fa

(
GD

1:t

)
− fa

(
GD

1:(t−1)

)
. (11)

We combine the causal effect for the dynamic relationship and the static relationship at time t as the
key causal information for Gt and propose the learn-able weight pooling method to aggregate all
the information across all time slots as follows:

HT =

T∑
t=1

tp(∆HD
t ⊕HS

t )∆HD
t ⊕HS

t , tp(H) = Softmax(ΨPH/∥ΨP∥), (12)

where ΨP is the parameters to learn temporal importance tp(∆HD
t ⊕HS

t ). tp(∆HD
t ⊕HS

t ) pro-
vides importance of subgraphs over different time slots and thus assists in temporal interpretability.
Based on pre-trained classifier fd(·), we use aggregated embedding to explain the ground-truth label
via prediction loss:

Lp = l(fd(HT ),Y)), (13)
where l(·, ·) is the entropy loss. To ensure human interpretability, the explained causal subgraph set
should be sparsity. We take the sparsity requirement for both the causal graph set and the dynamic
causal graph set via the sparsity loss:

Ls =

T∑
t=1

∥∥AC
t

∥∥
1
+

∥∥AD
t

∥∥
1

∥At∥1
. (14)

In summary, we learn the optimal explainable causal subgraphs, dynamic subgraphs, and temporal
importance by solving the following optimization problems:

min
Θ,Ψ
L(Θ,Ψ) = λ1Lc + λ2Ls + λ3Lp + λ4Ld (15)

where Θ = {ΘC ,ΘD}, Ψ = {ΨC ,ΨD,ΨP} and λ1, λ2, λ3, and λ4 are hyper parameters.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Datasets: We utilize 4 synthetic datasets and 2 real-world datasets for the node classification task
and the graph classification task. Table 1 shows the statistics of all datasets. Since our method is
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Table 1: Statistics of datasets for both node and graph classification.

Dataset Node classification Graph classification

DBA-Shapes DTree-Cycles DTree-Grid Elliptic DBA-2motifs MemeTracker

#nodes 700 871 1,231 203,769 25,000 3.3 mil.
#edges 4,110 1,950 3410 234,355 51,392 27.6 mil.
#labels 7 3 3 2 3 2

Table 2: Explanation accuracy of different models (%). Where best performances are bold.
Task Dataset GNNExplainer PGExplainer Gem OrphicX DyGNNExplainer

Node cls.

DBA-Shapes 92.1 92.9 93.6 94.3 97.8*
DTree-Cycles 92.8 93.7 94.4 96 98.2*
DTree-Grid 85.2 85.9 87.1 90.5 94.2*

Elliptic 92.4 94.1 94.6 96.1 98.7*

Graph cls. DBA-2motifs 86.5 88.0 90.7 91.4 96.3*
MemeTracker 88.2 89.2 91.0 91.9 97.4*

“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best
baseline. ‘cls.’ is short for classification.

the first study on dynamic graph interpretability, there are no directly available datasets suitable for
the task of dynamic graph interpretability. So we dynamically transformed some commonly used
static graph interpretability datasets. For node classification, we process three benchmark synthetic
datasets BA-Shapes, Tree-Cycles, and Tree-Grid (Ying et al., 2019), as dynamic graph datasets
DBA-Shapes, DTree-Cycles, and DTree-Grid. Furthermore, we utilize a real-world dynamic graph
dataset Elliptic 2. For graph classification, we process a benchmark synthetic dataset BA-2motifs
dataset (Luo et al., 2020) as dynamic graph dataset DBA-2motifs. And we utilize a real-word dataset
MemeTracker (Leskovec et al., 2009). More details of datasets and the generation process are shown
in Appendix A.1.

Baselines: Since we are the first to explain DyGNNs, there are no existing dynamic graph inter-
pretability benchmarks for comparison. And graph representation and graph generalization models
are the target models we want to explain, there is no comparison between us and them. Conse-
quently, we compare our approach against various powerful static interpretability frameworks for
GNNs. They are GNNExplainer (Ying et al., 2019), PGExplainer (Luo et al., 2020), Gem (Lin
et al., 2021), and OrphicX (Lin et al., 2022). For all these static baselines, we treat all nodes and
edges as occurring simultaneously. More details about baselines and hyperparameter settings are
shown in Appendix A.2.

3.2 RESULTS

Explanation fidelity: Explanation fidelity pertains to the accuracy of the explanations provided
by various methods. To gauge this, we compare the predicted labels of explanatory subgraphs
with the predicted labels of the original graphs as generated by the target model. For the static
baselines, we simplify the target model by excluding temporal evolution. From the results presented
in Table 2, our DyGNNExplainer surpasses all other baselines by a significant margin across all
datasets, both for node classification and graph classification tasks. This underscores the fidelity of
the explanations produced by our method, which, in contrast to static baselines, adeptly captures the
intricate spatial-temporal correlations in dynamic graphs via our causality-inspired spatial-temporal
structure. Causal-based methods OrphicX and Gem also outperform other baselines, affirming the
effectiveness of causal inference in explanation tasks. However, these methods only differentiate
between trivial and causal factors, disregarding the dynamic factor. Consequently, they fall short in
explaining complex spatial-temporal relationships. In contrast, our method addresses this limitation
by imposing two constraints.

Explanation interpretability analysis: Interpretability implies that the explainer should emphasize
the most crucial components of the input data while disregarding irrelevant elements. In other words,

2http://www.kaggle.com/ellipticco/elliptic-data-set
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Figure 2: Interpretability analysis and ablation study. (a) Sparsity analysis on DBA-Shapes dataset
(b) Sparsity analysis on DTree-Cycles dataset. (c) Ablation study on DBA-shapes. K is the edge
number of each explanation subgraph. ‘Or’ is the OrphicX model, and ‘Dy’ is our DyGNNExplainer.
‘w/o. Ld’, ‘w/o. Lc’, and ‘w/o. VGAE’ are DyGNNExplainer without dynamic loss, contrastive
loss, and VGAE, respectively.

Table 3: Prediction accuracy of different models (%). Where best performances are bold.
Dataset GNNExplainer PGExplainer Gem OrphicX Target DyGNNExplainer

DBA-Shapes 35.5 36.3 38.5 38.7 40.2 44.6*
Elliptic 39.7 45.6 43.5 47.8 84.3 89.2*

“*” indicates the statistically significant improvements (i.e., two-sided t-test with p < 0.05) over the best
baseline.

the explanation subgraphs should exhibit a high degree of sparsity. To quantify this sparsity, we
measure the number of subgraph edges (denoted as K). A smaller number of selected edges implies
a higher sparsity. We compare the explanation accuracy of DyGNNExplainer with OrphicX on
DBA-Shapes and DTree-Cycles, varying the number of edges (K) in the subgraph. As illustrated
in Figure 2 (a) and (b), our method outperforms OrphicX with fewer edges in the subgraphs. This
superiority arises from our model’s adeptness at capturing spatial-temporal correlations in dynamic
graphs, allowing it to encapsulate more critical information while ensuring interpretability.

Prediction accuracy analysis: While we aim to construct an explainer to faithfully elucidates the
inner workings of the target model, it is equally imperative to ascertain the consistency of the inter-
preted results with real-world facts. Consequently, we also compare the prediction accuracy of our
method with other baselines and target model on a synthetic dataset DBA-Shapes and a real-world
dataset Elliptic for node classification task. As shown in the Table 3, DyGNNExplainer outperforms
all other baselines by a substantial margin on both datasets. Particularly noteworthy is its 41.4%
performance advantage over the best baseline, OrphicX, in the real-world Elliptic dataset. This un-
derscores that our method generates explanations that align not only closely with the target model but
also with real-world ground-truth. Static baselines, due to their inability to capture spatial-temporal
correlations, fall short in accurately predicting the ground truth. Intriguingly, our model even sur-
passes the target model in terms of prediction accuracy. This is attributed to our model’s ability
to disentangle trivial, dynamic, and static relationships, thereby better capturing spatial-temporal
correlations across graph time steps.

Ablation study We also delve into an ablation study on the DBA-Shapes dataset to dissect the roles
of dynamic and static causal relationships. As depicted in Figure 2 (c), we present several variants
for comparison. In ‘w/o. VGAE’, we replace the encoder with a simple GCN layer. Our findings
reveal that DyGNNExplainer consistently outperforms the ‘w/o. Ld’ and ‘w/o. Lc’ versions. The
‘w/o. Ld’ version, lacking the dynamic loss component, fails to effectively differentiate between
dynamic and static factors, leading to an inability to capture temporal correlations across dynamic
data. On the other hand, the ‘w/o. Lc’ version experiences a significant drop in performance. This
decline can be attributed to its inability to distinguish between causal and trivial factors, resulting
in noisy independence that hinders the DyGNN explanations. These observations underscore the
efficacy of our imposed constraints in disentangling trivial, dynamic, and static factors. Furthermore,
DyGNNExplainer also outperforms the ‘w/o. VGAE’ version. This is primarily due to the superior
capabilities of VGAE in harnessing spatial graph information to generate soft masks.

8



Published as a conference paper at ICLR 2024

Original graph

Explanation

Time step

DyGNNExplainer OrphicX

0.031 0.172 0.225 0.237 0.335

Figure 3: Case study on DBA-Shapes. The red node, designated as the target node for explanation,
also serves as a connecting node between the ‘house’ motif and the base graph.

Case study To provide a more vivid demonstration of DyGNNExplainer’s interpretability, we
present a case study on DBA-Shapes dataset. As depicted in Figure 3, we visually represent both the
original graph and the top six weighted edges of the generated causal subgraph across all time steps
using DyGNNExplainer. Additionally, we compare our results with those obtained using OrphicX.
To streamline the visualization, we have omitted edges and nodes that do not belong to the ‘house’
motif or are not directly linked to the target node. The variable tp denotes the importance of each
time step. Notably, there is a gradual upward trend in tp values. This trend can be attributed to
the increasing completeness of the ‘house’ motif in later time steps, rendering them more crucial
for the final interpretation. The weight assigned to the first time slice is considerably lower than
that of subsequent time steps. This discrepancy is due to the fact that the recognizable pattern of
‘house’ motif has not yet to fully materialize in the initial time step. Additionally, the weight for the
fourth time step does not significantly surpass that of the previous one, as no new edges are added
to the motif during this interval. This observation underscores the excellent temporal interpretabil-
ity of our approach. Furthermore, DyGNNExplainer effectively identifies the ‘house’ motif from
the original graph in the final time step, which explains the target node label. In contrast, OrphicX
erroneously attributes an edge outside of the ‘house’ motif. This discrepancy vividly illustrates the
superior spatial interpretability of our method.

4 RELATED WORK

A host of recent methods has emerged to provide explanations for Graph Neural Networks (GNNs)
(Sui et al., 2022), focusing on identifying the most influential features (e.g., nodes, edges, or sub-
graphs) in input graphs to explain model predictions. These methods predominantly aim to generate
input-dependent explanations. GNNExplainer (Ying et al., 2019) seeks soft masks for edges and
node features through mask optimization to explain predictions. And Shokri et al. extend expla-
nation methods designed for Convolutional Neural Networks (CNNs) to GNNs. However, these
methods typically explain each instance individually and lack the ability to generalize graphs, lim-
iting their global interpretability of the target model. Recognizing the issue of hindsight bias and
the compromise of faithfulness when separately optimizing for each instance, PGExplainer (Luo
et al., 2020) proposes learning a mask predictor for edge masks to provide explanations. XGNN
(Yuan et al., 2020) focuses on investigating graph patterns leading to specific classes. In contrast
to these approaches, our work leverages causality to achieve faithful explanations, distinguishing it
from existing methods. More related work about causal inference is shown in Appendix A.3.

5 CONCLUSION

In conclusion, our work has addressed the critical challenges associated with interpretability in Dy-
namic Graph Neural Networks (DyGNNs). Our research has pioneered the development of DyGNN
explanation, a novel approach tailored to the unique characteristics of dynamic graphs. Our ex-
perimental results, encompassing synthetic and real-world datasets, have demonstrated the superior
performance of DyGNNExplainer in both explanation tasks and real predictions. Furthermore, we
contribute to the field by generating synthetic dynamic datasets tailored for dynamic graph inter-
pretability tasks, which lays the foundation for future developments in the field of dynamic graph
analysis and interpretation.
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Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International conference on neural
information processing, pp. 362–373. Springer, 2018.

Reza Shokri, Martin Strobel, and Yair Zick. On the privacy risks of model explanations. In Pro-
ceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 231–241, 2021.

Yongduo Sui, Xiang Wang, Jiancan Wu, Min Lin, Xiangnan He, and Tat-Seng Chua. Causal at-
tention for interpretable and generalizable graph classification. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1696–1705, 2022.

Xi Wang, Qianzhen Zhang, Deke Guo, and Xiang Zhao. A survey of continuous subgraph matching
for dynamic graphs. Knowledge and Information Systems, 65(3):945–989, 2023.

Ying-Xin Wu, Xiang Wang, An Zhang, Xiangnan He, and Tat-Seng Chua. Discovering invariant
rationales for graph neural networks. arXiv preprint arXiv:2201.12872, 2022.

Yutong Xia, Yuxuan Liang, Haomin Wen, Xu Liu, Kun Wang, Zhengyang Zhou, and Roger Zim-
mermann. Deciphering spatio-temporal graph forecasting: A causal lens and treatment. arXiv
preprint arXiv:2309.13378, 2023.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive models. In International conference on machine
learning, pp. 5708–5717. PMLR, 2018.

Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level explanations of
graph neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 430–438, 2020.

Aya Zaki, Mahmoud Attia, Doaa Hegazy, and Safaa Amin. Comprehensive survey on dynamic graph
models. International Journal of Advanced Computer Science and Applications, 7(2), 2016.

Shilei Zhang, Toyotaro Suzumura, and Li Zhang. Dyngraphtrans: Dynamic graph embedding via
modified universal transformer networks for financial transaction data. In 2021 IEEE Interna-
tional Conference on Smart Data Services (SMDS), pp. 184–191. IEEE, 2021.

11



Published as a conference paper at ICLR 2024

A APPENDIX

A.1 DATASET

Node classification datasets We process three benchmark synthetic datasets BA-Shapes, Tree-
Cycles, and Tree-Grid (Ying et al., 2019), as dynamic graph datasets DBA-Shapes, DTree-Cycles,
and DTree-Grid. Furthermore, we utilize a real-world dynamic graph dataset Elliptic 3. (1) BA-
Shapes is a single graph consisting of a base Barabasi-Albert (BA) graph with 300 nodes and 80
‘house’-structured motifs. These motifs are attached to randomly selected nodes from the BA graph.
After that, random edges are added to perturb the graph. Node features are not assigned in BA-
Shapes. (2) In the Tree-Cycles dataset, an 8-level balanced binary tree is adopted as the base graph.
A set of 80 six-node cycle motifs are attached to randomly selected nodes from the base graph. (3)
Tree-Grid is constructed in the same way as the Tree-Cycles, except that 3-by-3 grid motifs are used
to replace the cycle motifs. (4) Elliptic is a Bitcoin transaction dataset. Nodes represent transactions
and edges represent payment flows. We utilize this dataset for the node classification task.

Graph classification datasets We process a benchmark synthetic dataset BA-2motifs dataset (Luo
et al., 2020) as dynamic graph dataset DBA-2motifs. And we utilize a real-word dataset Meme-
Tracker (Leskovec et al., 2009). (1) BA-2motifs adopts the BA graphs as base graphs. Half graphs
are attached with ‘house’ motifs and the rest are attached with five-node cycle motifs. Graphs are
assigned to one of 2 classes according to the type of attached motifs. (2) MemeTracker contains
27.6 million news articles and blog posts from 3.3 million online sources with time stamps over a
one-year period. The time-stamp indicates the information arrival time of a node from its parent
nodes. We treat each website as a graph node, there is an edge between two nodes if a website
forwards articles or blogs from another website. Thus, the propagation network forms a graph at a
specific observation time stamp. All the graphs at different time stamps in a cascade have the same
label.

Dynamic data generation process First, we randomly select a root vertex with a nonzero out-
degree. The vertex is then added to the initially empty list and all outgoing edges are added to
the initially empty first-in-first-out queue, where the first element added to the queue will be the
first one to be removed. We choose an edge from the candidate set each time and calculate the
time delay for the edge until the time delay exceeds a given time window (we use [0,1000] as the
time window). When calculating the time delay of propagation, we follow a power-law distribution.
Finally, we separate the graph with time delay of 100, 200, 300, 400, 500 (e.g., we form the first
graph in a time-variant graph when the propagation time delay is 100). Thus, the average length
in the synthetic data is 5 since we have 5 graphs in each time-variant graph. The whole data set is
generated by repeating the above steps to generate 200 graph sequences. Then we relabel the nodes
according to the diffusion direction of the motif nodes. For example, in the BA-Shapes dataset, if the
node connected to the base in the house appears first, then other nodes in the motif appear, the nodes
located at the top/middle/bottom of the ‘house’ are labeled with 1,2,3, respectively. In contrast, if
other nodes in the motif appear first, the nodes located at the top/middle/bottom of the ‘house’ are
labeled with 4,5,6. The nodes in the base graph are labeled with 0.

A.2 EXPERIMENTAL SETTINGS

Baselines Since we are the first to explain DyGNNs, we compare our approach against various
powerful static interpretability frameworks for GNNs.

• GNNExplainer (Ying et al., 2019) employs a technique called mask optimization to seek soft
masks for edges and node features. These masks are instrumental in explaining the predictions
made by GNNs.

• PGExplainer (Luo et al., 2020) takes a different approach by proposing the learning of a mask
predictor. This predictor is responsible for generating edge masks, enabling instance-specific
explanations for GNN predictions.

• Gem (Lin et al., 2021) distinguishes itself by focusing on explaining graph-structured data. It
frames the explanation task for GNNs as a causal learning problem, aiming to generate concise
subgraphs that contribute to predictions.

3http://www.kaggle.com/ellipticco/elliptic-data-set
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• OrphicX (Lin et al., 2022) quantifies the causal attribution within the latent space without assum-
ing the independence of explained features.

For all these static baselines, we input graphs without time attributes. That is, we treat all nodes and
edges as occurring simultaneously.

Hyperparameter setting For the VGAE, we apply a two-layer GCN with output dimensions [32,
64, 128] and [16, 32, 64] in the encoder. The max time step T is set as 5. In the contrastive loss,
the temperature coefficient τ , weight parameters α1 and α2 are set from [0.2, 0.5, 0.8]. In the final
optimization objects, the loss function weight parameters λ1, λ2, λ3, and λ4 are set from [0.2, 0.4,
0.6, 0.8, 1]. And the best performance is obtained where λ1 = 1, λ2 = 0.4, λ3 = 0.2, and λ4 = 0.2.
We trained the explainers using the Adam optimizer (Kingma & Ba, 2014) with a learning rate of
[1e-2, 1e-3, 1e-4] and batch size 64. When comparing to other baselines, we either utilize the same
search range or adopt the optimal settings recommended by the original authors of the baselines.
We divide the dataset as training set and test set with a ratio of 8:2, which is a common setting in
previous works. All experiments are conducted on an NVIDIA Tesla V100S GPU, and the reported
results are the average of three replicate experiments.

A.3 MORE RELATED WORK ABOUT CAUSAL INFERENCE

The quest for DyGNN explanations often revolves around discerning the ‘what if’ and ‘why’ aspects,
which inherently pertain to causality. Causal reasoning serves as a potent framework for addressing
such inquiries (O’Shaughnessy et al., 2020). Various formalisms of causality have emerged, includ-
ing structural causal models (SCM) (Pearl, 2009), Granger causality (Granger, 1969), and causal
Bayesian networks (Pearl, 2009). While most explanation methods have been designed to elucidate
conventional neural networks in image domains, Gem (Lin et al., 2021) represents a departure in
its focus on explaining graph-structured data. Specifically, Gem formulates the task of explaining
Graph Neural Networks (GNNs) as a causal learning problem. It proposes a causal explanation
model capable of generating concise subgraphs that contribute to predictions. This approach fun-
damentally perturbs input aspects in the data space to observe the target GNN’s response, naturally
leading to the assumption of independent explained features. However, the interdependence inher-
ent in graph-structured data, coupled with the non-linear transformations performed by GNNs, can
compromise the efficacy and optimality of this assumption. Subsequently, OrphicX (Lin et al., 2022)
quantifies the causal attribution of data aspects in the latent space without relying on the assumption
of independent explained features. However, both Gem and OrphicX do not account for dynamic
causal factors in dynamic graphs (Wu et al., 2022; Xia et al., 2023), thereby missing the opportunity
to capture spatial-temporal correlations across dynamic graphs. In contrast, our approach differen-
tiates between trivial, static, and dynamic causal factors, employing two constraints to ensure both
spatial and temporal interpretability for DyGNNs.

A.4 MORE DETAILED PROOFS AND EXPLANATIONS

Backdoor adjustment In Equation 1, we merge the estimation of P (Y|do(C)) with that of
P (Y|do(D)).The detailed derivation process of backdoor adjustment can be shown as:

P (Y|do(D)) =
∑

P (Y|do(D),S)P (S|do(D))

=
∑

P (Y|do(C))P (S)

=
∑

P (S)
∑

P (Y|do(C), T )P (T |do(C)

=
∑

P (S)
∑

P (Y|G)P (T ).

(16)

Complexity analysis VGAE-based encoder is the most time consuming component in our method.
In the dynamic VGAE-based encoder, we generate the causal soft mask matrix MC

t and the dynamic
soft mask matric MD

t with O(d∗|V |2) complexity for T unique time steps, where d is the embedding
size. The contrastive learning part also costs lots of time and has time complexity O(|V | ∗ d ∗ T 2).
Then, the total time complexity is O(|V |2 ∗ d ∗T + |V | ∗ d ∗T 2). Note that T << |V |, then we can
ignore the time of contrastive learning and obtain the total time complexity as O(|V |2 ∗ d ∗ T ).
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